123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673 |
- //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the RAGreedy function pass for register allocation in
- // optimized builds.
- //
- //===----------------------------------------------------------------------===//
- #include "RegAllocGreedy.h"
- #include "AllocationOrder.h"
- #include "InterferenceCache.h"
- #include "LiveDebugVariables.h"
- #include "RegAllocBase.h"
- #include "RegAllocEvictionAdvisor.h"
- #include "RegAllocPriorityAdvisor.h"
- #include "SpillPlacement.h"
- #include "SplitKit.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/IndexedMap.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/CodeGen/CalcSpillWeights.h"
- #include "llvm/CodeGen/EdgeBundles.h"
- #include "llvm/CodeGen/LiveInterval.h"
- #include "llvm/CodeGen/LiveIntervalUnion.h"
- #include "llvm/CodeGen/LiveIntervals.h"
- #include "llvm/CodeGen/LiveRangeEdit.h"
- #include "llvm/CodeGen/LiveRegMatrix.h"
- #include "llvm/CodeGen/LiveStacks.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/RegAllocRegistry.h"
- #include "llvm/CodeGen/RegisterClassInfo.h"
- #include "llvm/CodeGen/SlotIndexes.h"
- #include "llvm/CodeGen/Spiller.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/CodeGen/VirtRegMap.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/MC/MCRegisterInfo.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/BlockFrequency.h"
- #include "llvm/Support/BranchProbability.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/Timer.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "regalloc"
- STATISTIC(NumGlobalSplits, "Number of split global live ranges");
- STATISTIC(NumLocalSplits, "Number of split local live ranges");
- STATISTIC(NumEvicted, "Number of interferences evicted");
- static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
- "split-spill-mode", cl::Hidden,
- cl::desc("Spill mode for splitting live ranges"),
- cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
- clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
- clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
- cl::init(SplitEditor::SM_Speed));
- static cl::opt<unsigned>
- LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
- cl::desc("Last chance recoloring max depth"),
- cl::init(5));
- static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
- "lcr-max-interf", cl::Hidden,
- cl::desc("Last chance recoloring maximum number of considered"
- " interference at a time"),
- cl::init(8));
- static cl::opt<bool> ExhaustiveSearch(
- "exhaustive-register-search", cl::NotHidden,
- cl::desc("Exhaustive Search for registers bypassing the depth "
- "and interference cutoffs of last chance recoloring"),
- cl::Hidden);
- static cl::opt<bool> EnableDeferredSpilling(
- "enable-deferred-spilling", cl::Hidden,
- cl::desc("Instead of spilling a variable right away, defer the actual "
- "code insertion to the end of the allocation. That way the "
- "allocator might still find a suitable coloring for this "
- "variable because of other evicted variables."),
- cl::init(false));
- // FIXME: Find a good default for this flag and remove the flag.
- static cl::opt<unsigned>
- CSRFirstTimeCost("regalloc-csr-first-time-cost",
- cl::desc("Cost for first time use of callee-saved register."),
- cl::init(0), cl::Hidden);
- static cl::opt<unsigned long> GrowRegionComplexityBudget(
- "grow-region-complexity-budget",
- cl::desc("growRegion() does not scale with the number of BB edges, so "
- "limit its budget and bail out once we reach the limit."),
- cl::init(10000), cl::Hidden);
- static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness(
- "greedy-regclass-priority-trumps-globalness",
- cl::desc("Change the greedy register allocator's live range priority "
- "calculation to make the AllocationPriority of the register class "
- "more important then whether the range is global"),
- cl::Hidden);
- static cl::opt<bool> GreedyReverseLocalAssignment(
- "greedy-reverse-local-assignment",
- cl::desc("Reverse allocation order of local live ranges, such that "
- "shorter local live ranges will tend to be allocated first"),
- cl::Hidden);
- static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
- createGreedyRegisterAllocator);
- char RAGreedy::ID = 0;
- char &llvm::RAGreedyID = RAGreedy::ID;
- INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
- "Greedy Register Allocator", false, false)
- INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
- INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
- INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
- INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
- INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
- INITIALIZE_PASS_DEPENDENCY(LiveStacks)
- INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
- INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
- INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
- INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
- INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
- INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
- INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
- INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
- INITIALIZE_PASS_DEPENDENCY(RegAllocPriorityAdvisorAnalysis)
- INITIALIZE_PASS_END(RAGreedy, "greedy",
- "Greedy Register Allocator", false, false)
- #ifndef NDEBUG
- const char *const RAGreedy::StageName[] = {
- "RS_New",
- "RS_Assign",
- "RS_Split",
- "RS_Split2",
- "RS_Spill",
- "RS_Memory",
- "RS_Done"
- };
- #endif
- // Hysteresis to use when comparing floats.
- // This helps stabilize decisions based on float comparisons.
- const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
- FunctionPass* llvm::createGreedyRegisterAllocator() {
- return new RAGreedy();
- }
- FunctionPass *llvm::createGreedyRegisterAllocator(RegClassFilterFunc Ftor) {
- return new RAGreedy(Ftor);
- }
- RAGreedy::RAGreedy(RegClassFilterFunc F):
- MachineFunctionPass(ID),
- RegAllocBase(F) {
- }
- void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.addPreserved<MachineBlockFrequencyInfo>();
- AU.addRequired<LiveIntervals>();
- AU.addPreserved<LiveIntervals>();
- AU.addRequired<SlotIndexes>();
- AU.addPreserved<SlotIndexes>();
- AU.addRequired<LiveDebugVariables>();
- AU.addPreserved<LiveDebugVariables>();
- AU.addRequired<LiveStacks>();
- AU.addPreserved<LiveStacks>();
- AU.addRequired<MachineDominatorTree>();
- AU.addPreserved<MachineDominatorTree>();
- AU.addRequired<MachineLoopInfo>();
- AU.addPreserved<MachineLoopInfo>();
- AU.addRequired<VirtRegMap>();
- AU.addPreserved<VirtRegMap>();
- AU.addRequired<LiveRegMatrix>();
- AU.addPreserved<LiveRegMatrix>();
- AU.addRequired<EdgeBundles>();
- AU.addRequired<SpillPlacement>();
- AU.addRequired<MachineOptimizationRemarkEmitterPass>();
- AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
- AU.addRequired<RegAllocPriorityAdvisorAnalysis>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- //===----------------------------------------------------------------------===//
- // LiveRangeEdit delegate methods
- //===----------------------------------------------------------------------===//
- bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
- LiveInterval &LI = LIS->getInterval(VirtReg);
- if (VRM->hasPhys(VirtReg)) {
- Matrix->unassign(LI);
- aboutToRemoveInterval(LI);
- return true;
- }
- // Unassigned virtreg is probably in the priority queue.
- // RegAllocBase will erase it after dequeueing.
- // Nonetheless, clear the live-range so that the debug
- // dump will show the right state for that VirtReg.
- LI.clear();
- return false;
- }
- void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
- if (!VRM->hasPhys(VirtReg))
- return;
- // Register is assigned, put it back on the queue for reassignment.
- LiveInterval &LI = LIS->getInterval(VirtReg);
- Matrix->unassign(LI);
- RegAllocBase::enqueue(&LI);
- }
- void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
- ExtraInfo->LRE_DidCloneVirtReg(New, Old);
- }
- void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
- // Cloning a register we haven't even heard about yet? Just ignore it.
- if (!Info.inBounds(Old))
- return;
- // LRE may clone a virtual register because dead code elimination causes it to
- // be split into connected components. The new components are much smaller
- // than the original, so they should get a new chance at being assigned.
- // same stage as the parent.
- Info[Old].Stage = RS_Assign;
- Info.grow(New.id());
- Info[New] = Info[Old];
- }
- void RAGreedy::releaseMemory() {
- SpillerInstance.reset();
- GlobalCand.clear();
- }
- void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
- void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
- // Prioritize live ranges by size, assigning larger ranges first.
- // The queue holds (size, reg) pairs.
- const Register Reg = LI->reg();
- assert(Reg.isVirtual() && "Can only enqueue virtual registers");
- auto Stage = ExtraInfo->getOrInitStage(Reg);
- if (Stage == RS_New) {
- Stage = RS_Assign;
- ExtraInfo->setStage(Reg, Stage);
- }
- unsigned Ret = PriorityAdvisor->getPriority(*LI);
- // The virtual register number is a tie breaker for same-sized ranges.
- // Give lower vreg numbers higher priority to assign them first.
- CurQueue.push(std::make_pair(Ret, ~Reg));
- }
- unsigned DefaultPriorityAdvisor::getPriority(const LiveInterval &LI) const {
- const unsigned Size = LI.getSize();
- const Register Reg = LI.reg();
- unsigned Prio;
- LiveRangeStage Stage = RA.getExtraInfo().getStage(LI);
- if (Stage == RS_Split) {
- // Unsplit ranges that couldn't be allocated immediately are deferred until
- // everything else has been allocated.
- Prio = Size;
- } else if (Stage == RS_Memory) {
- // Memory operand should be considered last.
- // Change the priority such that Memory operand are assigned in
- // the reverse order that they came in.
- // TODO: Make this a member variable and probably do something about hints.
- static unsigned MemOp = 0;
- Prio = MemOp++;
- } else {
- // Giant live ranges fall back to the global assignment heuristic, which
- // prevents excessive spilling in pathological cases.
- const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
- bool ForceGlobal = RC.GlobalPriority ||
- (!ReverseLocalAssignment &&
- (Size / SlotIndex::InstrDist) >
- (2 * RegClassInfo.getNumAllocatableRegs(&RC)));
- unsigned GlobalBit = 0;
- if (Stage == RS_Assign && !ForceGlobal && !LI.empty() &&
- LIS->intervalIsInOneMBB(LI)) {
- // Allocate original local ranges in linear instruction order. Since they
- // are singly defined, this produces optimal coloring in the absence of
- // global interference and other constraints.
- if (!ReverseLocalAssignment)
- Prio = LI.beginIndex().getApproxInstrDistance(Indexes->getLastIndex());
- else {
- // Allocating bottom up may allow many short LRGs to be assigned first
- // to one of the cheap registers. This could be much faster for very
- // large blocks on targets with many physical registers.
