123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350 |
- ///////////////////////////////////////////////////////////////////////////////
- //
- /// \file range_encoder.h
- /// \brief Range Encoder
- ///
- // Authors: Igor Pavlov
- // Lasse Collin
- //
- // This file has been put into the public domain.
- // You can do whatever you want with this file.
- //
- ///////////////////////////////////////////////////////////////////////////////
- #ifndef LZMA_RANGE_ENCODER_H
- #define LZMA_RANGE_ENCODER_H
- #include "range_common.h"
- #include "price.h"
- /// Maximum number of symbols that can be put pending into lzma_range_encoder
- /// structure between calls to lzma_rc_encode(). For LZMA, 48+5 is enough
- /// (match with big distance and length followed by range encoder flush).
- #define RC_SYMBOLS_MAX 53
- typedef struct {
- uint64_t low;
- uint64_t cache_size;
- uint32_t range;
- uint8_t cache;
- /// Number of bytes written out by rc_encode() -> rc_shift_low()
- uint64_t out_total;
- /// Number of symbols in the tables
- size_t count;
- /// rc_encode()'s position in the tables
- size_t pos;
- /// Symbols to encode
- enum {
- RC_BIT_0,
- RC_BIT_1,
- RC_DIRECT_0,
- RC_DIRECT_1,
- RC_FLUSH,
- } symbols[RC_SYMBOLS_MAX];
- /// Probabilities associated with RC_BIT_0 or RC_BIT_1
- probability *probs[RC_SYMBOLS_MAX];
- } lzma_range_encoder;
- static inline void
- rc_reset(lzma_range_encoder *rc)
- {
- rc->low = 0;
- rc->cache_size = 1;
- rc->range = UINT32_MAX;
- rc->cache = 0;
- rc->out_total = 0;
- rc->count = 0;
- rc->pos = 0;
- }
- static inline void
- rc_forget(lzma_range_encoder *rc)
- {
- // This must not be called when rc_encode() is partially done.
- assert(rc->pos == 0);
- rc->count = 0;
- }
- static inline void
- rc_bit(lzma_range_encoder *rc, probability *prob, uint32_t bit)
- {
- rc->symbols[rc->count] = bit;
- rc->probs[rc->count] = prob;
- ++rc->count;
- }
- static inline void
- rc_bittree(lzma_range_encoder *rc, probability *probs,
- uint32_t bit_count, uint32_t symbol)
- {
- uint32_t model_index = 1;
- do {
- const uint32_t bit = (symbol >> --bit_count) & 1;
- rc_bit(rc, &probs[model_index], bit);
- model_index = (model_index << 1) + bit;
- } while (bit_count != 0);
- }
- static inline void
- rc_bittree_reverse(lzma_range_encoder *rc, probability *probs,
- uint32_t bit_count, uint32_t symbol)
- {
- uint32_t model_index = 1;
- do {
- const uint32_t bit = symbol & 1;
- symbol >>= 1;
- rc_bit(rc, &probs[model_index], bit);
- model_index = (model_index << 1) + bit;
- } while (--bit_count != 0);
- }
- static inline void
- rc_direct(lzma_range_encoder *rc,
- uint32_t value, uint32_t bit_count)
- {
- do {
- rc->symbols[rc->count++]
- = RC_DIRECT_0 + ((value >> --bit_count) & 1);
- } while (bit_count != 0);
- }
- static inline void
- rc_flush(lzma_range_encoder *rc)
- {
- for (size_t i = 0; i < 5; ++i)
- rc->symbols[rc->count++] = RC_FLUSH;
- }
- static inline bool
- rc_shift_low(lzma_range_encoder *rc,
- uint8_t *out, size_t *out_pos, size_t out_size)
- {
- if ((uint32_t)(rc->low) < (uint32_t)(0xFF000000)
- || (uint32_t)(rc->low >> 32) != 0) {
- do {
- if (*out_pos == out_size)
- return true;
- out[*out_pos] = rc->cache + (uint8_t)(rc->low >> 32);
- ++*out_pos;
- ++rc->out_total;
- rc->cache = 0xFF;
- } while (--rc->cache_size != 0);
- rc->cache = (rc->low >> 24) & 0xFF;
- }
- ++rc->cache_size;
- rc->low = (rc->low & 0x00FFFFFF) << RC_SHIFT_BITS;
- return false;
- }
- // NOTE: The last two arguments are uint64_t instead of size_t because in
- // the dummy version these refer to the size of the whole range-encoded
- // output stream, not just to the currently available output buffer space.
