AtomicExpandPass.cpp 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969
  1. //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file contains a pass (at IR level) to replace atomic instructions with
  10. // __atomic_* library calls, or target specific instruction which implement the
  11. // same semantics in a way which better fits the target backend. This can
  12. // include the use of (intrinsic-based) load-linked/store-conditional loops,
  13. // AtomicCmpXchg, or type coercions.
  14. //
  15. //===----------------------------------------------------------------------===//
  16. #include "llvm/ADT/ArrayRef.h"
  17. #include "llvm/ADT/STLFunctionalExtras.h"
  18. #include "llvm/ADT/SmallVector.h"
  19. #include "llvm/Analysis/InstSimplifyFolder.h"
  20. #include "llvm/Analysis/OptimizationRemarkEmitter.h"
  21. #include "llvm/CodeGen/AtomicExpandUtils.h"
  22. #include "llvm/CodeGen/RuntimeLibcalls.h"
  23. #include "llvm/CodeGen/TargetLowering.h"
  24. #include "llvm/CodeGen/TargetPassConfig.h"
  25. #include "llvm/CodeGen/TargetSubtargetInfo.h"
  26. #include "llvm/CodeGen/ValueTypes.h"
  27. #include "llvm/IR/Attributes.h"
  28. #include "llvm/IR/BasicBlock.h"
  29. #include "llvm/IR/Constant.h"
  30. #include "llvm/IR/Constants.h"
  31. #include "llvm/IR/DataLayout.h"
  32. #include "llvm/IR/DerivedTypes.h"
  33. #include "llvm/IR/Function.h"
  34. #include "llvm/IR/IRBuilder.h"
  35. #include "llvm/IR/InstIterator.h"
  36. #include "llvm/IR/Instruction.h"
  37. #include "llvm/IR/Instructions.h"
  38. #include "llvm/IR/Module.h"
  39. #include "llvm/IR/Type.h"
  40. #include "llvm/IR/User.h"
  41. #include "llvm/IR/Value.h"
  42. #include "llvm/InitializePasses.h"
  43. #include "llvm/Pass.h"
  44. #include "llvm/Support/AtomicOrdering.h"
  45. #include "llvm/Support/Casting.h"
  46. #include "llvm/Support/Debug.h"
  47. #include "llvm/Support/ErrorHandling.h"
  48. #include "llvm/Support/raw_ostream.h"
  49. #include "llvm/Target/TargetMachine.h"
  50. #include "llvm/Transforms/Utils/LowerAtomic.h"
  51. #include <cassert>
  52. #include <cstdint>
  53. #include <iterator>
  54. using namespace llvm;
  55. #define DEBUG_TYPE "atomic-expand"
  56. namespace {
  57. class AtomicExpand : public FunctionPass {
  58. const TargetLowering *TLI = nullptr;
  59. const DataLayout *DL = nullptr;
  60. public:
  61. static char ID; // Pass identification, replacement for typeid
  62. AtomicExpand() : FunctionPass(ID) {
  63. initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
  64. }
  65. bool runOnFunction(Function &F) override;
  66. private:
  67. bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
  68. IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
  69. LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
  70. bool tryExpandAtomicLoad(LoadInst *LI);
  71. bool expandAtomicLoadToLL(LoadInst *LI);
  72. bool expandAtomicLoadToCmpXchg(LoadInst *LI);
  73. StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
  74. bool tryExpandAtomicStore(StoreInst *SI);
  75. void expandAtomicStore(StoreInst *SI);
  76. bool tryExpandAtomicRMW(AtomicRMWInst *AI);
  77. AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI);
  78. Value *
  79. insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr,
  80. Align AddrAlign, AtomicOrdering MemOpOrder,
  81. function_ref<Value *(IRBuilderBase &, Value *)> PerformOp);
  82. void expandAtomicOpToLLSC(
  83. Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign,
  84. AtomicOrdering MemOpOrder,
  85. function_ref<Value *(IRBuilderBase &, Value *)> PerformOp);
  86. void expandPartwordAtomicRMW(
  87. AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind);
  88. AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
  89. bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
  90. void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
  91. void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
  92. AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
  93. static Value *insertRMWCmpXchgLoop(
  94. IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign,
  95. AtomicOrdering MemOpOrder, SyncScope::ID SSID,
  96. function_ref<Value *(IRBuilderBase &, Value *)> PerformOp,
  97. CreateCmpXchgInstFun CreateCmpXchg);
  98. bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
  99. bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
  100. bool isIdempotentRMW(AtomicRMWInst *RMWI);
  101. bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
  102. bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
  103. Value *PointerOperand, Value *ValueOperand,
  104. Value *CASExpected, AtomicOrdering Ordering,
  105. AtomicOrdering Ordering2,
  106. ArrayRef<RTLIB::Libcall> Libcalls);
  107. void expandAtomicLoadToLibcall(LoadInst *LI);
  108. void expandAtomicStoreToLibcall(StoreInst *LI);
  109. void expandAtomicRMWToLibcall(AtomicRMWInst *I);
  110. void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
  111. friend bool
  112. llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
  113. CreateCmpXchgInstFun CreateCmpXchg);
  114. };
  115. // IRBuilder to be used for replacement atomic instructions.
  116. struct ReplacementIRBuilder : IRBuilder<InstSimplifyFolder> {
  117. // Preserves the DebugLoc from I, and preserves still valid metadata.
  118. explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL)
  119. : IRBuilder(I->getContext(), DL) {
  120. SetInsertPoint(I);
  121. this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections});
  122. }
  123. };
  124. } // end anonymous namespace
  125. char AtomicExpand::ID = 0;
  126. char &llvm::AtomicExpandID = AtomicExpand::ID;
  127. INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false,
  128. false)
  129. FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
  130. // Helper functions to retrieve the size of atomic instructions.
  131. static unsigned getAtomicOpSize(LoadInst *LI) {
  132. const DataLayout &DL = LI->getModule()->getDataLayout();
  133. return DL.getTypeStoreSize(LI->getType());
  134. }
  135. static unsigned getAtomicOpSize(StoreInst *SI) {
  136. const DataLayout &DL = SI->getModule()->getDataLayout();
  137. return DL.getTypeStoreSize(SI->getValueOperand()->getType());
  138. }
  139. static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
  140. const DataLayout &DL = RMWI->getModule()->getDataLayout();
  141. return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
  142. }
  143. static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
  144. const DataLayout &DL = CASI->getModule()->getDataLayout();
  145. return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
  146. }
  147. // Determine if a particular atomic operation has a supported size,
  148. // and is of appropriate alignment, to be passed through for target
  149. // lowering. (Versus turning into a __atomic libcall)
  150. template <typename Inst>
  151. static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
  152. unsigned Size = getAtomicOpSize(I);
  153. Align Alignment = I->getAlign();
  154. return Alignment >= Size &&
  155. Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
  156. }
  157. bool AtomicExpand::runOnFunction(Function &F) {
  158. auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
  159. if (!TPC)
  160. return false;
  161. auto &TM = TPC->getTM<TargetMachine>();
  162. const auto *Subtarget = TM.getSubtargetImpl(F);
  163. if (!Subtarget->enableAtomicExpand())
  164. return false;
  165. TLI = Subtarget->getTargetLowering();
  166. DL = &F.getParent()->getDataLayout();
  167. SmallVector<Instruction *, 1> AtomicInsts;
  168. // Changing control-flow while iterating through it is a bad idea, so gather a
  169. // list of all atomic instructions before we start.
  170. for (Instruction &I : instructions(F))
  171. if (I.isAtomic() && !isa<FenceInst>(&I))
  172. AtomicInsts.push_back(&I);
  173. bool MadeChange = false;
  174. for (auto *I : AtomicInsts) {
  175. auto LI = dyn_cast<LoadInst>(I);
  176. auto SI = dyn_cast<StoreInst>(I);
  177. auto RMWI = dyn_cast<AtomicRMWInst>(I);
  178. auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
  179. assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
  180. // If the Size/Alignment is not supported, replace with a libcall.
  181. if (LI) {
  182. if (!atomicSizeSupported(TLI, LI)) {
  183. expandAtomicLoadToLibcall(LI);
  184. MadeChange = true;
  185. continue;
  186. }
  187. } else if (SI) {
  188. if (!atomicSizeSupported(TLI, SI)) {
  189. expandAtomicStoreToLibcall(SI);
  190. MadeChange = true;
  191. continue;
  192. }
  193. } else if (RMWI) {
  194. if (!atomicSizeSupported(TLI, RMWI)) {
  195. expandAtomicRMWToLibcall(RMWI);
  196. MadeChange = true;
  197. continue;
  198. }
  199. } else if (CASI) {
  200. if (!atomicSizeSupported(TLI, CASI)) {
  201. expandAtomicCASToLibcall(CASI);
  202. MadeChange = true;
  203. continue;
  204. }
  205. }
  206. if (LI && TLI->shouldCastAtomicLoadInIR(LI) ==
  207. TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
  208. I = LI = convertAtomicLoadToIntegerType(LI);
  209. MadeChange = true;
  210. } else if (SI &&
  211. TLI->shouldCastAtomicStoreInIR(SI) ==
  212. TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
  213. I = SI = convertAtomicStoreToIntegerType(SI);
  214. MadeChange = true;
  215. } else if (RMWI &&
  216. TLI->shouldCastAtomicRMWIInIR(RMWI) ==
  217. TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
  218. I = RMWI = convertAtomicXchgToIntegerType(RMWI);
  219. MadeChange = true;
  220. } else if (CASI) {
  221. // TODO: when we're ready to make the change at the IR level, we can
  222. // extend convertCmpXchgToInteger for floating point too.
