CallLowering.cpp 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242
  1. //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. ///
  9. /// \file
  10. /// This file implements some simple delegations needed for call lowering.
  11. ///
  12. //===----------------------------------------------------------------------===//
  13. #include "llvm/CodeGen/GlobalISel/CallLowering.h"
  14. #include "llvm/CodeGen/Analysis.h"
  15. #include "llvm/CodeGen/CallingConvLower.h"
  16. #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
  17. #include "llvm/CodeGen/GlobalISel/Utils.h"
  18. #include "llvm/CodeGen/MachineFrameInfo.h"
  19. #include "llvm/CodeGen/MachineOperand.h"
  20. #include "llvm/CodeGen/MachineRegisterInfo.h"
  21. #include "llvm/CodeGen/TargetLowering.h"
  22. #include "llvm/IR/DataLayout.h"
  23. #include "llvm/IR/LLVMContext.h"
  24. #include "llvm/IR/Module.h"
  25. #include "llvm/Target/TargetMachine.h"
  26. #define DEBUG_TYPE "call-lowering"
  27. using namespace llvm;
  28. void CallLowering::anchor() {}
  29. /// Helper function which updates \p Flags when \p AttrFn returns true.
  30. static void
  31. addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
  32. const std::function<bool(Attribute::AttrKind)> &AttrFn) {
  33. if (AttrFn(Attribute::SExt))
  34. Flags.setSExt();
  35. if (AttrFn(Attribute::ZExt))
  36. Flags.setZExt();
  37. if (AttrFn(Attribute::InReg))
  38. Flags.setInReg();
  39. if (AttrFn(Attribute::StructRet))
  40. Flags.setSRet();
  41. if (AttrFn(Attribute::Nest))
  42. Flags.setNest();
  43. if (AttrFn(Attribute::ByVal))
  44. Flags.setByVal();
  45. if (AttrFn(Attribute::Preallocated))
  46. Flags.setPreallocated();
  47. if (AttrFn(Attribute::InAlloca))
  48. Flags.setInAlloca();
  49. if (AttrFn(Attribute::Returned))
  50. Flags.setReturned();
  51. if (AttrFn(Attribute::SwiftSelf))
  52. Flags.setSwiftSelf();
  53. if (AttrFn(Attribute::SwiftAsync))
  54. Flags.setSwiftAsync();
  55. if (AttrFn(Attribute::SwiftError))
  56. Flags.setSwiftError();
  57. }
  58. ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
  59. unsigned ArgIdx) const {
  60. ISD::ArgFlagsTy Flags;
  61. addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
  62. return Call.paramHasAttr(ArgIdx, Attr);
  63. });
  64. return Flags;
  65. }
  66. ISD::ArgFlagsTy
  67. CallLowering::getAttributesForReturn(const CallBase &Call) const {
  68. ISD::ArgFlagsTy Flags;
  69. addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
  70. return Call.hasRetAttr(Attr);
  71. });
  72. return Flags;
  73. }
  74. void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
  75. const AttributeList &Attrs,
  76. unsigned OpIdx) const {
  77. addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
  78. return Attrs.hasAttributeAtIndex(OpIdx, Attr);
  79. });
  80. }
  81. bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
  82. ArrayRef<Register> ResRegs,
  83. ArrayRef<ArrayRef<Register>> ArgRegs,
  84. Register SwiftErrorVReg,
  85. std::function<unsigned()> GetCalleeReg) const {
  86. CallLoweringInfo Info;
  87. const DataLayout &DL = MIRBuilder.getDataLayout();
  88. MachineFunction &MF = MIRBuilder.getMF();
  89. MachineRegisterInfo &MRI = MF.getRegInfo();
  90. bool CanBeTailCalled = CB.isTailCall() &&
  91. isInTailCallPosition(CB, MF.getTarget()) &&
  92. (MF.getFunction()
  93. .getFnAttribute("disable-tail-calls")
  94. .getValueAsString() != "true");
  95. CallingConv::ID CallConv = CB.getCallingConv();
  96. Type *RetTy = CB.getType();
  97. bool IsVarArg = CB.getFunctionType()->isVarArg();
  98. SmallVector<BaseArgInfo, 4> SplitArgs;
  99. getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
  100. Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
  101. if (!Info.CanLowerReturn) {
  102. // Callee requires sret demotion.
  103. insertSRetOutgoingArgument(MIRBuilder, CB, Info);
  104. // The sret demotion isn't compatible with tail-calls, since the sret
  105. // argument points into the caller's stack frame.
  106. CanBeTailCalled = false;
  107. }
  108. // First step is to marshall all the function's parameters into the correct
  109. // physregs and memory locations. Gather the sequence of argument types that
  110. // we'll pass to the assigner function.
  111. unsigned i = 0;
  112. unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
  113. for (const auto &Arg : CB.args()) {
  114. ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
  115. i < NumFixedArgs};
  116. setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
  117. // If we have an explicit sret argument that is an Instruction, (i.e., it
  118. // might point to function-local memory), we can't meaningfully tail-call.
  119. if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
  120. CanBeTailCalled = false;
  121. Info.OrigArgs.push_back(OrigArg);
  122. ++i;
  123. }
  124. // Try looking through a bitcast from one function type to another.
