12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711 |
- //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
- // and generates target-independent LLVM-IR.
- // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
- // of instructions in order to estimate the profitability of vectorization.
- //
- // The loop vectorizer combines consecutive loop iterations into a single
- // 'wide' iteration. After this transformation the index is incremented
- // by the SIMD vector width, and not by one.
- //
- // This pass has three parts:
- // 1. The main loop pass that drives the different parts.
- // 2. LoopVectorizationLegality - A unit that checks for the legality
- // of the vectorization.
- // 3. InnerLoopVectorizer - A unit that performs the actual
- // widening of instructions.
- // 4. LoopVectorizationCostModel - A unit that checks for the profitability
- // of vectorization. It decides on the optimal vector width, which
- // can be one, if vectorization is not profitable.
- //
- // There is a development effort going on to migrate loop vectorizer to the
- // VPlan infrastructure and to introduce outer loop vectorization support (see
- // docs/Proposal/VectorizationPlan.rst and
- // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
- // purpose, we temporarily introduced the VPlan-native vectorization path: an
- // alternative vectorization path that is natively implemented on top of the
- // VPlan infrastructure. See EnableVPlanNativePath for enabling.
- //
- //===----------------------------------------------------------------------===//
- //
- // The reduction-variable vectorization is based on the paper:
- // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
- //
- // Variable uniformity checks are inspired by:
- // Karrenberg, R. and Hack, S. Whole Function Vectorization.
- //
- // The interleaved access vectorization is based on the paper:
- // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
- // Data for SIMD
- //
- // Other ideas/concepts are from:
- // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
- //
- // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
- // Vectorizing Compilers.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Vectorize/LoopVectorize.h"
- #include "LoopVectorizationPlanner.h"
- #include "VPRecipeBuilder.h"
- #include "VPlan.h"
- #include "VPlanHCFGBuilder.h"
- #include "VPlanTransforms.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/DemandedBits.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/LoopAccessAnalysis.h"
- #include "llvm/Analysis/LoopAnalysisManager.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ProfileSummaryInfo.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/IR/Verifier.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/InstructionCost.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/InjectTLIMappings.h"
- #include "llvm/Transforms/Utils/LoopSimplify.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/LoopVersioning.h"
- #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
- #include "llvm/Transforms/Utils/SizeOpts.h"
- #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
- #include <algorithm>
- #include <cassert>
- #include <cmath>
- #include <cstdint>
- #include <functional>
- #include <iterator>
- #include <limits>
- #include <map>
- #include <memory>
- #include <string>
- #include <tuple>
- #include <utility>
- using namespace llvm;
- #define LV_NAME "loop-vectorize"
- #define DEBUG_TYPE LV_NAME
- #ifndef NDEBUG
- const char VerboseDebug[] = DEBUG_TYPE "-verbose";
- #endif
- /// @{
- /// Metadata attribute names
- const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
- const char LLVMLoopVectorizeFollowupVectorized[] =
- "llvm.loop.vectorize.followup_vectorized";
- const char LLVMLoopVectorizeFollowupEpilogue[] =
- "llvm.loop.vectorize.followup_epilogue";
- /// @}
- STATISTIC(LoopsVectorized, "Number of loops vectorized");
- STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
- STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
- static cl::opt<bool> EnableEpilogueVectorization(
- "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
- cl::desc("Enable vectorization of epilogue loops."));
- static cl::opt<unsigned> EpilogueVectorizationForceVF(
- "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
- cl::desc("When epilogue vectorization is enabled, and a value greater than "
- "1 is specified, forces the given VF for all applicable epilogue "
- "loops."));
- static cl::opt<unsigned> EpilogueVectorizationMinVF(
- "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
- cl::desc("Only loops with vectorization factor equal to or larger than "
- "the specified value are considered for epilogue vectorization."));
- /// Loops with a known constant trip count below this number are vectorized only
- /// if no scalar iteration overheads are incurred.
- static cl::opt<unsigned> TinyTripCountVectorThreshold(
- "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
- cl::desc("Loops with a constant trip count that is smaller than this "
- "value are vectorized only if no scalar iteration overheads "
- "are incurred."));
- static cl::opt<unsigned> VectorizeMemoryCheckThreshold(
- "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
- cl::desc("The maximum allowed number of runtime memory checks"));
- // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
- // that predication is preferred, and this lists all options. I.e., the
- // vectorizer will try to fold the tail-loop (epilogue) into the vector body
- // and predicate the instructions accordingly. If tail-folding fails, there are
- // different fallback strategies depending on these values:
- namespace PreferPredicateTy {
- enum Option {
- ScalarEpilogue = 0,
- PredicateElseScalarEpilogue,
- PredicateOrDontVectorize
- };
- } // namespace PreferPredicateTy
- static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
- "prefer-predicate-over-epilogue",
- cl::init(PreferPredicateTy::ScalarEpilogue),
- cl::Hidden,
- cl::desc("Tail-folding and predication preferences over creating a scalar "
- "epilogue loop."),
- cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
- "scalar-epilogue",
- "Don't tail-predicate loops, create scalar epilogue"),
- clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
- "predicate-else-scalar-epilogue",
- "prefer tail-folding, create scalar epilogue if tail "
- "folding fails."),
- clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
- "predicate-dont-vectorize",
- "prefers tail-folding, don't attempt vectorization if "
- "tail-folding fails.")));
- static cl::opt<bool> MaximizeBandwidth(
- "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
- cl::desc("Maximize bandwidth when selecting vectorization factor which "
- "will be determined by the smallest type in loop."));
- static cl::opt<bool> EnableInterleavedMemAccesses(
- "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
- cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
- /// An interleave-group may need masking if it resides in a block that needs
- /// predication, or in order to mask away gaps.
- static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
- "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
- cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
- static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
- "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
- cl::desc("We don't interleave loops with a estimated constant trip count "
- "below this number"));
- static cl::opt<unsigned> ForceTargetNumScalarRegs(
- "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's number of scalar registers."));
- static cl::opt<unsigned> ForceTargetNumVectorRegs(
- "force-target-num-vector-regs", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's number of vector registers."));
- static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
- "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's max interleave factor for "
- "scalar loops."));
- static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
- "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's max interleave factor for "
- "vectorized loops."));
- static cl::opt<unsigned> ForceTargetInstructionCost(
- "force-target-instruction-cost", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's expected cost for "
- "an instruction to a single constant value. Mostly "
- "useful for getting consistent testing."));
- static cl::opt<bool> ForceTargetSupportsScalableVectors(
- "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
- cl::desc(
- "Pretend that scalable vectors are supported, even if the target does "
- "not support them. This flag should only be used for testing."));
- static cl::opt<unsigned> SmallLoopCost(
- "small-loop-cost", cl::init(20), cl::Hidden,
- cl::desc(
- "The cost of a loop that is considered 'small' by the interleaver."));
- static cl::opt<bool> LoopVectorizeWithBlockFrequency(
- "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
- cl::desc("Enable the use of the block frequency analysis to access PGO "
- "heuristics minimizing code growth in cold regions and being more "
- "aggressive in hot regions."));
- // Runtime interleave loops for load/store throughput.
- static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
- "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
- cl::desc(
- "Enable runtime interleaving until load/store ports are saturated"));
- /// Interleave small loops with scalar reductions.
- static cl::opt<bool> InterleaveSmallLoopScalarReduction(
- "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
- cl::desc("Enable interleaving for loops with small iteration counts that "
- "contain scalar reductions to expose ILP."));
- /// The number of stores in a loop that are allowed to need predication.
- static cl::opt<unsigned> NumberOfStoresToPredicate(
- "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
- cl::desc("Max number of stores to be predicated behind an if."));
- static cl::opt<bool> EnableIndVarRegisterHeur(
- "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
- cl::desc("Count the induction variable only once when interleaving"));
- static cl::opt<bool> EnableCondStoresVectorization(
- "enable-cond-stores-vec", cl::init(true), cl::Hidden,
- cl::desc("Enable if predication of stores during vectorization."));
- static cl::opt<unsigned> MaxNestedScalarReductionIC(
- "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
- cl::desc("The maximum interleave count to use when interleaving a scalar "
- "reduction in a nested loop."));
- static cl::opt<bool>
- PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
- cl::Hidden,
- cl::desc("Prefer in-loop vector reductions, "
- "overriding the targets preference."));
- static cl::opt<bool> ForceOrderedReductions(
- "force-ordered-reductions", cl::init(false), cl::Hidden,
- cl::desc("Enable the vectorisation of loops with in-order (strict) "
- "FP reductions"));
- static cl::opt<bool> PreferPredicatedReductionSelect(
- "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
- cl::desc(
- "Prefer predicating a reduction operation over an after loop select."));
- cl::opt<bool> EnableVPlanNativePath(
- "enable-vplan-native-path", cl::init(false), cl::Hidden,
- cl::desc("Enable VPlan-native vectorization path with "
- "support for outer loop vectorization."));
- // This flag enables the stress testing of the VPlan H-CFG construction in the
- // VPlan-native vectorization path. It must be used in conjuction with
- // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
- // verification of the H-CFGs built.
- static cl::opt<bool> VPlanBuildStressTest(
- "vplan-build-stress-test", cl::init(false), cl::Hidden,
- cl::desc(
- "Build VPlan for every supported loop nest in the function and bail "
- "out right after the build (stress test the VPlan H-CFG construction "
- "in the VPlan-native vectorization path)."));
- cl::opt<bool> llvm::EnableLoopInterleaving(
- "interleave-loops", cl::init(true), cl::Hidden,
- cl::desc("Enable loop interleaving in Loop vectorization passes"));
- cl::opt<bool> llvm::EnableLoopVectorization(
- "vectorize-loops", cl::init(true), cl::Hidden,
- cl::desc("Run the Loop vectorization passes"));
- static cl::opt<bool> PrintVPlansInDotFormat(
- "vplan-print-in-dot-format", cl::Hidden,
- cl::desc("Use dot format instead of plain text when dumping VPlans"));
- static cl::opt<cl::boolOrDefault> ForceSafeDivisor(
- "force-widen-divrem-via-safe-divisor", cl::Hidden,
- cl::desc(
- "Override cost based safe divisor widening for div/rem instructions"));
- /// A helper function that returns true if the given type is irregular. The
- /// type is irregular if its allocated size doesn't equal the store size of an
- /// element of the corresponding vector type.
- static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
- // Determine if an array of N elements of type Ty is "bitcast compatible"
- // with a <N x Ty> vector.
- // This is only true if there is no padding between the array elements.
- return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
- }
- /// A helper function that returns the reciprocal of the block probability of
- /// predicated blocks. If we return X, we are assuming the predicated block
- /// will execute once for every X iterations of the loop header.
- ///
- /// TODO: We should use actual block probability here, if available. Currently,
- /// we always assume predicated blocks have a 50% chance of executing.
- static unsigned getReciprocalPredBlockProb() { return 2; }
- /// A helper function that returns an integer or floating-point constant with
- /// value C.
- static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
- return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
- : ConstantFP::get(Ty, C);
- }
- /// Returns "best known" trip count for the specified loop \p L as defined by
- /// the following procedure:
- /// 1) Returns exact trip count if it is known.
- /// 2) Returns expected trip count according to profile data if any.
- /// 3) Returns upper bound estimate if it is known.
- /// 4) Returns std::nullopt if all of the above failed.
- static std::optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE,
- Loop *L) {
- // Check if exact trip count is known.
- if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
- return ExpectedTC;
- // Check if there is an expected trip count available from profile data.
- if (LoopVectorizeWithBlockFrequency)
- if (auto EstimatedTC = getLoopEstimatedTripCount(L))
- return *EstimatedTC;
- // Check if upper bound estimate is known.
- if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
- return ExpectedTC;
- return std::nullopt;
- }
- namespace {
- // Forward declare GeneratedRTChecks.
- class GeneratedRTChecks;
- } // namespace
- namespace llvm {
- AnalysisKey ShouldRunExtraVectorPasses::Key;
- /// InnerLoopVectorizer vectorizes loops which contain only one basic
- /// block to a specified vectorization factor (VF).
- /// This class performs the widening of scalars into vectors, or multiple
- /// scalars. This class also implements the following features:
- /// * It inserts an epilogue loop for handling loops that don't have iteration
- /// counts that are known to be a multiple of the vectorization factor.
- /// * It handles the code generation for reduction variables.
- /// * Scalarization (implementation using scalars) of un-vectorizable
- /// instructions.
- /// InnerLoopVectorizer does not perform any vectorization-legality
- /// checks, and relies on the caller to check for the different legality
- /// aspects. The InnerLoopVectorizer relies on the
- /// LoopVectorizationLegality class to provide information about the induction
- /// and reduction variables that were found to a given vectorization factor.
- class InnerLoopVectorizer {
- public:
- InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
- LoopInfo *LI, DominatorTree *DT,
- const TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI, AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
- ElementCount MinProfitableTripCount,
- unsigned UnrollFactor, LoopVectorizationLegality *LVL,
- LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
- ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
- : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
- AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
- Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
- PSI(PSI), RTChecks(RTChecks) {
- // Query this against the original loop and save it here because the profile
- // of the original loop header may change as the transformation happens.
- OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
- OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
- if (MinProfitableTripCount.isZero())
- this->MinProfitableTripCount = VecWidth;
- else
- this->MinProfitableTripCount = MinProfitableTripCount;
- }
- virtual ~InnerLoopVectorizer() = default;
- /// Create a new empty loop that will contain vectorized instructions later
- /// on, while the old loop will be used as the scalar remainder. Control flow
- /// is generated around the vectorized (and scalar epilogue) loops consisting
- /// of various checks and bypasses. Return the pre-header block of the new
- /// loop and the start value for the canonical induction, if it is != 0. The
- /// latter is the case when vectorizing the epilogue loop. In the case of
- /// epilogue vectorization, this function is overriden to handle the more
- /// complex control flow around the loops.
- virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
- /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
- void fixVectorizedLoop(VPTransformState &State, VPlan &Plan);
- // Return true if any runtime check is added.
- bool areSafetyChecksAdded() { return AddedSafetyChecks; }
- /// A type for vectorized values in the new loop. Each value from the
- /// original loop, when vectorized, is represented by UF vector values in the
- /// new unrolled loop, where UF is the unroll factor.
- using VectorParts = SmallVector<Value *, 2>;
- /// A helper function to scalarize a single Instruction in the innermost loop.
- /// Generates a sequence of scalar instances for each lane between \p MinLane
- /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
- /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
- /// Instr's operands.
- void scalarizeInstruction(const Instruction *Instr,
- VPReplicateRecipe *RepRecipe,
- const VPIteration &Instance, bool IfPredicateInstr,
- VPTransformState &State);
- /// Construct the vector value of a scalarized value \p V one lane at a time.
- void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
- VPTransformState &State);
- /// Try to vectorize interleaved access group \p Group with the base address
- /// given in \p Addr, optionally masking the vector operations if \p
- /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
- /// values in the vectorized loop.
- void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
- ArrayRef<VPValue *> VPDefs,
- VPTransformState &State, VPValue *Addr,
- ArrayRef<VPValue *> StoredValues,
- VPValue *BlockInMask = nullptr);
- /// Fix the non-induction PHIs in \p Plan.
- void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State);
- /// Returns true if the reordering of FP operations is not allowed, but we are
- /// able to vectorize with strict in-order reductions for the given RdxDesc.
- bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
- /// Create a broadcast instruction. This method generates a broadcast
- /// instruction (shuffle) for loop invariant values and for the induction
- /// value. If this is the induction variable then we extend it to N, N+1, ...