  223. if (CASI->getCompareOperand()->getType()->isPointerTy()) {
  224. // TODO: add a TLI hook to control this so that each target can
  225. // convert to lowering the original type one at a time.
  226. I = CASI = convertCmpXchgToIntegerType(CASI);
  227. MadeChange = true;
  228. }
  229. }
  230. if (TLI->shouldInsertFencesForAtomic(I)) {
  231. auto FenceOrdering = AtomicOrdering::Monotonic;
  232. if (LI && isAcquireOrStronger(LI->getOrdering())) {
  233. FenceOrdering = LI->getOrdering();
  234. LI->setOrdering(AtomicOrdering::Monotonic);
  235. } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
  236. FenceOrdering = SI->getOrdering();
  237. SI->setOrdering(AtomicOrdering::Monotonic);
  238. } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
  239. isAcquireOrStronger(RMWI->getOrdering()))) {
  240. FenceOrdering = RMWI->getOrdering();
  241. RMWI->setOrdering(AtomicOrdering::Monotonic);
  242. } else if (CASI &&
  243. TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
  244. TargetLoweringBase::AtomicExpansionKind::None &&
  245. (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
  246. isAcquireOrStronger(CASI->getSuccessOrdering()) ||
  247. isAcquireOrStronger(CASI->getFailureOrdering()))) {
  248. // If a compare and swap is lowered to LL/SC, we can do smarter fence
  249. // insertion, with a stronger one on the success path than on the
  250. // failure path. As a result, fence insertion is directly done by
  251. // expandAtomicCmpXchg in that case.
  252. FenceOrdering = CASI->getMergedOrdering();
  253. CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
  254. CASI->setFailureOrdering(AtomicOrdering::Monotonic);
  255. }
  256. if (FenceOrdering != AtomicOrdering::Monotonic) {
  257. MadeChange |= bracketInstWithFences(I, FenceOrdering);
  258. }
  259. } else if (I->hasAtomicStore() &&
  260. TLI->shouldInsertTrailingFenceForAtomicStore(I)) {
  261. auto FenceOrdering = AtomicOrdering::Monotonic;
  262. if (SI)
  263. FenceOrdering = SI->getOrdering();
  264. else if (RMWI)
  265. FenceOrdering = RMWI->getOrdering();
  266. else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) !=
  267. TargetLoweringBase::AtomicExpansionKind::LLSC)
  268. // LLSC is handled in expandAtomicCmpXchg().
  269. FenceOrdering = CASI->getSuccessOrdering();
  270. IRBuilder Builder(I);
  271. if (auto TrailingFence =
  272. TLI->emitTrailingFence(Builder, I, FenceOrdering)) {
  273. TrailingFence->moveAfter(I);
  274. MadeChange = true;
  275. }
  276. }
  277. if (LI)
  278. MadeChange |= tryExpandAtomicLoad(LI);
  279. else if (SI)
  280. MadeChange |= tryExpandAtomicStore(SI);
  281. else if (RMWI) {
  282. // There are two different ways of expanding RMW instructions:
  283. // - into a load if it is idempotent
  284. // - into a Cmpxchg/LL-SC loop otherwise
  285. // we try them in that order.
  286. if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
  287. MadeChange = true;
  288. } else {
  289. AtomicRMWInst::BinOp Op = RMWI->getOperation();
  290. unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
  291. unsigned ValueSize = getAtomicOpSize(RMWI);
  292. if (ValueSize < MinCASSize &&
  293. (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
  294. Op == AtomicRMWInst::And)) {
  295. RMWI = widenPartwordAtomicRMW(RMWI);
  296. MadeChange = true;
  297. }
  298. MadeChange |= tryExpandAtomicRMW(RMWI);
  299. }
  300. } else if (CASI)
  301. MadeChange |= tryExpandAtomicCmpXchg(CASI);
  302. }
  303. return MadeChange;
  304. }
  305. bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
  306. ReplacementIRBuilder Builder(I, *DL);
  307. auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
  308. auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
  309. // We have a guard here because not every atomic operation generates a
  310. // trailing fence.
  311. if (TrailingFence)
  312. TrailingFence->moveAfter(I);
  313. return (LeadingFence || TrailingFence);
  314. }
  315. /// Get the iX type with the same bitwidth as T.
  316. IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
  317. const DataLayout &DL) {
  318. EVT VT = TLI->getMemValueType(DL, T);
  319. unsigned BitWidth = VT.getStoreSizeInBits();
  320. assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
  321. return IntegerType::get(T->getContext(), BitWidth);
  322. }
  323. /// Convert an atomic load of a non-integral type to an integer load of the
  324. /// equivalent bitwidth. See the function comment on
  325. /// convertAtomicStoreToIntegerType for background.
  326. LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
  327. auto *M = LI->getModule();
  328. Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout());
  329. ReplacementIRBuilder Builder(LI, *DL);
  330. Value *Addr = LI->getPointerOperand();
  331. Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
  332. Value *NewAddr = Builder.CreateBitCast(Addr, PT);
  333. auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
  334. NewLI->setAlignment(LI->getAlign());
  335. NewLI->setVolatile(LI->isVolatile());
  336. NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
  337. LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
  338. Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
  339. LI->replaceAllUsesWith(NewVal);
  340. LI->eraseFromParent();
  341. return NewLI;
  342. }
  343. AtomicRMWInst *
  344. AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) {
  345. auto *M = RMWI->getModule();
  346. Type *NewTy =
  347. getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout());
  348. ReplacementIRBuilder Builder(RMWI, *DL);
  349. Value *Addr = RMWI->getPointerOperand();
  350. Value *Val = RMWI->getValOperand();
  351. Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace());
  352. Value *NewAddr = Builder.CreateBitCast(Addr, PT);
  353. Value *NewVal = Val->getType()->isPointerTy()
  354. ? Builder.CreatePtrToInt(Val, NewTy)
  355. : Builder.CreateBitCast(Val, NewTy);
  356. auto *NewRMWI =
  357. Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal,
  358. RMWI->getAlign(), RMWI->getOrdering());
  359. NewRMWI->setVolatile(RMWI->isVolatile());
  360. LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n");
  361. Value *NewRVal = RMWI->getType()->isPointerTy()
  362. ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType())
  363. : Builder.CreateBitCast(NewRMWI, RMWI->getType());
  364. RMWI->replaceAllUsesWith(NewRVal);
  365. RMWI->eraseFromParent();
  366. return NewRMWI;
  367. }
  368. bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
  369. switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
  370. case TargetLoweringBase::AtomicExpansionKind::None:
  371. return false;
  372. case TargetLoweringBase::AtomicExpansionKind::LLSC:
  373. expandAtomicOpToLLSC(
  374. LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
  375. LI->getOrdering(),
  376. [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; });
  377. return true;
  378. case TargetLoweringBase::AtomicExpansionKind::LLOnly:
  379. return expandAtomicLoadToLL(LI);
  380. case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
  381. return expandAtomicLoadToCmpXchg(LI);
  382. case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
  383. LI->setAtomic(AtomicOrdering::NotAtomic);
  384. return true;
  385. default:
  386. llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
  387. }
  388. }
  389. bool AtomicExpand::tryExpandAtomicStore(StoreInst *SI) {
  390. switch (TLI->shouldExpandAtomicStoreInIR(SI)) {
  391. case TargetLoweringBase::AtomicExpansionKind::None:
  392. return false;
  393. case TargetLoweringBase::AtomicExpansionKind::Expand:
  394. expandAtomicStore(SI);
  395. return true;
  396. case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
  397. SI->setAtomic(AtomicOrdering::NotAtomic);
  398. return true;
  399. default:
  400. llvm_unreachable("Unhandled case in tryExpandAtomicStore");
  401. }
  402. }
  403. bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
  404. ReplacementIRBuilder Builder(LI, *DL);
  405. // On some architectures, load-linked instructions are atomic for larger
  406. // sizes than normal loads. For example, the only 64-bit load guaranteed
  407. // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
  408. Value *Val = TLI->emitLoadLinked(Builder, LI->getType(),
  409. LI->getPointerOperand(), LI->getOrdering());
  410. TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
  411. LI->replaceAllUsesWith(Val);
  412. LI->eraseFromParent();
  413. return true;
  414. }
  415. bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
  416. ReplacementIRBuilder Builder(LI, *DL);
  417. AtomicOrdering Order = LI->getOrdering();
  418. if (Order == AtomicOrdering::Unordered)
  419. Order = AtomicOrdering::Monotonic;
  420. Value *Addr = LI->getPointerOperand();
  421. Type *Ty = LI->getType();
  422. Constant *DummyVal = Constant::getNullValue(Ty);
  423. Value *Pair = Builder.CreateAtomicCmpXchg(
  424. Addr, DummyVal, DummyVal, LI->getAlign(), Order,
  425. AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
  426. Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
  427. LI->replaceAllUsesWith(Loaded);
  428. LI->eraseFromParent();
  429. return true;
  430. }
  431. /// Convert an atomic store of a non-integral type to an integer store of the
  432. /// equivalent bitwidth. We used to not support floating point or vector
  433. /// atomics in the IR at all. The backends learned to deal with the bitcast
  434. /// idiom because that was the only way of expressing the notion of a atomic
  435. /// float or vector store. The long term plan is to teach each backend to
  436. /// instruction select from the original atomic store, but as a migration
  437. /// mechanism, we convert back to the old format which the backends understand.
