ResolvingDecoder.cc 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672
  1. /**
  2. * Licensed to the Apache Software Foundation (ASF) under one
  3. * or more contributor license agreements. See the NOTICE file
  4. * distributed with this work for additional information
  5. * regarding copyright ownership. The ASF licenses this file
  6. * to you under the Apache License, Version 2.0 (the
  7. * "License"); you may not use this file except in compliance
  8. * with the License. You may obtain a copy of the License at
  9. *
  10. * https://www.apache.org/licenses/LICENSE-2.0
  11. *
  12. * Unless required by applicable law or agreed to in writing, software
  13. * distributed under the License is distributed on an "AS IS" BASIS,
  14. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. * See the License for the specific language governing permissions and
  16. * limitations under the License.
  17. */
  18. #include <algorithm>
  19. #include <map>
  20. #include <memory>
  21. #include <optional>
  22. #include <set>
  23. #include <string>
  24. #include <utility>
  25. #include "Decoder.hh"
  26. #include "Encoder.hh"
  27. #include "Generic.hh"
  28. #include "NodeImpl.hh"
  29. #include "Stream.hh"
  30. #include "Symbol.hh"
  31. #include "Types.hh"
  32. #include "ValidSchema.hh"
  33. #include "ValidatingCodec.hh"
  34. namespace avro {
  35. using std::make_shared;
  36. namespace parsing {
  37. using std::shared_ptr;
  38. using std::static_pointer_cast;
  39. using std::make_pair;
  40. using std::map;
  41. using std::pair;
  42. using std::reverse;
  43. using std::set;
  44. using std::stack;
  45. using std::string;
  46. using std::unique_ptr;
  47. using std::vector;
  48. typedef pair<NodePtr, NodePtr> NodePair;
  49. class ResolvingGrammarGenerator : public ValidatingGrammarGenerator {
  50. ProductionPtr doGenerate2(const NodePtr &writer,
  51. const NodePtr &reader, map<NodePair, ProductionPtr> &m,
  52. map<NodePtr, ProductionPtr> &m2);
  53. ProductionPtr resolveRecords(const NodePtr &writer,
  54. const NodePtr &reader, map<NodePair, ProductionPtr> &m,
  55. map<NodePtr, ProductionPtr> &m2);
  56. ProductionPtr resolveUnion(const NodePtr &writer,
  57. const NodePtr &reader, map<NodePair, ProductionPtr> &m,
  58. map<NodePtr, ProductionPtr> &m2);
  59. static std::optional<size_t> bestBranch(const NodePtr &writer, const NodePtr &reader);
  60. ProductionPtr getWriterProduction(const NodePtr &n,
  61. map<NodePtr, ProductionPtr> &m2);
  62. public:
  63. Symbol generate(
  64. const ValidSchema &writer, const ValidSchema &reader);
  65. };
  66. Symbol ResolvingGrammarGenerator::generate(
  67. const ValidSchema &writer, const ValidSchema &reader) {
  68. map<NodePtr, ProductionPtr> m2;
  69. const NodePtr &rr = reader.root();
  70. const NodePtr &rw = writer.root();
  71. ProductionPtr backup = ValidatingGrammarGenerator::doGenerate(rw, m2);
  72. fixup(backup, m2);
  73. map<NodePair, ProductionPtr> m;
  74. ProductionPtr main = doGenerate2(rw, rr, m, m2);
  75. fixup(main, m);
  76. return Symbol::rootSymbol(main, backup);
  77. }
  78. std::optional<size_t> ResolvingGrammarGenerator::bestBranch(const NodePtr &writer,
  79. const NodePtr &reader) {