  125. // Commonly happens with calls to objc_msgSend().
  126. const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
  127. if (const Function *F = dyn_cast<Function>(CalleeV))
  128. Info.Callee = MachineOperand::CreateGA(F, 0);
  129. else
  130. Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
  131. Register ReturnHintAlignReg;
  132. Align ReturnHintAlign;
  133. Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
  134. if (!Info.OrigRet.Ty->isVoidTy()) {
  135. setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
  136. if (MaybeAlign Alignment = CB.getRetAlign()) {
  137. if (*Alignment > Align(1)) {
  138. ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
  139. Info.OrigRet.Regs[0] = ReturnHintAlignReg;
  140. ReturnHintAlign = *Alignment;
  141. }
  142. }
  143. }
  144. auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
  145. if (Bundle && CB.isIndirectCall()) {
  146. Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
  147. assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
  148. }
  149. Info.CB = &CB;
  150. Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
  151. Info.CallConv = CallConv;
  152. Info.SwiftErrorVReg = SwiftErrorVReg;
  153. Info.IsMustTailCall = CB.isMustTailCall();
  154. Info.IsTailCall = CanBeTailCalled;
  155. Info.IsVarArg = IsVarArg;
  156. if (!lowerCall(MIRBuilder, Info))
  157. return false;
  158. if (ReturnHintAlignReg && !Info.IsTailCall) {
  159. MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
  160. ReturnHintAlign);
  161. }
  162. return true;
  163. }
  164. template <typename FuncInfoTy>
  165. void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
  166. const DataLayout &DL,
  167. const FuncInfoTy &FuncInfo) const {
  168. auto &Flags = Arg.Flags[0];
  169. const AttributeList &Attrs = FuncInfo.getAttributes();
  170. addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
  171. PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
  172. if (PtrTy) {
  173. Flags.setPointer();
  174. Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
  175. }
  176. Align MemAlign = DL.getABITypeAlign(Arg.Ty);
  177. if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
  178. assert(OpIdx >= AttributeList::FirstArgIndex);
  179. unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
  180. Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
  181. if (!ElementTy)
  182. ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
  183. if (!ElementTy)
  184. ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
  185. assert(ElementTy && "Must have byval, inalloca or preallocated type");
  186. Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
  187. // For ByVal, alignment should be passed from FE. BE will guess if
  188. // this info is not there but there are cases it cannot get right.
  189. if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
  190. MemAlign = *ParamAlign;
  191. else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
  192. MemAlign = *ParamAlign;
  193. else
  194. MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
  195. } else if (OpIdx >= AttributeList::FirstArgIndex) {
  196. if (auto ParamAlign =
  197. FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
  198. MemAlign = *ParamAlign;
  199. }
  200. Flags.setMemAlign(MemAlign);
  201. Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
  202. // Don't try to use the returned attribute if the argument is marked as
  203. // swiftself, since it won't be passed in x0.
  204. if (Flags.isSwiftSelf())
  205. Flags.setReturned(false);
  206. }
  207. template void
  208. CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
  209. const DataLayout &DL,
  210. const Function &FuncInfo) const;
  211. template void
  212. CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
  213. const DataLayout &DL,
  214. const CallBase &FuncInfo) const;
  215. void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
  216. SmallVectorImpl<ArgInfo> &SplitArgs,
  217. const DataLayout &DL,
  218. CallingConv::ID CallConv,
  219. SmallVectorImpl<uint64_t> *Offsets) const {
  220. LLVMContext &Ctx = OrigArg.Ty->getContext();
  221. SmallVector<EVT, 4> SplitVTs;
  222. ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
  223. if (SplitVTs.size() == 0)
  224. return;
  225. if (SplitVTs.size() == 1) {
  226. // No splitting to do, but we want to replace the original type (e.g. [1 x
  227. // double] -> double).
  228. SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
  229. OrigArg.OrigArgIndex, OrigArg.Flags[0],
  230. OrigArg.IsFixed, OrigArg.OrigValue);
  231. return;
  232. }
  233. // Create one ArgInfo for each virtual register in the original ArgInfo.
  234. assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
  235. bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
  236. OrigArg.Ty, CallConv, false, DL);
  237. for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
  238. Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
  239. SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
  240. OrigArg.Flags[0], OrigArg.IsFixed);
  241. if (NeedsRegBlock)
  242. SplitArgs.back().Flags[0].setInConsecutiveRegs();
  243. }
  244. SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
  245. }
  246. /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
  247. static MachineInstrBuilder
  248. mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
  249. ArrayRef<Register> SrcRegs) {
  250. MachineRegisterInfo &MRI = *B.getMRI();
  251. LLT LLTy = MRI.getType(DstRegs[0]);
  252. LLT PartLLT = MRI.getType(SrcRegs[0]);
  253. // Deal with v3s16 split into v2s16
  254. LLT LCMTy = getCoverTy(LLTy, PartLLT);
  255. if (LCMTy == LLTy) {
  256. // Common case where no padding is needed.
  257. assert(DstRegs.size() == 1);
  258. return B.buildConcatVectors(DstRegs[0], SrcRegs);
  259. }
  260. // We need to create an unmerge to the result registers, which may require
  261. // widening the original value.
