123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261 |
- //===-- comparesf2.S - Implement single-precision soft-float comparisons --===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the following soft-fp_t comparison routines:
- //
- // __eqsf2 __gesf2 __unordsf2
- // __lesf2 __gtsf2
- // __ltsf2
- // __nesf2
- //
- // The semantics of the routines grouped in each column are identical, so there
- // is a single implementation for each, with multiple names.
- //
- // The routines behave as follows:
- //
- // __lesf2(a,b) returns -1 if a < b
- // 0 if a == b
- // 1 if a > b
- // 1 if either a or b is NaN
- //
- // __gesf2(a,b) returns -1 if a < b
- // 0 if a == b
- // 1 if a > b
- // -1 if either a or b is NaN
- //
- // __unordsf2(a,b) returns 0 if both a and b are numbers
- // 1 if either a or b is NaN
- //
- // Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
- // NaN values.
- //
- //===----------------------------------------------------------------------===//
- #include "../assembly.h"
- .syntax unified
- .text
- DEFINE_CODE_STATE
- .macro COMPARESF2_FUNCTION_BODY handle_nan:req
- #if defined(COMPILER_RT_ARMHF_TARGET)
- vmov r0, s0
- vmov r1, s1
- #endif
- // Make copies of a and b with the sign bit shifted off the top. These will
- // be used to detect zeros and NaNs.
- #if defined(USE_THUMB_1)
- push {r6, lr}
- lsls r2, r0, #1
- lsls r3, r1, #1
- #else
- mov r2, r0, lsl #1
- mov r3, r1, lsl #1
- #endif
- // We do the comparison in three stages (ignoring NaN values for the time
- // being). First, we orr the absolute values of a and b; this sets the Z
- // flag if both a and b are zero (of either sign). The shift of r3 doesn't
- // effect this at all, but it *does* make sure that the C flag is clear for
- // the subsequent operations.
- #if defined(USE_THUMB_1)
- lsrs r6, r3, #1
- orrs r6, r2
- #else
- orrs r12, r2, r3, lsr #1
- #endif
- // Next, we check if a and b have the same or different signs. If they have
- // opposite signs, this eor will set the N flag.
- #if defined(USE_THUMB_1)
- beq 1f
- movs r6, r0
- eors r6, r1
- 1:
- #else
- it ne
- eorsne r12, r0, r1
- #endif
- // If a and b are equal (either both zeros or bit identical; again, we're
- // ignoring NaNs for now), this subtract will zero out r0. If they have the
- // same sign, the flags are updated as they would be for a comparison of the
- // absolute values of a and b.
- #if defined(USE_THUMB_1)
- bmi 1f
- subs r0, r2, r3
- 1:
- #else
- it pl
- subspl r0, r2, r3
- #endif
- // If a is smaller in magnitude than b and both have the same sign, place
- // the negation of the sign of b in r0. Thus, if both are negative and
- // a > b, this sets r0 to 0; if both are positive and a < b, this sets
- // r0 to -1.
- //
- // This is also done if a and b have opposite signs and are not both zero,
- // because in that case the subtract was not performed and the C flag is
- // still clear from the shift argument in orrs; if a is positive and b
- // negative, this places 0 in r0; if a is negative and b positive, -1 is
- // placed in r0.
- #if defined(USE_THUMB_1)
- bhs 1f
- // Here if a and b have the same sign and absA < absB, the result is thus
- // b < 0 ? 1 : -1. Same if a and b have the opposite sign (ignoring Nan).
- movs r0, #1
- lsrs r1, #31
- bne LOCAL_LABEL(CHECK_NAN\@)
- negs r0, r0
- b LOCAL_LABEL(CHECK_NAN\@)
- 1:
- #else
- it lo
- mvnlo r0, r1, asr #31
- #endif
- // If a is greater in magnitude than b and both have the same sign, place
- // the sign of b in r0. Thus, if both are negative and a < b, -1 is placed
- // in r0, which is the desired result. Conversely, if both are positive
- // and a > b, zero is placed in r0.
- #if defined(USE_THUMB_1)
- bls 1f
- // Here both have the same sign and absA > absB.