  80. Type t = writer->type();
  81. const size_t c = reader->leaves();
  82. for (size_t j = 0; j < c; ++j) {
  83. NodePtr r = reader->leafAt(j);
  84. if (r->type() == AVRO_SYMBOLIC) {
  85. r = resolveSymbol(r);
  86. }
  87. if (t == r->type()) {
  88. if (r->hasName()) {
  89. if (r->name() == writer->name()) {
  90. return j;
  91. }
  92. } else {
  93. return j;
  94. }
  95. }
  96. }
  97. for (size_t j = 0; j < c; ++j) {
  98. const NodePtr &r = reader->leafAt(j);
  99. Type rt = r->type();
  100. switch (t) {
  101. case AVRO_INT:
  102. if (rt == AVRO_LONG || rt == AVRO_DOUBLE || rt == AVRO_FLOAT) {
  103. return j;
  104. }
  105. break;
  106. case AVRO_LONG:
  107. case AVRO_FLOAT:
  108. if (rt == AVRO_DOUBLE) {
  109. return j;
  110. }
  111. break;
  112. default:
  113. break;
  114. }
  115. }
  116. return std::nullopt;
  117. }
  118. static shared_ptr<vector<uint8_t>> getAvroBinary(
  119. const GenericDatum &defaultValue) {
  120. EncoderPtr e = binaryEncoder();
  121. unique_ptr<OutputStream> os = memoryOutputStream();
  122. e->init(*os);
  123. GenericWriter::write(*e, defaultValue);
  124. e->flush();
  125. return snapshot(*os);
  126. }
  127. ProductionPtr ResolvingGrammarGenerator::getWriterProduction(
  128. const NodePtr &n, map<NodePtr, ProductionPtr> &m2) {
  129. const NodePtr &nn = (n->type() == AVRO_SYMBOLIC) ? static_cast<const NodeSymbolic &>(*n).getNode() : n;
  130. map<NodePtr, ProductionPtr>::const_iterator it2 = m2.find(nn);
  131. if (it2 != m2.end()) {
  132. return it2->second;
  133. } else {
  134. ProductionPtr result = ValidatingGrammarGenerator::doGenerate(nn, m2);
  135. fixup(result, m2);
  136. return result;
  137. }
  138. }
  139. ProductionPtr ResolvingGrammarGenerator::resolveRecords(
  140. const NodePtr &writer, const NodePtr &reader,
  141. map<NodePair, ProductionPtr> &m,
  142. map<NodePtr, ProductionPtr> &m2) {
  143. ProductionPtr result = make_shared<Production>();
  144. vector<string> wf(writer->names());
  145. for (size_t i = 0; i < wf.size(); ++i) {
  146. wf[i] = writer->nameAt(i);
  147. }
  148. set<size_t> rf;
  149. for (size_t i = 0; i < reader->names(); ++i) {
  150. rf.emplace(i);
  151. }
  152. vector<size_t> fieldOrder;
  153. fieldOrder.reserve(rf.size());
  154. /*
  155. * We look for all writer fields in the reader. If found, recursively
  156. * resolve the corresponding fields. Then erase the reader field.
  157. * If no matching field is found for reader, arrange to skip the writer
  158. * field.
  159. */
  160. for (size_t wi = 0; wi != wf.size(); ++wi) {
  161. size_t ri;
  162. if (reader->nameIndex(wf[wi], ri)) {
  163. ProductionPtr p = doGenerate2(writer->leafAt(wi), reader->leafAt(ri), m, m2);
  164. copy(p->rbegin(), p->rend(), back_inserter(*result));
  165. fieldOrder.push_back(ri);
  166. rf.erase(ri);
  167. } else {
  168. ProductionPtr p = getWriterProduction(writer->leafAt(wi), m2);
  169. result->push_back(Symbol::skipStart());
  170. if (p->size() == 1) {
  171. result->push_back((*p)[0]);
  172. } else {
  173. result->push_back(Symbol::indirect(p));
  174. }
  175. }
  176. }
  177. /*
  178. * Examine the reader fields left out (i.e. those didn't have corresponding
  179. * writer field).