  438. /// Each backend will need individual work to recognize the new format.
  439. StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
  440. ReplacementIRBuilder Builder(SI, *DL);
  441. auto *M = SI->getModule();
  442. Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
  443. M->getDataLayout());
  444. Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
  445. Value *Addr = SI->getPointerOperand();
  446. Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
  447. Value *NewAddr = Builder.CreateBitCast(Addr, PT);
  448. StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
  449. NewSI->setAlignment(SI->getAlign());
  450. NewSI->setVolatile(SI->isVolatile());
  451. NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
  452. LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
  453. SI->eraseFromParent();
  454. return NewSI;
  455. }
  456. void AtomicExpand::expandAtomicStore(StoreInst *SI) {
  457. // This function is only called on atomic stores that are too large to be
  458. // atomic if implemented as a native store. So we replace them by an
  459. // atomic swap, that can be implemented for example as a ldrex/strex on ARM
  460. // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
  461. // It is the responsibility of the target to only signal expansion via
  462. // shouldExpandAtomicRMW in cases where this is required and possible.
  463. ReplacementIRBuilder Builder(SI, *DL);
  464. AtomicOrdering Ordering = SI->getOrdering();
  465. assert(Ordering != AtomicOrdering::NotAtomic);
  466. AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered
  467. ? AtomicOrdering::Monotonic
  468. : Ordering;
  469. AtomicRMWInst *AI = Builder.CreateAtomicRMW(
  470. AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
  471. SI->getAlign(), RMWOrdering);
  472. SI->eraseFromParent();
  473. // Now we have an appropriate swap instruction, lower it as usual.
  474. tryExpandAtomicRMW(AI);
  475. }
  476. static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr,
  477. Value *Loaded, Value *NewVal, Align AddrAlign,
  478. AtomicOrdering MemOpOrder, SyncScope::ID SSID,
  479. Value *&Success, Value *&NewLoaded) {
  480. Type *OrigTy = NewVal->getType();
  481. // This code can go away when cmpxchg supports FP types.
  482. assert(!OrigTy->isPointerTy());
  483. bool NeedBitcast = OrigTy->isFloatingPointTy();
  484. if (NeedBitcast) {
  485. IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
  486. unsigned AS = Addr->getType()->getPointerAddressSpace();
  487. Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
  488. NewVal = Builder.CreateBitCast(NewVal, IntTy);
  489. Loaded = Builder.CreateBitCast(Loaded, IntTy);
  490. }
  491. Value *Pair = Builder.CreateAtomicCmpXchg(
  492. Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
  493. AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
  494. Success = Builder.CreateExtractValue(Pair, 1, "success");
  495. NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
  496. if (NeedBitcast)
  497. NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
  498. }
  499. bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
  500. LLVMContext &Ctx = AI->getModule()->getContext();
  501. TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI);
  502. switch (Kind) {
  503. case TargetLoweringBase::AtomicExpansionKind::None:
  504. return false;
  505. case TargetLoweringBase::AtomicExpansionKind::LLSC: {
  506. unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
  507. unsigned ValueSize = getAtomicOpSize(AI);
  508. if (ValueSize < MinCASSize) {
  509. expandPartwordAtomicRMW(AI,
  510. TargetLoweringBase::AtomicExpansionKind::LLSC);
  511. } else {
  512. auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) {
  513. return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
  514. AI->getValOperand());
  515. };
  516. expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
  517. AI->getAlign(), AI->getOrdering(), PerformOp);
  518. }
  519. return true;
  520. }
  521. case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
  522. unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
  523. unsigned ValueSize = getAtomicOpSize(AI);
  524. if (ValueSize < MinCASSize) {
  525. expandPartwordAtomicRMW(AI,
  526. TargetLoweringBase::AtomicExpansionKind::CmpXChg);
  527. } else {
  528. SmallVector<StringRef> SSNs;
  529. Ctx.getSyncScopeNames(SSNs);
  530. auto MemScope = SSNs[AI->getSyncScopeID()].empty()
  531. ? "system"
  532. : SSNs[AI->getSyncScopeID()];
  533. OptimizationRemarkEmitter ORE(AI->getFunction());
  534. ORE.emit([&]() {
  535. return OptimizationRemark(DEBUG_TYPE, "Passed", AI)
  536. << "A compare and swap loop was generated for an atomic "
  537. << AI->getOperationName(AI->getOperation()) << " operation at "
  538. << MemScope << " memory scope";
  539. });
  540. expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
  541. }
  542. return true;
  543. }
  544. case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
  545. expandAtomicRMWToMaskedIntrinsic(AI);
  546. return true;
  547. }
  548. case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: {
  549. TLI->emitBitTestAtomicRMWIntrinsic(AI);
  550. return true;
  551. }
  552. case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: {
  553. TLI->emitCmpArithAtomicRMWIntrinsic(AI);
  554. return true;
  555. }
  556. case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
  557. return lowerAtomicRMWInst(AI);
  558. case TargetLoweringBase::AtomicExpansionKind::Expand:
  559. TLI->emitExpandAtomicRMW(AI);
  560. return true;
  561. default:
  562. llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
  563. }
  564. }
  565. namespace {
  566. struct PartwordMaskValues {
  567. // These three fields are guaranteed to be set by createMaskInstrs.
  568. Type *WordType = nullptr;
  569. Type *ValueType = nullptr;
  570. Type *IntValueType = nullptr;
  571. Value *AlignedAddr = nullptr;
  572. Align AlignedAddrAlignment;
  573. // The remaining fields can be null.
  574. Value *ShiftAmt = nullptr;
  575. Value *Mask = nullptr;
  576. Value *Inv_Mask = nullptr;
  577. };
  578. LLVM_ATTRIBUTE_UNUSED
  579. raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
  580. auto PrintObj = [&O](auto *V) {
  581. if (V)
  582. O << *V;
  583. else
  584. O << "nullptr";
  585. O << '\n';
  586. };
  587. O << "PartwordMaskValues {\n";
  588. O << " WordType: ";
  589. PrintObj(PMV.WordType);
  590. O << " ValueType: ";
  591. PrintObj(PMV.ValueType);
  592. O << " AlignedAddr: ";
  593. PrintObj(PMV.AlignedAddr);
  594. O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
  595. O << " ShiftAmt: ";
  596. PrintObj(PMV.ShiftAmt);
  597. O << " Mask: ";
  598. PrintObj(PMV.Mask);
  599. O << " Inv_Mask: ";
  600. PrintObj(PMV.Inv_Mask);
  601. O << "}\n";
  602. return O;
  603. }
  604. } // end anonymous namespace
  605. /// This is a helper function which builds instructions to provide
  606. /// values necessary for partword atomic operations. It takes an
  607. /// incoming address, Addr, and ValueType, and constructs the address,
  608. /// shift-amounts and masks needed to work with a larger value of size
  609. /// WordSize.
  610. ///
  611. /// AlignedAddr: Addr rounded down to a multiple of WordSize
  612. ///
  613. /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
  614. /// from AlignAddr for it to have the same value as if
  615. /// ValueType was loaded from Addr.
  616. ///
  617. /// Mask: Value to mask with the value loaded from AlignAddr to
  618. /// include only the part that would've been loaded from Addr.
  619. ///
  620. /// Inv_Mask: The inverse of Mask.
