123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- /// \file
- ///
- /// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms
- /// to the LLVM "Allocator" concept and is similar to MallocAllocator, but
- /// objects cannot be deallocated. Their lifetime is tied to the lifetime of the
- /// allocator.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_SUPPORT_ALLOCATOR_H
- #define LLVM_SUPPORT_ALLOCATOR_H
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Support/Alignment.h"
- #include "llvm/Support/AllocatorBase.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/MathExtras.h"
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <iterator>
- #include <optional>
- #include <utility>
- namespace llvm {
- namespace detail {
- // We call out to an external function to actually print the message as the
- // printing code uses Allocator.h in its implementation.
- void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
- size_t TotalMemory);
- } // end namespace detail
- /// Allocate memory in an ever growing pool, as if by bump-pointer.
- ///
- /// This isn't strictly a bump-pointer allocator as it uses backing slabs of
- /// memory rather than relying on a boundless contiguous heap. However, it has
- /// bump-pointer semantics in that it is a monotonically growing pool of memory
- /// where every allocation is found by merely allocating the next N bytes in
- /// the slab, or the next N bytes in the next slab.
- ///
- /// Note that this also has a threshold for forcing allocations above a certain
- /// size into their own slab.
- ///
- /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
- /// object, which wraps malloc, to allocate memory, but it can be changed to
- /// use a custom allocator.
- ///
- /// The GrowthDelay specifies after how many allocated slabs the allocator
- /// increases the size of the slabs.
- template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
- size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128>
- class BumpPtrAllocatorImpl
- : public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize,
- SizeThreshold, GrowthDelay>>,
- private detail::AllocatorHolder<AllocatorT> {
- using AllocTy = detail::AllocatorHolder<AllocatorT>;
- public:
- static_assert(SizeThreshold <= SlabSize,
- "The SizeThreshold must be at most the SlabSize to ensure "
- "that objects larger than a slab go into their own memory "
- "allocation.");
- static_assert(GrowthDelay > 0,
- "GrowthDelay must be at least 1 which already increases the"
- "slab size after each allocated slab.");
- BumpPtrAllocatorImpl() = default;
- template <typename T>
- BumpPtrAllocatorImpl(T &&Allocator)
- : AllocTy(std::forward<T &&>(Allocator)) {}
- // Manually implement a move constructor as we must clear the old allocator's
- // slabs as a matter of correctness.
- BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
- : AllocTy(std::move(Old.getAllocator())), CurPtr(Old.CurPtr),
- End(Old.End), Slabs(std::move(Old.Slabs)),
- CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
- BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) {
- Old.CurPtr = Old.End = nullptr;
- Old.BytesAllocated = 0;
- Old.Slabs.clear();
- Old.CustomSizedSlabs.clear();
- }
- ~BumpPtrAllocatorImpl() {
- DeallocateSlabs(Slabs.begin(), Slabs.end());
- DeallocateCustomSizedSlabs();
- }
- BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
- DeallocateSlabs(Slabs.begin(), Slabs.end());
- DeallocateCustomSizedSlabs();
- CurPtr = RHS.CurPtr;
- End = RHS.End;
- BytesAllocated = RHS.BytesAllocated;
- RedZoneSize = RHS.RedZoneSize;
- Slabs = std::move(RHS.Slabs);
- CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
- AllocTy::operator=(std::move(RHS.getAllocator()));
- RHS.CurPtr = RHS.End = nullptr;
- RHS.BytesAllocated = 0;
- RHS.Slabs.clear();
- RHS.CustomSizedSlabs.clear();
- return *this;
- }
- /// Deallocate all but the current slab and reset the current pointer
- /// to the beginning of it, freeing all memory allocated so far.
- void Reset() {
- // Deallocate all but the first slab, and deallocate all custom-sized slabs.
- DeallocateCustomSizedSlabs();
- CustomSizedSlabs.clear();
- if (Slabs.empty())
- return;
- // Reset the state.
- BytesAllocated = 0;
- CurPtr = (char *)Slabs.front();
- End = CurPtr + SlabSize;
- __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0));
- DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
- Slabs.erase(std::next(Slabs.begin()), Slabs.end());
- }
- /// Allocate space at the specified alignment.
- // This method is *not* marked noalias, because
- // SpecificBumpPtrAllocator::DestroyAll() loops over all allocations, and
- // that loop is not based on the Allocate() return value.
- //
- // Allocate(0, N) is valid, it returns a non-null pointer (which should not
- // be dereferenced).
- LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, Align Alignment) {
- // Keep track of how many bytes we've allocated.
- BytesAllocated += Size;
- size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment);
- assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
- size_t SizeToAllocate = Size;
- #if LLVM_ADDRESS_SANITIZER_BUILD
- // Add trailing bytes as a "red zone" under ASan.
- SizeToAllocate += RedZoneSize;
- #endif
- // Check if we have enough space.