- Prio = Indexes->getZeroIndex().getApproxInstrDistance(LI.endIndex());
- }
- } else {
- // Allocate global and split ranges in long->short order. Long ranges that
- // don't fit should be spilled (or split) ASAP so they don't create
- // interference. Mark a bit to prioritize global above local ranges.
- Prio = Size;
- GlobalBit = 1;
- }
- // Priority bit layout:
- // 31 RS_Assign priority
- // 30 Preference priority
- // if (RegClassPriorityTrumpsGlobalness)
- // 29-25 AllocPriority
- // 24 GlobalBit
- // else
- // 29 Global bit
- // 28-24 AllocPriority
- // 0-23 Size/Instr distance
- // Clamp the size to fit with the priority masking scheme
- Prio = std::min(Prio, (unsigned)maxUIntN(24));
- assert(isUInt<5>(RC.AllocationPriority) && "allocation priority overflow");
- if (RegClassPriorityTrumpsGlobalness)
- Prio |= RC.AllocationPriority << 25 | GlobalBit << 24;
- else
- Prio |= GlobalBit << 29 | RC.AllocationPriority << 24;
- // Mark a higher bit to prioritize global and local above RS_Split.
- Prio |= (1u << 31);
- // Boost ranges that have a physical register hint.
- if (VRM->hasKnownPreference(Reg))
- Prio |= (1u << 30);
- }
- return Prio;
- }
- const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
- const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
- if (CurQueue.empty())
- return nullptr;
- LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
- CurQueue.pop();
- return LI;
- }
- //===----------------------------------------------------------------------===//
- // Direct Assignment
- //===----------------------------------------------------------------------===//
- /// tryAssign - Try to assign VirtReg to an available register.
- MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs,
- const SmallVirtRegSet &FixedRegisters) {
- MCRegister PhysReg;
- for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
- assert(*I);
- if (!Matrix->checkInterference(VirtReg, *I)) {
- if (I.isHint())
- return *I;
- else
- PhysReg = *I;
- }
- }
- if (!PhysReg.isValid())
- return PhysReg;
- // PhysReg is available, but there may be a better choice.
- // If we missed a simple hint, try to cheaply evict interference from the
- // preferred register.
- if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
- if (Order.isHint(Hint)) {
- MCRegister PhysHint = Hint.asMCReg();
- LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
- if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
- FixedRegisters)) {
- evictInterference(VirtReg, PhysHint, NewVRegs);
- return PhysHint;
- }
- // Record the missed hint, we may be able to recover
- // at the end if the surrounding allocation changed.
- SetOfBrokenHints.insert(&VirtReg);
- }
- // Try to evict interference from a cheaper alternative.
- uint8_t Cost = RegCosts[PhysReg];
- // Most registers have 0 additional cost.
- if (!Cost)
- return PhysReg;
- LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
- << (unsigned)Cost << '\n');
- MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
- return CheapReg ? CheapReg : PhysReg;
- }
- //===----------------------------------------------------------------------===//
- // Interference eviction
- //===----------------------------------------------------------------------===//
- Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
- Register PrevReg) const {
- auto Order =
- AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
- MCRegister PhysReg;
- for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
- if ((*I).id() == PrevReg.id())
- continue;
- MCRegUnitIterator Units(*I, TRI);
- for (; Units.isValid(); ++Units) {
- // Instantiate a "subquery", not to be confused with the Queries array.
- LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
- if (subQ.checkInterference())
- break;
- }
- // If no units have interference, break out with the current PhysReg.
- if (!Units.isValid())
- PhysReg = *I;
- }
- if (PhysReg)
- LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
- << printReg(PrevReg, TRI) << " to "
- << printReg(PhysReg, TRI) << '\n');
- return PhysReg;
- }
- /// evictInterference - Evict any interferring registers that prevent VirtReg
- /// from being assigned to Physreg. This assumes that canEvictInterference
- /// returned true.
- void RAGreedy::evictInterference(const LiveInterval &VirtReg,
- MCRegister PhysReg,
- SmallVectorImpl<Register> &NewVRegs) {
- // Make sure that VirtReg has a cascade number, and assign that cascade
- // number to every evicted register. These live ranges than then only be
- // evicted by a newer cascade, preventing infinite loops.
- unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
- LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
- << " interference: Cascade " << Cascade << '\n');
- // Collect all interfering virtregs first.
- SmallVector<const LiveInterval *, 8> Intfs;
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
- // We usually have the interfering VRegs cached so collectInterferingVRegs()
- // should be fast, we may need to recalculate if when different physregs
- // overlap the same register unit so we had different SubRanges queried
- // against it.
- ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
- Intfs.append(IVR.begin(), IVR.end());
- }
- // Evict them second. This will invalidate the queries.
- for (const LiveInterval *Intf : Intfs) {
- // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
- if (!VRM->hasPhys(Intf->reg()))
- continue;
- Matrix->unassign(*Intf);
- assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
- VirtReg.isSpillable() < Intf->isSpillable()) &&
- "Cannot decrease cascade number, illegal eviction");
- ExtraInfo->setCascade(Intf->reg(), Cascade);
- ++NumEvicted;
- NewVRegs.push_back(Intf->reg());
- }
- }
- /// Returns true if the given \p PhysReg is a callee saved register and has not
- /// been used for allocation yet.
- bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
- MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
- if (!CSR)
- return false;
- return !Matrix->isPhysRegUsed(PhysReg);
- }
- std::optional<unsigned>
- RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
- const AllocationOrder &Order,
- unsigned CostPerUseLimit) const {
- unsigned OrderLimit = Order.getOrder().size();
- if (CostPerUseLimit < uint8_t(~0u)) {
- // Check of any registers in RC are below CostPerUseLimit.
- const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
- uint8_t MinCost = RegClassInfo.getMinCost(RC);
- if (MinCost >= CostPerUseLimit) {
- LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
- << MinCost << ", no cheaper registers to be found.\n");
- return std::nullopt;
- }
- // It is normal for register classes to have a long tail of registers with
- // the same cost. We don't need to look at them if they're too expensive.
- if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
- OrderLimit = RegClassInfo.getLastCostChange(RC);
- LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
- << " regs.\n");
- }
- }
- return OrderLimit;
- }
- bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
- MCRegister PhysReg) const {
- if (RegCosts[PhysReg] >= CostPerUseLimit)
- return false;
- // The first use of a callee-saved register in a function has cost 1.
- // Don't start using a CSR when the CostPerUseLimit is low.
- if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
- LLVM_DEBUG(
- dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
- << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
- << '\n');
- return false;
- }
- return true;
- }
- /// tryEvict - Try to evict all interferences for a physreg.
- /// @param VirtReg Currently unassigned virtual register.
- /// @param Order Physregs to try.
- /// @return Physreg to assign VirtReg, or 0.
- MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs,
- uint8_t CostPerUseLimit,
- const SmallVirtRegSet &FixedRegisters) {
- NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
- TimePassesIsEnabled);
- MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
- VirtReg, Order, CostPerUseLimit, FixedRegisters);
- if (BestPhys.isValid())
- evictInterference(VirtReg, BestPhys, NewVRegs);
- return BestPhys;
- }
- //===----------------------------------------------------------------------===//
- // Region Splitting
- //===----------------------------------------------------------------------===//
- /// addSplitConstraints - Fill out the SplitConstraints vector based on the
- /// interference pattern in Physreg and its aliases. Add the constraints to
- /// SpillPlacement and return the static cost of this split in Cost, assuming
- /// that all preferences in SplitConstraints are met.
- /// Return false if there are no bundles with positive bias.
- bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
- BlockFrequency &Cost) {
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- // Reset interference dependent info.
- SplitConstraints.resize(UseBlocks.size());
- BlockFrequency StaticCost = 0;
- for (unsigned I = 0; I != UseBlocks.size(); ++I) {
- const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
- SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
- BC.Number = BI.MBB->getNumber();
- Intf.moveToBlock(BC.Number);
- BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
- BC.Exit = (BI.LiveOut &&
- !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
- ? SpillPlacement::PrefReg
- : SpillPlacement::DontCare;
- BC.ChangesValue = BI.FirstDef.isValid();
- if (!Intf.hasInterference())
- continue;
- // Number of spill code instructions to insert.
- unsigned Ins = 0;
- // Interference for the live-in value.
- if (BI.LiveIn) {
- if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
- BC.Entry = SpillPlacement::MustSpill;
- ++Ins;
- } else if (Intf.first() < BI.FirstInstr) {
- BC.Entry = SpillPlacement::PrefSpill;
- ++Ins;
- } else if (Intf.first() < BI.LastInstr) {
- ++Ins;
- }
- // Abort if the spill cannot be inserted at the MBB' start
- if (((BC.Entry == SpillPlacement::MustSpill) ||
- (BC.Entry == SpillPlacement::PrefSpill)) &&
- SlotIndex::isEarlierInstr(BI.FirstInstr,
- SA->getFirstSplitPoint(BC.Number)))
- return false;
- }
- // Interference for the live-out value.
- if (BI.LiveOut) {
- if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
- BC.Exit = SpillPlacement::MustSpill;
- ++Ins;
- } else if (Intf.last() > BI.LastInstr) {
- BC.Exit = SpillPlacement::PrefSpill;
- ++Ins;
- } else if (Intf.last() > BI.FirstInstr) {
- ++Ins;
- }
- }
- // Accumulate the total frequency of inserted spill code.
- while (Ins--)
- StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
- }
- Cost = StaticCost;
- // Add constraints for use-blocks. Note that these are the only constraints
- // that may add a positive bias, it is downhill from here.
- SpillPlacer->addConstraints(SplitConstraints);
- return SpillPlacer->scanActiveBundles();
- }
- /// addThroughConstraints - Add constraints and links to SpillPlacer from the
- /// live-through blocks in Blocks.
- bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
- ArrayRef<unsigned> Blocks) {
- const unsigned GroupSize = 8;
- SpillPlacement::BlockConstraint BCS[GroupSize];
- unsigned TBS[GroupSize];
- unsigned B = 0, T = 0;
- for (unsigned Number : Blocks) {
- Intf.moveToBlock(Number);
- if (!Intf.hasInterference()) {
- assert(T < GroupSize && "Array overflow");
- TBS[T] = Number;
- if (++T == GroupSize) {
- SpillPlacer->addLinks(ArrayRef(TBS, T));
- T = 0;
- }
- continue;
- }
- assert(B < GroupSize && "Array overflow");
- BCS[B].Number = Number;
- // Abort if the spill cannot be inserted at the MBB' start
- MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
- auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
- if (FirstNonDebugInstr != MBB->end() &&
- SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
- SA->getFirstSplitPoint(Number)))
- return false;
- // Interference for the live-in value.
- if (Intf.first() <= Indexes->getMBBStartIdx(Number))
- BCS[B].Entry = SpillPlacement::MustSpill;
- else
- BCS[B].Entry = SpillPlacement::PrefSpill;
- // Interference for the live-out value.
- if (Intf.last() >= SA->getLastSplitPoint(Number))
- BCS[B].Exit = SpillPlacement::MustSpill;
- else
- BCS[B].Exit = SpillPlacement::PrefSpill;
- if (++B == GroupSize) {
- SpillPlacer->addConstraints(ArrayRef(BCS, B));
- B = 0;
- }
- }
- SpillPlacer->addConstraints(ArrayRef(BCS, B));
- SpillPlacer->addLinks(ArrayRef(TBS, T));
- return true;
- }
- bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
- // Keep track of through blocks that have not been added to SpillPlacer.
- BitVector Todo = SA->getThroughBlocks();
- SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
- unsigned AddedTo = 0;
- #ifndef NDEBUG
- unsigned Visited = 0;
- #endif
- unsigned long Budget = GrowRegionComplexityBudget;
- while (true) {
- ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
- // Find new through blocks in the periphery of PrefRegBundles.
- for (unsigned Bundle : NewBundles) {
- // Look at all blocks connected to Bundle in the full graph.
- ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
- // Limit compilation time by bailing out after we use all our budget.
- if (Blocks.size() >= Budget)
- return false;
- Budget -= Blocks.size();
- for (unsigned Block : Blocks) {
- if (!Todo.test(Block))
- continue;
- Todo.reset(Block);
- // This is a new through block. Add it to SpillPlacer later.
- ActiveBlocks.push_back(Block);
- #ifndef NDEBUG
- ++Visited;
- #endif
- }
- }
- // Any new blocks to add?
- if (ActiveBlocks.size() == AddedTo)
- break;
- // Compute through constraints from the interference, or assume that all
- // through blocks prefer spilling when forming compact regions.
- auto NewBlocks = ArrayRef(ActiveBlocks).slice(AddedTo);
- if (Cand.PhysReg) {
- if (!addThroughConstraints(Cand.Intf, NewBlocks))
- return false;
- } else
- // Provide a strong negative bias on through blocks to prevent unwanted
- // liveness on loop backedges.
- SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
- AddedTo = ActiveBlocks.size();
- // Perhaps iterating can enable more bundles?
- SpillPlacer->iterate();
- }
- LLVM_DEBUG(dbgs() << ", v=" << Visited);
- return true;
- }
- /// calcCompactRegion - Compute the set of edge bundles that should be live
- /// when splitting the current live range into compact regions. Compact
- /// regions can be computed without looking at interference. They are the
- /// regions formed by removing all the live-through blocks from the live range.
- ///
- /// Returns false if the current live range is already compact, or if the
- /// compact regions would form single block regions anyway.
- bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
- // Without any through blocks, the live range is already compact.
- if (!SA->getNumThroughBlocks())
- return false;
- // Compact regions don't correspond to any physreg.
- Cand.reset(IntfCache, MCRegister::NoRegister);
- LLVM_DEBUG(dbgs() << "Compact region bundles");
- // Use the spill placer to determine the live bundles. GrowRegion pretends
- // that all the through blocks have interference when PhysReg is unset.
- SpillPlacer->prepare(Cand.LiveBundles);
- // The static split cost will be zero since Cand.Intf reports no interference.
- BlockFrequency Cost;
- if (!addSplitConstraints(Cand.Intf, Cost)) {
- LLVM_DEBUG(dbgs() << ", none.\n");
- return false;
- }
- if (!growRegion(Cand)) {
- LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
- return false;
- }
- SpillPlacer->finish();
- if (!Cand.LiveBundles.any()) {
- LLVM_DEBUG(dbgs() << ", none.\n");
- return false;
- }
- LLVM_DEBUG({
- for (int I : Cand.LiveBundles.set_bits())
- dbgs() << " EB#" << I;
- dbgs() << ".\n";
- });
- return true;
- }
- /// calcSpillCost - Compute how expensive it would be to split the live range in
- /// SA around all use blocks instead of forming bundle regions.
- BlockFrequency RAGreedy::calcSpillCost() {
- BlockFrequency Cost = 0;
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
- unsigned Number = BI.MBB->getNumber();
- // We normally only need one spill instruction - a load or a store.
- Cost += SpillPlacer->getBlockFrequency(Number);
- // Unless the value is redefined in the block.
- if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
- Cost += SpillPlacer->getBlockFrequency(Number);
- }
- return Cost;
- }
- /// calcGlobalSplitCost - Return the global split cost of following the split
- /// pattern in LiveBundles. This cost should be added to the local cost of the
- /// interference pattern in SplitConstraints.
- ///
- BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
- const AllocationOrder &Order) {
- BlockFrequency GlobalCost = 0;
- const BitVector &LiveBundles = Cand.LiveBundles;
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- for (unsigned I = 0; I != UseBlocks.size(); ++I) {
- const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
- SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
- bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)];
- bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
- unsigned Ins = 0;
- Cand.Intf.moveToBlock(BC.Number);
- if (BI.LiveIn)
- Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
- if (BI.LiveOut)
- Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
- while (Ins--)
- GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
- }
- for (unsigned Number : Cand.ActiveBlocks) {
- bool RegIn = LiveBundles[Bundles->getBundle(Number, false)];
- bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
- if (!RegIn && !RegOut)
- continue;
- if (RegIn && RegOut) {
- // We need double spill code if this block has interference.
- Cand.Intf.moveToBlock(Number);
- if (Cand.Intf.hasInterference()) {
- GlobalCost += SpillPlacer->getBlockFrequency(Number);
- GlobalCost += SpillPlacer->getBlockFrequency(Number);
- }
- continue;
- }
- // live-in / stack-out or stack-in live-out.
- GlobalCost += SpillPlacer->getBlockFrequency(Number);
- }
- return GlobalCost;
- }
- /// splitAroundRegion - Split the current live range around the regions
- /// determined by BundleCand and GlobalCand.
- ///
- /// Before calling this function, GlobalCand and BundleCand must be initialized
- /// so each bundle is assigned to a valid candidate, or NoCand for the
- /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
- /// objects must be initialized for the current live range, and intervals
- /// created for the used candidates.
- ///
- /// @param LREdit The LiveRangeEdit object handling the current split.
- /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
- /// must appear in this list.
- void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
- ArrayRef<unsigned> UsedCands) {
- // These are the intervals created for new global ranges. We may create more
- // intervals for local ranges.
- const unsigned NumGlobalIntvs = LREdit.size();
- LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
- << " globals.\n");
- assert(NumGlobalIntvs && "No global intervals configured");
- // Isolate even single instructions when dealing with a proper sub-class.
- // That guarantees register class inflation for the stack interval because it
- // is all copies.
- Register Reg = SA->getParent().reg();
- bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
- // First handle all the blocks with uses.
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
- unsigned Number = BI.MBB->getNumber();
- unsigned IntvIn = 0, IntvOut = 0;
- SlotIndex IntfIn, IntfOut;
- if (BI.LiveIn) {
- unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
- if (CandIn != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[CandIn];
- IntvIn = Cand.IntvIdx;
- Cand.Intf.moveToBlock(Number);
- IntfIn = Cand.Intf.first();
- }
- }
- if (BI.LiveOut) {
- unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
- if (CandOut != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[CandOut];
- IntvOut = Cand.IntvIdx;
- Cand.Intf.moveToBlock(Number);
- IntfOut = Cand.Intf.last();
- }
- }
- // Create separate intervals for isolated blocks with multiple uses.
- if (!IntvIn && !IntvOut) {
- LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
- if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
- SE->splitSingleBlock(BI);
- continue;
- }
- if (IntvIn && IntvOut)
- SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
- else if (IntvIn)
- SE->splitRegInBlock(BI, IntvIn, IntfIn);
- else
- SE->splitRegOutBlock(BI, IntvOut, IntfOut);
- }
- // Handle live-through blocks. The relevant live-through blocks are stored in
- // the ActiveBlocks list with each candidate. We need to filter out
- // duplicates.
- BitVector Todo = SA->getThroughBlocks();
- for (unsigned UsedCand : UsedCands) {
- ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
- for (unsigned Number : Blocks) {
- if (!Todo.test(Number))
- continue;
- Todo.reset(Number);
- unsigned IntvIn = 0, IntvOut = 0;
- SlotIndex IntfIn, IntfOut;
- unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
- if (CandIn != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[CandIn];
- IntvIn = Cand.IntvIdx;
- Cand.Intf.moveToBlock(Number);
- IntfIn = Cand.Intf.first();
- }
- unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
- if (CandOut != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[CandOut];
- IntvOut = Cand.IntvIdx;
- Cand.Intf.moveToBlock(Number);
- IntfOut = Cand.Intf.last();
- }
- if (!IntvIn && !IntvOut)
- continue;
- SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
- }
- }
- ++NumGlobalSplits;
- SmallVector<unsigned, 8> IntvMap;
- SE->finish(&IntvMap);
- DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
- unsigned OrigBlocks = SA->getNumLiveBlocks();
- // Sort out the new intervals created by splitting. We get four kinds:
- // - Remainder intervals should not be split again.
- // - Candidate intervals can be assigned to Cand.PhysReg.
- // - Block-local splits are candidates for local splitting.
- // - DCE leftovers should go back on the queue.
- for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
- const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
- // Ignore old intervals from DCE.