  262. Register UnmergeSrcReg;
  263. if (LCMTy != PartLLT) {
  264. assert(DstRegs.size() == 1);
  265. return B.buildDeleteTrailingVectorElements(
  266. DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
  267. } else {
  268. // We don't need to widen anything if we're extracting a scalar which was
  269. // promoted to a vector e.g. s8 -> v4s8 -> s8
  270. assert(SrcRegs.size() == 1);
  271. UnmergeSrcReg = SrcRegs[0];
  272. }
  273. int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
  274. SmallVector<Register, 8> PadDstRegs(NumDst);
  275. std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
  276. // Create the excess dead defs for the unmerge.
  277. for (int I = DstRegs.size(); I != NumDst; ++I)
  278. PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
  279. if (PadDstRegs.size() == 1)
  280. return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
  281. return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
  282. }
  283. /// Create a sequence of instructions to combine pieces split into register
  284. /// typed values to the original IR value. \p OrigRegs contains the destination
  285. /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
  286. /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
  287. static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
  288. ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
  289. const ISD::ArgFlagsTy Flags) {
  290. MachineRegisterInfo &MRI = *B.getMRI();
  291. if (PartLLT == LLTy) {
  292. // We should have avoided introducing a new virtual register, and just
  293. // directly assigned here.
  294. assert(OrigRegs[0] == Regs[0]);
  295. return;
  296. }
  297. if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
  298. Regs.size() == 1) {
  299. B.buildBitcast(OrigRegs[0], Regs[0]);
  300. return;
  301. }
  302. // A vector PartLLT needs extending to LLTy's element size.
  303. // E.g. <2 x s64> = G_SEXT <2 x s32>.
  304. if (PartLLT.isVector() == LLTy.isVector() &&
  305. PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
  306. (!PartLLT.isVector() ||
  307. PartLLT.getNumElements() == LLTy.getNumElements()) &&
  308. OrigRegs.size() == 1 && Regs.size() == 1) {
  309. Register SrcReg = Regs[0];
  310. LLT LocTy = MRI.getType(SrcReg);
  311. if (Flags.isSExt()) {
  312. SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
  313. .getReg(0);
  314. } else if (Flags.isZExt()) {
  315. SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
  316. .getReg(0);
  317. }
  318. // Sometimes pointers are passed zero extended.
  319. LLT OrigTy = MRI.getType(OrigRegs[0]);
  320. if (OrigTy.isPointer()) {
  321. LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
  322. B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
  323. return;
  324. }
  325. B.buildTrunc(OrigRegs[0], SrcReg);
  326. return;
  327. }
  328. if (!LLTy.isVector() && !PartLLT.isVector()) {
  329. assert(OrigRegs.size() == 1);
  330. LLT OrigTy = MRI.getType(OrigRegs[0]);
  331. unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
  332. if (SrcSize == OrigTy.getSizeInBits())
  333. B.buildMergeValues(OrigRegs[0], Regs);
  334. else {
  335. auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
  336. B.buildTrunc(OrigRegs[0], Widened);
  337. }
  338. return;
  339. }
  340. if (PartLLT.isVector()) {
  341. assert(OrigRegs.size() == 1);
  342. SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
  343. // If PartLLT is a mismatched vector in both number of elements and element
  344. // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
  345. // have the same elt type, i.e. v4s32.
  346. if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
  347. PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
  348. Regs.size() == 1) {
  349. LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
  350. .changeElementCount(PartLLT.getElementCount() * 2);
  351. CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
  352. PartLLT = NewTy;
  353. }
  354. if (LLTy.getScalarType() == PartLLT.getElementType()) {
  355. mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
  356. } else {
  357. unsigned I = 0;
  358. LLT GCDTy = getGCDType(LLTy, PartLLT);
  359. // We are both splitting a vector, and bitcasting its element types. Cast
  360. // the source pieces into the appropriate number of pieces with the result
  361. // element type.
  362. for (Register SrcReg : CastRegs)
  363. CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
  364. mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
  365. }
  366. return;
  367. }
  368. assert(LLTy.isVector() && !PartLLT.isVector());
  369. LLT DstEltTy = LLTy.getElementType();
  370. // Pointer information was discarded. We'll need to coerce some register types
  371. // to avoid violating type constraints.
  372. LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
  373. assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
  374. if (DstEltTy == PartLLT) {
  375. // Vector was trivially scalarized.
  376. if (RealDstEltTy.isPointer()) {
  377. for (Register Reg : Regs)
  378. MRI.setType(Reg, RealDstEltTy);
  379. }
  380. B.buildBuildVector(OrigRegs[0], Regs);
  381. } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
  382. // Deal with vector with 64-bit elements decomposed to 32-bit
  383. // registers. Need to create intermediate 64-bit elements.
  384. SmallVector<Register, 8> EltMerges;
  385. int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
  386. assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
  387. for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
  388. auto Merge =
  389. B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt));
  390. // Fix the type in case this is really a vector of pointers.
  391. MRI.setType(Merge.getReg(0), RealDstEltTy);
  392. EltMerges.push_back(Merge.getReg(0));
  393. Regs = Regs.drop_front(PartsPerElt);
  394. }
  395. B.buildBuildVector(OrigRegs[0], EltMerges);
  396. } else {
  397. // Vector was split, and elements promoted to a wider type.