  621. static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder,
  622. Instruction *I, Type *ValueType,
  623. Value *Addr, Align AddrAlign,
  624. unsigned MinWordSize) {
  625. PartwordMaskValues PMV;
  626. Module *M = I->getModule();
  627. LLVMContext &Ctx = M->getContext();
  628. const DataLayout &DL = M->getDataLayout();
  629. unsigned ValueSize = DL.getTypeStoreSize(ValueType);
  630. PMV.ValueType = PMV.IntValueType = ValueType;
  631. if (PMV.ValueType->isFloatingPointTy())
  632. PMV.IntValueType =
  633. Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits());
  634. PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
  635. : ValueType;
  636. if (PMV.ValueType == PMV.WordType) {
  637. PMV.AlignedAddr = Addr;
  638. PMV.AlignedAddrAlignment = AddrAlign;
  639. PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0);
  640. PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true);
  641. return PMV;
  642. }
  643. PMV.AlignedAddrAlignment = Align(MinWordSize);
  644. assert(ValueSize < MinWordSize);
  645. PointerType *PtrTy = cast<PointerType>(Addr->getType());
  646. Type *WordPtrType = PMV.WordType->getPointerTo(PtrTy->getAddressSpace());
  647. IntegerType *IntTy = DL.getIntPtrType(Ctx, PtrTy->getAddressSpace());
  648. Value *PtrLSB;
  649. if (AddrAlign < MinWordSize) {
  650. PMV.AlignedAddr = Builder.CreateIntrinsic(
  651. Intrinsic::ptrmask, {PtrTy, IntTy},
  652. {Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr,
  653. "AlignedAddr");
  654. Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy);
  655. PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
  656. } else {
  657. // If the alignment is high enough, the LSB are known 0.
  658. PMV.AlignedAddr = Addr;
  659. PtrLSB = ConstantInt::getNullValue(IntTy);
  660. }
  661. if (DL.isLittleEndian()) {
  662. // turn bytes into bits
  663. PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
  664. } else {
  665. // turn bytes into bits, and count from the other side.
  666. PMV.ShiftAmt = Builder.CreateShl(
  667. Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
  668. }
  669. PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
  670. PMV.Mask = Builder.CreateShl(
  671. ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
  672. "Mask");
  673. PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
  674. // Cast for typed pointers.
  675. PMV.AlignedAddr =
  676. Builder.CreateBitCast(PMV.AlignedAddr, WordPtrType, "AlignedAddr");
  677. return PMV;
  678. }
  679. static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord,
  680. const PartwordMaskValues &PMV) {
  681. assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
  682. if (PMV.WordType == PMV.ValueType)
  683. return WideWord;
  684. Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
  685. Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted");
  686. return Builder.CreateBitCast(Trunc, PMV.ValueType);
  687. }
  688. static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord,
  689. Value *Updated, const PartwordMaskValues &PMV) {
  690. assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
  691. assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
  692. if (PMV.WordType == PMV.ValueType)
  693. return Updated;
  694. Updated = Builder.CreateBitCast(Updated, PMV.IntValueType);
  695. Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
  696. Value *Shift =
  697. Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
  698. Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
  699. Value *Or = Builder.CreateOr(And, Shift, "inserted");
  700. return Or;
  701. }
  702. /// Emit IR to implement a masked version of a given atomicrmw
  703. /// operation. (That is, only the bits under the Mask should be
  704. /// affected by the operation)
  705. static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
  706. IRBuilderBase &Builder, Value *Loaded,
  707. Value *Shifted_Inc, Value *Inc,
  708. const PartwordMaskValues &PMV) {
  709. // TODO: update to use
  710. // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
  711. // to merge bits from two values without requiring PMV.Inv_Mask.
  712. switch (Op) {
  713. case AtomicRMWInst::Xchg: {
  714. Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
  715. Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
  716. return FinalVal;
  717. }
  718. case AtomicRMWInst::Or:
  719. case AtomicRMWInst::Xor:
  720. case AtomicRMWInst::And:
  721. llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
  722. case AtomicRMWInst::Add:
  723. case AtomicRMWInst::Sub:
  724. case AtomicRMWInst::Nand: {
  725. // The other arithmetic ops need to be masked into place.
  726. Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc);
  727. Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
  728. Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
  729. Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
  730. return FinalVal;
  731. }
  732. case AtomicRMWInst::Max:
  733. case AtomicRMWInst::Min:
  734. case AtomicRMWInst::UMax:
  735. case AtomicRMWInst::UMin:
  736. case AtomicRMWInst::FAdd:
  737. case AtomicRMWInst::FSub:
  738. case AtomicRMWInst::FMin:
  739. case AtomicRMWInst::FMax:
  740. case AtomicRMWInst::UIncWrap:
  741. case AtomicRMWInst::UDecWrap: {
  742. // Finally, other ops will operate on the full value, so truncate down to
  743. // the original size, and expand out again after doing the
  744. // operation. Bitcasts will be inserted for FP values.
  745. Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
  746. Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc);
  747. Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
  748. return FinalVal;
  749. }
  750. default:
  751. llvm_unreachable("Unknown atomic op");
  752. }
  753. }
  754. /// Expand a sub-word atomicrmw operation into an appropriate
  755. /// word-sized operation.
  756. ///
  757. /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
  758. /// way as a typical atomicrmw expansion. The only difference here is
  759. /// that the operation inside of the loop may operate upon only a
  760. /// part of the value.
  761. void AtomicExpand::expandPartwordAtomicRMW(
  762. AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
  763. AtomicOrdering MemOpOrder = AI->getOrdering();
  764. SyncScope::ID SSID = AI->getSyncScopeID();
  765. ReplacementIRBuilder Builder(AI, *DL);
  766. PartwordMaskValues PMV =
  767. createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
  768. AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
  769. Value *ValOperand_Shifted = nullptr;
  770. if (AI->getOperation() == AtomicRMWInst::Xchg ||
  771. AI->getOperation() == AtomicRMWInst::Add ||
  772. AI->getOperation() == AtomicRMWInst::Sub ||
  773. AI->getOperation() == AtomicRMWInst::Nand) {
  774. ValOperand_Shifted =
  775. Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
  776. PMV.ShiftAmt, "ValOperand_Shifted");
  777. }
  778. auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) {
  779. return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
  780. ValOperand_Shifted, AI->getValOperand(), PMV);
  781. };
  782. Value *OldResult;
  783. if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
  784. OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
  785. PMV.AlignedAddrAlignment, MemOpOrder, SSID,
  786. PerformPartwordOp, createCmpXchgInstFun);
  787. } else {
  788. assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
  789. OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
  790. PMV.AlignedAddrAlignment, MemOpOrder,
  791. PerformPartwordOp);
  792. }
  793. Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
  794. AI->replaceAllUsesWith(FinalOldResult);
  795. AI->eraseFromParent();
  796. }
  797. // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
  798. AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
  799. ReplacementIRBuilder Builder(AI, *DL);
  800. AtomicRMWInst::BinOp Op = AI->getOperation();
  801. assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
  802. Op == AtomicRMWInst::And) &&
  803. "Unable to widen operation");
  804. PartwordMaskValues PMV =
  805. createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
  806. AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
  807. Value *ValOperand_Shifted =
  808. Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
  809. PMV.ShiftAmt, "ValOperand_Shifted");
  810. Value *NewOperand;
  811. if (Op == AtomicRMWInst::And)
  812. NewOperand =
  813. Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
  814. else
  815. NewOperand = ValOperand_Shifted;
  816. AtomicRMWInst *NewAI =
  817. Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand,
  818. PMV.AlignedAddrAlignment, AI->getOrdering());
  819. Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
  820. AI->replaceAllUsesWith(FinalOldResult);
  821. AI->eraseFromParent();
  822. return NewAI;
  823. }
  824. bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
  825. // The basic idea here is that we're expanding a cmpxchg of a
  826. // smaller memory size up to a word-sized cmpxchg. To do this, we
  827. // need to add a retry-loop for strong cmpxchg, so that
  828. // modifications to other parts of the word don't cause a spurious
  829. // failure.
  830. // This generates code like the following:
  831. // [[Setup mask values PMV.*]]
  832. // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
  833. // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
  834. // %InitLoaded = load i32* %addr
  835. // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
  836. // br partword.cmpxchg.loop
  837. // partword.cmpxchg.loop:
  838. // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
  839. // [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
  840. // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
  841. // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
  842. // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
  843. // i32 %FullWord_NewVal success_ordering failure_ordering
  844. // %OldVal = extractvalue { i32, i1 } %NewCI, 0
  845. // %Success = extractvalue { i32, i1 } %NewCI, 1
  846. // br i1 %Success, label %partword.cmpxchg.end,
  847. // label %partword.cmpxchg.failure
  848. // partword.cmpxchg.failure:
  849. // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
  850. // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
  851. // br i1 %ShouldContinue, label %partword.cmpxchg.loop,
  852. // label %partword.cmpxchg.end
  853. // partword.cmpxchg.end:
  854. // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
  855. // %FinalOldVal = trunc i32 %tmp1 to i8
  856. // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
  857. // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
  858. Value *Addr = CI->getPointerOperand();
  859. Value *Cmp = CI->getCompareOperand();
  860. Value *NewVal = CI->getNewValOperand();
  861. BasicBlock *BB = CI->getParent();
  862. Function *F = BB->getParent();
  863. ReplacementIRBuilder Builder(CI, *DL);
  864. LLVMContext &Ctx = Builder.getContext();
  865. BasicBlock *EndBB =
  866. BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
  867. auto FailureBB =
  868. BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
  869. auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
  870. // The split call above "helpfully" added a branch at the end of BB
  871. // (to the wrong place).