- if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
- continue;
- // Remainder interval. Don't try splitting again, spill if it doesn't
- // allocate.
- if (IntvMap[I] == 0) {
- ExtraInfo->setStage(Reg, RS_Spill);
- continue;
- }
- // Global intervals. Allow repeated splitting as long as the number of live
- // blocks is strictly decreasing.
- if (IntvMap[I] < NumGlobalIntvs) {
- if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
- LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
- << " blocks as original.\n");
- // Don't allow repeated splitting as a safe guard against looping.
- ExtraInfo->setStage(Reg, RS_Split2);
- }
- continue;
- }
- // Other intervals are treated as new. This includes local intervals created
- // for blocks with multiple uses, and anything created by DCE.
- }
- if (VerifyEnabled)
- MF->verify(this, "After splitting live range around region");
- }
- MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs) {
- if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
- return MCRegister::NoRegister;
- unsigned NumCands = 0;
- BlockFrequency SpillCost = calcSpillCost();
- BlockFrequency BestCost;
- // Check if we can split this live range around a compact region.
- bool HasCompact = calcCompactRegion(GlobalCand.front());
- if (HasCompact) {
- // Yes, keep GlobalCand[0] as the compact region candidate.
- NumCands = 1;
- BestCost = BlockFrequency::getMaxFrequency();
- } else {
- // No benefit from the compact region, our fallback will be per-block
- // splitting. Make sure we find a solution that is cheaper than spilling.
- BestCost = SpillCost;
- LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
- MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
- }
- unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
- NumCands, false /*IgnoreCSR*/);
- // No solutions found, fall back to single block splitting.
- if (!HasCompact && BestCand == NoCand)
- return MCRegister::NoRegister;
- return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
- }
- unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
- AllocationOrder &Order,
- BlockFrequency &BestCost,
- unsigned &NumCands,
- bool IgnoreCSR) {
- unsigned BestCand = NoCand;
- for (MCPhysReg PhysReg : Order) {
- assert(PhysReg);
- if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
- continue;
- // Discard bad candidates before we run out of interference cache cursors.
- // This will only affect register classes with a lot of registers (>32).
- if (NumCands == IntfCache.getMaxCursors()) {
- unsigned WorstCount = ~0u;
- unsigned Worst = 0;
- for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
- if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
- continue;
- unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
- if (Count < WorstCount) {
- Worst = CandIndex;
- WorstCount = Count;
- }
- }
- --NumCands;
- GlobalCand[Worst] = GlobalCand[NumCands];
- if (BestCand == NumCands)
- BestCand = Worst;
- }
- if (GlobalCand.size() <= NumCands)
- GlobalCand.resize(NumCands+1);
- GlobalSplitCandidate &Cand = GlobalCand[NumCands];
- Cand.reset(IntfCache, PhysReg);
- SpillPlacer->prepare(Cand.LiveBundles);
- BlockFrequency Cost;
- if (!addSplitConstraints(Cand.Intf, Cost)) {
- LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
- continue;
- }
- LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
- MBFI->printBlockFreq(dbgs(), Cost));
- if (Cost >= BestCost) {
- LLVM_DEBUG({
- if (BestCand == NoCand)
- dbgs() << " worse than no bundles\n";
- else
- dbgs() << " worse than "
- << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
- });
- continue;
- }
- if (!growRegion(Cand)) {
- LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
- continue;
- }
- SpillPlacer->finish();
- // No live bundles, defer to splitSingleBlocks().
- if (!Cand.LiveBundles.any()) {
- LLVM_DEBUG(dbgs() << " no bundles.\n");
- continue;
- }
- Cost += calcGlobalSplitCost(Cand, Order);
- LLVM_DEBUG({
- dbgs() << ", total = ";
- MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
- for (int I : Cand.LiveBundles.set_bits())
- dbgs() << " EB#" << I;
- dbgs() << ".\n";
- });
- if (Cost < BestCost) {
- BestCand = NumCands;
- BestCost = Cost;
- }
- ++NumCands;
- }
- return BestCand;
- }
- unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
- bool HasCompact,
- SmallVectorImpl<Register> &NewVRegs) {
- SmallVector<unsigned, 8> UsedCands;
- // Prepare split editor.
- LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
- SE->reset(LREdit, SplitSpillMode);
- // Assign all edge bundles to the preferred candidate, or NoCand.
- BundleCand.assign(Bundles->getNumBundles(), NoCand);
- // Assign bundles for the best candidate region.
- if (BestCand != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[BestCand];
- if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
- UsedCands.push_back(BestCand);
- Cand.IntvIdx = SE->openIntv();
- LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
- << B << " bundles, intv " << Cand.IntvIdx << ".\n");
- (void)B;
- }
- }
- // Assign bundles for the compact region.
- if (HasCompact) {
- GlobalSplitCandidate &Cand = GlobalCand.front();
- assert(!Cand.PhysReg && "Compact region has no physreg");
- if (unsigned B = Cand.getBundles(BundleCand, 0)) {
- UsedCands.push_back(0);
- Cand.IntvIdx = SE->openIntv();
- LLVM_DEBUG(dbgs() << "Split for compact region in " << B
- << " bundles, intv " << Cand.IntvIdx << ".\n");
- (void)B;
- }
- }
- splitAroundRegion(LREdit, UsedCands);
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Per-Block Splitting
- //===----------------------------------------------------------------------===//
- /// tryBlockSplit - Split a global live range around every block with uses. This
- /// creates a lot of local live ranges, that will be split by tryLocalSplit if
- /// they don't allocate.
- unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs) {
- assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
- Register Reg = VirtReg.reg();
- bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
- LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
- SE->reset(LREdit, SplitSpillMode);
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
- if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
- SE->splitSingleBlock(BI);
- }
- // No blocks were split.
- if (LREdit.empty())
- return 0;
- // We did split for some blocks.
- SmallVector<unsigned, 8> IntvMap;
- SE->finish(&IntvMap);
- // Tell LiveDebugVariables about the new ranges.
- DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
- // Sort out the new intervals created by splitting. The remainder interval
- // goes straight to spilling, the new local ranges get to stay RS_New.
- for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
- const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
- if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
- ExtraInfo->setStage(LI, RS_Spill);
- }
- if (VerifyEnabled)
- MF->verify(this, "After splitting live range around basic blocks");
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Per-Instruction Splitting
- //===----------------------------------------------------------------------===//
- /// Get the number of allocatable registers that match the constraints of \p Reg
- /// on \p MI and that are also in \p SuperRC.
- static unsigned getNumAllocatableRegsForConstraints(
- const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
- const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
- const RegisterClassInfo &RCI) {
- assert(SuperRC && "Invalid register class");
- const TargetRegisterClass *ConstrainedRC =
- MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
- /* ExploreBundle */ true);
- if (!ConstrainedRC)
- return 0;
- return RCI.getNumAllocatableRegs(ConstrainedRC);
- }
- static LaneBitmask getInstReadLaneMask(const MachineRegisterInfo &MRI,
- const TargetRegisterInfo &TRI,
- const MachineInstr &MI, Register Reg) {
- LaneBitmask Mask;
- for (const MachineOperand &MO : MI.operands()) {
- if (!MO.isReg() || MO.getReg() != Reg)
- continue;
- unsigned SubReg = MO.getSubReg();
- if (SubReg == 0 && MO.isUse()) {
- Mask |= MRI.getMaxLaneMaskForVReg(Reg);
- continue;
- }
- LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
- if (MO.isDef()) {
- if (!MO.isUndef())
- Mask |= ~SubRegMask;
- } else
- Mask |= SubRegMask;
- }
- return Mask;
- }
- /// Return true if \p MI at \P Use reads a subset of the lanes live in \p
- /// VirtReg.
- static bool readsLaneSubset(const MachineRegisterInfo &MRI,
- const MachineInstr *MI, const LiveInterval &VirtReg,
- const TargetRegisterInfo *TRI, SlotIndex Use) {
- // Early check the common case.
- if (MI->isCopy() &&
- MI->getOperand(0).getSubReg() == MI->getOperand(1).getSubReg())
- return false;
- // FIXME: We're only considering uses, but should be consider defs too?
- LaneBitmask ReadMask = getInstReadLaneMask(MRI, *TRI, *MI, VirtReg.reg());
- LaneBitmask LiveAtMask;
- for (const LiveInterval::SubRange &S : VirtReg.subranges()) {
- if (S.liveAt(Use))
- LiveAtMask |= S.LaneMask;
- }
- // If the live lanes aren't different from the lanes used by the instruction,
- // this doesn't help.
- return (ReadMask & ~(LiveAtMask & TRI->getCoveringLanes())).any();
- }
- /// tryInstructionSplit - Split a live range around individual instructions.
- /// This is normally not worthwhile since the spiller is doing essentially the
- /// same thing. However, when the live range is in a constrained register
- /// class, it may help to insert copies such that parts of the live range can
- /// be moved to a larger register class.
- ///
- /// This is similar to spilling to a larger register class.
- unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs) {
- const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
- // There is no point to this if there are no larger sub-classes.
- bool SplitSubClass = true;
- if (!RegClassInfo.isProperSubClass(CurRC)) {
- if (!VirtReg.hasSubRanges())
- return 0;
- SplitSubClass = false;
- }
- // Always enable split spill mode, since we're effectively spilling to a
- // register.
- LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
- SE->reset(LREdit, SplitEditor::SM_Size);
- ArrayRef<SlotIndex> Uses = SA->getUseSlots();
- if (Uses.size() <= 1)
- return 0;
- LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
- << " individual instrs.\n");
- const TargetRegisterClass *SuperRC =
- TRI->getLargestLegalSuperClass(CurRC, *MF);
- unsigned SuperRCNumAllocatableRegs =
- RegClassInfo.getNumAllocatableRegs(SuperRC);
- // Split around every non-copy instruction if this split will relax
- // the constraints on the virtual register.
- // Otherwise, splitting just inserts uncoalescable copies that do not help
- // the allocation.
- for (const SlotIndex Use : Uses) {
- if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) {
- if (MI->isFullCopy() ||
- (SplitSubClass &&
- SuperRCNumAllocatableRegs ==
- getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
- TII, TRI, RegClassInfo)) ||
- // TODO: Handle split for subranges with subclass constraints?