- /// this is needed because each iteration in the loop corresponds to a SIMD
- /// element.
- virtual Value *getBroadcastInstrs(Value *V);
- // Returns the resume value (bc.merge.rdx) for a reduction as
- // generated by fixReduction.
- PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
- /// Create a new phi node for the induction variable \p OrigPhi to resume
- /// iteration count in the scalar epilogue, from where the vectorized loop
- /// left off. In cases where the loop skeleton is more complicated (eg.
- /// epilogue vectorization) and the resume values can come from an additional
- /// bypass block, the \p AdditionalBypass pair provides information about the
- /// bypass block and the end value on the edge from bypass to this loop.
- PHINode *createInductionResumeValue(
- PHINode *OrigPhi, const InductionDescriptor &ID,
- ArrayRef<BasicBlock *> BypassBlocks,
- std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
- protected:
- friend class LoopVectorizationPlanner;
- /// A small list of PHINodes.
- using PhiVector = SmallVector<PHINode *, 4>;
- /// A type for scalarized values in the new loop. Each value from the
- /// original loop, when scalarized, is represented by UF x VF scalar values
- /// in the new unrolled loop, where UF is the unroll factor and VF is the
- /// vectorization factor.
- using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
- /// Set up the values of the IVs correctly when exiting the vector loop.
- void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
- Value *VectorTripCount, Value *EndValue,
- BasicBlock *MiddleBlock, BasicBlock *VectorHeader,
- VPlan &Plan);
- /// Handle all cross-iteration phis in the header.
- void fixCrossIterationPHIs(VPTransformState &State);
- /// Create the exit value of first order recurrences in the middle block and
- /// update their users.
- void fixFixedOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
- VPTransformState &State);
- /// Create code for the loop exit value of the reduction.
- void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
- /// Clear NSW/NUW flags from reduction instructions if necessary.
- void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
- VPTransformState &State);
- /// Iteratively sink the scalarized operands of a predicated instruction into
- /// the block that was created for it.
- void sinkScalarOperands(Instruction *PredInst);
- /// Shrinks vector element sizes to the smallest bitwidth they can be legally
- /// represented as.
- void truncateToMinimalBitwidths(VPTransformState &State);
- /// Returns (and creates if needed) the original loop trip count.
- Value *getOrCreateTripCount(BasicBlock *InsertBlock);
- /// Returns (and creates if needed) the trip count of the widened loop.
- Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
- /// Returns a bitcasted value to the requested vector type.
- /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
- Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
- const DataLayout &DL);
- /// Emit a bypass check to see if the vector trip count is zero, including if
- /// it overflows.
- void emitIterationCountCheck(BasicBlock *Bypass);
- /// Emit a bypass check to see if all of the SCEV assumptions we've
- /// had to make are correct. Returns the block containing the checks or
- /// nullptr if no checks have been added.
- BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
- /// Emit bypass checks to check any memory assumptions we may have made.
- /// Returns the block containing the checks or nullptr if no checks have been
- /// added.
- BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
- /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
- /// vector loop preheader, middle block and scalar preheader.
- void createVectorLoopSkeleton(StringRef Prefix);
- /// Create new phi nodes for the induction variables to resume iteration count
- /// in the scalar epilogue, from where the vectorized loop left off.
- /// In cases where the loop skeleton is more complicated (eg. epilogue
- /// vectorization) and the resume values can come from an additional bypass
- /// block, the \p AdditionalBypass pair provides information about the bypass
- /// block and the end value on the edge from bypass to this loop.
- void createInductionResumeValues(
- std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
- /// Complete the loop skeleton by adding debug MDs, creating appropriate
- /// conditional branches in the middle block, preparing the builder and
- /// running the verifier. Return the preheader of the completed vector loop.
- BasicBlock *completeLoopSkeleton();
- /// Collect poison-generating recipes that may generate a poison value that is
- /// used after vectorization, even when their operands are not poison. Those
- /// recipes meet the following conditions:
- /// * Contribute to the address computation of a recipe generating a widen
- /// memory load/store (VPWidenMemoryInstructionRecipe or
- /// VPInterleaveRecipe).
- /// * Such a widen memory load/store has at least one underlying Instruction
- /// that is in a basic block that needs predication and after vectorization
- /// the generated instruction won't be predicated.
- void collectPoisonGeneratingRecipes(VPTransformState &State);
- /// Allow subclasses to override and print debug traces before/after vplan
- /// execution, when trace information is requested.
- virtual void printDebugTracesAtStart(){};
- virtual void printDebugTracesAtEnd(){};
- /// The original loop.
- Loop *OrigLoop;
- /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
- /// dynamic knowledge to simplify SCEV expressions and converts them to a
- /// more usable form.
- PredicatedScalarEvolution &PSE;
- /// Loop Info.
- LoopInfo *LI;
- /// Dominator Tree.
- DominatorTree *DT;
- /// Target Library Info.
- const TargetLibraryInfo *TLI;
- /// Target Transform Info.
- const TargetTransformInfo *TTI;
- /// Assumption Cache.
- AssumptionCache *AC;
- /// Interface to emit optimization remarks.
- OptimizationRemarkEmitter *ORE;
- /// The vectorization SIMD factor to use. Each vector will have this many
- /// vector elements.
- ElementCount VF;
- ElementCount MinProfitableTripCount;
- /// The vectorization unroll factor to use. Each scalar is vectorized to this
- /// many different vector instructions.
- unsigned UF;
- /// The builder that we use
- IRBuilder<> Builder;
- // --- Vectorization state ---
- /// The vector-loop preheader.
- BasicBlock *LoopVectorPreHeader;
- /// The scalar-loop preheader.
- BasicBlock *LoopScalarPreHeader;
- /// Middle Block between the vector and the scalar.
- BasicBlock *LoopMiddleBlock;
- /// The unique ExitBlock of the scalar loop if one exists. Note that
- /// there can be multiple exiting edges reaching this block.
- BasicBlock *LoopExitBlock;
- /// The scalar loop body.
- BasicBlock *LoopScalarBody;
- /// A list of all bypass blocks. The first block is the entry of the loop.
- SmallVector<BasicBlock *, 4> LoopBypassBlocks;
- /// Store instructions that were predicated.
- SmallVector<Instruction *, 4> PredicatedInstructions;
- /// Trip count of the original loop.
- Value *TripCount = nullptr;
- /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
- Value *VectorTripCount = nullptr;
- /// The legality analysis.
- LoopVectorizationLegality *Legal;
- /// The profitablity analysis.
- LoopVectorizationCostModel *Cost;
- // Record whether runtime checks are added.
- bool AddedSafetyChecks = false;
- // Holds the end values for each induction variable. We save the end values
- // so we can later fix-up the external users of the induction variables.
- DenseMap<PHINode *, Value *> IVEndValues;
- /// BFI and PSI are used to check for profile guided size optimizations.
- BlockFrequencyInfo *BFI;
- ProfileSummaryInfo *PSI;
- // Whether this loop should be optimized for size based on profile guided size
- // optimizatios.
- bool OptForSizeBasedOnProfile;
- /// Structure to hold information about generated runtime checks, responsible
- /// for cleaning the checks, if vectorization turns out unprofitable.
- GeneratedRTChecks &RTChecks;
- // Holds the resume values for reductions in the loops, used to set the
- // correct start value of reduction PHIs when vectorizing the epilogue.
- SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
- ReductionResumeValues;
- };
- class InnerLoopUnroller : public InnerLoopVectorizer {
- public:
- InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
- LoopInfo *LI, DominatorTree *DT,
- const TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI, AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
- LoopVectorizationLegality *LVL,
- LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
- ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
- : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
- ElementCount::getFixed(1),
- ElementCount::getFixed(1), UnrollFactor, LVL, CM,
- BFI, PSI, Check) {}
- private:
- Value *getBroadcastInstrs(Value *V) override;
- };
- /// Encapsulate information regarding vectorization of a loop and its epilogue.
- /// This information is meant to be updated and used across two stages of
- /// epilogue vectorization.
- struct EpilogueLoopVectorizationInfo {
- ElementCount MainLoopVF = ElementCount::getFixed(0);
- unsigned MainLoopUF = 0;
- ElementCount EpilogueVF = ElementCount::getFixed(0);
- unsigned EpilogueUF = 0;
- BasicBlock *MainLoopIterationCountCheck = nullptr;
- BasicBlock *EpilogueIterationCountCheck = nullptr;
- BasicBlock *SCEVSafetyCheck = nullptr;
- BasicBlock *MemSafetyCheck = nullptr;
- Value *TripCount = nullptr;
- Value *VectorTripCount = nullptr;
- EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
- ElementCount EVF, unsigned EUF)
- : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
- assert(EUF == 1 &&
- "A high UF for the epilogue loop is likely not beneficial.");
- }
- };
- /// An extension of the inner loop vectorizer that creates a skeleton for a
- /// vectorized loop that has its epilogue (residual) also vectorized.
- /// The idea is to run the vplan on a given loop twice, firstly to setup the
- /// skeleton and vectorize the main loop, and secondly to complete the skeleton
- /// from the first step and vectorize the epilogue. This is achieved by
- /// deriving two concrete strategy classes from this base class and invoking
- /// them in succession from the loop vectorizer planner.
- class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
- public:
- InnerLoopAndEpilogueVectorizer(
- Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
- DominatorTree *DT, const TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI, AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
- LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
- BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
- GeneratedRTChecks &Checks)
- : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
- EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL,
- CM, BFI, PSI, Checks),
- EPI(EPI) {}
- // Override this function to handle the more complex control flow around the
- // three loops.
- std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton() final {
- return createEpilogueVectorizedLoopSkeleton();
- }
- /// The interface for creating a vectorized skeleton using one of two
- /// different strategies, each corresponding to one execution of the vplan
- /// as described above.
- virtual std::pair<BasicBlock *, Value *>
- createEpilogueVectorizedLoopSkeleton() = 0;
- /// Holds and updates state information required to vectorize the main loop
- /// and its epilogue in two separate passes. This setup helps us avoid
- /// regenerating and recomputing runtime safety checks. It also helps us to
- /// shorten the iteration-count-check path length for the cases where the
- /// iteration count of the loop is so small that the main vector loop is
- /// completely skipped.
- EpilogueLoopVectorizationInfo &EPI;
- };
- /// A specialized derived class of inner loop vectorizer that performs
- /// vectorization of *main* loops in the process of vectorizing loops and their
- /// epilogues.
- class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
- public:
- EpilogueVectorizerMainLoop(
- Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
- DominatorTree *DT, const TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI, AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
- LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
- BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
- GeneratedRTChecks &Check)
- : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
- EPI, LVL, CM, BFI, PSI, Check) {}
- /// Implements the interface for creating a vectorized skeleton using the
- /// *main loop* strategy (ie the first pass of vplan execution).
- std::pair<BasicBlock *, Value *> createEpilogueVectorizedLoopSkeleton() final;
- protected:
- /// Emits an iteration count bypass check once for the main loop (when \p
- /// ForEpilogue is false) and once for the epilogue loop (when \p
- /// ForEpilogue is true).
- BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue);
- void printDebugTracesAtStart() override;
- void printDebugTracesAtEnd() override;
- };
- // A specialized derived class of inner loop vectorizer that performs
- // vectorization of *epilogue* loops in the process of vectorizing loops and
- // their epilogues.
- class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
- public:
- EpilogueVectorizerEpilogueLoop(
- Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
- DominatorTree *DT, const TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI, AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
- LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
- BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
- GeneratedRTChecks &Checks)
- : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
- EPI, LVL, CM, BFI, PSI, Checks) {
- TripCount = EPI.TripCount;
- }
- /// Implements the interface for creating a vectorized skeleton using the
- /// *epilogue loop* strategy (ie the second pass of vplan execution).
- std::pair<BasicBlock *, Value *> createEpilogueVectorizedLoopSkeleton() final;
- protected:
- /// Emits an iteration count bypass check after the main vector loop has
- /// finished to see if there are any iterations left to execute by either
- /// the vector epilogue or the scalar epilogue.
- BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
- BasicBlock *Bypass,
- BasicBlock *Insert);
- void printDebugTracesAtStart() override;
- void printDebugTracesAtEnd() override;
- };
- } // end namespace llvm
- /// Look for a meaningful debug location on the instruction or it's
- /// operands.
- static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
- if (!I)
- return I;
- DebugLoc Empty;
- if (I->getDebugLoc() != Empty)
- return I;
- for (Use &Op : I->operands()) {
- if (Instruction *OpInst = dyn_cast<Instruction>(Op))
- if (OpInst->getDebugLoc() != Empty)
- return OpInst;
- }
- return I;
- }
- /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
- /// is passed, the message relates to that particular instruction.
- #ifndef NDEBUG
- static void debugVectorizationMessage(const StringRef Prefix,
- const StringRef DebugMsg,
- Instruction *I) {
- dbgs() << "LV: " << Prefix << DebugMsg;
- if (I != nullptr)
- dbgs() << " " << *I;
- else
- dbgs() << '.';
- dbgs() << '\n';
- }
- #endif
- /// Create an analysis remark that explains why vectorization failed
- ///
- /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
- /// RemarkName is the identifier for the remark. If \p I is passed it is an
- /// instruction that prevents vectorization. Otherwise \p TheLoop is used for
- /// the location of the remark. \return the remark object that can be
- /// streamed to.
- static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
- StringRef RemarkName, Loop *TheLoop, Instruction *I) {
- Value *CodeRegion = TheLoop->getHeader();
- DebugLoc DL = TheLoop->getStartLoc();
- if (I) {
- CodeRegion = I->getParent();
- // If there is no debug location attached to the instruction, revert back to
- // using the loop's.
- if (I->getDebugLoc())
- DL = I->getDebugLoc();
- }
- return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
- }
- namespace llvm {
- /// Return a value for Step multiplied by VF.
- Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
- int64_t Step) {
- assert(Ty->isIntegerTy() && "Expected an integer step");
- Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
- return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
- }
- /// Return the runtime value for VF.
- Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
- Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
- return VF.isScalable() ? B.CreateVScale(EC) : EC;
- }
- const SCEV *createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE) {
- const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
- assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && "Invalid loop count");
- ScalarEvolution &SE = *PSE.getSE();
- // The exit count might have the type of i64 while the phi is i32. This can
- // happen if we have an induction variable that is sign extended before the
- // compare. The only way that we get a backedge taken count is that the
- // induction variable was signed and as such will not overflow. In such a case
- // truncation is legal.
- if (SE.getTypeSizeInBits(BackedgeTakenCount->getType()) >
- IdxTy->getPrimitiveSizeInBits())
- BackedgeTakenCount = SE.getTruncateOrNoop(BackedgeTakenCount, IdxTy);
- BackedgeTakenCount = SE.getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
- // Get the total trip count from the count by adding 1.
- return SE.getAddExpr(BackedgeTakenCount,
- SE.getOne(BackedgeTakenCount->getType()));
- }
- static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
- ElementCount VF) {
- assert(FTy->isFloatingPointTy() && "Expected floating point type!");
- Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
- Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
- return B.CreateUIToFP(RuntimeVF, FTy);
- }
- void reportVectorizationFailure(const StringRef DebugMsg,
- const StringRef OREMsg, const StringRef ORETag,
- OptimizationRemarkEmitter *ORE, Loop *TheLoop,
- Instruction *I) {
- LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
- LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
- ORE->emit(
- createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
- << "loop not vectorized: " << OREMsg);
- }
- void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
- OptimizationRemarkEmitter *ORE, Loop *TheLoop,
- Instruction *I) {
- LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
- LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
- ORE->emit(
- createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
- << Msg);
- }
- } // end namespace llvm
- #ifndef NDEBUG
- /// \return string containing a file name and a line # for the given loop.