  180. */
  181. for (const auto ri : rf) {
  182. NodePtr s = reader->leafAt(ri);
  183. fieldOrder.push_back(ri);
  184. if (s->type() == AVRO_SYMBOLIC) {
  185. s = resolveSymbol(s);
  186. }
  187. shared_ptr<vector<uint8_t>> defaultBinary =
  188. getAvroBinary(reader->defaultValueAt(ri));
  189. result->push_back(Symbol::defaultStartAction(defaultBinary));
  190. auto it = m.find(NodePair(s, s));
  191. ProductionPtr p = it == m.end() ? doGenerate2(s, s, m, m2) : it->second;
  192. copy(p->rbegin(), p->rend(), back_inserter(*result));
  193. result->push_back(Symbol::defaultEndAction());
  194. }
  195. reverse(result->begin(), result->end());
  196. result->push_back(Symbol::sizeListAction(fieldOrder));
  197. result->push_back(Symbol::recordAction());
  198. return result;
  199. }
  200. ProductionPtr ResolvingGrammarGenerator::resolveUnion(
  201. const NodePtr &writer, const NodePtr &reader,
  202. map<NodePair, ProductionPtr> &m,
  203. map<NodePtr, ProductionPtr> &m2) {
  204. vector<ProductionPtr> v;
  205. size_t c = writer->leaves();
  206. v.reserve(c);
  207. for (size_t i = 0; i < c; ++i) {
  208. ProductionPtr p = doGenerate2(writer->leafAt(i), reader, m, m2);
  209. v.push_back(p);
  210. }
  211. ProductionPtr result = make_shared<Production>();
  212. result->push_back(Symbol::alternative(v));
  213. result->push_back(Symbol::writerUnionAction());
  214. return result;
  215. }
  216. ProductionPtr ResolvingGrammarGenerator::doGenerate2(
  217. const NodePtr &w, const NodePtr &r,
  218. map<NodePair, ProductionPtr> &m,
  219. map<NodePtr, ProductionPtr> &m2) {
  220. const NodePtr writer = w->type() == AVRO_SYMBOLIC ? resolveSymbol(w) : w;
  221. const NodePtr reader = r->type() == AVRO_SYMBOLIC ? resolveSymbol(r) : r;
  222. Type writerType = writer->type();
  223. Type readerType = reader->type();
  224. if (writerType == readerType) {
  225. switch (writerType) {
  226. case AVRO_NULL:
  227. return make_shared<Production>(1, Symbol::nullSymbol());
  228. case AVRO_BOOL:
  229. return make_shared<Production>(1, Symbol::boolSymbol());
  230. case AVRO_INT:
  231. return make_shared<Production>(1, Symbol::intSymbol());
  232. case AVRO_LONG:
  233. return make_shared<Production>(1, Symbol::longSymbol());
  234. case AVRO_FLOAT:
  235. return make_shared<Production>(1, Symbol::floatSymbol());
  236. case AVRO_DOUBLE:
  237. return make_shared<Production>(1, Symbol::doubleSymbol());
  238. case AVRO_STRING:
  239. return make_shared<Production>(1, Symbol::stringSymbol());
  240. case AVRO_BYTES:
  241. return make_shared<Production>(1, Symbol::bytesSymbol());
  242. case AVRO_FIXED:
  243. if (writer->name().equalOrAliasedBy(reader->name()) && writer->fixedSize() == reader->fixedSize()) {
  244. ProductionPtr result = make_shared<Production>();
  245. result->push_back(Symbol::sizeCheckSymbol(reader->fixedSize()));
  246. result->push_back(Symbol::fixedSymbol());
  247. m[make_pair(writer, reader)] = result;
  248. return result;
  249. }
  250. break;
  251. case AVRO_RECORD:
  252. if (writer->name().equalOrAliasedBy(reader->name())) {
  253. const pair<NodePtr, NodePtr> key(writer, reader);
  254. map<NodePair, ProductionPtr>::const_iterator kp = m.find(key);
  255. if (kp != m.end()) {
  256. return (kp->second) ? kp->second : make_shared<Production>(1, Symbol::placeholder(key));
  257. }
  258. m[key] = ProductionPtr();
  259. ProductionPtr result = resolveRecords(writer, reader, m, m2);
  260. m[key] = result;
  261. return make_shared<Production>(1, Symbol::indirect(result));
  262. }
  263. break;
  264. case AVRO_ENUM:
  265. if (writer->name().equalOrAliasedBy(reader->name())) {
  266. ProductionPtr result = make_shared<Production>();
  267. result->push_back(Symbol::enumAdjustSymbol(writer, reader));
  268. result->push_back(Symbol::enumSymbol());
  269. m[make_pair(writer, reader)] = result;
  270. return result;