- (!SplitSubClass && VirtReg.hasSubRanges() &&
- !readsLaneSubset(*MRI, MI, VirtReg, TRI, Use))) {
- LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI);
- continue;
- }
- }
- SE->openIntv();
- SlotIndex SegStart = SE->enterIntvBefore(Use);
- SlotIndex SegStop = SE->leaveIntvAfter(Use);
- SE->useIntv(SegStart, SegStop);
- }
- if (LREdit.empty()) {
- LLVM_DEBUG(dbgs() << "All uses were copies.\n");
- return 0;
- }
- SmallVector<unsigned, 8> IntvMap;
- SE->finish(&IntvMap);
- DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
- // Assign all new registers to RS_Spill. This was the last chance.
- ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Local Splitting
- //===----------------------------------------------------------------------===//
- /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
- /// in order to use PhysReg between two entries in SA->UseSlots.
- ///
- /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
- ///
- void RAGreedy::calcGapWeights(MCRegister PhysReg,
- SmallVectorImpl<float> &GapWeight) {
- assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
- const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
- ArrayRef<SlotIndex> Uses = SA->getUseSlots();
- const unsigned NumGaps = Uses.size()-1;
- // Start and end points for the interference check.
- SlotIndex StartIdx =
- BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
- SlotIndex StopIdx =
- BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
- GapWeight.assign(NumGaps, 0.0f);
- // Add interference from each overlapping register.
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
- .checkInterference())
- continue;
- // We know that VirtReg is a continuous interval from FirstInstr to
- // LastInstr, so we don't need InterferenceQuery.
- //
- // Interference that overlaps an instruction is counted in both gaps
- // surrounding the instruction. The exception is interference before
- // StartIdx and after StopIdx.
- //
- LiveIntervalUnion::SegmentIter IntI =
- Matrix->getLiveUnions()[*Units] .find(StartIdx);
- for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
- // Skip the gaps before IntI.
- while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
- if (++Gap == NumGaps)
- break;
- if (Gap == NumGaps)
- break;
- // Update the gaps covered by IntI.
- const float weight = IntI.value()->weight();
- for (; Gap != NumGaps; ++Gap) {
- GapWeight[Gap] = std::max(GapWeight[Gap], weight);
- if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
- break;
- }
- if (Gap == NumGaps)
- break;
- }
- }
- // Add fixed interference.
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- const LiveRange &LR = LIS->getRegUnit(*Units);
- LiveRange::const_iterator I = LR.find(StartIdx);
- LiveRange::const_iterator E = LR.end();
- // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
- for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
- while (Uses[Gap+1].getBoundaryIndex() < I->start)
- if (++Gap == NumGaps)
- break;
- if (Gap == NumGaps)
- break;
- for (; Gap != NumGaps; ++Gap) {
- GapWeight[Gap] = huge_valf;
- if (Uses[Gap+1].getBaseIndex() >= I->end)
- break;
- }
- if (Gap == NumGaps)
- break;
- }
- }
- }
- /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
- /// basic block.
- ///
- unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs) {
- // TODO: the function currently only handles a single UseBlock; it should be
- // possible to generalize.
- if (SA->getUseBlocks().size() != 1)
- return 0;
- const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
- // Note that it is possible to have an interval that is live-in or live-out
- // while only covering a single block - A phi-def can use undef values from
- // predecessors, and the block could be a single-block loop.
- // We don't bother doing anything clever about such a case, we simply assume
- // that the interval is continuous from FirstInstr to LastInstr. We should
- // make sure that we don't do anything illegal to such an interval, though.
- ArrayRef<SlotIndex> Uses = SA->getUseSlots();
- if (Uses.size() <= 2)
- return 0;
- const unsigned NumGaps = Uses.size()-1;
- LLVM_DEBUG({
- dbgs() << "tryLocalSplit: ";
- for (const auto &Use : Uses)
- dbgs() << ' ' << Use;
- dbgs() << '\n';
- });
- // If VirtReg is live across any register mask operands, compute a list of
- // gaps with register masks.
- SmallVector<unsigned, 8> RegMaskGaps;
- if (Matrix->checkRegMaskInterference(VirtReg)) {
- // Get regmask slots for the whole block.
- ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
- LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
- // Constrain to VirtReg's live range.
- unsigned RI =
- llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
- unsigned RE = RMS.size();
- for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
- // Look for Uses[I] <= RMS <= Uses[I + 1].
- assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
- if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
- continue;
- // Skip a regmask on the same instruction as the last use. It doesn't
- // overlap the live range.
- if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
- break;
- LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
- << Uses[I + 1]);
- RegMaskGaps.push_back(I);
- // Advance ri to the next gap. A regmask on one of the uses counts in
- // both gaps.
- while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
- ++RI;
- }
- LLVM_DEBUG(dbgs() << '\n');
- }
- // Since we allow local split results to be split again, there is a risk of
- // creating infinite loops. It is tempting to require that the new live
- // ranges have less instructions than the original. That would guarantee
- // convergence, but it is too strict. A live range with 3 instructions can be
- // split 2+3 (including the COPY), and we want to allow that.
- //
- // Instead we use these rules:
- //
- // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
- // noop split, of course).
- // 2. Require progress be made for ranges with getStage() == RS_Split2. All
- // the new ranges must have fewer instructions than before the split.
- // 3. New ranges with the same number of instructions are marked RS_Split2,
- // smaller ranges are marked RS_New.
- //
- // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
- // excessive splitting and infinite loops.
- //
- bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
- // Best split candidate.
- unsigned BestBefore = NumGaps;
- unsigned BestAfter = 0;
- float BestDiff = 0;
- const float blockFreq =
- SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
- (1.0f / MBFI->getEntryFreq());
- SmallVector<float, 8> GapWeight;
- for (MCPhysReg PhysReg : Order) {
- assert(PhysReg);
- // Keep track of the largest spill weight that would need to be evicted in
- // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
- calcGapWeights(PhysReg, GapWeight);
- // Remove any gaps with regmask clobbers.
- if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
- for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
- GapWeight[RegMaskGaps[I]] = huge_valf;
- // Try to find the best sequence of gaps to close.
- // The new spill weight must be larger than any gap interference.
- // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
- unsigned SplitBefore = 0, SplitAfter = 1;
- // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
- // It is the spill weight that needs to be evicted.
- float MaxGap = GapWeight[0];
- while (true) {
- // Live before/after split?
- const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
- const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
- LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
- << '-' << Uses[SplitAfter] << " I=" << MaxGap);
- // Stop before the interval gets so big we wouldn't be making progress.
- if (!LiveBefore && !LiveAfter) {
- LLVM_DEBUG(dbgs() << " all\n");
- break;
- }
- // Should the interval be extended or shrunk?
- bool Shrink = true;
- // How many gaps would the new range have?
- unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
- // Legally, without causing looping?
- bool Legal = !ProgressRequired || NewGaps < NumGaps;
- if (Legal && MaxGap < huge_valf) {
- // Estimate the new spill weight. Each instruction reads or writes the
- // register. Conservatively assume there are no read-modify-write
- // instructions.
- //
- // Try to guess the size of the new interval.
- const float EstWeight = normalizeSpillWeight(
- blockFreq * (NewGaps + 1),
- Uses[SplitBefore].distance(Uses[SplitAfter]) +
- (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
- 1);
- // Would this split be possible to allocate?
- // Never allocate all gaps, we wouldn't be making progress.
- LLVM_DEBUG(dbgs() << " w=" << EstWeight);
- if (EstWeight * Hysteresis >= MaxGap) {
- Shrink = false;
- float Diff = EstWeight - MaxGap;
- if (Diff > BestDiff) {
- LLVM_DEBUG(dbgs() << " (best)");
- BestDiff = Hysteresis * Diff;
- BestBefore = SplitBefore;
- BestAfter = SplitAfter;
- }
- }
- }
- // Try to shrink.
- if (Shrink) {
- if (++SplitBefore < SplitAfter) {
- LLVM_DEBUG(dbgs() << " shrink\n");
- // Recompute the max when necessary.
- if (GapWeight[SplitBefore - 1] >= MaxGap) {
- MaxGap = GapWeight[SplitBefore];
- for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
- MaxGap = std::max(MaxGap, GapWeight[I]);
- }
- continue;
- }
- MaxGap = 0;
- }
- // Try to extend the interval.
- if (SplitAfter >= NumGaps) {
- LLVM_DEBUG(dbgs() << " end\n");
- break;
- }
- LLVM_DEBUG(dbgs() << " extend\n");
- MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
- }
- }
- // Didn't find any candidates?
- if (BestBefore == NumGaps)
- return 0;
- LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
- << Uses[BestAfter] << ", " << BestDiff << ", "
- << (BestAfter - BestBefore + 1) << " instrs\n");
- LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
- SE->reset(LREdit);
- SE->openIntv();
- SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
- SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
- SE->useIntv(SegStart, SegStop);
- SmallVector<unsigned, 8> IntvMap;
- SE->finish(&IntvMap);
- DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
- // If the new range has the same number of instructions as before, mark it as
- // RS_Split2 so the next split will be forced to make progress. Otherwise,
- // leave the new intervals as RS_New so they can compete.
- bool LiveBefore = BestBefore != 0 || BI.LiveIn;
- bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
- unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
- if (NewGaps >= NumGaps) {
- LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
- assert(!ProgressRequired && "Didn't make progress when it was required.");
- for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
- if (IntvMap[I] == 1) {
- ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
- LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
- }
- LLVM_DEBUG(dbgs() << '\n');
- }
- ++NumLocalSplits;
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Live Range Splitting
- //===----------------------------------------------------------------------===//
- /// trySplit - Try to split VirtReg or one of its interferences, making it
- /// assignable.
- /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
- unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs,
- const SmallVirtRegSet &FixedRegisters) {
- // Ranges must be Split2 or less.
- if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
- return 0;
- // Local intervals are handled separately.