  872. std::prev(BB->end())->eraseFromParent();
  873. Builder.SetInsertPoint(BB);
  874. PartwordMaskValues PMV =
  875. createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
  876. CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
  877. // Shift the incoming values over, into the right location in the word.
  878. Value *NewVal_Shifted =
  879. Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
  880. Value *Cmp_Shifted =
  881. Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
  882. // Load the entire current word, and mask into place the expected and new
  883. // values
  884. LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
  885. InitLoaded->setVolatile(CI->isVolatile());
  886. Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
  887. Builder.CreateBr(LoopBB);
  888. // partword.cmpxchg.loop:
  889. Builder.SetInsertPoint(LoopBB);
  890. PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
  891. Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
  892. // Mask/Or the expected and new values into place in the loaded word.
  893. Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
  894. Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
  895. AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
  896. PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
  897. CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
  898. NewCI->setVolatile(CI->isVolatile());
  899. // When we're building a strong cmpxchg, we need a loop, so you
  900. // might think we could use a weak cmpxchg inside. But, using strong
  901. // allows the below comparison for ShouldContinue, and we're
  902. // expecting the underlying cmpxchg to be a machine instruction,
  903. // which is strong anyways.
  904. NewCI->setWeak(CI->isWeak());
  905. Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
  906. Value *Success = Builder.CreateExtractValue(NewCI, 1);
  907. if (CI->isWeak())
  908. Builder.CreateBr(EndBB);
  909. else
  910. Builder.CreateCondBr(Success, EndBB, FailureBB);
  911. // partword.cmpxchg.failure:
  912. Builder.SetInsertPoint(FailureBB);
  913. // Upon failure, verify that the masked-out part of the loaded value
  914. // has been modified. If it didn't, abort the cmpxchg, since the
  915. // masked-in part must've.
  916. Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
  917. Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
  918. Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
  919. // Add the second value to the phi from above
  920. Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
  921. // partword.cmpxchg.end:
  922. Builder.SetInsertPoint(CI);
  923. Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
  924. Value *Res = PoisonValue::get(CI->getType());
  925. Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
  926. Res = Builder.CreateInsertValue(Res, Success, 1);
  927. CI->replaceAllUsesWith(Res);
  928. CI->eraseFromParent();
  929. return true;
  930. }
  931. void AtomicExpand::expandAtomicOpToLLSC(
  932. Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
  933. AtomicOrdering MemOpOrder,
  934. function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) {
  935. ReplacementIRBuilder Builder(I, *DL);
  936. Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
  937. MemOpOrder, PerformOp);
  938. I->replaceAllUsesWith(Loaded);
  939. I->eraseFromParent();
  940. }
  941. void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
  942. ReplacementIRBuilder Builder(AI, *DL);
  943. PartwordMaskValues PMV =
  944. createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
  945. AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
  946. // The value operand must be sign-extended for signed min/max so that the
  947. // target's signed comparison instructions can be used. Otherwise, just
  948. // zero-ext.
  949. Instruction::CastOps CastOp = Instruction::ZExt;
  950. AtomicRMWInst::BinOp RMWOp = AI->getOperation();
  951. if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
  952. CastOp = Instruction::SExt;
  953. Value *ValOperand_Shifted = Builder.CreateShl(
  954. Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
  955. PMV.ShiftAmt, "ValOperand_Shifted");
  956. Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
  957. Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
  958. AI->getOrdering());
  959. Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
  960. AI->replaceAllUsesWith(FinalOldResult);
  961. AI->eraseFromParent();
  962. }
  963. void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
  964. ReplacementIRBuilder Builder(CI, *DL);
  965. PartwordMaskValues PMV = createMaskInstrs(
  966. Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
  967. CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
  968. Value *CmpVal_Shifted = Builder.CreateShl(
  969. Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
  970. "CmpVal_Shifted");
  971. Value *NewVal_Shifted = Builder.CreateShl(
  972. Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
  973. "NewVal_Shifted");
  974. Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
  975. Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
  976. CI->getMergedOrdering());
  977. Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
  978. Value *Res = PoisonValue::get(CI->getType());
  979. Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
  980. Value *Success = Builder.CreateICmpEQ(
  981. CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
  982. Res = Builder.CreateInsertValue(Res, Success, 1);
  983. CI->replaceAllUsesWith(Res);
  984. CI->eraseFromParent();
  985. }
  986. Value *AtomicExpand::insertRMWLLSCLoop(
  987. IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
  988. AtomicOrdering MemOpOrder,
  989. function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) {
  990. LLVMContext &Ctx = Builder.getContext();
  991. BasicBlock *BB = Builder.GetInsertBlock();
  992. Function *F = BB->getParent();
  993. assert(AddrAlign >=
  994. F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) &&
  995. "Expected at least natural alignment at this point.");
  996. // Given: atomicrmw some_op iN* %addr, iN %incr ordering
  997. //
  998. // The standard expansion we produce is:
  999. // [...]
  1000. // atomicrmw.start:
  1001. // %loaded = @load.linked(%addr)
  1002. // %new = some_op iN %loaded, %incr
  1003. // %stored = @store_conditional(%new, %addr)
  1004. // %try_again = icmp i32 ne %stored, 0
  1005. // br i1 %try_again, label %loop, label %atomicrmw.end
  1006. // atomicrmw.end:
  1007. // [...]
  1008. BasicBlock *ExitBB =
  1009. BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
  1010. BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
  1011. // The split call above "helpfully" added a branch at the end of BB (to the
  1012. // wrong place).
  1013. std::prev(BB->end())->eraseFromParent();
  1014. Builder.SetInsertPoint(BB);
  1015. Builder.CreateBr(LoopBB);
  1016. // Start the main loop block now that we've taken care of the preliminaries.
  1017. Builder.SetInsertPoint(LoopBB);
  1018. Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder);
  1019. Value *NewVal = PerformOp(Builder, Loaded);
  1020. Value *StoreSuccess =
  1021. TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
  1022. Value *TryAgain = Builder.CreateICmpNE(
  1023. StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
  1024. Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
  1025. Builder.SetInsertPoint(ExitBB, ExitBB->begin());
  1026. return Loaded;
  1027. }
  1028. /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
  1029. /// the equivalent bitwidth. We used to not support pointer cmpxchg in the
  1030. /// IR. As a migration step, we convert back to what use to be the standard
  1031. /// way to represent a pointer cmpxchg so that we can update backends one by
  1032. /// one.
  1033. AtomicCmpXchgInst *
  1034. AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
  1035. auto *M = CI->getModule();
  1036. Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
  1037. M->getDataLayout());
  1038. ReplacementIRBuilder Builder(CI, *DL);
  1039. Value *Addr = CI->getPointerOperand();
  1040. Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
  1041. Value *NewAddr = Builder.CreateBitCast(Addr, PT);
  1042. Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
  1043. Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
  1044. auto *NewCI = Builder.CreateAtomicCmpXchg(
  1045. NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
  1046. CI->getFailureOrdering(), CI->getSyncScopeID());
  1047. NewCI->setVolatile(CI->isVolatile());
  1048. NewCI->setWeak(CI->isWeak());
  1049. LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
  1050. Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
  1051. Value *Succ = Builder.CreateExtractValue(NewCI, 1);
  1052. OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
  1053. Value *Res = PoisonValue::get(CI->getType());
  1054. Res = Builder.CreateInsertValue(Res, OldVal, 0);
  1055. Res = Builder.CreateInsertValue(Res, Succ, 1);
  1056. CI->replaceAllUsesWith(Res);
  1057. CI->eraseFromParent();
  1058. return NewCI;
  1059. }
  1060. bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
  1061. AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
  1062. AtomicOrdering FailureOrder = CI->getFailureOrdering();
  1063. Value *Addr = CI->getPointerOperand();
  1064. BasicBlock *BB = CI->getParent();
  1065. Function *F = BB->getParent();
  1066. LLVMContext &Ctx = F->getContext();
  1067. // If shouldInsertFencesForAtomic() returns true, then the target does not
  1068. // want to deal with memory orders, and emitLeading/TrailingFence should take
  1069. // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
  1070. // should preserve the ordering.
  1071. bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
  1072. AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic
  1073. ? AtomicOrdering::Monotonic
  1074. : CI->getMergedOrdering();
  1075. // In implementations which use a barrier to achieve release semantics, we can
  1076. // delay emitting this barrier until we know a store is actually going to be
  1077. // attempted. The cost of this delay is that we need 2 copies of the block
  1078. // emitting the load-linked, affecting code size.