  271. }
  272. break;
  273. case AVRO_ARRAY: {
  274. ProductionPtr p = getWriterProduction(writer->leafAt(0), m2);
  275. ProductionPtr p2 = doGenerate2(writer->leafAt(0), reader->leafAt(0), m, m2);
  276. ProductionPtr result = make_shared<Production>();
  277. result->push_back(Symbol::arrayEndSymbol());
  278. result->push_back(Symbol::repeater(p2, p, true));
  279. result->push_back(Symbol::arrayStartSymbol());
  280. return result;
  281. }
  282. case AVRO_MAP: {
  283. ProductionPtr pp =
  284. doGenerate2(writer->leafAt(1), reader->leafAt(1), m, m2);
  285. ProductionPtr v(new Production(*pp));
  286. v->push_back(Symbol::stringSymbol());
  287. ProductionPtr pp2 = getWriterProduction(writer->leafAt(1), m2);
  288. ProductionPtr v2(new Production(*pp2));
  289. v2->push_back(Symbol::stringSymbol());
  290. ProductionPtr result = make_shared<Production>();
  291. result->push_back(Symbol::mapEndSymbol());
  292. result->push_back(Symbol::repeater(v, v2, false));
  293. result->push_back(Symbol::mapStartSymbol());
  294. return result;
  295. }
  296. case AVRO_UNION:
  297. return resolveUnion(writer, reader, m, m2);
  298. case AVRO_SYMBOLIC: {
  299. shared_ptr<NodeSymbolic> w2 =
  300. static_pointer_cast<NodeSymbolic>(writer);
  301. shared_ptr<NodeSymbolic> r2 =
  302. static_pointer_cast<NodeSymbolic>(reader);
  303. NodePair p(w2->getNode(), r2->getNode());
  304. auto it = m.find(p);
  305. if (it != m.end() && it->second) {
  306. return it->second;
  307. } else {
  308. m[p] = ProductionPtr();
  309. return make_shared<Production>(1, Symbol::placeholder(p));
  310. }
  311. }
  312. default:
  313. throw Exception("Unknown node type");
  314. }
  315. } else if (writerType == AVRO_UNION) {
  316. return resolveUnion(writer, reader, m, m2);
  317. } else {
  318. switch (readerType) {
  319. case AVRO_LONG:
  320. if (writerType == AVRO_INT) {
  321. return make_shared<Production>(1,
  322. Symbol::resolveSymbol(Symbol::Kind::Int, Symbol::Kind::Long));
  323. }
  324. break;
  325. case AVRO_FLOAT:
  326. if (writerType == AVRO_INT || writerType == AVRO_LONG) {
  327. return make_shared<Production>(1,
  328. Symbol::resolveSymbol(writerType == AVRO_INT ? Symbol::Kind::Int : Symbol::Kind::Long, Symbol::Kind::Float));
  329. }
  330. break;
  331. case AVRO_DOUBLE:
  332. if (writerType == AVRO_INT || writerType == AVRO_LONG
  333. || writerType == AVRO_FLOAT) {
  334. return make_shared<Production>(1,
  335. Symbol::resolveSymbol(writerType == AVRO_INT ? Symbol::Kind::Int : writerType == AVRO_LONG ? Symbol::Kind::Long
  336. : Symbol::Kind::Float,
  337. Symbol::Kind::Double));
  338. }
  339. break;
  340. case AVRO_UNION: {
  341. auto j = bestBranch(writer, reader);
  342. if (j) {
  343. ProductionPtr p = doGenerate2(writer, reader->leafAt(*j), m, m2);
  344. ProductionPtr result = make_shared<Production>();
  345. result->push_back(Symbol::unionAdjustSymbol(*j, p));
  346. result->push_back(Symbol::unionSymbol());
  347. return result;
  348. }
  349. } break;
  350. case AVRO_NULL:
  351. case AVRO_BOOL:
  352. case AVRO_INT:
  353. case AVRO_STRING:
  354. case AVRO_BYTES:
  355. case AVRO_ENUM:
  356. case AVRO_ARRAY:
  357. case AVRO_MAP:
  358. case AVRO_RECORD:
  359. break;
  360. default:
  361. throw Exception("Unknown node type");
  362. }
  363. }
  364. return make_shared<Production>(1, Symbol::error(writer, reader));
  365. }
  366. class ResolvingDecoderHandler {
  367. shared_ptr<vector<uint8_t>> defaultData_;
  368. unique_ptr<InputStream> inp_;
  369. DecoderPtr backup_;
  370. DecoderPtr &base_;
  371. const DecoderPtr binDecoder;
  372. public:
  373. explicit ResolvingDecoderHandler(DecoderPtr &base) : base_(base),
  374. binDecoder(binaryDecoder()) {}
  375. size_t handle(const Symbol &s) {
  376. switch (s.kind()) {
  377. case Symbol::Kind::WriterUnion:
  378. return base_->decodeUnionIndex();