- if (LIS->intervalIsInOneMBB(VirtReg)) {
- NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
- TimerGroupDescription, TimePassesIsEnabled);
- SA->analyze(&VirtReg);
- Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
- if (PhysReg || !NewVRegs.empty())
- return PhysReg;
- return tryInstructionSplit(VirtReg, Order, NewVRegs);
- }
- NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
- TimerGroupDescription, TimePassesIsEnabled);
- SA->analyze(&VirtReg);
- // First try to split around a region spanning multiple blocks. RS_Split2
- // ranges already made dubious progress with region splitting, so they go
- // straight to single block splitting.
- if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
- MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
- if (PhysReg || !NewVRegs.empty())
- return PhysReg;
- }
- // Then isolate blocks.
- return tryBlockSplit(VirtReg, Order, NewVRegs);
- }
- //===----------------------------------------------------------------------===//
- // Last Chance Recoloring
- //===----------------------------------------------------------------------===//
- /// Return true if \p reg has any tied def operand.
- static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
- for (const MachineOperand &MO : MRI->def_operands(reg))
- if (MO.isTied())
- return true;
- return false;
- }
- /// Return true if the existing assignment of \p Intf overlaps, but is not the
- /// same, as \p PhysReg.
- static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI,
- const VirtRegMap &VRM,
- MCRegister PhysReg,
- const LiveInterval &Intf) {
- MCRegister AssignedReg = VRM.getPhys(Intf.reg());
- if (PhysReg == AssignedReg)
- return false;
- return TRI.regsOverlap(PhysReg, AssignedReg);
- }
- /// mayRecolorAllInterferences - Check if the virtual registers that
- /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
- /// recolored to free \p PhysReg.
- /// When true is returned, \p RecoloringCandidates has been augmented with all
- /// the live intervals that need to be recolored in order to free \p PhysReg
- /// for \p VirtReg.
- /// \p FixedRegisters contains all the virtual registers that cannot be
- /// recolored.
- bool RAGreedy::mayRecolorAllInterferences(
- MCRegister PhysReg, const LiveInterval &VirtReg,
- SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
- const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
- // If there is LastChanceRecoloringMaxInterference or more interferences,
- // chances are one would not be recolorable.
- if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
- LastChanceRecoloringMaxInterference &&
- !ExhaustiveSearch) {
- LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
- CutOffInfo |= CO_Interf;
- return false;
- }
- for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
- // If Intf is done and sits on the same register class as VirtReg, it
- // would not be recolorable as it is in the same state as
- // VirtReg. However there are at least two exceptions.
- //
- // If VirtReg has tied defs and Intf doesn't, then
- // there is still a point in examining if it can be recolorable.
- //
- // Additionally, if the register class has overlapping tuple members, it
- // may still be recolorable using a different tuple. This is more likely
- // if the existing assignment aliases with the candidate.
- //
- if (((ExtraInfo->getStage(*Intf) == RS_Done &&
- MRI->getRegClass(Intf->reg()) == CurRC &&
- !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) &&
- !(hasTiedDef(MRI, VirtReg.reg()) &&
- !hasTiedDef(MRI, Intf->reg()))) ||
- FixedRegisters.count(Intf->reg())) {
- LLVM_DEBUG(
- dbgs() << "Early abort: the interference is not recolorable.\n");
- return false;
- }
- RecoloringCandidates.insert(Intf);
- }
- }
- return true;
- }
- /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
- /// its interferences.
- /// Last chance recoloring chooses a color for \p VirtReg and recolors every
- /// virtual register that was using it. The recoloring process may recursively
- /// use the last chance recoloring. Therefore, when a virtual register has been
- /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
- /// be last-chance-recolored again during this recoloring "session".
- /// E.g.,
- /// Let
- /// vA can use {R1, R2 }
- /// vB can use { R2, R3}
- /// vC can use {R1 }
- /// Where vA, vB, and vC cannot be split anymore (they are reloads for
- /// instance) and they all interfere.
- ///
- /// vA is assigned R1
- /// vB is assigned R2
- /// vC tries to evict vA but vA is already done.
- /// Regular register allocation fails.
- ///
- /// Last chance recoloring kicks in:
- /// vC does as if vA was evicted => vC uses R1.
- /// vC is marked as fixed.
- /// vA needs to find a color.
- /// None are available.
- /// vA cannot evict vC: vC is a fixed virtual register now.
- /// vA does as if vB was evicted => vA uses R2.
- /// vB needs to find a color.
- /// R3 is available.
- /// Recoloring => vC = R1, vA = R2, vB = R3
- ///
- /// \p Order defines the preferred allocation order for \p VirtReg.
- /// \p NewRegs will contain any new virtual register that have been created
- /// (split, spill) during the process and that must be assigned.
- /// \p FixedRegisters contains all the virtual registers that cannot be
- /// recolored.
- ///
- /// \p RecolorStack tracks the original assignments of successfully recolored
- /// registers.
- ///
- /// \p Depth gives the current depth of the last chance recoloring.
- /// \return a physical register that can be used for VirtReg or ~0u if none
- /// exists.
- unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs,
- SmallVirtRegSet &FixedRegisters,
- RecoloringStack &RecolorStack,
- unsigned Depth) {
- if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
- return ~0u;
- LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
- const ssize_t EntryStackSize = RecolorStack.size();
- // Ranges must be Done.
- assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
- "Last chance recoloring should really be last chance");
- // Set the max depth to LastChanceRecoloringMaxDepth.
- // We may want to reconsider that if we end up with a too large search space
- // for target with hundreds of registers.
- // Indeed, in that case we may want to cut the search space earlier.
- if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
- LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
- CutOffInfo |= CO_Depth;
- return ~0u;
- }
- // Set of Live intervals that will need to be recolored.
- SmallLISet RecoloringCandidates;
- // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
- // this recoloring "session".
- assert(!FixedRegisters.count(VirtReg.reg()));
- FixedRegisters.insert(VirtReg.reg());
- SmallVector<Register, 4> CurrentNewVRegs;
- for (MCRegister PhysReg : Order) {
- assert(PhysReg.isValid());
- LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
- << printReg(PhysReg, TRI) << '\n');
- RecoloringCandidates.clear();
- CurrentNewVRegs.clear();
- // It is only possible to recolor virtual register interference.
- if (Matrix->checkInterference(VirtReg, PhysReg) >
- LiveRegMatrix::IK_VirtReg) {
- LLVM_DEBUG(
- dbgs() << "Some interferences are not with virtual registers.\n");
- continue;
- }
- // Early give up on this PhysReg if it is obvious we cannot recolor all
- // the interferences.
- if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
- FixedRegisters)) {
- LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
- continue;
- }
- // RecoloringCandidates contains all the virtual registers that interfere
- // with VirtReg on PhysReg (or one of its aliases). Enqueue them for
- // recoloring and perform the actual recoloring.
- PQueue RecoloringQueue;
- for (const LiveInterval *RC : RecoloringCandidates) {
- Register ItVirtReg = RC->reg();
- enqueue(RecoloringQueue, RC);
- assert(VRM->hasPhys(ItVirtReg) &&
- "Interferences are supposed to be with allocated variables");
- // Record the current allocation.
- RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg)));
- // unset the related struct.
- Matrix->unassign(*RC);
- }
- // Do as if VirtReg was assigned to PhysReg so that the underlying
- // recoloring has the right information about the interferes and
- // available colors.
- Matrix->assign(VirtReg, PhysReg);
- // Save the current recoloring state.
- // If we cannot recolor all the interferences, we will have to start again
- // at this point for the next physical register.
- SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
- if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
- FixedRegisters, RecolorStack, Depth)) {
- // Push the queued vregs into the main queue.
- for (Register NewVReg : CurrentNewVRegs)
- NewVRegs.push_back(NewVReg);
- // Do not mess up with the global assignment process.
- // I.e., VirtReg must be unassigned.
- Matrix->unassign(VirtReg);
- return PhysReg;
- }
- LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
- << printReg(PhysReg, TRI) << '\n');
- // The recoloring attempt failed, undo the changes.
- FixedRegisters = SaveFixedRegisters;
- Matrix->unassign(VirtReg);
- // For a newly created vreg which is also in RecoloringCandidates,
- // don't add it to NewVRegs because its physical register will be restored
- // below. Other vregs in CurrentNewVRegs are created by calling
- // selectOrSplit and should be added into NewVRegs.
- for (Register &R : CurrentNewVRegs) {
- if (RecoloringCandidates.count(&LIS->getInterval(R)))
- continue;
- NewVRegs.push_back(R);
- }
- // Roll back our unsuccessful recoloring. Also roll back any successful
- // recolorings in any recursive recoloring attempts, since it's possible
- // they would have introduced conflicts with assignments we will be
- // restoring further up the stack. Perform all unassignments prior to
- // reassigning, since sub-recolorings may have conflicted with the registers
- // we are going to restore to their original assignments.
- for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) {
- const LiveInterval *LI;
- MCRegister PhysReg;
- std::tie(LI, PhysReg) = RecolorStack[I];
- if (VRM->hasPhys(LI->reg()))
- Matrix->unassign(*LI);
- }
- for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) {
- const LiveInterval *LI;
- MCRegister PhysReg;
- std::tie(LI, PhysReg) = RecolorStack[I];
- if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg()))
- Matrix->assign(*LI, PhysReg);
- }
- // Pop the stack of recoloring attempts.
- RecolorStack.resize(EntryStackSize);
- }
- // Last chance recoloring did not worked either, give up.
- return ~0u;
- }
- /// tryRecoloringCandidates - Try to assign a new color to every register
- /// in \RecoloringQueue.
- /// \p NewRegs will contain any new virtual register created during the
- /// recoloring process.
- /// \p FixedRegisters[in/out] contains all the registers that have been
- /// recolored.
- /// \return true if all virtual registers in RecoloringQueue were successfully
- /// recolored, false otherwise.
- bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
- SmallVectorImpl<Register> &NewVRegs,
- SmallVirtRegSet &FixedRegisters,
- RecoloringStack &RecolorStack,
- unsigned Depth) {
- while (!RecoloringQueue.empty()) {
- const LiveInterval *LI = dequeue(RecoloringQueue);
- LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
- MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
- RecolorStack, Depth + 1);
- // When splitting happens, the live-range may actually be empty.