- static std::string getDebugLocString(const Loop *L) {
- std::string Result;
- if (L) {
- raw_string_ostream OS(Result);
- if (const DebugLoc LoopDbgLoc = L->getStartLoc())
- LoopDbgLoc.print(OS);
- else
- // Just print the module name.
- OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
- OS.flush();
- }
- return Result;
- }
- #endif
- void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
- VPTransformState &State) {
- // Collect recipes in the backward slice of `Root` that may generate a poison
- // value that is used after vectorization.
- SmallPtrSet<VPRecipeBase *, 16> Visited;
- auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
- SmallVector<VPRecipeBase *, 16> Worklist;
- Worklist.push_back(Root);
- // Traverse the backward slice of Root through its use-def chain.
- while (!Worklist.empty()) {
- VPRecipeBase *CurRec = Worklist.back();
- Worklist.pop_back();
- if (!Visited.insert(CurRec).second)
- continue;
- // Prune search if we find another recipe generating a widen memory
- // instruction. Widen memory instructions involved in address computation
- // will lead to gather/scatter instructions, which don't need to be
- // handled.
- if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
- isa<VPInterleaveRecipe>(CurRec) ||
- isa<VPScalarIVStepsRecipe>(CurRec) ||
- isa<VPCanonicalIVPHIRecipe>(CurRec) ||
- isa<VPActiveLaneMaskPHIRecipe>(CurRec))
- continue;
- // This recipe contributes to the address computation of a widen
- // load/store. Collect recipe if its underlying instruction has
- // poison-generating flags.
- Instruction *Instr = CurRec->getUnderlyingInstr();
- if (Instr && Instr->hasPoisonGeneratingFlags())
- State.MayGeneratePoisonRecipes.insert(CurRec);
- // Add new definitions to the worklist.
- for (VPValue *operand : CurRec->operands())
- if (VPRecipeBase *OpDef = operand->getDefiningRecipe())
- Worklist.push_back(OpDef);
- }
- });
- // Traverse all the recipes in the VPlan and collect the poison-generating
- // recipes in the backward slice starting at the address of a VPWidenRecipe or
- // VPInterleaveRecipe.
- auto Iter = vp_depth_first_deep(State.Plan->getEntry());
- for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
- for (VPRecipeBase &Recipe : *VPBB) {
- if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
- Instruction &UnderlyingInstr = WidenRec->getIngredient();
- VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
- if (AddrDef && WidenRec->isConsecutive() &&
- Legal->blockNeedsPredication(UnderlyingInstr.getParent()))
- collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
- } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
- VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
- if (AddrDef) {
- // Check if any member of the interleave group needs predication.
- const InterleaveGroup<Instruction> *InterGroup =
- InterleaveRec->getInterleaveGroup();
- bool NeedPredication = false;
- for (int I = 0, NumMembers = InterGroup->getNumMembers();
- I < NumMembers; ++I) {
- Instruction *Member = InterGroup->getMember(I);
- if (Member)
- NeedPredication |=
- Legal->blockNeedsPredication(Member->getParent());
- }
- if (NeedPredication)
- collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
- }
- }
- }
- }
- }
- PHINode *InnerLoopVectorizer::getReductionResumeValue(
- const RecurrenceDescriptor &RdxDesc) {
- auto It = ReductionResumeValues.find(&RdxDesc);
- assert(It != ReductionResumeValues.end() &&
- "Expected to find a resume value for the reduction.");
- return It->second;
- }
- namespace llvm {
- // Loop vectorization cost-model hints how the scalar epilogue loop should be
- // lowered.
- enum ScalarEpilogueLowering {
- // The default: allowing scalar epilogues.
- CM_ScalarEpilogueAllowed,
- // Vectorization with OptForSize: don't allow epilogues.
- CM_ScalarEpilogueNotAllowedOptSize,
- // A special case of vectorisation with OptForSize: loops with a very small
- // trip count are considered for vectorization under OptForSize, thereby
- // making sure the cost of their loop body is dominant, free of runtime
- // guards and scalar iteration overheads.
- CM_ScalarEpilogueNotAllowedLowTripLoop,
- // Loop hint predicate indicating an epilogue is undesired.
- CM_ScalarEpilogueNotNeededUsePredicate,
- // Directive indicating we must either tail fold or not vectorize
- CM_ScalarEpilogueNotAllowedUsePredicate
- };
- /// ElementCountComparator creates a total ordering for ElementCount
- /// for the purposes of using it in a set structure.
- struct ElementCountComparator {
- bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
- return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
- std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
- }
- };
- using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
- /// LoopVectorizationCostModel - estimates the expected speedups due to
- /// vectorization.
- /// In many cases vectorization is not profitable. This can happen because of
- /// a number of reasons. In this class we mainly attempt to predict the
- /// expected speedup/slowdowns due to the supported instruction set. We use the
- /// TargetTransformInfo to query the different backends for the cost of
- /// different operations.
- class LoopVectorizationCostModel {
- public:
- LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
- PredicatedScalarEvolution &PSE, LoopInfo *LI,
- LoopVectorizationLegality *Legal,
- const TargetTransformInfo &TTI,
- const TargetLibraryInfo *TLI, DemandedBits *DB,
- AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, const Function *F,
- const LoopVectorizeHints *Hints,
- InterleavedAccessInfo &IAI)
- : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
- TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
- Hints(Hints), InterleaveInfo(IAI) {}
- /// \return An upper bound for the vectorization factors (both fixed and
- /// scalable). If the factors are 0, vectorization and interleaving should be
- /// avoided up front.
- FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
- /// \return True if runtime checks are required for vectorization, and false
- /// otherwise.
- bool runtimeChecksRequired();
- /// \return The most profitable vectorization factor and the cost of that VF.
- /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
- /// then this vectorization factor will be selected if vectorization is
- /// possible.
- VectorizationFactor
- selectVectorizationFactor(const ElementCountSet &CandidateVFs);
- VectorizationFactor
- selectEpilogueVectorizationFactor(const ElementCount MaxVF,
- const LoopVectorizationPlanner &LVP);
- /// Setup cost-based decisions for user vectorization factor.
- /// \return true if the UserVF is a feasible VF to be chosen.
- bool selectUserVectorizationFactor(ElementCount UserVF) {
- collectUniformsAndScalars(UserVF);
- collectInstsToScalarize(UserVF);
- return expectedCost(UserVF).first.isValid();
- }
- /// \return The size (in bits) of the smallest and widest types in the code
- /// that needs to be vectorized. We ignore values that remain scalar such as
- /// 64 bit loop indices.
- std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
- /// \return The desired interleave count.
- /// If interleave count has been specified by metadata it will be returned.
- /// Otherwise, the interleave count is computed and returned. VF and LoopCost
- /// are the selected vectorization factor and the cost of the selected VF.
- unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost);
- /// Memory access instruction may be vectorized in more than one way.
- /// Form of instruction after vectorization depends on cost.
- /// This function takes cost-based decisions for Load/Store instructions
- /// and collects them in a map. This decisions map is used for building
- /// the lists of loop-uniform and loop-scalar instructions.
- /// The calculated cost is saved with widening decision in order to
- /// avoid redundant calculations.
- void setCostBasedWideningDecision(ElementCount VF);
- /// A struct that represents some properties of the register usage
- /// of a loop.
- struct RegisterUsage {
- /// Holds the number of loop invariant values that are used in the loop.
- /// The key is ClassID of target-provided register class.
- SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
- /// Holds the maximum number of concurrent live intervals in the loop.
- /// The key is ClassID of target-provided register class.
- SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
- };
- /// \return Returns information about the register usages of the loop for the
- /// given vectorization factors.
- SmallVector<RegisterUsage, 8>
- calculateRegisterUsage(ArrayRef<ElementCount> VFs);
- /// Collect values we want to ignore in the cost model.
- void collectValuesToIgnore();
- /// Collect all element types in the loop for which widening is needed.
- void collectElementTypesForWidening();
- /// Split reductions into those that happen in the loop, and those that happen
- /// outside. In loop reductions are collected into InLoopReductionChains.
- void collectInLoopReductions();
- /// Returns true if we should use strict in-order reductions for the given
- /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
- /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
- /// of FP operations.
- bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
- return !Hints->allowReordering() && RdxDesc.isOrdered();
- }
- /// \returns The smallest bitwidth each instruction can be represented with.
- /// The vector equivalents of these instructions should be truncated to this
- /// type.
- const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
- return MinBWs;
- }
- /// \returns True if it is more profitable to scalarize instruction \p I for
- /// vectorization factor \p VF.
- bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
- assert(VF.isVector() &&
- "Profitable to scalarize relevant only for VF > 1.");
- // Cost model is not run in the VPlan-native path - return conservative
- // result until this changes.
- if (EnableVPlanNativePath)
- return false;
- auto Scalars = InstsToScalarize.find(VF);
- assert(Scalars != InstsToScalarize.end() &&
- "VF not yet analyzed for scalarization profitability");
- return Scalars->second.find(I) != Scalars->second.end();
- }
- /// Returns true if \p I is known to be uniform after vectorization.
- bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
- if (VF.isScalar())
- return true;
- // Cost model is not run in the VPlan-native path - return conservative
- // result until this changes.
- if (EnableVPlanNativePath)
- return false;
- auto UniformsPerVF = Uniforms.find(VF);
- assert(UniformsPerVF != Uniforms.end() &&
- "VF not yet analyzed for uniformity");
- return UniformsPerVF->second.count(I);
- }
- /// Returns true if \p I is known to be scalar after vectorization.
- bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
- if (VF.isScalar())
- return true;
- // Cost model is not run in the VPlan-native path - return conservative
- // result until this changes.
- if (EnableVPlanNativePath)
- return false;
- auto ScalarsPerVF = Scalars.find(VF);
- assert(ScalarsPerVF != Scalars.end() &&
- "Scalar values are not calculated for VF");
- return ScalarsPerVF->second.count(I);
- }
- /// \returns True if instruction \p I can be truncated to a smaller bitwidth
- /// for vectorization factor \p VF.
- bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
- return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
- !isProfitableToScalarize(I, VF) &&
- !isScalarAfterVectorization(I, VF);
- }
- /// Decision that was taken during cost calculation for memory instruction.
- enum InstWidening {
- CM_Unknown,
- CM_Widen, // For consecutive accesses with stride +1.
- CM_Widen_Reverse, // For consecutive accesses with stride -1.
- CM_Interleave,
- CM_GatherScatter,
- CM_Scalarize
- };
- /// Save vectorization decision \p W and \p Cost taken by the cost model for
- /// instruction \p I and vector width \p VF.
- void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
- InstructionCost Cost) {
- assert(VF.isVector() && "Expected VF >=2");
- WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
- }
- /// Save vectorization decision \p W and \p Cost taken by the cost model for
- /// interleaving group \p Grp and vector width \p VF.
- void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
- ElementCount VF, InstWidening W,
- InstructionCost Cost) {
- assert(VF.isVector() && "Expected VF >=2");
- /// Broadcast this decicion to all instructions inside the group.
- /// But the cost will be assigned to one instruction only.
- for (unsigned i = 0; i < Grp->getFactor(); ++i) {
- if (auto *I = Grp->getMember(i)) {
- if (Grp->getInsertPos() == I)
- WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
- else
- WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
- }
- }
- }
- /// Return the cost model decision for the given instruction \p I and vector
- /// width \p VF. Return CM_Unknown if this instruction did not pass
- /// through the cost modeling.
- InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
- assert(VF.isVector() && "Expected VF to be a vector VF");
- // Cost model is not run in the VPlan-native path - return conservative
- // result until this changes.
- if (EnableVPlanNativePath)
- return CM_GatherScatter;
- std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
- auto Itr = WideningDecisions.find(InstOnVF);
- if (Itr == WideningDecisions.end())
- return CM_Unknown;
- return Itr->second.first;
- }
- /// Return the vectorization cost for the given instruction \p I and vector
- /// width \p VF.
- InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
- assert(VF.isVector() && "Expected VF >=2");
- std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
- assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
- "The cost is not calculated");
- return WideningDecisions[InstOnVF].second;
- }
- /// Return True if instruction \p I is an optimizable truncate whose operand
- /// is an induction variable. Such a truncate will be removed by adding a new
- /// induction variable with the destination type.
- bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
- // If the instruction is not a truncate, return false.
- auto *Trunc = dyn_cast<TruncInst>(I);
- if (!Trunc)
- return false;
- // Get the source and destination types of the truncate.
- Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
- Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
- // If the truncate is free for the given types, return false. Replacing a
- // free truncate with an induction variable would add an induction variable
- // update instruction to each iteration of the loop. We exclude from this
- // check the primary induction variable since it will need an update
- // instruction regardless.
- Value *Op = Trunc->getOperand(0);
- if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
- return false;
- // If the truncated value is not an induction variable, return false.
- return Legal->isInductionPhi(Op);
- }
- /// Collects the instructions to scalarize for each predicated instruction in
- /// the loop.
- void collectInstsToScalarize(ElementCount VF);
- /// Collect Uniform and Scalar values for the given \p VF.
- /// The sets depend on CM decision for Load/Store instructions
- /// that may be vectorized as interleave, gather-scatter or scalarized.
- void collectUniformsAndScalars(ElementCount VF) {
- // Do the analysis once.
- if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
- return;
- setCostBasedWideningDecision(VF);
- collectLoopUniforms(VF);
- collectLoopScalars(VF);
- }
- /// Returns true if the target machine supports masked store operation
- /// for the given \p DataType and kind of access to \p Ptr.
- bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
- return Legal->isConsecutivePtr(DataType, Ptr) &&
- TTI.isLegalMaskedStore(DataType, Alignment);
- }
- /// Returns true if the target machine supports masked load operation
- /// for the given \p DataType and kind of access to \p Ptr.
- bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
- return Legal->isConsecutivePtr(DataType, Ptr) &&
- TTI.isLegalMaskedLoad(DataType, Alignment);
- }
- /// Returns true if the target machine can represent \p V as a masked gather
- /// or scatter operation.
- bool isLegalGatherOrScatter(Value *V,
- ElementCount VF = ElementCount::getFixed(1)) {
- bool LI = isa<LoadInst>(V);
- bool SI = isa<StoreInst>(V);
- if (!LI && !SI)
- return false;
- auto *Ty = getLoadStoreType(V);
- Align Align = getLoadStoreAlignment(V);
- if (VF.isVector())
- Ty = VectorType::get(Ty, VF);
- return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
- (SI && TTI.isLegalMaskedScatter(Ty, Align));
- }
- /// Returns true if the target machine supports all of the reduction
- /// variables found for the given VF.
- bool canVectorizeReductions(ElementCount VF) const {
- return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
- const RecurrenceDescriptor &RdxDesc = Reduction.second;
- return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
- }));
- }
- /// Given costs for both strategies, return true if the scalar predication
- /// lowering should be used for div/rem. This incorporates an override
- /// option so it is not simply a cost comparison.
- bool isDivRemScalarWithPredication(InstructionCost ScalarCost,
- InstructionCost SafeDivisorCost) const {
- switch (ForceSafeDivisor) {
- case cl::BOU_UNSET:
- return ScalarCost < SafeDivisorCost;
- case cl::BOU_TRUE:
- return false;
- case cl::BOU_FALSE:
- return true;
- };
- llvm_unreachable("impossible case value");
- }
- /// Returns true if \p I is an instruction which requires predication and
- /// for which our chosen predication strategy is scalarization (i.e. we
- /// don't have an alternate strategy such as masking available).