  1079. //
  1080. // Ideally, this logic would be unconditional except for the minsize check
  1081. // since in other cases the extra blocks naturally collapse down to the
  1082. // minimal loop. Unfortunately, this puts too much stress on later
  1083. // optimisations so we avoid emitting the extra logic in those cases too.
  1084. bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
  1085. SuccessOrder != AtomicOrdering::Monotonic &&
  1086. SuccessOrder != AtomicOrdering::Acquire &&
  1087. !F->hasMinSize();
  1088. // There's no overhead for sinking the release barrier in a weak cmpxchg, so
  1089. // do it even on minsize.
  1090. bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
  1091. // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
  1092. //
  1093. // The full expansion we produce is:
  1094. // [...]
  1095. // %aligned.addr = ...
  1096. // cmpxchg.start:
  1097. // %unreleasedload = @load.linked(%aligned.addr)
  1098. // %unreleasedload.extract = extract value from %unreleasedload
  1099. // %should_store = icmp eq %unreleasedload.extract, %desired
  1100. // br i1 %should_store, label %cmpxchg.releasingstore,
  1101. // label %cmpxchg.nostore
  1102. // cmpxchg.releasingstore:
  1103. // fence?
  1104. // br label cmpxchg.trystore
  1105. // cmpxchg.trystore:
  1106. // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
  1107. // [%releasedload, %cmpxchg.releasedload]
  1108. // %updated.new = insert %new into %loaded.trystore
  1109. // %stored = @store_conditional(%updated.new, %aligned.addr)
  1110. // %success = icmp eq i32 %stored, 0
  1111. // br i1 %success, label %cmpxchg.success,
  1112. // label %cmpxchg.releasedload/%cmpxchg.failure
  1113. // cmpxchg.releasedload:
  1114. // %releasedload = @load.linked(%aligned.addr)
  1115. // %releasedload.extract = extract value from %releasedload
  1116. // %should_store = icmp eq %releasedload.extract, %desired
  1117. // br i1 %should_store, label %cmpxchg.trystore,
  1118. // label %cmpxchg.failure
  1119. // cmpxchg.success:
  1120. // fence?
  1121. // br label %cmpxchg.end
  1122. // cmpxchg.nostore:
  1123. // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
  1124. // [%releasedload,
  1125. // %cmpxchg.releasedload/%cmpxchg.trystore]
  1126. // @load_linked_fail_balance()?
  1127. // br label %cmpxchg.failure
  1128. // cmpxchg.failure:
  1129. // fence?
  1130. // br label %cmpxchg.end
  1131. // cmpxchg.end:
  1132. // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
  1133. // [%loaded.trystore, %cmpxchg.trystore]
  1134. // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
  1135. // %loaded = extract value from %loaded.exit
  1136. // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
  1137. // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
  1138. // [...]
  1139. BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
  1140. auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
  1141. auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
  1142. auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
  1143. auto ReleasedLoadBB =
  1144. BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
  1145. auto TryStoreBB =
  1146. BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
  1147. auto ReleasingStoreBB =
  1148. BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
  1149. auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
  1150. ReplacementIRBuilder Builder(CI, *DL);
  1151. // The split call above "helpfully" added a branch at the end of BB (to the
  1152. // wrong place), but we might want a fence too. It's easiest to just remove
  1153. // the branch entirely.
  1154. std::prev(BB->end())->eraseFromParent();
  1155. Builder.SetInsertPoint(BB);
  1156. if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
  1157. TLI->emitLeadingFence(Builder, CI, SuccessOrder);
  1158. PartwordMaskValues PMV =
  1159. createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
  1160. CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
  1161. Builder.CreateBr(StartBB);
  1162. // Start the main loop block now that we've taken care of the preliminaries.
  1163. Builder.SetInsertPoint(StartBB);
  1164. Value *UnreleasedLoad =
  1165. TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
  1166. Value *UnreleasedLoadExtract =
  1167. extractMaskedValue(Builder, UnreleasedLoad, PMV);
  1168. Value *ShouldStore = Builder.CreateICmpEQ(
  1169. UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
  1170. // If the cmpxchg doesn't actually need any ordering when it fails, we can
  1171. // jump straight past that fence instruction (if it exists).
  1172. Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
  1173. Builder.SetInsertPoint(ReleasingStoreBB);
  1174. if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
  1175. TLI->emitLeadingFence(Builder, CI, SuccessOrder);
  1176. Builder.CreateBr(TryStoreBB);
  1177. Builder.SetInsertPoint(TryStoreBB);
  1178. PHINode *LoadedTryStore =
  1179. Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
  1180. LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
  1181. Value *NewValueInsert =
  1182. insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
  1183. Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert,
  1184. PMV.AlignedAddr, MemOpOrder);
  1185. StoreSuccess = Builder.CreateICmpEQ(
  1186. StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
  1187. BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
  1188. Builder.CreateCondBr(StoreSuccess, SuccessBB,
  1189. CI->isWeak() ? FailureBB : RetryBB);
  1190. Builder.SetInsertPoint(ReleasedLoadBB);
  1191. Value *SecondLoad;
  1192. if (HasReleasedLoadBB) {
  1193. SecondLoad =
  1194. TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
  1195. Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
  1196. ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
  1197. CI->getCompareOperand(), "should_store");
  1198. // If the cmpxchg doesn't actually need any ordering when it fails, we can
  1199. // jump straight past that fence instruction (if it exists).
  1200. Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
  1201. // Update PHI node in TryStoreBB.
  1202. LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
  1203. } else
  1204. Builder.CreateUnreachable();
  1205. // Make sure later instructions don't get reordered with a fence if
  1206. // necessary.
  1207. Builder.SetInsertPoint(SuccessBB);
  1208. if (ShouldInsertFencesForAtomic ||
  1209. TLI->shouldInsertTrailingFenceForAtomicStore(CI))
  1210. TLI->emitTrailingFence(Builder, CI, SuccessOrder);
  1211. Builder.CreateBr(ExitBB);
  1212. Builder.SetInsertPoint(NoStoreBB);
  1213. PHINode *LoadedNoStore =
  1214. Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
  1215. LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
  1216. if (HasReleasedLoadBB)
  1217. LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
  1218. // In the failing case, where we don't execute the store-conditional, the
  1219. // target might want to balance out the load-linked with a dedicated
  1220. // instruction (e.g., on ARM, clearing the exclusive monitor).
  1221. TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
  1222. Builder.CreateBr(FailureBB);
  1223. Builder.SetInsertPoint(FailureBB);
  1224. PHINode *LoadedFailure =
  1225. Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
  1226. LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
  1227. if (CI->isWeak())
  1228. LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
  1229. if (ShouldInsertFencesForAtomic)
  1230. TLI->emitTrailingFence(Builder, CI, FailureOrder);
  1231. Builder.CreateBr(ExitBB);
  1232. // Finally, we have control-flow based knowledge of whether the cmpxchg
  1233. // succeeded or not. We expose this to later passes by converting any
  1234. // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
  1235. // PHI.
  1236. Builder.SetInsertPoint(ExitBB, ExitBB->begin());
  1237. PHINode *LoadedExit =
  1238. Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
  1239. LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
  1240. LoadedExit->addIncoming(LoadedFailure, FailureBB);
  1241. PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
  1242. Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
  1243. Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
  1244. // This is the "exit value" from the cmpxchg expansion. It may be of
  1245. // a type wider than the one in the cmpxchg instruction.
  1246. Value *LoadedFull = LoadedExit;
  1247. Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
  1248. Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
  1249. // Look for any users of the cmpxchg that are just comparing the loaded value
  1250. // against the desired one, and replace them with the CFG-derived version.
  1251. SmallVector<ExtractValueInst *, 2> PrunedInsts;
  1252. for (auto *User : CI->users()) {
  1253. ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
  1254. if (!EV)
  1255. continue;
  1256. assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
  1257. "weird extraction from { iN, i1 }");
  1258. if (EV->getIndices()[0] == 0)
  1259. EV->replaceAllUsesWith(Loaded);
  1260. else
  1261. EV->replaceAllUsesWith(Success);
  1262. PrunedInsts.push_back(EV);
  1263. }
  1264. // We can remove the instructions now we're no longer iterating through them.
  1265. for (auto *EV : PrunedInsts)
  1266. EV->eraseFromParent();
  1267. if (!CI->use_empty()) {
  1268. // Some use of the full struct return that we don't understand has happened,
  1269. // so we've got to reconstruct it properly.