- // In that case, this is okay to continue the recoloring even
- // if we did not find an alternative color for it. Indeed,
- // there will not be anything to color for LI in the end.
- if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
- return false;
- if (!PhysReg) {
- assert(LI->empty() && "Only empty live-range do not require a register");
- LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
- << " succeeded. Empty LI.\n");
- continue;
- }
- LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
- << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
- Matrix->assign(*LI, PhysReg);
- FixedRegisters.insert(LI->reg());
- }
- return true;
- }
- //===----------------------------------------------------------------------===//
- // Main Entry Point
- //===----------------------------------------------------------------------===//
- MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
- SmallVectorImpl<Register> &NewVRegs) {
- CutOffInfo = CO_None;
- LLVMContext &Ctx = MF->getFunction().getContext();
- SmallVirtRegSet FixedRegisters;
- RecoloringStack RecolorStack;
- MCRegister Reg =
- selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack);
- if (Reg == ~0U && (CutOffInfo != CO_None)) {
- uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
- if (CutOffEncountered == CO_Depth)
- Ctx.emitError("register allocation failed: maximum depth for recoloring "
- "reached. Use -fexhaustive-register-search to skip "
- "cutoffs");
- else if (CutOffEncountered == CO_Interf)
- Ctx.emitError("register allocation failed: maximum interference for "
- "recoloring reached. Use -fexhaustive-register-search "
- "to skip cutoffs");
- else if (CutOffEncountered == (CO_Depth | CO_Interf))
- Ctx.emitError("register allocation failed: maximum interference and "
- "depth for recoloring reached. Use "
- "-fexhaustive-register-search to skip cutoffs");
- }
- return Reg;
- }
- /// Using a CSR for the first time has a cost because it causes push|pop
- /// to be added to prologue|epilogue. Splitting a cold section of the live
- /// range can have lower cost than using the CSR for the first time;
- /// Spilling a live range in the cold path can have lower cost than using
- /// the CSR for the first time. Returns the physical register if we decide
- /// to use the CSR; otherwise return 0.
- MCRegister RAGreedy::tryAssignCSRFirstTime(
- const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
- uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
- if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
- // We choose spill over using the CSR for the first time if the spill cost
- // is lower than CSRCost.
- SA->analyze(&VirtReg);
- if (calcSpillCost() >= CSRCost)
- return PhysReg;
- // We are going to spill, set CostPerUseLimit to 1 to make sure that
- // we will not use a callee-saved register in tryEvict.
- CostPerUseLimit = 1;
- return 0;
- }
- if (ExtraInfo->getStage(VirtReg) < RS_Split) {
- // We choose pre-splitting over using the CSR for the first time if
- // the cost of splitting is lower than CSRCost.
- SA->analyze(&VirtReg);
- unsigned NumCands = 0;
- BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
- unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
- NumCands, true /*IgnoreCSR*/);
- if (BestCand == NoCand)
- // Use the CSR if we can't find a region split below CSRCost.
- return PhysReg;
- // Perform the actual pre-splitting.
- doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
- return 0;
- }
- return PhysReg;
- }
- void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
- // Do not keep invalid information around.
- SetOfBrokenHints.remove(&LI);
- }
- void RAGreedy::initializeCSRCost() {
- // We use the larger one out of the command-line option and the value report
- // by TRI.
- CSRCost = BlockFrequency(
- std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
- if (!CSRCost.getFrequency())
- return;
- // Raw cost is relative to Entry == 2^14; scale it appropriately.
- uint64_t ActualEntry = MBFI->getEntryFreq();
- if (!ActualEntry) {
- CSRCost = 0;
- return;
- }
- uint64_t FixedEntry = 1 << 14;
- if (ActualEntry < FixedEntry)
- CSRCost *= BranchProbability(ActualEntry, FixedEntry);
- else if (ActualEntry <= UINT32_MAX)
- // Invert the fraction and divide.
- CSRCost /= BranchProbability(FixedEntry, ActualEntry);
- else
- // Can't use BranchProbability in general, since it takes 32-bit numbers.
- CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
- }
- /// Collect the hint info for \p Reg.
- /// The results are stored into \p Out.
- /// \p Out is not cleared before being populated.
- void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
- for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
- if (!Instr.isFullCopy())
- continue;
- // Look for the other end of the copy.
- Register OtherReg = Instr.getOperand(0).getReg();
- if (OtherReg == Reg) {
- OtherReg = Instr.getOperand(1).getReg();
- if (OtherReg == Reg)
- continue;
- }
- // Get the current assignment.
- MCRegister OtherPhysReg =
- OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
- // Push the collected information.
- Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
- OtherPhysReg));
- }
- }
- /// Using the given \p List, compute the cost of the broken hints if
- /// \p PhysReg was used.
- /// \return The cost of \p List for \p PhysReg.
- BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
- MCRegister PhysReg) {
- BlockFrequency Cost = 0;
- for (const HintInfo &Info : List) {
- if (Info.PhysReg != PhysReg)
- Cost += Info.Freq;
- }
- return Cost;
- }
- /// Using the register assigned to \p VirtReg, try to recolor
- /// all the live ranges that are copy-related with \p VirtReg.
- /// The recoloring is then propagated to all the live-ranges that have
- /// been recolored and so on, until no more copies can be coalesced or
- /// it is not profitable.
- /// For a given live range, profitability is determined by the sum of the
- /// frequencies of the non-identity copies it would introduce with the old
- /// and new register.
- void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
- // We have a broken hint, check if it is possible to fix it by
- // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
- // some register and PhysReg may be available for the other live-ranges.
- SmallSet<Register, 4> Visited;
- SmallVector<unsigned, 2> RecoloringCandidates;
- HintsInfo Info;
- Register Reg = VirtReg.reg();
- MCRegister PhysReg = VRM->getPhys(Reg);
- // Start the recoloring algorithm from the input live-interval, then
- // it will propagate to the ones that are copy-related with it.
- Visited.insert(Reg);
- RecoloringCandidates.push_back(Reg);
- LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
- << '(' << printReg(PhysReg, TRI) << ")\n");
- do {
- Reg = RecoloringCandidates.pop_back_val();
- // We cannot recolor physical register.
- if (Reg.isPhysical())
- continue;
- // This may be a skipped class
- if (!VRM->hasPhys(Reg)) {
- assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
- "We have an unallocated variable which should have been handled");
- continue;
- }
- // Get the live interval mapped with this virtual register to be able
- // to check for the interference with the new color.
- LiveInterval &LI = LIS->getInterval(Reg);
- MCRegister CurrPhys = VRM->getPhys(Reg);
- // Check that the new color matches the register class constraints and
- // that it is free for this live range.
- if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
- Matrix->checkInterference(LI, PhysReg)))
- continue;
- LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
- << ") is recolorable.\n");
- // Gather the hint info.
- Info.clear();
- collectHintInfo(Reg, Info);
- // Check if recoloring the live-range will increase the cost of the
- // non-identity copies.
- if (CurrPhys != PhysReg) {
- LLVM_DEBUG(dbgs() << "Checking profitability:\n");
- BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
- BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
- LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
- << "\nNew Cost: " << NewCopiesCost.getFrequency()
- << '\n');
- if (OldCopiesCost < NewCopiesCost) {
- LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
- continue;
- }
- // At this point, the cost is either cheaper or equal. If it is
- // equal, we consider this is profitable because it may expose
- // more recoloring opportunities.
- LLVM_DEBUG(dbgs() << "=> Profitable.\n");
- // Recolor the live-range.
- Matrix->unassign(LI);
- Matrix->assign(LI, PhysReg);
- }
- // Push all copy-related live-ranges to keep reconciling the broken
- // hints.
- for (const HintInfo &HI : Info) {
- if (Visited.insert(HI.Reg).second)
- RecoloringCandidates.push_back(HI.Reg);
- }
- } while (!RecoloringCandidates.empty());
- }
- /// Try to recolor broken hints.
- /// Broken hints may be repaired by recoloring when an evicted variable
- /// freed up a register for a larger live-range.
- /// Consider the following example:
- /// BB1:
- /// a =
- /// b =
- /// BB2:
- /// ...
- /// = b
- /// = a
- /// Let us assume b gets split:
- /// BB1:
- /// a =
- /// b =
- /// BB2:
- /// c = b
- /// ...
- /// d = c
- /// = d
- /// = a
- /// Because of how the allocation work, b, c, and d may be assigned different
- /// colors. Now, if a gets evicted later:
- /// BB1:
- /// a =
- /// st a, SpillSlot
- /// b =
- /// BB2:
- /// c = b
- /// ...
- /// d = c
- /// = d
- /// e = ld SpillSlot
- /// = e
- /// This is likely that we can assign the same register for b, c, and d,
- /// getting rid of 2 copies.
- void RAGreedy::tryHintsRecoloring() {
- for (const LiveInterval *LI : SetOfBrokenHints) {
- assert(LI->reg().isVirtual() &&
- "Recoloring is possible only for virtual registers");
- // Some dead defs may be around (e.g., because of debug uses).
- // Ignore those.
- if (!VRM->hasPhys(LI->reg()))
- continue;
- tryHintRecoloring(*LI);
- }
- }
- MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
- SmallVectorImpl<Register> &NewVRegs,
- SmallVirtRegSet &FixedRegisters,
- RecoloringStack &RecolorStack,
- unsigned Depth) {
- uint8_t CostPerUseLimit = uint8_t(~0u);
- // First try assigning a free register.
- auto Order =
- AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
- if (MCRegister PhysReg =
- tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
- // When NewVRegs is not empty, we may have made decisions such as evicting
- // a virtual register, go with the earlier decisions and use the physical
- // register.
- if (CSRCost.getFrequency() &&
- EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
- MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
- CostPerUseLimit, NewVRegs);
- if (CSRReg || !NewVRegs.empty())
- // Return now if we decide to use a CSR or create new vregs due to
- // pre-splitting.
- return CSRReg;
- } else
- return PhysReg;
- }
- LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
- LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
- << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
- // Try to evict a less worthy live range, but only for ranges from the primary
- // queue. The RS_Split ranges already failed to do this, and they should not
- // get a second chance until they have been split.