  398. // FIXME: Should handle floating point promotions.
  399. LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
  400. auto BV = B.buildBuildVector(BVType, Regs);
  401. B.buildTrunc(OrigRegs[0], BV);
  402. }
  403. }
  404. /// Create a sequence of instructions to expand the value in \p SrcReg (of type
  405. /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
  406. /// contain the type of scalar value extension if necessary.
  407. ///
  408. /// This is used for outgoing values (vregs to physregs)
  409. static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
  410. Register SrcReg, LLT SrcTy, LLT PartTy,
  411. unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
  412. // We could just insert a regular copy, but this is unreachable at the moment.
  413. assert(SrcTy != PartTy && "identical part types shouldn't reach here");
  414. const unsigned PartSize = PartTy.getSizeInBits();
  415. if (PartTy.isVector() == SrcTy.isVector() &&
  416. PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
  417. assert(DstRegs.size() == 1);
  418. B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
  419. return;
  420. }
  421. if (SrcTy.isVector() && !PartTy.isVector() &&
  422. PartSize > SrcTy.getElementType().getSizeInBits()) {
  423. // Vector was scalarized, and the elements extended.
  424. auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
  425. for (int i = 0, e = DstRegs.size(); i != e; ++i)
  426. B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
  427. return;
  428. }
  429. if (SrcTy.isVector() && PartTy.isVector() &&
  430. PartTy.getScalarSizeInBits() == SrcTy.getScalarSizeInBits() &&
  431. SrcTy.getNumElements() < PartTy.getNumElements()) {
  432. // A coercion like: v2f32 -> v4f32.
  433. Register DstReg = DstRegs.front();
  434. B.buildPadVectorWithUndefElements(DstReg, SrcReg);
  435. return;
  436. }
  437. LLT GCDTy = getGCDType(SrcTy, PartTy);
  438. if (GCDTy == PartTy) {
  439. // If this already evenly divisible, we can create a simple unmerge.
  440. B.buildUnmerge(DstRegs, SrcReg);
  441. return;
  442. }
  443. MachineRegisterInfo &MRI = *B.getMRI();
  444. LLT DstTy = MRI.getType(DstRegs[0]);
  445. LLT LCMTy = getCoverTy(SrcTy, PartTy);
  446. if (PartTy.isVector() && LCMTy == PartTy) {
  447. assert(DstRegs.size() == 1);
  448. B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
  449. return;
  450. }
  451. const unsigned DstSize = DstTy.getSizeInBits();
  452. const unsigned SrcSize = SrcTy.getSizeInBits();
  453. unsigned CoveringSize = LCMTy.getSizeInBits();
  454. Register UnmergeSrc = SrcReg;
  455. if (!LCMTy.isVector() && CoveringSize != SrcSize) {
  456. // For scalars, it's common to be able to use a simple extension.
  457. if (SrcTy.isScalar() && DstTy.isScalar()) {
  458. CoveringSize = alignTo(SrcSize, DstSize);
  459. LLT CoverTy = LLT::scalar(CoveringSize);
  460. UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
  461. } else {
  462. // Widen to the common type.
  463. // FIXME: This should respect the extend type
  464. Register Undef = B.buildUndef(SrcTy).getReg(0);
  465. SmallVector<Register, 8> MergeParts(1, SrcReg);
  466. for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
  467. MergeParts.push_back(Undef);
  468. UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
  469. }
  470. }
  471. if (LCMTy.isVector() && CoveringSize != SrcSize)
  472. UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
  473. B.buildUnmerge(DstRegs, UnmergeSrc);
  474. }
  475. bool CallLowering::determineAndHandleAssignments(
  476. ValueHandler &Handler, ValueAssigner &Assigner,
  477. SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
  478. CallingConv::ID CallConv, bool IsVarArg,
  479. ArrayRef<Register> ThisReturnRegs) const {
  480. MachineFunction &MF = MIRBuilder.getMF();
  481. const Function &F = MF.getFunction();
  482. SmallVector<CCValAssign, 16> ArgLocs;
  483. CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
  484. if (!determineAssignments(Assigner, Args, CCInfo))
  485. return false;
  486. return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
  487. ThisReturnRegs);
  488. }
  489. static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
  490. if (Flags.isSExt())
  491. return TargetOpcode::G_SEXT;
  492. if (Flags.isZExt())
  493. return TargetOpcode::G_ZEXT;
  494. return TargetOpcode::G_ANYEXT;
  495. }
  496. bool CallLowering::determineAssignments(ValueAssigner &Assigner,
  497. SmallVectorImpl<ArgInfo> &Args,
  498. CCState &CCInfo) const {
  499. LLVMContext &Ctx = CCInfo.getContext();
  500. const CallingConv::ID CallConv = CCInfo.getCallingConv();
  501. unsigned NumArgs = Args.size();
  502. for (unsigned i = 0; i != NumArgs; ++i) {
  503. EVT CurVT = EVT::getEVT(Args[i].Ty);
  504. MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
  505. // If we need to split the type over multiple regs, check it's a scenario
  506. // we currently support.
  507. unsigned NumParts =
  508. TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
  509. if (NumParts == 1) {
  510. // Try to use the register type if we couldn't assign the VT.