- /// \p VF is the vectorization factor that will be used to vectorize \p I.
- bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
- /// Returns true if \p I is an instruction that needs to be predicated
- /// at runtime. The result is independent of the predication mechanism.
- /// Superset of instructions that return true for isScalarWithPredication.
- bool isPredicatedInst(Instruction *I) const;
- /// Return the costs for our two available strategies for lowering a
- /// div/rem operation which requires speculating at least one lane.
- /// First result is for scalarization (will be invalid for scalable
- /// vectors); second is for the safe-divisor strategy.
- std::pair<InstructionCost, InstructionCost>
- getDivRemSpeculationCost(Instruction *I,
- ElementCount VF) const;
- /// Returns true if \p I is a memory instruction with consecutive memory
- /// access that can be widened.
- bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF);
- /// Returns true if \p I is a memory instruction in an interleaved-group
- /// of memory accesses that can be vectorized with wide vector loads/stores
- /// and shuffles.
- bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF);
- /// Check if \p Instr belongs to any interleaved access group.
- bool isAccessInterleaved(Instruction *Instr) {
- return InterleaveInfo.isInterleaved(Instr);
- }
- /// Get the interleaved access group that \p Instr belongs to.
- const InterleaveGroup<Instruction> *
- getInterleavedAccessGroup(Instruction *Instr) {
- return InterleaveInfo.getInterleaveGroup(Instr);
- }
- /// Returns true if we're required to use a scalar epilogue for at least
- /// the final iteration of the original loop.
- bool requiresScalarEpilogue(ElementCount VF) const {
- if (!isScalarEpilogueAllowed())
- return false;
- // If we might exit from anywhere but the latch, must run the exiting
- // iteration in scalar form.
- if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
- return true;
- return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
- }
- /// Returns true if a scalar epilogue is not allowed due to optsize or a
- /// loop hint annotation.
- bool isScalarEpilogueAllowed() const {
- return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
- }
- /// Returns true if all loop blocks should be masked to fold tail loop.
- bool foldTailByMasking() const { return FoldTailByMasking; }
- /// Returns true if were tail-folding and want to use the active lane mask
- /// for vector loop control flow.
- bool useActiveLaneMaskForControlFlow() const {
- return FoldTailByMasking &&
- TTI.emitGetActiveLaneMask() == PredicationStyle::DataAndControlFlow;
- }
- /// Returns true if the instructions in this block requires predication
- /// for any reason, e.g. because tail folding now requires a predicate
- /// or because the block in the original loop was predicated.
- bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
- return foldTailByMasking() || Legal->blockNeedsPredication(BB);
- }
- /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
- /// nodes to the chain of instructions representing the reductions. Uses a
- /// MapVector to ensure deterministic iteration order.
- using ReductionChainMap =
- SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
- /// Return the chain of instructions representing an inloop reduction.
- const ReductionChainMap &getInLoopReductionChains() const {
- return InLoopReductionChains;
- }
- /// Returns true if the Phi is part of an inloop reduction.
- bool isInLoopReduction(PHINode *Phi) const {
- return InLoopReductionChains.count(Phi);
- }
- /// Estimate cost of an intrinsic call instruction CI if it were vectorized
- /// with factor VF. Return the cost of the instruction, including
- /// scalarization overhead if it's needed.
- InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
- /// Estimate cost of a call instruction CI if it were vectorized with factor
- /// VF. Return the cost of the instruction, including scalarization overhead
- /// if it's needed. The flag NeedToScalarize shows if the call needs to be
- /// scalarized -
- /// i.e. either vector version isn't available, or is too expensive.
- InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
- bool &NeedToScalarize) const;
- /// Returns true if the per-lane cost of VectorizationFactor A is lower than
- /// that of B.
- bool isMoreProfitable(const VectorizationFactor &A,
- const VectorizationFactor &B) const;
- /// Invalidates decisions already taken by the cost model.
- void invalidateCostModelingDecisions() {
- WideningDecisions.clear();
- Uniforms.clear();
- Scalars.clear();
- }
- /// Convenience function that returns the value of vscale_range iff
- /// vscale_range.min == vscale_range.max or otherwise returns the value
- /// returned by the corresponding TLI method.
- std::optional<unsigned> getVScaleForTuning() const;
- private:
- unsigned NumPredStores = 0;
- /// \return An upper bound for the vectorization factors for both
- /// fixed and scalable vectorization, where the minimum-known number of
- /// elements is a power-of-2 larger than zero. If scalable vectorization is
- /// disabled or unsupported, then the scalable part will be equal to
- /// ElementCount::getScalable(0).
- FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
- ElementCount UserVF,
- bool FoldTailByMasking);
- /// \return the maximized element count based on the targets vector
- /// registers and the loop trip-count, but limited to a maximum safe VF.
- /// This is a helper function of computeFeasibleMaxVF.
- ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
- unsigned SmallestType,
- unsigned WidestType,
- ElementCount MaxSafeVF,
- bool FoldTailByMasking);
- /// \return the maximum legal scalable VF, based on the safe max number
- /// of elements.
- ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
- /// The vectorization cost is a combination of the cost itself and a boolean
- /// indicating whether any of the contributing operations will actually
- /// operate on vector values after type legalization in the backend. If this
- /// latter value is false, then all operations will be scalarized (i.e. no
- /// vectorization has actually taken place).
- using VectorizationCostTy = std::pair<InstructionCost, bool>;
- /// Returns the expected execution cost. The unit of the cost does
- /// not matter because we use the 'cost' units to compare different
- /// vector widths. The cost that is returned is *not* normalized by
- /// the factor width. If \p Invalid is not nullptr, this function
- /// will add a pair(Instruction*, ElementCount) to \p Invalid for
- /// each instruction that has an Invalid cost for the given VF.
- using InstructionVFPair = std::pair<Instruction *, ElementCount>;
- VectorizationCostTy
- expectedCost(ElementCount VF,
- SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
- /// Returns the execution time cost of an instruction for a given vector
- /// width. Vector width of one means scalar.
- VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
- /// The cost-computation logic from getInstructionCost which provides
- /// the vector type as an output parameter.
- InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
- Type *&VectorTy);
- /// Return the cost of instructions in an inloop reduction pattern, if I is
- /// part of that pattern.
- std::optional<InstructionCost>
- getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
- TTI::TargetCostKind CostKind);
- /// Calculate vectorization cost of memory instruction \p I.
- InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
- /// The cost computation for scalarized memory instruction.
- InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
- /// The cost computation for interleaving group of memory instructions.
- InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
- /// The cost computation for Gather/Scatter instruction.
- InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
- /// The cost computation for widening instruction \p I with consecutive
- /// memory access.
- InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
- /// The cost calculation for Load/Store instruction \p I with uniform pointer -
- /// Load: scalar load + broadcast.
- /// Store: scalar store + (loop invariant value stored? 0 : extract of last
- /// element)
- InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
- /// Estimate the overhead of scalarizing an instruction. This is a
- /// convenience wrapper for the type-based getScalarizationOverhead API.
- InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF,
- TTI::TargetCostKind CostKind) const;
- /// Returns true if an artificially high cost for emulated masked memrefs
- /// should be used.
- bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
- /// Map of scalar integer values to the smallest bitwidth they can be legally
- /// represented as. The vector equivalents of these values should be truncated
- /// to this type.
- MapVector<Instruction *, uint64_t> MinBWs;
- /// A type representing the costs for instructions if they were to be
- /// scalarized rather than vectorized. The entries are Instruction-Cost
- /// pairs.
- using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
- /// A set containing all BasicBlocks that are known to present after
- /// vectorization as a predicated block.
- DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
- PredicatedBBsAfterVectorization;
- /// Records whether it is allowed to have the original scalar loop execute at
- /// least once. This may be needed as a fallback loop in case runtime
- /// aliasing/dependence checks fail, or to handle the tail/remainder
- /// iterations when the trip count is unknown or doesn't divide by the VF,
- /// or as a peel-loop to handle gaps in interleave-groups.
- /// Under optsize and when the trip count is very small we don't allow any
- /// iterations to execute in the scalar loop.
- ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
- /// All blocks of loop are to be masked to fold tail of scalar iterations.
- bool FoldTailByMasking = false;
- /// A map holding scalar costs for different vectorization factors. The
- /// presence of a cost for an instruction in the mapping indicates that the
- /// instruction will be scalarized when vectorizing with the associated
- /// vectorization factor. The entries are VF-ScalarCostTy pairs.
- DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
- /// Holds the instructions known to be uniform after vectorization.
- /// The data is collected per VF.
- DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
- /// Holds the instructions known to be scalar after vectorization.
- /// The data is collected per VF.
- DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
- /// Holds the instructions (address computations) that are forced to be
- /// scalarized.
- DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
- /// PHINodes of the reductions that should be expanded in-loop along with
- /// their associated chains of reduction operations, in program order from top
- /// (PHI) to bottom
- ReductionChainMap InLoopReductionChains;
- /// A Map of inloop reduction operations and their immediate chain operand.
- /// FIXME: This can be removed once reductions can be costed correctly in
- /// vplan. This was added to allow quick lookup to the inloop operations,
- /// without having to loop through InLoopReductionChains.
- DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
- /// Returns the expected difference in cost from scalarizing the expression
- /// feeding a predicated instruction \p PredInst. The instructions to
- /// scalarize and their scalar costs are collected in \p ScalarCosts. A
- /// non-negative return value implies the expression will be scalarized.
- /// Currently, only single-use chains are considered for scalarization.
- InstructionCost computePredInstDiscount(Instruction *PredInst,
- ScalarCostsTy &ScalarCosts,
- ElementCount VF);
- /// Collect the instructions that are uniform after vectorization. An
- /// instruction is uniform if we represent it with a single scalar value in
- /// the vectorized loop corresponding to each vector iteration. Examples of
- /// uniform instructions include pointer operands of consecutive or
- /// interleaved memory accesses. Note that although uniformity implies an
- /// instruction will be scalar, the reverse is not true. In general, a
- /// scalarized instruction will be represented by VF scalar values in the
- /// vectorized loop, each corresponding to an iteration of the original
- /// scalar loop.
- void collectLoopUniforms(ElementCount VF);
- /// Collect the instructions that are scalar after vectorization. An
- /// instruction is scalar if it is known to be uniform or will be scalarized
- /// during vectorization. collectLoopScalars should only add non-uniform nodes
- /// to the list if they are used by a load/store instruction that is marked as
- /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
- /// VF values in the vectorized loop, each corresponding to an iteration of
- /// the original scalar loop.
- void collectLoopScalars(ElementCount VF);
- /// Keeps cost model vectorization decision and cost for instructions.
- /// Right now it is used for memory instructions only.
- using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
- std::pair<InstWidening, InstructionCost>>;
- DecisionList WideningDecisions;
- /// Returns true if \p V is expected to be vectorized and it needs to be
- /// extracted.
- bool needsExtract(Value *V, ElementCount VF) const {
- Instruction *I = dyn_cast<Instruction>(V);
- if (VF.isScalar() || !I || !TheLoop->contains(I) ||
- TheLoop->isLoopInvariant(I))
- return false;
- // Assume we can vectorize V (and hence we need extraction) if the
- // scalars are not computed yet. This can happen, because it is called
- // via getScalarizationOverhead from setCostBasedWideningDecision, before
- // the scalars are collected. That should be a safe assumption in most
- // cases, because we check if the operands have vectorizable types
- // beforehand in LoopVectorizationLegality.
- return Scalars.find(VF) == Scalars.end() ||
- !isScalarAfterVectorization(I, VF);
- };
- /// Returns a range containing only operands needing to be extracted.
- SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
- ElementCount VF) const {
- return SmallVector<Value *, 4>(make_filter_range(
- Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
- }
- /// Determines if we have the infrastructure to vectorize loop \p L and its
- /// epilogue, assuming the main loop is vectorized by \p VF.
- bool isCandidateForEpilogueVectorization(const Loop &L,
- const ElementCount VF) const;
- /// Returns true if epilogue vectorization is considered profitable, and
- /// false otherwise.
- /// \p VF is the vectorization factor chosen for the original loop.
- bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
- public:
- /// The loop that we evaluate.
- Loop *TheLoop;
- /// Predicated scalar evolution analysis.
- PredicatedScalarEvolution &PSE;
- /// Loop Info analysis.
- LoopInfo *LI;
- /// Vectorization legality.
- LoopVectorizationLegality *Legal;
- /// Vector target information.
- const TargetTransformInfo &TTI;
- /// Target Library Info.
- const TargetLibraryInfo *TLI;
- /// Demanded bits analysis.
- DemandedBits *DB;
- /// Assumption cache.
- AssumptionCache *AC;
- /// Interface to emit optimization remarks.
- OptimizationRemarkEmitter *ORE;
- const Function *TheFunction;
- /// Loop Vectorize Hint.
- const LoopVectorizeHints *Hints;
- /// The interleave access information contains groups of interleaved accesses
- /// with the same stride and close to each other.
- InterleavedAccessInfo &InterleaveInfo;
- /// Values to ignore in the cost model.
- SmallPtrSet<const Value *, 16> ValuesToIgnore;
- /// Values to ignore in the cost model when VF > 1.
- SmallPtrSet<const Value *, 16> VecValuesToIgnore;
- /// All element types found in the loop.
- SmallPtrSet<Type *, 16> ElementTypesInLoop;
- /// Profitable vector factors.
- SmallVector<VectorizationFactor, 8> ProfitableVFs;
- };
- } // end namespace llvm
- namespace {
- /// Helper struct to manage generating runtime checks for vectorization.
- ///
- /// The runtime checks are created up-front in temporary blocks to allow better
- /// estimating the cost and un-linked from the existing IR. After deciding to
- /// vectorize, the checks are moved back. If deciding not to vectorize, the
- /// temporary blocks are completely removed.
- class GeneratedRTChecks {
- /// Basic block which contains the generated SCEV checks, if any.
- BasicBlock *SCEVCheckBlock = nullptr;
- /// The value representing the result of the generated SCEV checks. If it is
- /// nullptr, either no SCEV checks have been generated or they have been used.
- Value *SCEVCheckCond = nullptr;
- /// Basic block which contains the generated memory runtime checks, if any.
- BasicBlock *MemCheckBlock = nullptr;
- /// The value representing the result of the generated memory runtime checks.
- /// If it is nullptr, either no memory runtime checks have been generated or
- /// they have been used.
- Value *MemRuntimeCheckCond = nullptr;
- DominatorTree *DT;
- LoopInfo *LI;
- TargetTransformInfo *TTI;
- SCEVExpander SCEVExp;
- SCEVExpander MemCheckExp;
- bool CostTooHigh = false;
- public:
- GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
- TargetTransformInfo *TTI, const DataLayout &DL)
- : DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"),
- MemCheckExp(SE, DL, "scev.check") {}
- /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
- /// accurately estimate the cost of the runtime checks. The blocks are
- /// un-linked from the IR and is added back during vector code generation. If
- /// there is no vector code generation, the check blocks are removed
- /// completely.
- void Create(Loop *L, const LoopAccessInfo &LAI,
- const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
- // Hard cutoff to limit compile-time increase in case a very large number of
- // runtime checks needs to be generated.
- // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
- // profile info.