- if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)
- // We can't return nullptr even for a zero-sized allocation!
- && CurPtr != nullptr) {
- char *AlignedPtr = CurPtr + Adjustment;
- CurPtr = AlignedPtr + SizeToAllocate;
- // Update the allocation point of this memory block in MemorySanitizer.
- // Without this, MemorySanitizer messages for values originated from here
- // will point to the allocation of the entire slab.
- __msan_allocated_memory(AlignedPtr, Size);
- // Similarly, tell ASan about this space.
- __asan_unpoison_memory_region(AlignedPtr, Size);
- return AlignedPtr;
- }
- // If Size is really big, allocate a separate slab for it.
- size_t PaddedSize = SizeToAllocate + Alignment.value() - 1;
- if (PaddedSize > SizeThreshold) {
- void *NewSlab =
- this->getAllocator().Allocate(PaddedSize, alignof(std::max_align_t));
- // We own the new slab and don't want anyone reading anyting other than
- // pieces returned from this method. So poison the whole slab.
- __asan_poison_memory_region(NewSlab, PaddedSize);
- CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
- uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
- assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
- char *AlignedPtr = (char*)AlignedAddr;
- __msan_allocated_memory(AlignedPtr, Size);
- __asan_unpoison_memory_region(AlignedPtr, Size);
- return AlignedPtr;
- }
- // Otherwise, start a new slab and try again.
- StartNewSlab();
- uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
- assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&
- "Unable to allocate memory!");
- char *AlignedPtr = (char*)AlignedAddr;
- CurPtr = AlignedPtr + SizeToAllocate;
- __msan_allocated_memory(AlignedPtr, Size);
- __asan_unpoison_memory_region(AlignedPtr, Size);
- return AlignedPtr;
- }
- inline LLVM_ATTRIBUTE_RETURNS_NONNULL void *
- Allocate(size_t Size, size_t Alignment) {
- assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead.");
- return Allocate(Size, Align(Alignment));
- }
- // Pull in base class overloads.
- using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
- // Bump pointer allocators are expected to never free their storage; and
- // clients expect pointers to remain valid for non-dereferencing uses even
- // after deallocation.
- void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) {
- __asan_poison_memory_region(Ptr, Size);
- }
- // Pull in base class overloads.
- using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
- size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
- /// \return An index uniquely and reproducibly identifying
- /// an input pointer \p Ptr in the given allocator.
- /// The returned value is negative iff the object is inside a custom-size
- /// slab.
- /// Returns an empty optional if the pointer is not found in the allocator.
- std::optional<int64_t> identifyObject(const void *Ptr) {
- const char *P = static_cast<const char *>(Ptr);
- int64_t InSlabIdx = 0;
- for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) {
- const char *S = static_cast<const char *>(Slabs[Idx]);
- if (P >= S && P < S + computeSlabSize(Idx))
- return InSlabIdx + static_cast<int64_t>(P - S);
- InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx));
- }
- // Use negative index to denote custom sized slabs.
- int64_t InCustomSizedSlabIdx = -1;
- for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) {
- const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first);
- size_t Size = CustomSizedSlabs[Idx].second;
- if (P >= S && P < S + Size)
- return InCustomSizedSlabIdx - static_cast<int64_t>(P - S);
- InCustomSizedSlabIdx -= static_cast<int64_t>(Size);
- }
- return std::nullopt;
- }
- /// A wrapper around identifyObject that additionally asserts that
- /// the object is indeed within the allocator.
- /// \return An index uniquely and reproducibly identifying
- /// an input pointer \p Ptr in the given allocator.
- int64_t identifyKnownObject(const void *Ptr) {
- std::optional<int64_t> Out = identifyObject(Ptr);
- assert(Out && "Wrong allocator used");
- return *Out;
- }
- /// A wrapper around identifyKnownObject. Accepts type information
- /// about the object and produces a smaller identifier by relying on
- /// the alignment information. Note that sub-classes may have different
- /// alignment, so the most base class should be passed as template parameter
- /// in order to obtain correct results. For that reason automatic template
- /// parameter deduction is disabled.
- /// \return An index uniquely and reproducibly identifying
- /// an input pointer \p Ptr in the given allocator. This identifier is
- /// different from the ones produced by identifyObject and
- /// identifyAlignedObject.
- template <typename T>
- int64_t identifyKnownAlignedObject(const void *Ptr) {
- int64_t Out = identifyKnownObject(Ptr);
- assert(Out % alignof(T) == 0 && "Wrong alignment information");
- return Out / alignof(T);
- }
- size_t getTotalMemory() const {
- size_t TotalMemory = 0;
- for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
- TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
- for (const auto &PtrAndSize : CustomSizedSlabs)
- TotalMemory += PtrAndSize.second;
- return TotalMemory;
- }
- size_t getBytesAllocated() const { return BytesAllocated; }
- void setRedZoneSize(size_t NewSize) {
- RedZoneSize = NewSize;
- }
- void PrintStats() const {
- detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
- getTotalMemory());
- }
- private:
- /// The current pointer into the current slab.