  511. if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
  512. Args[i].Flags[0], CCInfo))
  513. return false;
  514. continue;
  515. }
  516. // For incoming arguments (physregs to vregs), we could have values in
  517. // physregs (or memlocs) which we want to extract and copy to vregs.
  518. // During this, we might have to deal with the LLT being split across
  519. // multiple regs, so we have to record this information for later.
  520. //
  521. // If we have outgoing args, then we have the opposite case. We have a
  522. // vreg with an LLT which we want to assign to a physical location, and
  523. // we might have to record that the value has to be split later.
  524. // We're handling an incoming arg which is split over multiple regs.
  525. // E.g. passing an s128 on AArch64.
  526. ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
  527. Args[i].Flags.clear();
  528. for (unsigned Part = 0; Part < NumParts; ++Part) {
  529. ISD::ArgFlagsTy Flags = OrigFlags;
  530. if (Part == 0) {
  531. Flags.setSplit();
  532. } else {
  533. Flags.setOrigAlign(Align(1));
  534. if (Part == NumParts - 1)
  535. Flags.setSplitEnd();
  536. }
  537. Args[i].Flags.push_back(Flags);
  538. if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
  539. Args[i].Flags[Part], CCInfo)) {
  540. // Still couldn't assign this smaller part type for some reason.
  541. return false;
  542. }
  543. }
  544. }
  545. return true;
  546. }
  547. bool CallLowering::handleAssignments(ValueHandler &Handler,
  548. SmallVectorImpl<ArgInfo> &Args,
  549. CCState &CCInfo,
  550. SmallVectorImpl<CCValAssign> &ArgLocs,
  551. MachineIRBuilder &MIRBuilder,
  552. ArrayRef<Register> ThisReturnRegs) const {
  553. MachineFunction &MF = MIRBuilder.getMF();
  554. MachineRegisterInfo &MRI = MF.getRegInfo();
  555. const Function &F = MF.getFunction();
  556. const DataLayout &DL = F.getParent()->getDataLayout();
  557. const unsigned NumArgs = Args.size();
  558. // Stores thunks for outgoing register assignments. This is used so we delay
  559. // generating register copies until mem loc assignments are done. We do this
  560. // so that if the target is using the delayed stack protector feature, we can
  561. // find the split point of the block accurately. E.g. if we have:
  562. // G_STORE %val, %memloc
  563. // $x0 = COPY %foo
  564. // $x1 = COPY %bar
  565. // CALL func
  566. // ... then the split point for the block will correctly be at, and including,
  567. // the copy to $x0. If instead the G_STORE instruction immediately precedes
  568. // the CALL, then we'd prematurely choose the CALL as the split point, thus
  569. // generating a split block with a CALL that uses undefined physregs.
  570. SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
  571. for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
  572. assert(j < ArgLocs.size() && "Skipped too many arg locs");
  573. CCValAssign &VA = ArgLocs[j];
  574. assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
  575. if (VA.needsCustom()) {
  576. std::function<void()> Thunk;
  577. unsigned NumArgRegs = Handler.assignCustomValue(
  578. Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
  579. if (Thunk)
  580. DelayedOutgoingRegAssignments.emplace_back(Thunk);
  581. if (!NumArgRegs)
  582. return false;
  583. j += NumArgRegs;
  584. continue;
  585. }
  586. const MVT ValVT = VA.getValVT();
  587. const MVT LocVT = VA.getLocVT();
  588. const LLT LocTy(LocVT);
  589. const LLT ValTy(ValVT);
  590. const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
  591. const EVT OrigVT = EVT::getEVT(Args[i].Ty);
  592. const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
  593. // Expected to be multiple regs for a single incoming arg.
  594. // There should be Regs.size() ArgLocs per argument.
  595. // This should be the same as getNumRegistersForCallingConv
  596. const unsigned NumParts = Args[i].Flags.size();
  597. // Now split the registers into the assigned types.
  598. Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
  599. if (NumParts != 1 || NewLLT != OrigTy) {
  600. // If we can't directly assign the register, we need one or more
  601. // intermediate values.
  602. Args[i].Regs.resize(NumParts);
  603. // For each split register, create and assign a vreg that will store
  604. // the incoming component of the larger value. These will later be
  605. // merged to form the final vreg.
  606. for (unsigned Part = 0; Part < NumParts; ++Part)
  607. Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
  608. }
  609. assert((j + (NumParts - 1)) < ArgLocs.size() &&
  610. "Too many regs for number of args");
  611. // Coerce into outgoing value types before register assignment.
  612. if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
  613. assert(Args[i].OrigRegs.size() == 1);
  614. buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
  615. ValTy, extendOpFromFlags(Args[i].Flags[0]));
  616. }
  617. bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
  618. for (unsigned Part = 0; Part < NumParts; ++Part) {
  619. Register ArgReg = Args[i].Regs[Part];
  620. // There should be Regs.size() ArgLocs per argument.
  621. unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
  622. CCValAssign &VA = ArgLocs[j + Idx];
  623. const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
  624. if (VA.isMemLoc() && !Flags.isByVal()) {
  625. // Individual pieces may have been spilled to the stack and others
  626. // passed in registers.
  627. // TODO: The memory size may be larger than the value we need to
  628. // store. We may need to adjust the offset for big endian targets.