- CostTooHigh =
- LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold;
- if (CostTooHigh)
- return;
- BasicBlock *LoopHeader = L->getHeader();
- BasicBlock *Preheader = L->getLoopPreheader();
- // Use SplitBlock to create blocks for SCEV & memory runtime checks to
- // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
- // may be used by SCEVExpander. The blocks will be un-linked from their
- // predecessors and removed from LI & DT at the end of the function.
- if (!UnionPred.isAlwaysTrue()) {
- SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
- nullptr, "vector.scevcheck");
- SCEVCheckCond = SCEVExp.expandCodeForPredicate(
- &UnionPred, SCEVCheckBlock->getTerminator());
- }
- const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
- if (RtPtrChecking.Need) {
- auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
- MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
- "vector.memcheck");
- auto DiffChecks = RtPtrChecking.getDiffChecks();
- if (DiffChecks) {
- Value *RuntimeVF = nullptr;
- MemRuntimeCheckCond = addDiffRuntimeChecks(
- MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
- [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
- if (!RuntimeVF)
- RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
- return RuntimeVF;
- },
- IC);
- } else {
- MemRuntimeCheckCond =
- addRuntimeChecks(MemCheckBlock->getTerminator(), L,
- RtPtrChecking.getChecks(), MemCheckExp);
- }
- assert(MemRuntimeCheckCond &&
- "no RT checks generated although RtPtrChecking "
- "claimed checks are required");
- }
- if (!MemCheckBlock && !SCEVCheckBlock)
- return;
- // Unhook the temporary block with the checks, update various places
- // accordingly.
- if (SCEVCheckBlock)
- SCEVCheckBlock->replaceAllUsesWith(Preheader);
- if (MemCheckBlock)
- MemCheckBlock->replaceAllUsesWith(Preheader);
- if (SCEVCheckBlock) {
- SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
- new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
- Preheader->getTerminator()->eraseFromParent();
- }
- if (MemCheckBlock) {
- MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
- new UnreachableInst(Preheader->getContext(), MemCheckBlock);
- Preheader->getTerminator()->eraseFromParent();
- }
- DT->changeImmediateDominator(LoopHeader, Preheader);
- if (MemCheckBlock) {
- DT->eraseNode(MemCheckBlock);
- LI->removeBlock(MemCheckBlock);
- }
- if (SCEVCheckBlock) {
- DT->eraseNode(SCEVCheckBlock);
- LI->removeBlock(SCEVCheckBlock);
- }
- }
- InstructionCost getCost() {
- if (SCEVCheckBlock || MemCheckBlock)
- LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
- if (CostTooHigh) {
- InstructionCost Cost;
- Cost.setInvalid();
- LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
- return Cost;
- }
- InstructionCost RTCheckCost = 0;
- if (SCEVCheckBlock)
- for (Instruction &I : *SCEVCheckBlock) {
- if (SCEVCheckBlock->getTerminator() == &I)
- continue;
- InstructionCost C =
- TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput);
- LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
- RTCheckCost += C;
- }
- if (MemCheckBlock)
- for (Instruction &I : *MemCheckBlock) {
- if (MemCheckBlock->getTerminator() == &I)
- continue;
- InstructionCost C =
- TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput);
- LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
- RTCheckCost += C;
- }
- if (SCEVCheckBlock || MemCheckBlock)
- LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
- << "\n");
- return RTCheckCost;
- }
- /// Remove the created SCEV & memory runtime check blocks & instructions, if
- /// unused.
- ~GeneratedRTChecks() {
- SCEVExpanderCleaner SCEVCleaner(SCEVExp);
- SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
- if (!SCEVCheckCond)
- SCEVCleaner.markResultUsed();
- if (!MemRuntimeCheckCond)
- MemCheckCleaner.markResultUsed();
- if (MemRuntimeCheckCond) {
- auto &SE = *MemCheckExp.getSE();
- // Memory runtime check generation creates compares that use expanded
- // values. Remove them before running the SCEVExpanderCleaners.
- for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
- if (MemCheckExp.isInsertedInstruction(&I))
- continue;
- SE.forgetValue(&I);
- I.eraseFromParent();
- }
- }
- MemCheckCleaner.cleanup();
- SCEVCleaner.cleanup();
- if (SCEVCheckCond)
- SCEVCheckBlock->eraseFromParent();
- if (MemRuntimeCheckCond)
- MemCheckBlock->eraseFromParent();
- }
- /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
- /// adjusts the branches to branch to the vector preheader or \p Bypass,
- /// depending on the generated condition.
- BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
- BasicBlock *LoopVectorPreHeader,
- BasicBlock *LoopExitBlock) {
- if (!SCEVCheckCond)
- return nullptr;
- Value *Cond = SCEVCheckCond;
- // Mark the check as used, to prevent it from being removed during cleanup.
- SCEVCheckCond = nullptr;
- if (auto *C = dyn_cast<ConstantInt>(Cond))
- if (C->isZero())
- return nullptr;
- auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
- BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
- // Create new preheader for vector loop.
- if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
- PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
- SCEVCheckBlock->getTerminator()->eraseFromParent();
- SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
- Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
- SCEVCheckBlock);
- DT->addNewBlock(SCEVCheckBlock, Pred);
- DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
- ReplaceInstWithInst(SCEVCheckBlock->getTerminator(),
- BranchInst::Create(Bypass, LoopVectorPreHeader, Cond));
- return SCEVCheckBlock;
- }
- /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
- /// the branches to branch to the vector preheader or \p Bypass, depending on
- /// the generated condition.
- BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
- BasicBlock *LoopVectorPreHeader) {
- // Check if we generated code that checks in runtime if arrays overlap.
- if (!MemRuntimeCheckCond)
- return nullptr;
- auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
- Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
- MemCheckBlock);
- DT->addNewBlock(MemCheckBlock, Pred);
- DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
- MemCheckBlock->moveBefore(LoopVectorPreHeader);
- if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
- PL->addBasicBlockToLoop(MemCheckBlock, *LI);
- ReplaceInstWithInst(
- MemCheckBlock->getTerminator(),
- BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
- MemCheckBlock->getTerminator()->setDebugLoc(
- Pred->getTerminator()->getDebugLoc());
- // Mark the check as used, to prevent it from being removed during cleanup.
- MemRuntimeCheckCond = nullptr;
- return MemCheckBlock;
- }
- };
- } // namespace
- // Return true if \p OuterLp is an outer loop annotated with hints for explicit
- // vectorization. The loop needs to be annotated with #pragma omp simd
- // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
- // vector length information is not provided, vectorization is not considered
- // explicit. Interleave hints are not allowed either. These limitations will be
- // relaxed in the future.
- // Please, note that we are currently forced to abuse the pragma 'clang
- // vectorize' semantics. This pragma provides *auto-vectorization hints*
- // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
- // provides *explicit vectorization hints* (LV can bypass legal checks and
- // assume that vectorization is legal). However, both hints are implemented
- // using the same metadata (llvm.loop.vectorize, processed by
- // LoopVectorizeHints). This will be fixed in the future when the native IR
- // representation for pragma 'omp simd' is introduced.
- static bool isExplicitVecOuterLoop(Loop *OuterLp,
- OptimizationRemarkEmitter *ORE) {
- assert(!OuterLp->isInnermost() && "This is not an outer loop");
- LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
- // Only outer loops with an explicit vectorization hint are supported.
- // Unannotated outer loops are ignored.
- if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
- return false;
- Function *Fn = OuterLp->getHeader()->getParent();
- if (!Hints.allowVectorization(Fn, OuterLp,
- true /*VectorizeOnlyWhenForced*/)) {
- LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
- return false;
- }
- if (Hints.getInterleave() > 1) {
- // TODO: Interleave support is future work.
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
- "outer loops.\n");
- Hints.emitRemarkWithHints();
- return false;
- }
- return true;
- }
- static void collectSupportedLoops(Loop &L, LoopInfo *LI,
- OptimizationRemarkEmitter *ORE,
- SmallVectorImpl<Loop *> &V) {
- // Collect inner loops and outer loops without irreducible control flow. For
- // now, only collect outer loops that have explicit vectorization hints. If we
- // are stress testing the VPlan H-CFG construction, we collect the outermost
- // loop of every loop nest.
- if (L.isInnermost() || VPlanBuildStressTest ||
- (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
- LoopBlocksRPO RPOT(&L);
- RPOT.perform(LI);
- if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
- V.push_back(&L);
- // TODO: Collect inner loops inside marked outer loops in case
- // vectorization fails for the outer loop. Do not invoke
- // 'containsIrreducibleCFG' again for inner loops when the outer loop is
- // already known to be reducible. We can use an inherited attribute for
- // that.
- return;
- }
- }
- for (Loop *InnerL : L)
- collectSupportedLoops(*InnerL, LI, ORE, V);
- }
- namespace {
- /// The LoopVectorize Pass.
- struct LoopVectorize : public FunctionPass {
- /// Pass identification, replacement for typeid
- static char ID;
- LoopVectorizePass Impl;
- explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
- bool VectorizeOnlyWhenForced = false)
- : FunctionPass(ID),
- Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
- initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
- auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
- auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto &LAIs = getAnalysis<LoopAccessLegacyAnalysis>().getLAIs();
- auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
- auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
- auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
- return Impl
- .runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AC, LAIs, *ORE, PSI)
- .MadeAnyChange;
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<BlockFrequencyInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<LoopAccessLegacyAnalysis>();
- AU.addRequired<DemandedBitsWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
- AU.addRequired<InjectTLIMappingsLegacy>();
- // We currently do not preserve loopinfo/dominator analyses with outer loop
- // vectorization. Until this is addressed, mark these analyses as preserved
- // only for non-VPlan-native path.
- // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
- if (!EnableVPlanNativePath) {
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- }
- AU.addPreserved<BasicAAWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addRequired<ProfileSummaryInfoWrapperPass>();
- }
- };
- } // end anonymous namespace
- //===----------------------------------------------------------------------===//
- // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
- // LoopVectorizationCostModel and LoopVectorizationPlanner.
- //===----------------------------------------------------------------------===//
- Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
- // We need to place the broadcast of invariant variables outside the loop,
- // but only if it's proven safe to do so. Else, broadcast will be inside
- // vector loop body.
- Instruction *Instr = dyn_cast<Instruction>(V);
- bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
- (!Instr ||
- DT->dominates(Instr->getParent(), LoopVectorPreHeader));
- // Place the code for broadcasting invariant variables in the new preheader.
- IRBuilder<>::InsertPointGuard Guard(Builder);
- if (SafeToHoist)
- Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
- // Broadcast the scalar into all locations in the vector.
- Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
- return Shuf;
- }
- /// This function adds
- /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
- /// to each vector element of Val. The sequence starts at StartIndex.
- /// \p Opcode is relevant for FP induction variable.
- static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
- Instruction::BinaryOps BinOp, ElementCount VF,
- IRBuilderBase &Builder) {
- assert(VF.isVector() && "only vector VFs are supported");
- // Create and check the types.
- auto *ValVTy = cast<VectorType>(Val->getType());
- ElementCount VLen = ValVTy->getElementCount();
- Type *STy = Val->getType()->getScalarType();
- assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
- "Induction Step must be an integer or FP");
- assert(Step->getType() == STy && "Step has wrong type");
- SmallVector<Constant *, 8> Indices;
- // Create a vector of consecutive numbers from zero to VF.
- VectorType *InitVecValVTy = ValVTy;
- if (STy->isFloatingPointTy()) {
- Type *InitVecValSTy =
- IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
- InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
- }
- Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
- // Splat the StartIdx
- Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
- if (STy->isIntegerTy()) {
- InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
- Step = Builder.CreateVectorSplat(VLen, Step);
- assert(Step->getType() == Val->getType() && "Invalid step vec");
- // FIXME: The newly created binary instructions should contain nsw/nuw
- // flags, which can be found from the original scalar operations.
- Step = Builder.CreateMul(InitVec, Step);
- return Builder.CreateAdd(Val, Step, "induction");
- }
- // Floating point induction.
- assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
- "Binary Opcode should be specified for FP induction");
- InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
- InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
- Step = Builder.CreateVectorSplat(VLen, Step);
- Value *MulOp = Builder.CreateFMul(InitVec, Step);
- return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
- }
- /// Compute scalar induction steps. \p ScalarIV is the scalar induction
- /// variable on which to base the steps, \p Step is the size of the step.
- static void buildScalarSteps(Value *ScalarIV, Value *Step,
- const InductionDescriptor &ID, VPValue *Def,
- VPTransformState &State) {
- IRBuilderBase &Builder = State.Builder;
- // Ensure step has the same type as that of scalar IV.
- Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
- if (ScalarIVTy != Step->getType()) {
- // TODO: Also use VPDerivedIVRecipe when only the step needs truncating, to
- // avoid separate truncate here.
- assert(Step->getType()->isIntegerTy() &&
- "Truncation requires an integer step");
- Step = State.Builder.CreateTrunc(Step, ScalarIVTy);
- }
- // We build scalar steps for both integer and floating-point induction
- // variables. Here, we determine the kind of arithmetic we will perform.
- Instruction::BinaryOps AddOp;
- Instruction::BinaryOps MulOp;
- if (ScalarIVTy->isIntegerTy()) {
- AddOp = Instruction::Add;
- MulOp = Instruction::Mul;
- } else {
- AddOp = ID.getInductionOpcode();
- MulOp = Instruction::FMul;
- }
- // Determine the number of scalars we need to generate for each unroll
- // iteration.
- bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
- // Compute the scalar steps and save the results in State.
- Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
- ScalarIVTy->getScalarSizeInBits());
- Type *VecIVTy = nullptr;
- Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
- if (!FirstLaneOnly && State.VF.isScalable()) {
- VecIVTy = VectorType::get(ScalarIVTy, State.VF);
- UnitStepVec =
- Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
- SplatStep = Builder.CreateVectorSplat(State.VF, Step);
- SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
- }
- unsigned StartPart = 0;
- unsigned EndPart = State.UF;
- unsigned StartLane = 0;
- unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
- if (State.Instance) {
- StartPart = State.Instance->Part;
- EndPart = StartPart + 1;
- StartLane = State.Instance->Lane.getKnownLane();
- EndLane = StartLane + 1;
- }
- for (unsigned Part = StartPart; Part < EndPart; ++Part) {
- Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
- if (!FirstLaneOnly && State.VF.isScalable()) {
- auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
- auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
- if (ScalarIVTy->isFloatingPointTy())
- InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
- auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
- auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
- State.set(Def, Add, Part);
- // It's useful to record the lane values too for the known minimum number
- // of elements so we do those below. This improves the code quality when
- // trying to extract the first element, for example.
- }
- if (ScalarIVTy->isFloatingPointTy())
- StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
- for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
- Value *StartIdx = Builder.CreateBinOp(
- AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
- // The step returned by `createStepForVF` is a runtime-evaluated value
- // when VF is scalable. Otherwise, it should be folded into a Constant.
- assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
- "Expected StartIdx to be folded to a constant when VF is not "
- "scalable");
- auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
- auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
- State.set(Def, Add, VPIteration(Part, Lane));
- }
- }
- }
- // Generate code for the induction step. Note that induction steps are
- // required to be loop-invariant
- static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
- Instruction *InsertBefore,
- Loop *OrigLoop = nullptr) {
- const DataLayout &DL = SE.getDataLayout();
- assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
- "Induction step should be loop invariant");
- if (auto *E = dyn_cast<SCEVUnknown>(Step))
- return E->getValue();
- SCEVExpander Exp(SE, DL, "induction");
- return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
- }
- /// Compute the transformed value of Index at offset StartValue using step
- /// StepValue.
- /// For integer induction, returns StartValue + Index * StepValue.