- static inline bool
- rc_shift_low_dummy(uint64_t *low, uint64_t *cache_size, uint8_t *cache,
- uint64_t *out_pos, uint64_t out_size)
- {
- if ((uint32_t)(*low) < (uint32_t)(0xFF000000)
- || (uint32_t)(*low >> 32) != 0) {
- do {
- if (*out_pos == out_size)
- return true;
- ++*out_pos;
- *cache = 0xFF;
- } while (--*cache_size != 0);
- *cache = (*low >> 24) & 0xFF;
- }
- ++*cache_size;
- *low = (*low & 0x00FFFFFF) << RC_SHIFT_BITS;
- return false;
- }
- static inline bool
- rc_encode(lzma_range_encoder *rc,
- uint8_t *out, size_t *out_pos, size_t out_size)
- {
- assert(rc->count <= RC_SYMBOLS_MAX);
- while (rc->pos < rc->count) {
- // Normalize
- if (rc->range < RC_TOP_VALUE) {
- if (rc_shift_low(rc, out, out_pos, out_size))
- return true;
- rc->range <<= RC_SHIFT_BITS;
- }
- // Encode a bit
- switch (rc->symbols[rc->pos]) {
- case RC_BIT_0: {
- probability prob = *rc->probs[rc->pos];
- rc->range = (rc->range >> RC_BIT_MODEL_TOTAL_BITS)
- * prob;
- prob += (RC_BIT_MODEL_TOTAL - prob) >> RC_MOVE_BITS;
- *rc->probs[rc->pos] = prob;
- break;
- }
- case RC_BIT_1: {
- probability prob = *rc->probs[rc->pos];
- const uint32_t bound = prob * (rc->range
- >> RC_BIT_MODEL_TOTAL_BITS);
- rc->low += bound;
- rc->range -= bound;
- prob -= prob >> RC_MOVE_BITS;
- *rc->probs[rc->pos] = prob;
- break;
- }
- case RC_DIRECT_0:
- rc->range >>= 1;
- break;
- case RC_DIRECT_1:
- rc->range >>= 1;
- rc->low += rc->range;
- break;
- case RC_FLUSH:
- // Prevent further normalizations.
- rc->range = UINT32_MAX;
- // Flush the last five bytes (see rc_flush()).
- do {
- if (rc_shift_low(rc, out, out_pos, out_size))
- return true;
- } while (++rc->pos < rc->count);
- // Reset the range encoder so we are ready to continue
- // encoding if we weren't finishing the stream.
- rc_reset(rc);
- return false;
- default:
- assert(0);
- break;
- }
- ++rc->pos;
- }
- rc->count = 0;
- rc->pos = 0;
- return false;
- }
- static inline bool
- rc_encode_dummy(const lzma_range_encoder *rc, uint64_t out_limit)
- {
- assert(rc->count <= RC_SYMBOLS_MAX);
- uint64_t low = rc->low;
- uint64_t cache_size = rc->cache_size;
- uint32_t range = rc->range;
- uint8_t cache = rc->cache;
- uint64_t out_pos = rc->out_total;
- size_t pos = rc->pos;
- while (true) {
- // Normalize
- if (range < RC_TOP_VALUE) {
- if (rc_shift_low_dummy(&low, &cache_size, &cache,
- &out_pos, out_limit))
- return true;
- range <<= RC_SHIFT_BITS;
- }
- // This check is here because the normalization above must
- // be done before flushing the last bytes.
- if (pos == rc->count)
- break;
- // Encode a bit
- switch (rc->symbols[pos]) {
- case RC_BIT_0: {
- probability prob = *rc->probs[pos];
- range = (range >> RC_BIT_MODEL_TOTAL_BITS)
- * prob;
- break;
- }
- case RC_BIT_1: {
- probability prob = *rc->probs[pos];
- const uint32_t bound = prob * (range
- >> RC_BIT_MODEL_TOTAL_BITS);
- low += bound;
- range -= bound;
- break;
- }
- case RC_DIRECT_0:
- range >>= 1;
- break;
- case RC_DIRECT_1:
- range >>= 1;
- low += range;
- break;
- case RC_FLUSH:
- default:
- assert(0);
- break;
- }
- ++pos;
- }
- // Flush the last bytes. This isn't in rc->symbols[] so we do
- // it after the above loop to take into account the size of
- // the flushing that will be done at the end of the stream.
- for (pos = 0; pos < 5; ++pos) {
- if (rc_shift_low_dummy(&low, &cache_size,
- &cache, &out_pos, out_limit))
- return true;
- }
- return false;
- }
- static inline uint64_t
- rc_pending(const lzma_range_encoder *rc)
- {
- return rc->cache_size + 5 - 1;
- }
- #endif
|