  629. LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
  630. MachinePointerInfo MPO;
  631. Register StackAddr = Handler.getStackAddress(
  632. MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
  633. Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
  634. continue;
  635. }
  636. if (VA.isMemLoc() && Flags.isByVal()) {
  637. assert(Args[i].Regs.size() == 1 &&
  638. "didn't expect split byval pointer");
  639. if (Handler.isIncomingArgumentHandler()) {
  640. // We just need to copy the frame index value to the pointer.
  641. MachinePointerInfo MPO;
  642. Register StackAddr = Handler.getStackAddress(
  643. Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
  644. MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
  645. } else {
  646. // For outgoing byval arguments, insert the implicit copy byval
  647. // implies, such that writes in the callee do not modify the caller's
  648. // value.
  649. uint64_t MemSize = Flags.getByValSize();
  650. int64_t Offset = VA.getLocMemOffset();
  651. MachinePointerInfo DstMPO;
  652. Register StackAddr =
  653. Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
  654. MachinePointerInfo SrcMPO(Args[i].OrigValue);
  655. if (!Args[i].OrigValue) {
  656. // We still need to accurately track the stack address space if we
  657. // don't know the underlying value.
  658. const LLT PtrTy = MRI.getType(StackAddr);
  659. SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
  660. }
  661. Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
  662. inferAlignFromPtrInfo(MF, DstMPO));
  663. Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
  664. inferAlignFromPtrInfo(MF, SrcMPO));
  665. Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
  666. DstMPO, DstAlign, SrcMPO, SrcAlign,
  667. MemSize, VA);
  668. }
  669. continue;
  670. }
  671. assert(!VA.needsCustom() && "custom loc should have been handled already");
  672. if (i == 0 && !ThisReturnRegs.empty() &&
  673. Handler.isIncomingArgumentHandler() &&
  674. isTypeIsValidForThisReturn(ValVT)) {
  675. Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
  676. continue;
  677. }
  678. if (Handler.isIncomingArgumentHandler())
  679. Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
  680. else {
  681. DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
  682. Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
  683. });
  684. }
  685. }
  686. // Now that all pieces have been assigned, re-pack the register typed values
  687. // into the original value typed registers.
  688. if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
  689. // Merge the split registers into the expected larger result vregs of
  690. // the original call.
  691. buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
  692. LocTy, Args[i].Flags[0]);
  693. }
  694. j += NumParts - 1;
  695. }
  696. for (auto &Fn : DelayedOutgoingRegAssignments)
  697. Fn();
  698. return true;
  699. }
  700. void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
  701. ArrayRef<Register> VRegs, Register DemoteReg,
  702. int FI) const {
  703. MachineFunction &MF = MIRBuilder.getMF();
  704. MachineRegisterInfo &MRI = MF.getRegInfo();
  705. const DataLayout &DL = MF.getDataLayout();
  706. SmallVector<EVT, 4> SplitVTs;
  707. SmallVector<uint64_t, 4> Offsets;
  708. ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
  709. assert(VRegs.size() == SplitVTs.size());
  710. unsigned NumValues = SplitVTs.size();
  711. Align BaseAlign = DL.getPrefTypeAlign(RetTy);
  712. Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
  713. LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
  714. MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
  715. for (unsigned I = 0; I < NumValues; ++I) {
  716. Register Addr;
  717. MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
  718. auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
  719. MRI.getType(VRegs[I]),
  720. commonAlignment(BaseAlign, Offsets[I]));
  721. MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
  722. }
  723. }
  724. void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
  725. ArrayRef<Register> VRegs,
  726. Register DemoteReg) const {
  727. MachineFunction &MF = MIRBuilder.getMF();
  728. MachineRegisterInfo &MRI = MF.getRegInfo();
  729. const DataLayout &DL = MF.getDataLayout();
  730. SmallVector<EVT, 4> SplitVTs;
  731. SmallVector<uint64_t, 4> Offsets;
  732. ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
  733. assert(VRegs.size() == SplitVTs.size());
  734. unsigned NumValues = SplitVTs.size();
  735. Align BaseAlign = DL.getPrefTypeAlign(RetTy);
  736. unsigned AS = DL.getAllocaAddrSpace();
  737. LLT OffsetLLTy =
  738. getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
  739. MachinePointerInfo PtrInfo(AS);
  740. for (unsigned I = 0; I < NumValues; ++I) {
  741. Register Addr;
  742. MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
  743. auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
  744. MRI.getType(VRegs[I]),
  745. commonAlignment(BaseAlign, Offsets[I]));
  746. MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
  747. }
  748. }
  749. void CallLowering::insertSRetIncomingArgument(
  750. const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
  751. MachineRegisterInfo &MRI, const DataLayout &DL) const {
  752. unsigned AS = DL.getAllocaAddrSpace();
  753. DemoteReg = MRI.createGenericVirtualRegister(
  754. LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
  755. Type *PtrTy = PointerType::get(F.getReturnType(), AS);
  756. SmallVector<EVT, 1> ValueVTs;
  757. ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
  758. // NOTE: Assume that a pointer won't get split into more than one VT.