- /// For pointer induction, returns StartValue[Index * StepValue].
- /// FIXME: The newly created binary instructions should contain nsw/nuw
- /// flags, which can be found from the original scalar operations.
- static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
- Value *StartValue, Value *Step,
- const InductionDescriptor &ID) {
- Type *StepTy = Step->getType();
- Value *CastedIndex = StepTy->isIntegerTy()
- ? B.CreateSExtOrTrunc(Index, StepTy)
- : B.CreateCast(Instruction::SIToFP, Index, StepTy);
- if (CastedIndex != Index) {
- CastedIndex->setName(CastedIndex->getName() + ".cast");
- Index = CastedIndex;
- }
- // Note: the IR at this point is broken. We cannot use SE to create any new
- // SCEV and then expand it, hoping that SCEV's simplification will give us
- // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
- // lead to various SCEV crashes. So all we can do is to use builder and rely
- // on InstCombine for future simplifications. Here we handle some trivial
- // cases only.
- auto CreateAdd = [&B](Value *X, Value *Y) {
- assert(X->getType() == Y->getType() && "Types don't match!");
- if (auto *CX = dyn_cast<ConstantInt>(X))
- if (CX->isZero())
- return Y;
- if (auto *CY = dyn_cast<ConstantInt>(Y))
- if (CY->isZero())
- return X;
- return B.CreateAdd(X, Y);
- };
- // We allow X to be a vector type, in which case Y will potentially be
- // splatted into a vector with the same element count.
- auto CreateMul = [&B](Value *X, Value *Y) {
- assert(X->getType()->getScalarType() == Y->getType() &&
- "Types don't match!");
- if (auto *CX = dyn_cast<ConstantInt>(X))
- if (CX->isOne())
- return Y;
- if (auto *CY = dyn_cast<ConstantInt>(Y))
- if (CY->isOne())
- return X;
- VectorType *XVTy = dyn_cast<VectorType>(X->getType());
- if (XVTy && !isa<VectorType>(Y->getType()))
- Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
- return B.CreateMul(X, Y);
- };
- switch (ID.getKind()) {
- case InductionDescriptor::IK_IntInduction: {
- assert(!isa<VectorType>(Index->getType()) &&
- "Vector indices not supported for integer inductions yet");
- assert(Index->getType() == StartValue->getType() &&
- "Index type does not match StartValue type");
- if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
- return B.CreateSub(StartValue, Index);
- auto *Offset = CreateMul(Index, Step);
- return CreateAdd(StartValue, Offset);
- }
- case InductionDescriptor::IK_PtrInduction: {
- assert(isa<Constant>(Step) &&
- "Expected constant step for pointer induction");
- return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
- }
- case InductionDescriptor::IK_FpInduction: {
- assert(!isa<VectorType>(Index->getType()) &&
- "Vector indices not supported for FP inductions yet");
- assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
- auto InductionBinOp = ID.getInductionBinOp();
- assert(InductionBinOp &&
- (InductionBinOp->getOpcode() == Instruction::FAdd ||
- InductionBinOp->getOpcode() == Instruction::FSub) &&
- "Original bin op should be defined for FP induction");
- Value *MulExp = B.CreateFMul(Step, Index);
- return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
- "induction");
- }
- case InductionDescriptor::IK_NoInduction:
- return nullptr;
- }
- llvm_unreachable("invalid enum");
- }
- void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
- const VPIteration &Instance,
- VPTransformState &State) {
- Value *ScalarInst = State.get(Def, Instance);
- Value *VectorValue = State.get(Def, Instance.Part);
- VectorValue = Builder.CreateInsertElement(
- VectorValue, ScalarInst,
- Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
- State.set(Def, VectorValue, Instance.Part);
- }
- // Return whether we allow using masked interleave-groups (for dealing with
- // strided loads/stores that reside in predicated blocks, or for dealing
- // with gaps).
- static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
- // If an override option has been passed in for interleaved accesses, use it.
- if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
- return EnableMaskedInterleavedMemAccesses;
- return TTI.enableMaskedInterleavedAccessVectorization();
- }
- // Try to vectorize the interleave group that \p Instr belongs to.
- //
- // E.g. Translate following interleaved load group (factor = 3):
- // for (i = 0; i < N; i+=3) {
- // R = Pic[i]; // Member of index 0
- // G = Pic[i+1]; // Member of index 1
- // B = Pic[i+2]; // Member of index 2
- // ... // do something to R, G, B
- // }
- // To:
- // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
- // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements
- // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements
- // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements
- //
- // Or translate following interleaved store group (factor = 3):
- // for (i = 0; i < N; i+=3) {
- // ... do something to R, G, B
- // Pic[i] = R; // Member of index 0
- // Pic[i+1] = G; // Member of index 1
- // Pic[i+2] = B; // Member of index 2
- // }
- // To:
- // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
- // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
- // %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
- // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
- // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
- void InnerLoopVectorizer::vectorizeInterleaveGroup(
- const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
- VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
- VPValue *BlockInMask) {
- Instruction *Instr = Group->getInsertPos();
- const DataLayout &DL = Instr->getModule()->getDataLayout();
- // Prepare for the vector type of the interleaved load/store.
- Type *ScalarTy = getLoadStoreType(Instr);
- unsigned InterleaveFactor = Group->getFactor();
- assert(!VF.isScalable() && "scalable vectors not yet supported.");
- auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
- // Prepare for the new pointers.
- SmallVector<Value *, 2> AddrParts;
- unsigned Index = Group->getIndex(Instr);
- // TODO: extend the masked interleaved-group support to reversed access.
- assert((!BlockInMask || !Group->isReverse()) &&
- "Reversed masked interleave-group not supported.");
- // If the group is reverse, adjust the index to refer to the last vector lane
- // instead of the first. We adjust the index from the first vector lane,
- // rather than directly getting the pointer for lane VF - 1, because the
- // pointer operand of the interleaved access is supposed to be uniform. For
- // uniform instructions, we're only required to generate a value for the
- // first vector lane in each unroll iteration.
- if (Group->isReverse())
- Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
- for (unsigned Part = 0; Part < UF; Part++) {
- Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
- State.setDebugLocFromInst(AddrPart);
- // Notice current instruction could be any index. Need to adjust the address
- // to the member of index 0.
- //
- // E.g. a = A[i+1]; // Member of index 1 (Current instruction)
- // b = A[i]; // Member of index 0
- // Current pointer is pointed to A[i+1], adjust it to A[i].
- //
- // E.g. A[i+1] = a; // Member of index 1
- // A[i] = b; // Member of index 0
- // A[i+2] = c; // Member of index 2 (Current instruction)
- // Current pointer is pointed to A[i+2], adjust it to A[i].
- bool InBounds = false;
- if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
- InBounds = gep->isInBounds();
- AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
- cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
- // Cast to the vector pointer type.
- unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
- Type *PtrTy = VecTy->getPointerTo(AddressSpace);
- AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
- }
- State.setDebugLocFromInst(Instr);
- Value *PoisonVec = PoisonValue::get(VecTy);
- Value *MaskForGaps = nullptr;
- if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
- MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
- assert(MaskForGaps && "Mask for Gaps is required but it is null");
- }
- // Vectorize the interleaved load group.
- if (isa<LoadInst>(Instr)) {
- // For each unroll part, create a wide load for the group.
- SmallVector<Value *, 2> NewLoads;
- for (unsigned Part = 0; Part < UF; Part++) {
- Instruction *NewLoad;
- if (BlockInMask || MaskForGaps) {
- assert(useMaskedInterleavedAccesses(*TTI) &&
- "masked interleaved groups are not allowed.");
- Value *GroupMask = MaskForGaps;
- if (BlockInMask) {
- Value *BlockInMaskPart = State.get(BlockInMask, Part);
- Value *ShuffledMask = Builder.CreateShuffleVector(
- BlockInMaskPart,
- createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
- "interleaved.mask");
- GroupMask = MaskForGaps
- ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
- MaskForGaps)
- : ShuffledMask;
- }
- NewLoad =
- Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
- GroupMask, PoisonVec, "wide.masked.vec");
- }
- else
- NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
- Group->getAlign(), "wide.vec");
- Group->addMetadata(NewLoad);
- NewLoads.push_back(NewLoad);
- }
- // For each member in the group, shuffle out the appropriate data from the
- // wide loads.
- unsigned J = 0;
- for (unsigned I = 0; I < InterleaveFactor; ++I) {
- Instruction *Member = Group->getMember(I);
- // Skip the gaps in the group.
- if (!Member)
- continue;
- auto StrideMask =
- createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
- for (unsigned Part = 0; Part < UF; Part++) {
- Value *StridedVec = Builder.CreateShuffleVector(
- NewLoads[Part], StrideMask, "strided.vec");
- // If this member has different type, cast the result type.
- if (Member->getType() != ScalarTy) {
- assert(!VF.isScalable() && "VF is assumed to be non scalable.");
- VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
- StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
- }
- if (Group->isReverse())
- StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
- State.set(VPDefs[J], StridedVec, Part);
- }
- ++J;
- }
- return;
- }
- // The sub vector type for current instruction.
- auto *SubVT = VectorType::get(ScalarTy, VF);
- // Vectorize the interleaved store group.
- MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
- assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
- "masked interleaved groups are not allowed.");
- assert((!MaskForGaps || !VF.isScalable()) &&
- "masking gaps for scalable vectors is not yet supported.");
- for (unsigned Part = 0; Part < UF; Part++) {
- // Collect the stored vector from each member.
- SmallVector<Value *, 4> StoredVecs;
- unsigned StoredIdx = 0;
- for (unsigned i = 0; i < InterleaveFactor; i++) {
- assert((Group->getMember(i) || MaskForGaps) &&
- "Fail to get a member from an interleaved store group");
- Instruction *Member = Group->getMember(i);
- // Skip the gaps in the group.
- if (!Member) {
- Value *Undef = PoisonValue::get(SubVT);
- StoredVecs.push_back(Undef);
- continue;
- }
- Value *StoredVec = State.get(StoredValues[StoredIdx], Part);
- ++StoredIdx;
- if (Group->isReverse())
- StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
- // If this member has different type, cast it to a unified type.
- if (StoredVec->getType() != SubVT)
- StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
- StoredVecs.push_back(StoredVec);
- }
- // Concatenate all vectors into a wide vector.
- Value *WideVec = concatenateVectors(Builder, StoredVecs);
- // Interleave the elements in the wide vector.
- Value *IVec = Builder.CreateShuffleVector(
- WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
- "interleaved.vec");
- Instruction *NewStoreInstr;
- if (BlockInMask || MaskForGaps) {
- Value *GroupMask = MaskForGaps;
- if (BlockInMask) {
- Value *BlockInMaskPart = State.get(BlockInMask, Part);
- Value *ShuffledMask = Builder.CreateShuffleVector(
- BlockInMaskPart,
- createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
- "interleaved.mask");
- GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
- ShuffledMask, MaskForGaps)
- : ShuffledMask;
- }
- NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
- Group->getAlign(), GroupMask);
- } else
- NewStoreInstr =
- Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
- Group->addMetadata(NewStoreInstr);
- }
- }
- void InnerLoopVectorizer::scalarizeInstruction(const Instruction *Instr,
- VPReplicateRecipe *RepRecipe,
- const VPIteration &Instance,
- bool IfPredicateInstr,
- VPTransformState &State) {
- assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
- // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
- // the first lane and part.
- if (isa<NoAliasScopeDeclInst>(Instr))
- if (!Instance.isFirstIteration())
- return;
- // Does this instruction return a value ?
- bool IsVoidRetTy = Instr->getType()->isVoidTy();
- Instruction *Cloned = Instr->clone();
- if (!IsVoidRetTy)
- Cloned->setName(Instr->getName() + ".cloned");
- // If the scalarized instruction contributes to the address computation of a
- // widen masked load/store which was in a basic block that needed predication
- // and is not predicated after vectorization, we can't propagate
- // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
- // instruction could feed a poison value to the base address of the widen
- // load/store.
- if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
- Cloned->dropPoisonGeneratingFlags();
- if (Instr->getDebugLoc())
- State.setDebugLocFromInst(Instr);
- // Replace the operands of the cloned instructions with their scalar
- // equivalents in the new loop.
- for (const auto &I : enumerate(RepRecipe->operands())) {
- auto InputInstance = Instance;
- VPValue *Operand = I.value();
- if (vputils::isUniformAfterVectorization(Operand))
- InputInstance.Lane = VPLane::getFirstLane();
- Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
- }
- State.addNewMetadata(Cloned, Instr);
- // Place the cloned scalar in the new loop.
- State.Builder.Insert(Cloned);
- State.set(RepRecipe, Cloned, Instance);
- // If we just cloned a new assumption, add it the assumption cache.
- if (auto *II = dyn_cast<AssumeInst>(Cloned))
- AC->registerAssumption(II);
- // End if-block.
- if (IfPredicateInstr)
- PredicatedInstructions.push_back(Cloned);
- }
- Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
- if (TripCount)
- return TripCount;
- assert(InsertBlock);
- IRBuilder<> Builder(InsertBlock->getTerminator());
- // Find the loop boundaries.
- Type *IdxTy = Legal->getWidestInductionType();
- assert(IdxTy && "No type for induction");
- const SCEV *ExitCount = createTripCountSCEV(IdxTy, PSE);
- const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
- // Expand the trip count and place the new instructions in the preheader.
- // Notice that the pre-header does not change, only the loop body.
- SCEVExpander Exp(*PSE.getSE(), DL, "induction");
- // Count holds the overall loop count (N).
- TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
- InsertBlock->getTerminator());
- if (TripCount->getType()->isPointerTy())
- TripCount =
- CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
- InsertBlock->getTerminator());
- return TripCount;
- }
- Value *
- InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
- if (VectorTripCount)
- return VectorTripCount;
- Value *TC = getOrCreateTripCount(InsertBlock);
- IRBuilder<> Builder(InsertBlock->getTerminator());
- Type *Ty = TC->getType();
- // This is where we can make the step a runtime constant.
- Value *Step = createStepForVF(Builder, Ty, VF, UF);
- // If the tail is to be folded by masking, round the number of iterations N
- // up to a multiple of Step instead of rounding down. This is done by first
- // adding Step-1 and then rounding down. Note that it's ok if this addition
- // overflows: the vector induction variable will eventually wrap to zero given
- // that it starts at zero and its Step is a power of two; the loop will then
- // exit, with the last early-exit vector comparison also producing all-true.
- // For scalable vectors the VF is not guaranteed to be a power of 2, but this
- // is accounted for in emitIterationCountCheck that adds an overflow check.
- if (Cost->foldTailByMasking()) {
- assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
- "VF*UF must be a power of 2 when folding tail by masking");
- Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
- TC = Builder.CreateAdd(
- TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
- }
- // Now we need to generate the expression for the part of the loop that the
- // vectorized body will execute. This is equal to N - (N % Step) if scalar
- // iterations are not required for correctness, or N - Step, otherwise. Step
- // is equal to the vectorization factor (number of SIMD elements) times the
- // unroll factor (number of SIMD instructions).
- Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
- // There are cases where we *must* run at least one iteration in the remainder
- // loop. See the cost model for when this can happen. If the step evenly
- // divides the trip count, we set the remainder to be equal to the step. If
- // the step does not evenly divide the trip count, no adjustment is necessary
- // since there will already be scalar iterations. Note that the minimum
- // iterations check ensures that N >= Step.