  1270. Value *Res;
  1271. Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0);
  1272. Res = Builder.CreateInsertValue(Res, Success, 1);
  1273. CI->replaceAllUsesWith(Res);
  1274. }
  1275. CI->eraseFromParent();
  1276. return true;
  1277. }
  1278. bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) {
  1279. auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
  1280. if (!C)
  1281. return false;
  1282. AtomicRMWInst::BinOp Op = RMWI->getOperation();
  1283. switch (Op) {
  1284. case AtomicRMWInst::Add:
  1285. case AtomicRMWInst::Sub:
  1286. case AtomicRMWInst::Or:
  1287. case AtomicRMWInst::Xor:
  1288. return C->isZero();
  1289. case AtomicRMWInst::And:
  1290. return C->isMinusOne();
  1291. // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
  1292. default:
  1293. return false;
  1294. }
  1295. }
  1296. bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) {
  1297. if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
  1298. tryExpandAtomicLoad(ResultingLoad);
  1299. return true;
  1300. }
  1301. return false;
  1302. }
  1303. Value *AtomicExpand::insertRMWCmpXchgLoop(
  1304. IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
  1305. AtomicOrdering MemOpOrder, SyncScope::ID SSID,
  1306. function_ref<Value *(IRBuilderBase &, Value *)> PerformOp,
  1307. CreateCmpXchgInstFun CreateCmpXchg) {
  1308. LLVMContext &Ctx = Builder.getContext();
  1309. BasicBlock *BB = Builder.GetInsertBlock();
  1310. Function *F = BB->getParent();
  1311. // Given: atomicrmw some_op iN* %addr, iN %incr ordering
  1312. //
  1313. // The standard expansion we produce is:
  1314. // [...]
  1315. // %init_loaded = load atomic iN* %addr
  1316. // br label %loop
  1317. // loop:
  1318. // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
  1319. // %new = some_op iN %loaded, %incr
  1320. // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
  1321. // %new_loaded = extractvalue { iN, i1 } %pair, 0
  1322. // %success = extractvalue { iN, i1 } %pair, 1
  1323. // br i1 %success, label %atomicrmw.end, label %loop
  1324. // atomicrmw.end:
  1325. // [...]
  1326. BasicBlock *ExitBB =
  1327. BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
  1328. BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
  1329. // The split call above "helpfully" added a branch at the end of BB (to the
  1330. // wrong place), but we want a load. It's easiest to just remove
  1331. // the branch entirely.
  1332. std::prev(BB->end())->eraseFromParent();
  1333. Builder.SetInsertPoint(BB);
  1334. LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
  1335. Builder.CreateBr(LoopBB);
  1336. // Start the main loop block now that we've taken care of the preliminaries.
  1337. Builder.SetInsertPoint(LoopBB);
  1338. PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
  1339. Loaded->addIncoming(InitLoaded, BB);
  1340. Value *NewVal = PerformOp(Builder, Loaded);
  1341. Value *NewLoaded = nullptr;
  1342. Value *Success = nullptr;
  1343. CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
  1344. MemOpOrder == AtomicOrdering::Unordered
  1345. ? AtomicOrdering::Monotonic
  1346. : MemOpOrder,
  1347. SSID, Success, NewLoaded);
  1348. assert(Success && NewLoaded);
  1349. Loaded->addIncoming(NewLoaded, LoopBB);
  1350. Builder.CreateCondBr(Success, ExitBB, LoopBB);
  1351. Builder.SetInsertPoint(ExitBB, ExitBB->begin());
  1352. return NewLoaded;
  1353. }
  1354. bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
  1355. unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
  1356. unsigned ValueSize = getAtomicOpSize(CI);
  1357. switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
  1358. default:
  1359. llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
  1360. case TargetLoweringBase::AtomicExpansionKind::None:
  1361. if (ValueSize < MinCASSize)
  1362. return expandPartwordCmpXchg(CI);
  1363. return false;
  1364. case TargetLoweringBase::AtomicExpansionKind::LLSC: {
  1365. return expandAtomicCmpXchg(CI);
  1366. }
  1367. case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
  1368. expandAtomicCmpXchgToMaskedIntrinsic(CI);
  1369. return true;
  1370. case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
  1371. return lowerAtomicCmpXchgInst(CI);
  1372. }
  1373. }
  1374. // Note: This function is exposed externally by AtomicExpandUtils.h
  1375. bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
  1376. CreateCmpXchgInstFun CreateCmpXchg) {
  1377. ReplacementIRBuilder Builder(AI, AI->getModule()->getDataLayout());
  1378. Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
  1379. Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
  1380. AI->getOrdering(), AI->getSyncScopeID(),
  1381. [&](IRBuilderBase &Builder, Value *Loaded) {
  1382. return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
  1383. AI->getValOperand());
  1384. },
  1385. CreateCmpXchg);
  1386. AI->replaceAllUsesWith(Loaded);
  1387. AI->eraseFromParent();
  1388. return true;
  1389. }
  1390. // In order to use one of the sized library calls such as
  1391. // __atomic_fetch_add_4, the alignment must be sufficient, the size
  1392. // must be one of the potentially-specialized sizes, and the value
  1393. // type must actually exist in C on the target (otherwise, the
  1394. // function wouldn't actually be defined.)
  1395. static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
  1396. const DataLayout &DL) {
  1397. // TODO: "LargestSize" is an approximation for "largest type that
  1398. // you can express in C". It seems to be the case that int128 is
  1399. // supported on all 64-bit platforms, otherwise only up to 64-bit
  1400. // integers are supported. If we get this wrong, then we'll try to
  1401. // call a sized libcall that doesn't actually exist. There should
  1402. // really be some more reliable way in LLVM of determining integer
  1403. // sizes which are valid in the target's C ABI...
  1404. unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
  1405. return Alignment >= Size &&
  1406. (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
  1407. Size <= LargestSize;
  1408. }
  1409. void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
  1410. static const RTLIB::Libcall Libcalls[6] = {
  1411. RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
  1412. RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
  1413. unsigned Size = getAtomicOpSize(I);
  1414. bool expanded = expandAtomicOpToLibcall(
  1415. I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
  1416. I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
  1417. if (!expanded)
  1418. report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
  1419. }
  1420. void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
  1421. static const RTLIB::Libcall Libcalls[6] = {
  1422. RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
  1423. RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
  1424. unsigned Size = getAtomicOpSize(I);
  1425. bool expanded = expandAtomicOpToLibcall(
  1426. I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
  1427. nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
  1428. if (!expanded)
  1429. report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
  1430. }
  1431. void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
  1432. static const RTLIB::Libcall Libcalls[6] = {
  1433. RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
  1434. RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
  1435. RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
  1436. unsigned Size = getAtomicOpSize(I);
  1437. bool expanded = expandAtomicOpToLibcall(
  1438. I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
  1439. I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
  1440. Libcalls);
  1441. if (!expanded)
  1442. report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
  1443. }
  1444. static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
  1445. static const RTLIB::Libcall LibcallsXchg[6] = {
  1446. RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1,
  1447. RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
  1448. RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
  1449. static const RTLIB::Libcall LibcallsAdd[6] = {
  1450. RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1,
  1451. RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
  1452. RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
  1453. static const RTLIB::Libcall LibcallsSub[6] = {
  1454. RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1,
  1455. RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
  1456. RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
  1457. static const RTLIB::Libcall LibcallsAnd[6] = {
  1458. RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1,
  1459. RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
  1460. RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
  1461. static const RTLIB::Libcall LibcallsOr[6] = {
  1462. RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1,
  1463. RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
  1464. RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
  1465. static const RTLIB::Libcall LibcallsXor[6] = {
  1466. RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1,
  1467. RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
  1468. RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
  1469. static const RTLIB::Libcall LibcallsNand[6] = {
  1470. RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1,
  1471. RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
  1472. RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
  1473. switch (Op) {
  1474. case AtomicRMWInst::BAD_BINOP:
  1475. llvm_unreachable("Should not have BAD_BINOP.");
  1476. case AtomicRMWInst::Xchg:
  1477. return ArrayRef(LibcallsXchg);
  1478. case AtomicRMWInst::Add:
  1479. return ArrayRef(LibcallsAdd);
  1480. case AtomicRMWInst::Sub:
  1481. return ArrayRef(LibcallsSub);
  1482. case AtomicRMWInst::And:
  1483. return ArrayRef(LibcallsAnd);
  1484. case AtomicRMWInst::Or:
  1485. return ArrayRef(LibcallsOr);
  1486. case AtomicRMWInst::Xor:
  1487. return ArrayRef(LibcallsXor);
  1488. case AtomicRMWInst::Nand:
  1489. return ArrayRef(LibcallsNand);
  1490. case AtomicRMWInst::Max:
  1491. case AtomicRMWInst::Min:
  1492. case AtomicRMWInst::UMax:
  1493. case AtomicRMWInst::UMin:
  1494. case AtomicRMWInst::FMax:
  1495. case AtomicRMWInst::FMin:
  1496. case AtomicRMWInst::FAdd:
  1497. case AtomicRMWInst::FSub:
  1498. case AtomicRMWInst::UIncWrap:
  1499. case AtomicRMWInst::UDecWrap:
  1500. // No atomic libcalls are available for max/min/umax/umin.