- ///
- /// This points to the next free byte in the slab.
- char *CurPtr = nullptr;
- /// The end of the current slab.
- char *End = nullptr;
- /// The slabs allocated so far.
- SmallVector<void *, 4> Slabs;
- /// Custom-sized slabs allocated for too-large allocation requests.
- SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
- /// How many bytes we've allocated.
- ///
- /// Used so that we can compute how much space was wasted.
- size_t BytesAllocated = 0;
- /// The number of bytes to put between allocations when running under
- /// a sanitizer.
- size_t RedZoneSize = 1;
- static size_t computeSlabSize(unsigned SlabIdx) {
- // Scale the actual allocated slab size based on the number of slabs
- // allocated. Every GrowthDelay slabs allocated, we double
- // the allocated size to reduce allocation frequency, but saturate at
- // multiplying the slab size by 2^30.
- return SlabSize *
- ((size_t)1 << std::min<size_t>(30, SlabIdx / GrowthDelay));
- }
- /// Allocate a new slab and move the bump pointers over into the new
- /// slab, modifying CurPtr and End.
- void StartNewSlab() {
- size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
- void *NewSlab = this->getAllocator().Allocate(AllocatedSlabSize,
- alignof(std::max_align_t));
- // We own the new slab and don't want anyone reading anything other than
- // pieces returned from this method. So poison the whole slab.
- __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
- Slabs.push_back(NewSlab);
- CurPtr = (char *)(NewSlab);
- End = ((char *)NewSlab) + AllocatedSlabSize;
- }
- /// Deallocate a sequence of slabs.
- void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
- SmallVectorImpl<void *>::iterator E) {
- for (; I != E; ++I) {
- size_t AllocatedSlabSize =
- computeSlabSize(std::distance(Slabs.begin(), I));
- this->getAllocator().Deallocate(*I, AllocatedSlabSize,
- alignof(std::max_align_t));
- }
- }
- /// Deallocate all memory for custom sized slabs.
- void DeallocateCustomSizedSlabs() {
- for (auto &PtrAndSize : CustomSizedSlabs) {
- void *Ptr = PtrAndSize.first;
- size_t Size = PtrAndSize.second;
- this->getAllocator().Deallocate(Ptr, Size, alignof(std::max_align_t));
- }
- }
- template <typename T> friend class SpecificBumpPtrAllocator;
- };
- /// The standard BumpPtrAllocator which just uses the default template
- /// parameters.
- typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
- /// A BumpPtrAllocator that allows only elements of a specific type to be
- /// allocated.
- ///
- /// This allows calling the destructor in DestroyAll() and when the allocator is
- /// destroyed.
- template <typename T> class SpecificBumpPtrAllocator {
- BumpPtrAllocator Allocator;
- public:
- SpecificBumpPtrAllocator() {
- // Because SpecificBumpPtrAllocator walks the memory to call destructors,
- // it can't have red zones between allocations.
- Allocator.setRedZoneSize(0);
- }
- SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
- : Allocator(std::move(Old.Allocator)) {}
- ~SpecificBumpPtrAllocator() { DestroyAll(); }
- SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
- Allocator = std::move(RHS.Allocator);
- return *this;
- }
- /// Call the destructor of each allocated object and deallocate all but the
- /// current slab and reset the current pointer to the beginning of it, freeing
- /// all memory allocated so far.
- void DestroyAll() {
- auto DestroyElements = [](char *Begin, char *End) {
- assert(Begin == (char *)alignAddr(Begin, Align::Of<T>()));
- for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
- reinterpret_cast<T *>(Ptr)->~T();
- };
- for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
- ++I) {
- size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
- std::distance(Allocator.Slabs.begin(), I));
- char *Begin = (char *)alignAddr(*I, Align::Of<T>());
- char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
- : (char *)*I + AllocatedSlabSize;
- DestroyElements(Begin, End);
- }
- for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
- void *Ptr = PtrAndSize.first;
- size_t Size = PtrAndSize.second;
- DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()),
- (char *)Ptr + Size);
- }
- Allocator.Reset();
- }
- /// Allocate space for an array of objects without constructing them.
- T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
- };
- } // end namespace llvm
- template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
- size_t GrowthDelay>
- void *
- operator new(size_t Size,
- llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold,
- GrowthDelay> &Allocator) {
- return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size),
- alignof(std::max_align_t)));
- }
- template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
- size_t GrowthDelay>
- void operator delete(void *,
- llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
- SizeThreshold, GrowthDelay> &) {
- }
- #endif // LLVM_SUPPORT_ALLOCATOR_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|