- if (Cost->requiresScalarEpilogue(VF)) {
- auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
- R = Builder.CreateSelect(IsZero, Step, R);
- }
- VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
- return VectorTripCount;
- }
- Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
- const DataLayout &DL) {
- // Verify that V is a vector type with same number of elements as DstVTy.
- auto *DstFVTy = cast<FixedVectorType>(DstVTy);
- unsigned VF = DstFVTy->getNumElements();
- auto *SrcVecTy = cast<FixedVectorType>(V->getType());
- assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
- Type *SrcElemTy = SrcVecTy->getElementType();
- Type *DstElemTy = DstFVTy->getElementType();
- assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
- "Vector elements must have same size");
- // Do a direct cast if element types are castable.
- if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
- return Builder.CreateBitOrPointerCast(V, DstFVTy);
- }
- // V cannot be directly casted to desired vector type.
- // May happen when V is a floating point vector but DstVTy is a vector of
- // pointers or vice-versa. Handle this using a two-step bitcast using an
- // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
- assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
- "Only one type should be a pointer type");
- assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
- "Only one type should be a floating point type");
- Type *IntTy =
- IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
- auto *VecIntTy = FixedVectorType::get(IntTy, VF);
- Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
- return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
- }
- void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) {
- Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
- // Reuse existing vector loop preheader for TC checks.
- // Note that new preheader block is generated for vector loop.
- BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
- IRBuilder<> Builder(TCCheckBlock->getTerminator());
- // Generate code to check if the loop's trip count is less than VF * UF, or
- // equal to it in case a scalar epilogue is required; this implies that the
- // vector trip count is zero. This check also covers the case where adding one
- // to the backedge-taken count overflowed leading to an incorrect trip count
- // of zero. In this case we will also jump to the scalar loop.
- auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
- : ICmpInst::ICMP_ULT;
- // If tail is to be folded, vector loop takes care of all iterations.
- Type *CountTy = Count->getType();
- Value *CheckMinIters = Builder.getFalse();
- auto CreateStep = [&]() -> Value * {
- // Create step with max(MinProTripCount, UF * VF).
- if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
- return createStepForVF(Builder, CountTy, VF, UF);
- Value *MinProfTC =
- createStepForVF(Builder, CountTy, MinProfitableTripCount, 1);
- if (!VF.isScalable())
- return MinProfTC;
- return Builder.CreateBinaryIntrinsic(
- Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
- };
- if (!Cost->foldTailByMasking())
- CheckMinIters =
- Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check");
- else if (VF.isScalable()) {
- // vscale is not necessarily a power-of-2, which means we cannot guarantee
- // an overflow to zero when updating induction variables and so an
- // additional overflow check is required before entering the vector loop.
- // Get the maximum unsigned value for the type.
- Value *MaxUIntTripCount =
- ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
- Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
- // Don't execute the vector loop if (UMax - n) < (VF * UF).
- CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
- }
- // Create new preheader for vector loop.
- LoopVectorPreHeader =
- SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
- "vector.ph");
- assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
- DT->getNode(Bypass)->getIDom()) &&
- "TC check is expected to dominate Bypass");
- // Update dominator for Bypass & LoopExit (if needed).
- DT->changeImmediateDominator(Bypass, TCCheckBlock);
- if (!Cost->requiresScalarEpilogue(VF))
- // If there is an epilogue which must run, there's no edge from the
- // middle block to exit blocks and thus no need to update the immediate
- // dominator of the exit blocks.
- DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
- ReplaceInstWithInst(
- TCCheckBlock->getTerminator(),
- BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
- LoopBypassBlocks.push_back(TCCheckBlock);
- }
- BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
- BasicBlock *const SCEVCheckBlock =
- RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
- if (!SCEVCheckBlock)
- return nullptr;
- assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
- (OptForSizeBasedOnProfile &&
- Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
- "Cannot SCEV check stride or overflow when optimizing for size");
- // Update dominator only if this is first RT check.
- if (LoopBypassBlocks.empty()) {
- DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
- if (!Cost->requiresScalarEpilogue(VF))
- // If there is an epilogue which must run, there's no edge from the
- // middle block to exit blocks and thus no need to update the immediate
- // dominator of the exit blocks.
- DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
- }
- LoopBypassBlocks.push_back(SCEVCheckBlock);
- AddedSafetyChecks = true;
- return SCEVCheckBlock;
- }
- BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
- // VPlan-native path does not do any analysis for runtime checks currently.
- if (EnableVPlanNativePath)
- return nullptr;
- BasicBlock *const MemCheckBlock =
- RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
- // Check if we generated code that checks in runtime if arrays overlap. We put
- // the checks into a separate block to make the more common case of few
- // elements faster.
- if (!MemCheckBlock)
- return nullptr;
- if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
- assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
- "Cannot emit memory checks when optimizing for size, unless forced "
- "to vectorize.");
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
- OrigLoop->getStartLoc(),
- OrigLoop->getHeader())
- << "Code-size may be reduced by not forcing "
- "vectorization, or by source-code modifications "
- "eliminating the need for runtime checks "
- "(e.g., adding 'restrict').";
- });
- }
- LoopBypassBlocks.push_back(MemCheckBlock);
- AddedSafetyChecks = true;
- return MemCheckBlock;
- }
- void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
- LoopScalarBody = OrigLoop->getHeader();
- LoopVectorPreHeader = OrigLoop->getLoopPreheader();
- assert(LoopVectorPreHeader && "Invalid loop structure");
- LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
- assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
- "multiple exit loop without required epilogue?");
- LoopMiddleBlock =
- SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
- LI, nullptr, Twine(Prefix) + "middle.block");
- LoopScalarPreHeader =
- SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
- nullptr, Twine(Prefix) + "scalar.ph");
- auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
- // Set up the middle block terminator. Two cases:
- // 1) If we know that we must execute the scalar epilogue, emit an
- // unconditional branch.
- // 2) Otherwise, we must have a single unique exit block (due to how we
- // implement the multiple exit case). In this case, set up a conditional
- // branch from the middle block to the loop scalar preheader, and the
- // exit block. completeLoopSkeleton will update the condition to use an
- // iteration check, if required to decide whether to execute the remainder.
- BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
- BranchInst::Create(LoopScalarPreHeader) :
- BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
- Builder.getTrue());
- BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
- ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
- // Update dominator for loop exit. During skeleton creation, only the vector
- // pre-header and the middle block are created. The vector loop is entirely
- // created during VPlan exection.
- if (!Cost->requiresScalarEpilogue(VF))
- // If there is an epilogue which must run, there's no edge from the
- // middle block to exit blocks and thus no need to update the immediate
- // dominator of the exit blocks.
- DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
- }
- PHINode *InnerLoopVectorizer::createInductionResumeValue(
- PHINode *OrigPhi, const InductionDescriptor &II,
- ArrayRef<BasicBlock *> BypassBlocks,
- std::pair<BasicBlock *, Value *> AdditionalBypass) {
- Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
- assert(VectorTripCount && "Expected valid arguments");
- Instruction *OldInduction = Legal->getPrimaryInduction();
- Value *&EndValue = IVEndValues[OrigPhi];
- Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
- if (OrigPhi == OldInduction) {
- // We know what the end value is.
- EndValue = VectorTripCount;
- } else {
- IRBuilder<> B(LoopVectorPreHeader->getTerminator());
- // Fast-math-flags propagate from the original induction instruction.
- if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
- B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
- Value *Step =
- CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
- EndValue =
- emitTransformedIndex(B, VectorTripCount, II.getStartValue(), Step, II);
- EndValue->setName("ind.end");
- // Compute the end value for the additional bypass (if applicable).
- if (AdditionalBypass.first) {
- B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
- Value *Step =
- CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
- EndValueFromAdditionalBypass = emitTransformedIndex(
- B, AdditionalBypass.second, II.getStartValue(), Step, II);
- EndValueFromAdditionalBypass->setName("ind.end");
- }
- }
- // Create phi nodes to merge from the backedge-taken check block.
- PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
- LoopScalarPreHeader->getTerminator());
- // Copy original phi DL over to the new one.
- BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
- // The new PHI merges the original incoming value, in case of a bypass,
- // or the value at the end of the vectorized loop.
- BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
- // Fix the scalar body counter (PHI node).
- // The old induction's phi node in the scalar body needs the truncated
- // value.
- for (BasicBlock *BB : BypassBlocks)
- BCResumeVal->addIncoming(II.getStartValue(), BB);
- if (AdditionalBypass.first)
- BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
- EndValueFromAdditionalBypass);
- return BCResumeVal;
- }
- void InnerLoopVectorizer::createInductionResumeValues(
- std::pair<BasicBlock *, Value *> AdditionalBypass) {
- assert(((AdditionalBypass.first && AdditionalBypass.second) ||
- (!AdditionalBypass.first && !AdditionalBypass.second)) &&
- "Inconsistent information about additional bypass.");
- // We are going to resume the execution of the scalar loop.
- // Go over all of the induction variables that we found and fix the
- // PHIs that are left in the scalar version of the loop.
- // The starting values of PHI nodes depend on the counter of the last
- // iteration in the vectorized loop.
- // If we come from a bypass edge then we need to start from the original
- // start value.
- for (const auto &InductionEntry : Legal->getInductionVars()) {
- PHINode *OrigPhi = InductionEntry.first;
- const InductionDescriptor &II = InductionEntry.second;
- PHINode *BCResumeVal = createInductionResumeValue(
- OrigPhi, II, LoopBypassBlocks, AdditionalBypass);
- OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
- }
- }
- BasicBlock *InnerLoopVectorizer::completeLoopSkeleton() {
- // The trip counts should be cached by now.
- Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
- Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
- auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
- // Add a check in the middle block to see if we have completed
- // all of the iterations in the first vector loop. Three cases:
- // 1) If we require a scalar epilogue, there is no conditional branch as
- // we unconditionally branch to the scalar preheader. Do nothing.
- // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
- // Thus if tail is to be folded, we know we don't need to run the
- // remainder and we can use the previous value for the condition (true).
- // 3) Otherwise, construct a runtime check.
- if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
- Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
- Count, VectorTripCount, "cmp.n",
- LoopMiddleBlock->getTerminator());
- // Here we use the same DebugLoc as the scalar loop latch terminator instead
- // of the corresponding compare because they may have ended up with
- // different line numbers and we want to avoid awkward line stepping while
- // debugging. Eg. if the compare has got a line number inside the loop.
- CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
- cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
- }
- #ifdef EXPENSIVE_CHECKS
- assert(DT->verify(DominatorTree::VerificationLevel::Fast));
- #endif
- return LoopVectorPreHeader;
- }
- std::pair<BasicBlock *, Value *>
- InnerLoopVectorizer::createVectorizedLoopSkeleton() {
- /*
- In this function we generate a new loop. The new loop will contain
- the vectorized instructions while the old loop will continue to run the
- scalar remainder.
- [ ] <-- loop iteration number check.
- / |
- / v
- | [ ] <-- vector loop bypass (may consist of multiple blocks).
- | / |
- | / v
- || [ ] <-- vector pre header.
- |/ |
- | v
- | [ ] \
- | [ ]_| <-- vector loop (created during VPlan execution).
- | |
- | v
- \ -[ ] <--- middle-block.
- \/ |
- /\ v
- | ->[ ] <--- new preheader.
- | |
- (opt) v <-- edge from middle to exit iff epilogue is not required.
- | [ ] \
- | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue).
- \ |
- \ v
- >[ ] <-- exit block(s).
- ...
- */
- // Create an empty vector loop, and prepare basic blocks for the runtime
- // checks.
- createVectorLoopSkeleton("");
- // Now, compare the new count to zero. If it is zero skip the vector loop and
- // jump to the scalar loop. This check also covers the case where the
- // backedge-taken count is uint##_max: adding one to it will overflow leading
- // to an incorrect trip count of zero. In this (rare) case we will also jump
- // to the scalar loop.
- emitIterationCountCheck(LoopScalarPreHeader);
- // Generate the code to check any assumptions that we've made for SCEV
- // expressions.
- emitSCEVChecks(LoopScalarPreHeader);
- // Generate the code that checks in runtime if arrays overlap. We put the
- // checks into a separate block to make the more common case of few elements
- // faster.
- emitMemRuntimeChecks(LoopScalarPreHeader);
- // Emit phis for the new starting index of the scalar loop.
- createInductionResumeValues();
- return {completeLoopSkeleton(), nullptr};
- }
- // Fix up external users of the induction variable. At this point, we are
- // in LCSSA form, with all external PHIs that use the IV having one input value,
- // coming from the remainder loop. We need those PHIs to also have a correct
- // value for the IV when arriving directly from the middle block.
- void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
- const InductionDescriptor &II,
- Value *VectorTripCount, Value *EndValue,
- BasicBlock *MiddleBlock,
- BasicBlock *VectorHeader, VPlan &Plan) {
- // There are two kinds of external IV usages - those that use the value
- // computed in the last iteration (the PHI) and those that use the penultimate
- // value (the value that feeds into the phi from the loop latch).
- // We allow both, but they, obviously, have different values.
- assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
- DenseMap<Value *, Value *> MissingVals;
- // An external user of the last iteration's value should see the value that
- // the remainder loop uses to initialize its own IV.
- Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
- for (User *U : PostInc->users()) {
- Instruction *UI = cast<Instruction>(U);
- if (!OrigLoop->contains(UI)) {
- assert(isa<PHINode>(UI) && "Expected LCSSA form");
- MissingVals[UI] = EndValue;
- }
- }
- // An external user of the penultimate value need to see EndValue - Step.
- // The simplest way to get this is to recompute it from the constituent SCEVs,
- // that is Start + (Step * (CRD - 1)).
- for (User *U : OrigPhi->users()) {
- auto *UI = cast<Instruction>(U);
- if (!OrigLoop->contains(UI)) {
- assert(isa<PHINode>(UI) && "Expected LCSSA form");
- IRBuilder<> B(MiddleBlock->getTerminator());
- // Fast-math-flags propagate from the original induction instruction.
- if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
- B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
- Value *CountMinusOne = B.CreateSub(
- VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1));
- CountMinusOne->setName("cmo");
- Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
- VectorHeader->getTerminator());
- Value *Escape =
- emitTransformedIndex(B, CountMinusOne, II.getStartValue(), Step, II);
- Escape->setName("ind.escape");
- MissingVals[UI] = Escape;
- }
- }
- for (auto &I : MissingVals) {
- PHINode *PHI = cast<PHINode>(I.first);
- // One corner case we have to handle is two IVs "chasing" each-other,
- // that is %IV2 = phi [...], [ %IV1, %latch ]
- // In this case, if IV1 has an external use, we need to avoid adding both
- // "last value of IV1" and "penultimate value of IV2". So, verify that we
- // don't already have an incoming value for the middle block.
- if (PHI->getBasicBlockIndex(MiddleBlock) == -1) {
- PHI->addIncoming(I.second, MiddleBlock);
- Plan.removeLiveOut(PHI);
- }
- }
- }
- namespace {
- struct CSEDenseMapInfo {
- static bool canHandle(const Instruction *I) {
- return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
- isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
- }
- static inline Instruction *getEmptyKey() {
- return DenseMapInfo<Instruction *>::getEmptyKey();
- }
- static inline Instruction *getTombstoneKey() {
- return DenseMapInfo<Instruction *>::getTombstoneKey();
- }
- static unsigned getHashValue(const Instruction *I) {
- assert(canHandle(I) && "Unknown instruction!");
- return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
- I->value_op_end()));
- }
- static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
- if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
- LHS == getTombstoneKey() || RHS == getTombstoneKey())
- return LHS == RHS;
- return LHS->isIdenticalTo(RHS);
- }
- };
- } // end anonymous namespace
- ///Perform cse of induction variable instructions.