  379. case Symbol::Kind::DefaultStart:
  380. defaultData_ = s.extra<shared_ptr<vector<uint8_t>>>();
  381. backup_ = base_;
  382. inp_ = memoryInputStream(&(*defaultData_)[0], defaultData_->size());
  383. base_ = binDecoder;
  384. base_->init(*inp_);
  385. return 0;
  386. case Symbol::Kind::DefaultEnd:
  387. base_ = backup_;
  388. backup_.reset();
  389. return 0;
  390. default:
  391. return 0;
  392. }
  393. }
  394. void reset() {
  395. if (backup_ != nullptr) {
  396. base_ = backup_;
  397. backup_.reset();
  398. }
  399. }
  400. };
  401. template<typename Parser>
  402. class ResolvingDecoderImpl : public ResolvingDecoder {
  403. DecoderPtr base_;
  404. ResolvingDecoderHandler handler_;
  405. Parser parser_;
  406. void init(InputStream &is) final;
  407. void decodeNull() final;
  408. bool decodeBool() final;
  409. int32_t decodeInt() final;
  410. int64_t decodeLong() final;
  411. float decodeFloat() final;
  412. double decodeDouble() final;
  413. void decodeString(string &value) final;
  414. void skipString() final;
  415. void decodeBytes(vector<uint8_t> &value) final;
  416. void skipBytes() final;
  417. void decodeFixed(size_t n, vector<uint8_t> &value) final;
  418. void skipFixed(size_t n) final;
  419. size_t decodeEnum() final;
  420. size_t arrayStart() final;
  421. size_t arrayNext() final;
  422. size_t skipArray() final;
  423. size_t mapStart() final;
  424. size_t mapNext() final;
  425. size_t skipMap() final;
  426. size_t decodeUnionIndex() final;
  427. const vector<size_t> &fieldOrder() final;
  428. void drain() final {
  429. parser_.processImplicitActions();
  430. base_->drain();
  431. }
  432. public:
  433. ResolvingDecoderImpl(const ValidSchema &writer, const ValidSchema &reader,
  434. DecoderPtr base) : base_(std::move(base)),
  435. handler_(base_),
  436. parser_(ResolvingGrammarGenerator().generate(writer, reader),
  437. &(*base_), handler_) {
  438. }
  439. };
  440. template<typename P>
  441. void ResolvingDecoderImpl<P>::init(InputStream &is) {
  442. handler_.reset();
  443. base_->init(is);
  444. parser_.reset();
  445. }
  446. template<typename P>
  447. void ResolvingDecoderImpl<P>::decodeNull() {
  448. parser_.advance(Symbol::Kind::Null);
  449. base_->decodeNull();
  450. }
  451. template<typename P>
  452. bool ResolvingDecoderImpl<P>::decodeBool() {
  453. parser_.advance(Symbol::Kind::Bool);
  454. return base_->decodeBool();
  455. }
  456. template<typename P>
  457. int32_t ResolvingDecoderImpl<P>::decodeInt() {
  458. parser_.advance(Symbol::Kind::Int);
  459. return base_->decodeInt();
  460. }
  461. template<typename P>
  462. int64_t ResolvingDecoderImpl<P>::decodeLong() {
  463. Symbol::Kind k = parser_.advance(Symbol::Kind::Long);
  464. return k == Symbol::Kind::Int ? base_->decodeInt() : base_->decodeLong();
  465. }
  466. template<typename P>
  467. float ResolvingDecoderImpl<P>::decodeFloat() {
  468. Symbol::Kind k = parser_.advance(Symbol::Kind::Float);
  469. return k == Symbol::Kind::Int ? static_cast<float>(base_->decodeInt())
  470. : k == Symbol::Kind::Long ? static_cast<float>(base_->decodeLong())
  471. : base_->decodeFloat();
  472. }
  473. template<typename P>
  474. double ResolvingDecoderImpl<P>::decodeDouble() {
  475. Symbol::Kind k = parser_.advance(Symbol::Kind::Double);
  476. return k == Symbol::Kind::Int ? static_cast<double>(base_->decodeInt())
  477. : k == Symbol::Kind::Long ? static_cast<double>(base_->decodeLong())
  478. : k == Symbol::Kind::Float ? base_->decodeFloat()
  479. : base_->decodeDouble();
  480. }
  481. template<typename P>
  482. void ResolvingDecoderImpl<P>::decodeString(string &value) {
  483. parser_.advance(Symbol::Kind::String);
  484. base_->decodeString(value);
  485. }
  486. template<typename P>
  487. void ResolvingDecoderImpl<P>::skipString() {
  488. parser_.advance(Symbol::Kind::String);