- movs r0, #1
- lsrs r1, #31
- beq LOCAL_LABEL(CHECK_NAN\@)
- negs r0, r0
- 1:
- #else
- it hi
- movhi r0, r1, asr #31
- #endif
- // If you've been keeping track, at this point r0 contains -1 if a < b and
- // 0 if a >= b. All that remains to be done is to set it to 1 if a > b.
- // If a == b, then the Z flag is set, so we can get the correct final value
- // into r0 by simply or'ing with 1 if Z is clear.
- // For Thumb-1, r0 contains -1 if a < b, 0 if a > b and 0 if a == b.
- #if !defined(USE_THUMB_1)
- it ne
- orrne r0, r0, #1
- #endif
- // Finally, we need to deal with NaNs. If either argument is NaN, replace
- // the value in r0 with 1.
- #if defined(USE_THUMB_1)
- LOCAL_LABEL(CHECK_NAN\@):
- movs r6, #0xff
- lsls r6, #24
- cmp r2, r6
- bhi 1f
- cmp r3, r6
- 1:
- bls 2f
- \handle_nan
- 2:
- pop {r6, pc}
- #else
- cmp r2, #0xff000000
- ite ls
- cmpls r3, #0xff000000
- \handle_nan
- JMP(lr)
- #endif
- .endm
- @ int __eqsf2(float a, float b)
- .p2align 2
- DEFINE_COMPILERRT_FUNCTION(__eqsf2)
- .macro __eqsf2_handle_nan
- #if defined(USE_THUMB_1)
- movs r0, #1
- #else
- movhi r0, #1
- #endif
- .endm
- COMPARESF2_FUNCTION_BODY __eqsf2_handle_nan
- END_COMPILERRT_FUNCTION(__eqsf2)
- DEFINE_COMPILERRT_FUNCTION_ALIAS(__lesf2, __eqsf2)
- DEFINE_COMPILERRT_FUNCTION_ALIAS(__ltsf2, __eqsf2)
- DEFINE_COMPILERRT_FUNCTION_ALIAS(__nesf2, __eqsf2)
- #if defined(__ELF__)
- // Alias for libgcc compatibility
- DEFINE_COMPILERRT_FUNCTION_ALIAS(__cmpsf2, __lesf2)
- #endif
- @ int __gtsf2(float a, float b)
- .p2align 2
- DEFINE_COMPILERRT_FUNCTION(__gtsf2)
- .macro __gtsf2_handle_nan
- #if defined(USE_THUMB_1)
- movs r0, #1
- negs r0, r0
- #else
- movhi r0, #-1
- #endif
- .endm
- COMPARESF2_FUNCTION_BODY __gtsf2_handle_nan
- END_COMPILERRT_FUNCTION(__gtsf2)
- DEFINE_COMPILERRT_FUNCTION_ALIAS(__gesf2, __gtsf2)
- @ int __unordsf2(float a, float b)
- .p2align 2
- DEFINE_COMPILERRT_FUNCTION(__unordsf2)
- #if defined(COMPILER_RT_ARMHF_TARGET)
- vmov r0, s0
- vmov r1, s1
- #endif
- // Return 1 for NaN values, 0 otherwise.
- lsls r2, r0, #1
- lsls r3, r1, #1
- movs r0, #0
- #if defined(USE_THUMB_1)
- movs r1, #0xff
- lsls r1, #24
- cmp r2, r1
- bhi 1f
- cmp r3, r1
- 1:
- bls 2f
- movs r0, #1
- 2:
- #else
- cmp r2, #0xff000000
- ite ls
- cmpls r3, #0xff000000
- movhi r0, #1
- #endif
- JMP(lr)
- END_COMPILERRT_FUNCTION(__unordsf2)
- #if defined(COMPILER_RT_ARMHF_TARGET)
- DEFINE_COMPILERRT_FUNCTION(__aeabi_fcmpun)
- vmov s0, r0
- vmov s1, r1
- b SYMBOL_NAME(__unordsf2)
- END_COMPILERRT_FUNCTION(__aeabi_fcmpun)
- #else
- DEFINE_AEABI_FUNCTION_ALIAS(__aeabi_fcmpun, __unordsf2)
- #endif
- NO_EXEC_STACK_DIRECTIVE
|