  759. assert(ValueVTs.size() == 1);
  760. ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
  761. ArgInfo::NoArgIndex);
  762. setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
  763. DemoteArg.Flags[0].setSRet();
  764. SplitArgs.insert(SplitArgs.begin(), DemoteArg);
  765. }
  766. void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
  767. const CallBase &CB,
  768. CallLoweringInfo &Info) const {
  769. const DataLayout &DL = MIRBuilder.getDataLayout();
  770. Type *RetTy = CB.getType();
  771. unsigned AS = DL.getAllocaAddrSpace();
  772. LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
  773. int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
  774. DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
  775. Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
  776. ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
  777. ArgInfo::NoArgIndex);
  778. setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
  779. DemoteArg.Flags[0].setSRet();
  780. Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
  781. Info.DemoteStackIndex = FI;
  782. Info.DemoteRegister = DemoteReg;
  783. }
  784. bool CallLowering::checkReturn(CCState &CCInfo,
  785. SmallVectorImpl<BaseArgInfo> &Outs,
  786. CCAssignFn *Fn) const {
  787. for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
  788. MVT VT = MVT::getVT(Outs[I].Ty);
  789. if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
  790. return false;
  791. }
  792. return true;
  793. }
  794. void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
  795. AttributeList Attrs,
  796. SmallVectorImpl<BaseArgInfo> &Outs,
  797. const DataLayout &DL) const {
  798. LLVMContext &Context = RetTy->getContext();
  799. ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
  800. SmallVector<EVT, 4> SplitVTs;
  801. ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
  802. addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
  803. for (EVT VT : SplitVTs) {
  804. unsigned NumParts =
  805. TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
  806. MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
  807. Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
  808. for (unsigned I = 0; I < NumParts; ++I) {
  809. Outs.emplace_back(PartTy, Flags);
  810. }
  811. }
  812. }
  813. bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
  814. const auto &F = MF.getFunction();
  815. Type *ReturnType = F.getReturnType();
  816. CallingConv::ID CallConv = F.getCallingConv();
  817. SmallVector<BaseArgInfo, 4> SplitArgs;
  818. getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
  819. MF.getDataLayout());
  820. return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
  821. }
  822. bool CallLowering::parametersInCSRMatch(
  823. const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
  824. const SmallVectorImpl<CCValAssign> &OutLocs,
  825. const SmallVectorImpl<ArgInfo> &OutArgs) const {
  826. for (unsigned i = 0; i < OutLocs.size(); ++i) {
  827. const auto &ArgLoc = OutLocs[i];
  828. // If it's not a register, it's fine.
  829. if (!ArgLoc.isRegLoc())
  830. continue;
  831. MCRegister PhysReg = ArgLoc.getLocReg();
  832. // Only look at callee-saved registers.
  833. if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
  834. continue;
  835. LLVM_DEBUG(
  836. dbgs()
  837. << "... Call has an argument passed in a callee-saved register.\n");
  838. // Check if it was copied from.
  839. const ArgInfo &OutInfo = OutArgs[i];
  840. if (OutInfo.Regs.size() > 1) {
  841. LLVM_DEBUG(
  842. dbgs() << "... Cannot handle arguments in multiple registers.\n");
  843. return false;
  844. }
  845. // Check if we copy the register, walking through copies from virtual
  846. // registers. Note that getDefIgnoringCopies does not ignore copies from
  847. // physical registers.
  848. MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
  849. if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
  850. LLVM_DEBUG(
  851. dbgs()
  852. << "... Parameter was not copied into a VReg, cannot tail call.\n");
  853. return false;
  854. }
  855. // Got a copy. Verify that it's the same as the register we want.
  856. Register CopyRHS = RegDef->getOperand(1).getReg();
  857. if (CopyRHS != PhysReg) {
  858. LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
  859. "VReg, cannot tail call.\n");
  860. return false;
  861. }
  862. }
  863. return true;
  864. }
  865. bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
  866. MachineFunction &MF,
  867. SmallVectorImpl<ArgInfo> &InArgs,
  868. ValueAssigner &CalleeAssigner,
  869. ValueAssigner &CallerAssigner) const {
  870. const Function &F = MF.getFunction();
  871. CallingConv::ID CalleeCC = Info.CallConv;
  872. CallingConv::ID CallerCC = F.getCallingConv();
  873. if (CallerCC == CalleeCC)
  874. return true;
  875. SmallVector<CCValAssign, 16> ArgLocs1;
  876. CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
  877. if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
  878. return false;
  879. SmallVector<CCValAssign, 16> ArgLocs2;
  880. CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
  881. if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
  882. return false;
  883. // We need the argument locations to match up exactly. If there's more in
  884. // one than the other, then we are done.
  885. if (ArgLocs1.size() != ArgLocs2.size())
  886. return false;
  887. // Make sure that each location is passed in exactly the same way.
  888. for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
  889. const CCValAssign &Loc1 = ArgLocs1[i];
  890. const CCValAssign &Loc2 = ArgLocs2[i];
  891. // We need both of them to be the same. So if one is a register and one
  892. // isn't, we're done.
  893. if (Loc1.isRegLoc() != Loc2.isRegLoc())
  894. return false;
  895. if (Loc1.isRegLoc()) {
  896. // If they don't have the same register location, we're done.
  897. if (Loc1.getLocReg() != Loc2.getLocReg())
  898. return false;
  899. // They matched, so we can move to the next ArgLoc.