- if (Stage != RS_Split)
- if (Register PhysReg =
- tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
- FixedRegisters)) {
- Register Hint = MRI->getSimpleHint(VirtReg.reg());
- // If VirtReg has a hint and that hint is broken record this
- // virtual register as a recoloring candidate for broken hint.
- // Indeed, since we evicted a variable in its neighborhood it is
- // likely we can at least partially recolor some of the
- // copy-related live-ranges.
- if (Hint && Hint != PhysReg)
- SetOfBrokenHints.insert(&VirtReg);
- return PhysReg;
- }
- assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
- // The first time we see a live range, don't try to split or spill.
- // Wait until the second time, when all smaller ranges have been allocated.
- // This gives a better picture of the interference to split around.
- if (Stage < RS_Split) {
- ExtraInfo->setStage(VirtReg, RS_Split);
- LLVM_DEBUG(dbgs() << "wait for second round\n");
- NewVRegs.push_back(VirtReg.reg());
- return 0;
- }
- if (Stage < RS_Spill) {
- // Try splitting VirtReg or interferences.
- unsigned NewVRegSizeBefore = NewVRegs.size();
- Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
- if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore))
- return PhysReg;
- }
- // If we couldn't allocate a register from spilling, there is probably some
- // invalid inline assembly. The base class will report it.
- if (Stage >= RS_Done || !VirtReg.isSpillable()) {
- return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
- RecolorStack, Depth);
- }
- // Finally spill VirtReg itself.
- if ((EnableDeferredSpilling ||
- TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
- ExtraInfo->getStage(VirtReg) < RS_Memory) {
- // TODO: This is experimental and in particular, we do not model
- // the live range splitting done by spilling correctly.
- // We would need a deep integration with the spiller to do the
- // right thing here. Anyway, that is still good for early testing.
- ExtraInfo->setStage(VirtReg, RS_Memory);
- LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
- NewVRegs.push_back(VirtReg.reg());
- } else {
- NamedRegionTimer T("spill", "Spiller", TimerGroupName,
- TimerGroupDescription, TimePassesIsEnabled);
- LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
- spiller().spill(LRE);
- ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
- // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
- // the new regs are kept in LDV (still mapping to the old register), until
- // we rewrite spilled locations in LDV at a later stage.
- DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
- if (VerifyEnabled)
- MF->verify(this, "After spilling");
- }
- // The live virtual register requesting allocation was spilled, so tell
- // the caller not to allocate anything during this round.
- return 0;
- }
- void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
- using namespace ore;
- if (Spills) {
- R << NV("NumSpills", Spills) << " spills ";
- R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
- }
- if (FoldedSpills) {
- R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
- R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
- << " total folded spills cost ";
- }
- if (Reloads) {
- R << NV("NumReloads", Reloads) << " reloads ";
- R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
- }
- if (FoldedReloads) {
- R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
- R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
- << " total folded reloads cost ";
- }
- if (ZeroCostFoldedReloads)
- R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
- << " zero cost folded reloads ";
- if (Copies) {
- R << NV("NumVRCopies", Copies) << " virtual registers copies ";
- R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
- }
- }
- RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
- RAGreedyStats Stats;
- const MachineFrameInfo &MFI = MF->getFrameInfo();
- int FI;
- auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
- return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
- A->getPseudoValue())->getFrameIndex());
- };
- auto isPatchpointInstr = [](const MachineInstr &MI) {
- return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
- MI.getOpcode() == TargetOpcode::STACKMAP ||
- MI.getOpcode() == TargetOpcode::STATEPOINT;
- };
- for (MachineInstr &MI : MBB) {
- if (MI.isCopy()) {
- const MachineOperand &Dest = MI.getOperand(0);
- const MachineOperand &Src = MI.getOperand(1);
- Register SrcReg = Src.getReg();
- Register DestReg = Dest.getReg();
- // Only count `COPY`s with a virtual register as source or destination.
- if (SrcReg.isVirtual() || DestReg.isVirtual()) {
- if (SrcReg.isVirtual()) {
- SrcReg = VRM->getPhys(SrcReg);
- if (Src.getSubReg())
- SrcReg = TRI->getSubReg(SrcReg, Src.getSubReg());
- }
- if (DestReg.isVirtual()) {
- DestReg = VRM->getPhys(DestReg);
- if (Dest.getSubReg())
- DestReg = TRI->getSubReg(DestReg, Dest.getSubReg());
- }
- if (SrcReg != DestReg)
- ++Stats.Copies;
- }
- continue;
- }
- SmallVector<const MachineMemOperand *, 2> Accesses;
- if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
- ++Stats.Reloads;
- continue;
- }
- if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
- ++Stats.Spills;
- continue;
- }
- if (TII->hasLoadFromStackSlot(MI, Accesses) &&
- llvm::any_of(Accesses, isSpillSlotAccess)) {
- if (!isPatchpointInstr(MI)) {
- Stats.FoldedReloads += Accesses.size();
- continue;
- }
- // For statepoint there may be folded and zero cost folded stack reloads.
- std::pair<unsigned, unsigned> NonZeroCostRange =
- TII->getPatchpointUnfoldableRange(MI);
- SmallSet<unsigned, 16> FoldedReloads;
- SmallSet<unsigned, 16> ZeroCostFoldedReloads;
- for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
- MachineOperand &MO = MI.getOperand(Idx);
- if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
- continue;
- if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
- FoldedReloads.insert(MO.getIndex());
- else
- ZeroCostFoldedReloads.insert(MO.getIndex());
- }
- // If stack slot is used in folded reload it is not zero cost then.
- for (unsigned Slot : FoldedReloads)
- ZeroCostFoldedReloads.erase(Slot);
- Stats.FoldedReloads += FoldedReloads.size();
- Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
- continue;
- }
- Accesses.clear();
- if (TII->hasStoreToStackSlot(MI, Accesses) &&
- llvm::any_of(Accesses, isSpillSlotAccess)) {
- Stats.FoldedSpills += Accesses.size();
- }
- }
- // Set cost of collected statistic by multiplication to relative frequency of
- // this basic block.
- float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
- Stats.ReloadsCost = RelFreq * Stats.Reloads;
- Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
- Stats.SpillsCost = RelFreq * Stats.Spills;
- Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
- Stats.CopiesCost = RelFreq * Stats.Copies;
- return Stats;
- }
- RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
- RAGreedyStats Stats;
- // Sum up the spill and reloads in subloops.
- for (MachineLoop *SubLoop : *L)
- Stats.add(reportStats(SubLoop));
- for (MachineBasicBlock *MBB : L->getBlocks())
- // Handle blocks that were not included in subloops.
- if (Loops->getLoopFor(MBB) == L)
- Stats.add(computeStats(*MBB));
- if (!Stats.isEmpty()) {
- using namespace ore;
- ORE->emit([&]() {
- MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
- L->getStartLoc(), L->getHeader());
- Stats.report(R);
- R << "generated in loop";
- return R;
- });
- }
- return Stats;
- }
- void RAGreedy::reportStats() {
- if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
- return;
- RAGreedyStats Stats;
- for (MachineLoop *L : *Loops)
- Stats.add(reportStats(L));
- // Process non-loop blocks.
- for (MachineBasicBlock &MBB : *MF)
- if (!Loops->getLoopFor(&MBB))
- Stats.add(computeStats(MBB));
- if (!Stats.isEmpty()) {
- using namespace ore;
- ORE->emit([&]() {
- DebugLoc Loc;
- if (auto *SP = MF->getFunction().getSubprogram())
- Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
- MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
- &MF->front());
- Stats.report(R);
- R << "generated in function";
- return R;
- });
- }
- }
- bool RAGreedy::hasVirtRegAlloc() {
- for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
- Register Reg = Register::index2VirtReg(I);
- if (MRI->reg_nodbg_empty(Reg))
- continue;
- const TargetRegisterClass *RC = MRI->getRegClass(Reg);
- if (!RC)
- continue;
- if (ShouldAllocateClass(*TRI, *RC))
- return true;
- }
- return false;
- }
- bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
- LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
- << "********** Function: " << mf.getName() << '\n');
- MF = &mf;
- TII = MF->getSubtarget().getInstrInfo();
- if (VerifyEnabled)
- MF->verify(this, "Before greedy register allocator");
- RegAllocBase::init(getAnalysis<VirtRegMap>(),
- getAnalysis<LiveIntervals>(),
- getAnalysis<LiveRegMatrix>());
- // Early return if there is no virtual register to be allocated to a
- // physical register.
- if (!hasVirtRegAlloc())
- return false;
- Indexes = &getAnalysis<SlotIndexes>();
- MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
- DomTree = &getAnalysis<MachineDominatorTree>();
- ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
- Loops = &getAnalysis<MachineLoopInfo>();
- Bundles = &getAnalysis<EdgeBundles>();
- SpillPlacer = &getAnalysis<SpillPlacement>();
- DebugVars = &getAnalysis<LiveDebugVariables>();
- initializeCSRCost();
- RegCosts = TRI->getRegisterCosts(*MF);
- RegClassPriorityTrumpsGlobalness =
- GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences()
- ? GreedyRegClassPriorityTrumpsGlobalness
- : TRI->regClassPriorityTrumpsGlobalness(*MF);
- ReverseLocalAssignment = GreedyReverseLocalAssignment.getNumOccurrences()
- ? GreedyReverseLocalAssignment
- : TRI->reverseLocalAssignment();
- ExtraInfo.emplace();
- EvictAdvisor =
- getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
- PriorityAdvisor =
- getAnalysis<RegAllocPriorityAdvisorAnalysis>().getAdvisor(*MF, *this);
- VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
- SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
- VRAI->calculateSpillWeightsAndHints();
- LLVM_DEBUG(LIS->dump());
- SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
- SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
- IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
- GlobalCand.resize(32); // This will grow as needed.
- SetOfBrokenHints.clear();
- allocatePhysRegs();
- tryHintsRecoloring();
- if (VerifyEnabled)
- MF->verify(this, "Before post optimization");
- postOptimization();
- reportStats();
- releaseMemory();
- return true;
- }
|