  489. base_->skipString();
  490. }
  491. template<typename P>
  492. void ResolvingDecoderImpl<P>::decodeBytes(vector<uint8_t> &value) {
  493. parser_.advance(Symbol::Kind::Bytes);
  494. base_->decodeBytes(value);
  495. }
  496. template<typename P>
  497. void ResolvingDecoderImpl<P>::skipBytes() {
  498. parser_.advance(Symbol::Kind::Bytes);
  499. base_->skipBytes();
  500. }
  501. template<typename P>
  502. void ResolvingDecoderImpl<P>::decodeFixed(size_t n, vector<uint8_t> &value) {
  503. parser_.advance(Symbol::Kind::Fixed);
  504. parser_.assertSize(n);
  505. return base_->decodeFixed(n, value);
  506. }
  507. template<typename P>
  508. void ResolvingDecoderImpl<P>::skipFixed(size_t n) {
  509. parser_.advance(Symbol::Kind::Fixed);
  510. parser_.assertSize(n);
  511. base_->skipFixed(n);
  512. }
  513. template<typename P>
  514. size_t ResolvingDecoderImpl<P>::decodeEnum() {
  515. parser_.advance(Symbol::Kind::Enum);
  516. size_t n = base_->decodeEnum();
  517. return parser_.enumAdjust(n);
  518. }
  519. template<typename P>
  520. size_t ResolvingDecoderImpl<P>::arrayStart() {
  521. parser_.advance(Symbol::Kind::ArrayStart);
  522. size_t result = base_->arrayStart();
  523. parser_.pushRepeatCount(result);
  524. if (result == 0) {
  525. parser_.popRepeater();
  526. parser_.advance(Symbol::Kind::ArrayEnd);
  527. }
  528. return result;
  529. }
  530. template<typename P>
  531. size_t ResolvingDecoderImpl<P>::arrayNext() {
  532. parser_.processImplicitActions();
  533. size_t result = base_->arrayNext();
  534. parser_.nextRepeatCount(result);
  535. if (result == 0) {
  536. parser_.popRepeater();
  537. parser_.advance(Symbol::Kind::ArrayEnd);
  538. }
  539. return result;
  540. }
  541. template<typename P>
  542. size_t ResolvingDecoderImpl<P>::skipArray() {
  543. parser_.advance(Symbol::Kind::ArrayStart);
  544. size_t n = base_->skipArray();
  545. if (n == 0) {
  546. parser_.pop();
  547. } else {
  548. parser_.pushRepeatCount(n);
  549. parser_.skip(*base_);
  550. }
  551. parser_.advance(Symbol::Kind::ArrayEnd);
  552. return 0;
  553. }
  554. template<typename P>
  555. size_t ResolvingDecoderImpl<P>::mapStart() {
  556. parser_.advance(Symbol::Kind::MapStart);
  557. size_t result = base_->mapStart();
  558. parser_.pushRepeatCount(result);
  559. if (result == 0) {
  560. parser_.popRepeater();
  561. parser_.advance(Symbol::Kind::MapEnd);
  562. }
  563. return result;
  564. }
  565. template<typename P>
  566. size_t ResolvingDecoderImpl<P>::mapNext() {
  567. parser_.processImplicitActions();
  568. size_t result = base_->mapNext();
  569. parser_.nextRepeatCount(result);
  570. if (result == 0) {
  571. parser_.popRepeater();
  572. parser_.advance(Symbol::Kind::MapEnd);
  573. }
  574. return result;
  575. }
  576. template<typename P>
  577. size_t ResolvingDecoderImpl<P>::skipMap() {
  578. parser_.advance(Symbol::Kind::MapStart);
  579. size_t n = base_->skipMap();
  580. if (n == 0) {
  581. parser_.pop();
  582. } else {
  583. parser_.pushRepeatCount(n);
  584. parser_.skip(*base_);
  585. }
  586. parser_.advance(Symbol::Kind::MapEnd);
  587. return 0;
  588. }
  589. template<typename P>
  590. size_t ResolvingDecoderImpl<P>::decodeUnionIndex() {
  591. parser_.advance(Symbol::Kind::Union);
  592. return parser_.unionAdjust();
  593. }
  594. template<typename P>
  595. const vector<size_t> &ResolvingDecoderImpl<P>::fieldOrder() {
  596. parser_.advance(Symbol::Kind::Record);
  597. return parser_.sizeList();
  598. }
  599. } // namespace parsing
  600. ResolvingDecoderPtr resolvingDecoder(const ValidSchema &writer,
  601. const ValidSchema &reader, const DecoderPtr &base) {
  602. return make_shared<parsing::ResolvingDecoderImpl<parsing::SimpleParser<parsing::ResolvingDecoderHandler>>>(
  603. writer, reader, base);
  604. }
  605. } // namespace avro