  900. continue;
  901. }
  902. // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
  903. if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
  904. return false;
  905. }
  906. return true;
  907. }
  908. LLT CallLowering::ValueHandler::getStackValueStoreType(
  909. const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
  910. const MVT ValVT = VA.getValVT();
  911. if (ValVT != MVT::iPTR) {
  912. LLT ValTy(ValVT);
  913. // We lost the pointeriness going through CCValAssign, so try to restore it
  914. // based on the flags.
  915. if (Flags.isPointer()) {
  916. LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
  917. ValTy.getScalarSizeInBits());
  918. if (ValVT.isVector())
  919. return LLT::vector(ValTy.getElementCount(), PtrTy);
  920. return PtrTy;
  921. }
  922. return ValTy;
  923. }
  924. unsigned AddrSpace = Flags.getPointerAddrSpace();
  925. return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
  926. }
  927. void CallLowering::ValueHandler::copyArgumentMemory(
  928. const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
  929. const MachinePointerInfo &DstPtrInfo, Align DstAlign,
  930. const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
  931. CCValAssign &VA) const {
  932. MachineFunction &MF = MIRBuilder.getMF();
  933. MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
  934. SrcPtrInfo,
  935. MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
  936. SrcAlign);
  937. MachineMemOperand *DstMMO = MF.getMachineMemOperand(
  938. DstPtrInfo,
  939. MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
  940. MemSize, DstAlign);
  941. const LLT PtrTy = MRI.getType(DstPtr);
  942. const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
  943. auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
  944. MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
  945. }
  946. Register CallLowering::ValueHandler::extendRegister(Register ValReg,
  947. CCValAssign &VA,
  948. unsigned MaxSizeBits) {
  949. LLT LocTy{VA.getLocVT()};
  950. LLT ValTy{VA.getValVT()};
  951. if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
  952. return ValReg;
  953. if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
  954. if (MaxSizeBits <= ValTy.getSizeInBits())
  955. return ValReg;
  956. LocTy = LLT::scalar(MaxSizeBits);
  957. }
  958. const LLT ValRegTy = MRI.getType(ValReg);
  959. if (ValRegTy.isPointer()) {
  960. // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
  961. // we have to cast to do the extension.
  962. LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
  963. ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
  964. }
  965. switch (VA.getLocInfo()) {
  966. default: break;
  967. case CCValAssign::Full:
  968. case CCValAssign::BCvt:
  969. // FIXME: bitconverting between vector types may or may not be a
  970. // nop in big-endian situations.
  971. return ValReg;
  972. case CCValAssign::AExt: {
  973. auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
  974. return MIB.getReg(0);
  975. }
  976. case CCValAssign::SExt: {
  977. Register NewReg = MRI.createGenericVirtualRegister(LocTy);
  978. MIRBuilder.buildSExt(NewReg, ValReg);
  979. return NewReg;
  980. }
  981. case CCValAssign::ZExt: {
  982. Register NewReg = MRI.createGenericVirtualRegister(LocTy);
  983. MIRBuilder.buildZExt(NewReg, ValReg);
  984. return NewReg;
  985. }
  986. }
  987. llvm_unreachable("unable to extend register");
  988. }
  989. void CallLowering::ValueAssigner::anchor() {}
  990. Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
  991. Register SrcReg,
  992. LLT NarrowTy) {
  993. switch (VA.getLocInfo()) {
  994. case CCValAssign::LocInfo::ZExt: {
  995. return MIRBuilder
  996. .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
  997. NarrowTy.getScalarSizeInBits())
  998. .getReg(0);
  999. }
  1000. case CCValAssign::LocInfo::SExt: {
  1001. return MIRBuilder
  1002. .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
  1003. NarrowTy.getScalarSizeInBits())
  1004. .getReg(0);
  1005. break;
  1006. }
  1007. default:
  1008. return SrcReg;
  1009. }
  1010. }
  1011. /// Check if we can use a basic COPY instruction between the two types.
  1012. ///
  1013. /// We're currently building on top of the infrastructure using MVT, which loses
  1014. /// pointer information in the CCValAssign. We accept copies from physical
  1015. /// registers that have been reported as integers if it's to an equivalent sized
  1016. /// pointer LLT.
  1017. static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
  1018. if (SrcTy == DstTy)
  1019. return true;
  1020. if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
  1021. return false;
  1022. SrcTy = SrcTy.getScalarType();
  1023. DstTy = DstTy.getScalarType();
  1024. return (SrcTy.isPointer() && DstTy.isScalar()) ||
  1025. (DstTy.isPointer() && SrcTy.isScalar());
  1026. }
  1027. void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
  1028. Register PhysReg,
  1029. CCValAssign VA) {
  1030. const MVT LocVT = VA.getLocVT();
  1031. const LLT LocTy(LocVT);
  1032. const LLT RegTy = MRI.getType(ValVReg);
  1033. if (isCopyCompatibleType(RegTy, LocTy)) {
  1034. MIRBuilder.buildCopy(ValVReg, PhysReg);
  1035. return;
  1036. }
  1037. auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
  1038. auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
  1039. MIRBuilder.buildTrunc(ValVReg, Hint);
  1040. }