  1501. return {};
  1502. }
  1503. llvm_unreachable("Unexpected AtomicRMW operation.");
  1504. }
  1505. void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
  1506. ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
  1507. unsigned Size = getAtomicOpSize(I);
  1508. bool Success = false;
  1509. if (!Libcalls.empty())
  1510. Success = expandAtomicOpToLibcall(
  1511. I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
  1512. nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
  1513. // The expansion failed: either there were no libcalls at all for
  1514. // the operation (min/max), or there were only size-specialized
  1515. // libcalls (add/sub/etc) and we needed a generic. So, expand to a
  1516. // CAS libcall, via a CAS loop, instead.
  1517. if (!Success) {
  1518. expandAtomicRMWToCmpXchg(
  1519. I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded,
  1520. Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
  1521. SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
  1522. // Create the CAS instruction normally...
  1523. AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
  1524. Addr, Loaded, NewVal, Alignment, MemOpOrder,
  1525. AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
  1526. Success = Builder.CreateExtractValue(Pair, 1, "success");
  1527. NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
  1528. // ...and then expand the CAS into a libcall.
  1529. expandAtomicCASToLibcall(Pair);
  1530. });
  1531. }
  1532. }
  1533. // A helper routine for the above expandAtomic*ToLibcall functions.
  1534. //
  1535. // 'Libcalls' contains an array of enum values for the particular
  1536. // ATOMIC libcalls to be emitted. All of the other arguments besides
  1537. // 'I' are extracted from the Instruction subclass by the
  1538. // caller. Depending on the particular call, some will be null.
  1539. bool AtomicExpand::expandAtomicOpToLibcall(
  1540. Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
  1541. Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
  1542. AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
  1543. assert(Libcalls.size() == 6);
  1544. LLVMContext &Ctx = I->getContext();
  1545. Module *M = I->getModule();
  1546. const DataLayout &DL = M->getDataLayout();
  1547. IRBuilder<> Builder(I);
  1548. IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
  1549. bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
  1550. Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
  1551. const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
  1552. // TODO: the "order" argument type is "int", not int32. So
  1553. // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
  1554. ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
  1555. assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
  1556. Constant *OrderingVal =
  1557. ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
  1558. Constant *Ordering2Val = nullptr;
  1559. if (CASExpected) {
  1560. assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
  1561. Ordering2Val =
  1562. ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
  1563. }
  1564. bool HasResult = I->getType() != Type::getVoidTy(Ctx);
  1565. RTLIB::Libcall RTLibType;
  1566. if (UseSizedLibcall) {
  1567. switch (Size) {
  1568. case 1:
  1569. RTLibType = Libcalls[1];
  1570. break;
  1571. case 2:
  1572. RTLibType = Libcalls[2];
  1573. break;
  1574. case 4:
  1575. RTLibType = Libcalls[3];
  1576. break;
  1577. case 8:
  1578. RTLibType = Libcalls[4];
  1579. break;
  1580. case 16:
  1581. RTLibType = Libcalls[5];
  1582. break;
  1583. }
  1584. } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
  1585. RTLibType = Libcalls[0];
  1586. } else {
  1587. // Can't use sized function, and there's no generic for this
  1588. // operation, so give up.
  1589. return false;
  1590. }
  1591. if (!TLI->getLibcallName(RTLibType)) {
  1592. // This target does not implement the requested atomic libcall so give up.
  1593. return false;
  1594. }
  1595. // Build up the function call. There's two kinds. First, the sized
  1596. // variants. These calls are going to be one of the following (with
  1597. // N=1,2,4,8,16):
  1598. // iN __atomic_load_N(iN *ptr, int ordering)
  1599. // void __atomic_store_N(iN *ptr, iN val, int ordering)
  1600. // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
  1601. // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
  1602. // int success_order, int failure_order)
  1603. //
  1604. // Note that these functions can be used for non-integer atomic
  1605. // operations, the values just need to be bitcast to integers on the
  1606. // way in and out.
  1607. //
  1608. // And, then, the generic variants. They look like the following:
  1609. // void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
  1610. // void __atomic_store(size_t size, void *ptr, void *val, int ordering)
  1611. // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
  1612. // int ordering)
  1613. // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
  1614. // void *desired, int success_order,
  1615. // int failure_order)
  1616. //
  1617. // The different signatures are built up depending on the
  1618. // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
  1619. // variables.
  1620. AllocaInst *AllocaCASExpected = nullptr;
  1621. Value *AllocaCASExpected_i8 = nullptr;
  1622. AllocaInst *AllocaValue = nullptr;
  1623. Value *AllocaValue_i8 = nullptr;
  1624. AllocaInst *AllocaResult = nullptr;
  1625. Value *AllocaResult_i8 = nullptr;
  1626. Type *ResultTy;
  1627. SmallVector<Value *, 6> Args;
  1628. AttributeList Attr;
  1629. // 'size' argument.
  1630. if (!UseSizedLibcall) {
  1631. // Note, getIntPtrType is assumed equivalent to size_t.
  1632. Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
  1633. }
  1634. // 'ptr' argument.
  1635. // note: This assumes all address spaces share a common libfunc
  1636. // implementation and that addresses are convertable. For systems without
  1637. // that property, we'd need to extend this mechanism to support AS-specific
  1638. // families of atomic intrinsics.
  1639. auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
  1640. Value *PtrVal =
  1641. Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx, PtrTypeAS));
  1642. PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
  1643. Args.push_back(PtrVal);
  1644. // 'expected' argument, if present.
  1645. if (CASExpected) {
  1646. AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
  1647. AllocaCASExpected->setAlignment(AllocaAlignment);
  1648. unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace();
  1649. AllocaCASExpected_i8 = Builder.CreateBitCast(
  1650. AllocaCASExpected, Type::getInt8PtrTy(Ctx, AllocaAS));
  1651. Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
  1652. Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
  1653. Args.push_back(AllocaCASExpected_i8);
  1654. }
  1655. // 'val' argument ('desired' for cas), if present.
  1656. if (ValueOperand) {
  1657. if (UseSizedLibcall) {
  1658. Value *IntValue =
  1659. Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
  1660. Args.push_back(IntValue);
  1661. } else {
  1662. AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
  1663. AllocaValue->setAlignment(AllocaAlignment);
  1664. AllocaValue_i8 =
  1665. Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
  1666. Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
  1667. Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
  1668. Args.push_back(AllocaValue_i8);
  1669. }
  1670. }
  1671. // 'ret' argument.
  1672. if (!CASExpected && HasResult && !UseSizedLibcall) {
  1673. AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
  1674. AllocaResult->setAlignment(AllocaAlignment);
  1675. unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace();
  1676. AllocaResult_i8 =
  1677. Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
  1678. Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
  1679. Args.push_back(AllocaResult_i8);
  1680. }
  1681. // 'ordering' ('success_order' for cas) argument.
  1682. Args.push_back(OrderingVal);
  1683. // 'failure_order' argument, if present.
  1684. if (Ordering2Val)
  1685. Args.push_back(Ordering2Val);
  1686. // Now, the return type.
  1687. if (CASExpected) {
  1688. ResultTy = Type::getInt1Ty(Ctx);
  1689. Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt);
  1690. } else if (HasResult && UseSizedLibcall)
  1691. ResultTy = SizedIntTy;
  1692. else
  1693. ResultTy = Type::getVoidTy(Ctx);
  1694. // Done with setting up arguments and return types, create the call:
  1695. SmallVector<Type *, 6> ArgTys;
  1696. for (Value *Arg : Args)
  1697. ArgTys.push_back(Arg->getType());
  1698. FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
  1699. FunctionCallee LibcallFn =
  1700. M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
  1701. CallInst *Call = Builder.CreateCall(LibcallFn, Args);
  1702. Call->setAttributes(Attr);
  1703. Value *Result = Call;
  1704. // And then, extract the results...
  1705. if (ValueOperand && !UseSizedLibcall)
  1706. Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
  1707. if (CASExpected) {
  1708. // The final result from the CAS is {load of 'expected' alloca, bool result
  1709. // from call}
  1710. Type *FinalResultTy = I->getType();
  1711. Value *V = PoisonValue::get(FinalResultTy);
  1712. Value *ExpectedOut = Builder.CreateAlignedLoad(
  1713. CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
  1714. Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
  1715. V = Builder.CreateInsertValue(V, ExpectedOut, 0);
  1716. V = Builder.CreateInsertValue(V, Result, 1);
  1717. I->replaceAllUsesWith(V);
  1718. } else if (HasResult) {
  1719. Value *V;
  1720. if (UseSizedLibcall)
  1721. V = Builder.CreateBitOrPointerCast(Result, I->getType());
  1722. else {
  1723. V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
  1724. AllocaAlignment);
  1725. Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
  1726. }
  1727. I->replaceAllUsesWith(V);
  1728. }
  1729. I->eraseFromParent();
  1730. return true;
  1731. }