- static void cse(BasicBlock *BB) {
- // Perform simple cse.
- SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
- for (Instruction &In : llvm::make_early_inc_range(*BB)) {
- if (!CSEDenseMapInfo::canHandle(&In))
- continue;
- // Check if we can replace this instruction with any of the
- // visited instructions.
- if (Instruction *V = CSEMap.lookup(&In)) {
- In.replaceAllUsesWith(V);
- In.eraseFromParent();
- continue;
- }
- CSEMap[&In] = &In;
- }
- }
- InstructionCost
- LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
- bool &NeedToScalarize) const {
- Function *F = CI->getCalledFunction();
- Type *ScalarRetTy = CI->getType();
- SmallVector<Type *, 4> Tys, ScalarTys;
- for (auto &ArgOp : CI->args())
- ScalarTys.push_back(ArgOp->getType());
- // Estimate cost of scalarized vector call. The source operands are assumed
- // to be vectors, so we need to extract individual elements from there,
- // execute VF scalar calls, and then gather the result into the vector return
- // value.
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
- InstructionCost ScalarCallCost =
- TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, CostKind);
- if (VF.isScalar())
- return ScalarCallCost;
- // Compute corresponding vector type for return value and arguments.
- Type *RetTy = ToVectorTy(ScalarRetTy, VF);
- for (Type *ScalarTy : ScalarTys)
- Tys.push_back(ToVectorTy(ScalarTy, VF));
- // Compute costs of unpacking argument values for the scalar calls and
- // packing the return values to a vector.
- InstructionCost ScalarizationCost =
- getScalarizationOverhead(CI, VF, CostKind);
- InstructionCost Cost =
- ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
- // If we can't emit a vector call for this function, then the currently found
- // cost is the cost we need to return.
- NeedToScalarize = true;
- VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
- Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
- if (!TLI || CI->isNoBuiltin() || !VecFunc)
- return Cost;
- // If the corresponding vector cost is cheaper, return its cost.
- InstructionCost VectorCallCost =
- TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind);
- if (VectorCallCost < Cost) {
- NeedToScalarize = false;
- Cost = VectorCallCost;
- }
- return Cost;
- }
- static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
- if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
- return Elt;
- return VectorType::get(Elt, VF);
- }
- InstructionCost
- LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
- ElementCount VF) const {
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- assert(ID && "Expected intrinsic call!");
- Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
- FastMathFlags FMF;
- if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
- FMF = FPMO->getFastMathFlags();
- SmallVector<const Value *> Arguments(CI->args());
- FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
- SmallVector<Type *> ParamTys;
- std::transform(FTy->param_begin(), FTy->param_end(),
- std::back_inserter(ParamTys),
- [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
- IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
- dyn_cast<IntrinsicInst>(CI));
- return TTI.getIntrinsicInstrCost(CostAttrs,
- TargetTransformInfo::TCK_RecipThroughput);
- }
- static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
- auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
- auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
- return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
- }
- static Type *largestIntegerVectorType(Type *T1, Type *T2) {
- auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
- auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
- return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
- }
- void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
- // For every instruction `I` in MinBWs, truncate the operands, create a
- // truncated version of `I` and reextend its result. InstCombine runs
- // later and will remove any ext/trunc pairs.
- SmallPtrSet<Value *, 4> Erased;
- for (const auto &KV : Cost->getMinimalBitwidths()) {
- // If the value wasn't vectorized, we must maintain the original scalar
- // type. The absence of the value from State indicates that it
- // wasn't vectorized.
- // FIXME: Should not rely on getVPValue at this point.
- VPValue *Def = State.Plan->getVPValue(KV.first, true);
- if (!State.hasAnyVectorValue(Def))
- continue;
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *I = State.get(Def, Part);
- if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
- continue;
- Type *OriginalTy = I->getType();
- Type *ScalarTruncatedTy =
- IntegerType::get(OriginalTy->getContext(), KV.second);
- auto *TruncatedTy = VectorType::get(
- ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
- if (TruncatedTy == OriginalTy)
- continue;
- IRBuilder<> B(cast<Instruction>(I));
- auto ShrinkOperand = [&](Value *V) -> Value * {
- if (auto *ZI = dyn_cast<ZExtInst>(V))
- if (ZI->getSrcTy() == TruncatedTy)
- return ZI->getOperand(0);
- return B.CreateZExtOrTrunc(V, TruncatedTy);
- };
- // The actual instruction modification depends on the instruction type,
- // unfortunately.
- Value *NewI = nullptr;
- if (auto *BO = dyn_cast<BinaryOperator>(I)) {
- NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
- ShrinkOperand(BO->getOperand(1)));
- // Any wrapping introduced by shrinking this operation shouldn't be
- // considered undefined behavior. So, we can't unconditionally copy
- // arithmetic wrapping flags to NewI.
- cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
- } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
- NewI =
- B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
- ShrinkOperand(CI->getOperand(1)));
- } else if (auto *SI = dyn_cast<SelectInst>(I)) {
- NewI = B.CreateSelect(SI->getCondition(),
- ShrinkOperand(SI->getTrueValue()),
- ShrinkOperand(SI->getFalseValue()));
- } else if (auto *CI = dyn_cast<CastInst>(I)) {
- switch (CI->getOpcode()) {
- default:
- llvm_unreachable("Unhandled cast!");
- case Instruction::Trunc:
- NewI = ShrinkOperand(CI->getOperand(0));
- break;
- case Instruction::SExt:
- NewI = B.CreateSExtOrTrunc(
- CI->getOperand(0),
- smallestIntegerVectorType(OriginalTy, TruncatedTy));
- break;
- case Instruction::ZExt:
- NewI = B.CreateZExtOrTrunc(
- CI->getOperand(0),
- smallestIntegerVectorType(OriginalTy, TruncatedTy));
- break;
- }
- } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
- auto Elements0 =
- cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
- auto *O0 = B.CreateZExtOrTrunc(
- SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
- auto Elements1 =
- cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
- auto *O1 = B.CreateZExtOrTrunc(
- SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
- NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
- } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
- // Don't do anything with the operands, just extend the result.
- continue;
- } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
- auto Elements =
- cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
- auto *O0 = B.CreateZExtOrTrunc(
- IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
- auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
- NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
- } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
- auto Elements =
- cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
- auto *O0 = B.CreateZExtOrTrunc(
- EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
- NewI = B.CreateExtractElement(O0, EE->getOperand(2));
- } else {
- // If we don't know what to do, be conservative and don't do anything.
- continue;
- }
- // Lastly, extend the result.
- NewI->takeName(cast<Instruction>(I));
- Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
- I->replaceAllUsesWith(Res);
- cast<Instruction>(I)->eraseFromParent();
- Erased.insert(I);
- State.reset(Def, Res, Part);
- }
- }
- // We'll have created a bunch of ZExts that are now parentless. Clean up.
- for (const auto &KV : Cost->getMinimalBitwidths()) {
- // If the value wasn't vectorized, we must maintain the original scalar
- // type. The absence of the value from State indicates that it
- // wasn't vectorized.
- // FIXME: Should not rely on getVPValue at this point.
- VPValue *Def = State.Plan->getVPValue(KV.first, true);
- if (!State.hasAnyVectorValue(Def))
- continue;
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *I = State.get(Def, Part);
- ZExtInst *Inst = dyn_cast<ZExtInst>(I);
- if (Inst && Inst->use_empty()) {
- Value *NewI = Inst->getOperand(0);
- Inst->eraseFromParent();
- State.reset(Def, NewI, Part);
- }
- }
- }
- }
- void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State,
- VPlan &Plan) {
- // Insert truncates and extends for any truncated instructions as hints to
- // InstCombine.
- if (VF.isVector())
- truncateToMinimalBitwidths(State);
- // Fix widened non-induction PHIs by setting up the PHI operands.
- if (EnableVPlanNativePath)
- fixNonInductionPHIs(Plan, State);
- // At this point every instruction in the original loop is widened to a
- // vector form. Now we need to fix the recurrences in the loop. These PHI
- // nodes are currently empty because we did not want to introduce cycles.
- // This is the second stage of vectorizing recurrences.
- fixCrossIterationPHIs(State);
- // Forget the original basic block.
- PSE.getSE()->forgetLoop(OrigLoop);
- VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock();
- Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]);
- if (Cost->requiresScalarEpilogue(VF)) {
- // No edge from the middle block to the unique exit block has been inserted
- // and there is nothing to fix from vector loop; phis should have incoming
- // from scalar loop only.
- Plan.clearLiveOuts();
- } else {
- // If we inserted an edge from the middle block to the unique exit block,
- // update uses outside the loop (phis) to account for the newly inserted
- // edge.
- // Fix-up external users of the induction variables.
- for (const auto &Entry : Legal->getInductionVars())
- fixupIVUsers(Entry.first, Entry.second,
- getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
- IVEndValues[Entry.first], LoopMiddleBlock,
- VectorLoop->getHeader(), Plan);
- }
- // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated
- // in the exit block, so update the builder.
- State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI());
- for (const auto &KV : Plan.getLiveOuts())
- KV.second->fixPhi(Plan, State);
- for (Instruction *PI : PredicatedInstructions)
- sinkScalarOperands(&*PI);
- // Remove redundant induction instructions.
- cse(VectorLoop->getHeader());
- // Set/update profile weights for the vector and remainder loops as original
- // loop iterations are now distributed among them. Note that original loop
- // represented by LoopScalarBody becomes remainder loop after vectorization.
- //
- // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
- // end up getting slightly roughened result but that should be OK since
- // profile is not inherently precise anyway. Note also possible bypass of
- // vector code caused by legality checks is ignored, assigning all the weight
- // to the vector loop, optimistically.
- //
- // For scalable vectorization we can't know at compile time how many iterations
- // of the loop are handled in one vector iteration, so instead assume a pessimistic
- // vscale of '1'.
- setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
- LI->getLoopFor(LoopScalarBody),
- VF.getKnownMinValue() * UF);
- }
- void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
- // In order to support recurrences we need to be able to vectorize Phi nodes.
- // Phi nodes have cycles, so we need to vectorize them in two stages. This is
- // stage #2: We now need to fix the recurrences by adding incoming edges to
- // the currently empty PHI nodes. At this point every instruction in the
- // original loop is widened to a vector form so we can use them to construct
- // the incoming edges.
- VPBasicBlock *Header =
- State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
- for (VPRecipeBase &R : Header->phis()) {
- if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
- fixReduction(ReductionPhi, State);
- else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
- fixFixedOrderRecurrence(FOR, State);
- }
- }
- void InnerLoopVectorizer::fixFixedOrderRecurrence(
- VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
- // This is the second phase of vectorizing first-order recurrences. An
- // overview of the transformation is described below. Suppose we have the
- // following loop.
- //
- // for (int i = 0; i < n; ++i)
- // b[i] = a[i] - a[i - 1];
- //
- // There is a first-order recurrence on "a". For this loop, the shorthand
- // scalar IR looks like:
- //
- // scalar.ph:
- // s_init = a[-1]
- // br scalar.body
- //
- // scalar.body:
- // i = phi [0, scalar.ph], [i+1, scalar.body]
- // s1 = phi [s_init, scalar.ph], [s2, scalar.body]
- // s2 = a[i]
- // b[i] = s2 - s1
- // br cond, scalar.body, ...
- //
- // In this example, s1 is a recurrence because it's value depends on the
- // previous iteration. In the first phase of vectorization, we created a
- // vector phi v1 for s1. We now complete the vectorization and produce the
- // shorthand vector IR shown below (for VF = 4, UF = 1).
- //
- // vector.ph:
- // v_init = vector(..., ..., ..., a[-1])
- // br vector.body
- //
- // vector.body
- // i = phi [0, vector.ph], [i+4, vector.body]
- // v1 = phi [v_init, vector.ph], [v2, vector.body]
- // v2 = a[i, i+1, i+2, i+3];
- // v3 = vector(v1(3), v2(0, 1, 2))
- // b[i, i+1, i+2, i+3] = v2 - v3
- // br cond, vector.body, middle.block
- //
- // middle.block:
- // x = v2(3)
- // br scalar.ph
- //
- // scalar.ph:
- // s_init = phi [x, middle.block], [a[-1], otherwise]
- // br scalar.body
- //
- // After execution completes the vector loop, we extract the next value of
- // the recurrence (x) to use as the initial value in the scalar loop.
- // Extract the last vector element in the middle block. This will be the
- // initial value for the recurrence when jumping to the scalar loop.
- VPValue *PreviousDef = PhiR->getBackedgeValue();
- Value *Incoming = State.get(PreviousDef, UF - 1);
- auto *ExtractForScalar = Incoming;
- auto *IdxTy = Builder.getInt32Ty();
- if (VF.isVector()) {
- auto *One = ConstantInt::get(IdxTy, 1);
- Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
- auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
- auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
- ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
- "vector.recur.extract");
- }
- // Extract the second last element in the middle block if the
- // Phi is used outside the loop. We need to extract the phi itself
- // and not the last element (the phi update in the current iteration). This
- // will be the value when jumping to the exit block from the LoopMiddleBlock,
- // when the scalar loop is not run at all.
- Value *ExtractForPhiUsedOutsideLoop = nullptr;
- if (VF.isVector()) {
- auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
- auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
- ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
- Incoming, Idx, "vector.recur.extract.for.phi");
- } else if (UF > 1)
- // When loop is unrolled without vectorizing, initialize
- // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
- // of `Incoming`. This is analogous to the vectorized case above: extracting
- // the second last element when VF > 1.
- ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
- // Fix the initial value of the original recurrence in the scalar loop.
- Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
- PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
- auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
- auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
- for (auto *BB : predecessors(LoopScalarPreHeader)) {
- auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
- Start->addIncoming(Incoming, BB);
- }
- Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
- Phi->setName("scalar.recur");
- // Finally, fix users of the recurrence outside the loop. The users will need
- // either the last value of the scalar recurrence or the last value of the
- // vector recurrence we extracted in the middle block. Since the loop is in
- // LCSSA form, we just need to find all the phi nodes for the original scalar
- // recurrence in the exit block, and then add an edge for the middle block.
- // Note that LCSSA does not imply single entry when the original scalar loop
- // had multiple exiting edges (as we always run the last iteration in the
- // scalar epilogue); in that case, there is no edge from middle to exit and
- // and thus no phis which needed updated.
- if (!Cost->requiresScalarEpilogue(VF))
- for (PHINode &LCSSAPhi : LoopExitBlock->phis())
- if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) {
- LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
- State.Plan->removeLiveOut(&LCSSAPhi);
- }
- }
- void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
- VPTransformState &State) {
- PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
- // Get it's reduction variable descriptor.
- assert(Legal->isReductionVariable(OrigPhi) &&
- "Unable to find the reduction variable");
- const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
- RecurKind RK = RdxDesc.getRecurrenceKind();
- TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
- Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
- State.setDebugLocFromInst(ReductionStartValue);
- VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
- // This is the vector-clone of the value that leaves the loop.
- Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
- // Wrap flags are in general invalid after vectorization, clear them.
- clearReductionWrapFlags(PhiR, State);
- // Before each round, move the insertion point right between
- // the PHIs and the values we are going to write.
- // This allows us to write both PHINodes and the extractelement
- // instructions.
- Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
- State.setDebugLocFromInst(LoopExitInst);
- Type *PhiTy = OrigPhi->getType();
- VPBasicBlock *LatchVPBB =
- PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock();
- BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB];
- // If tail is folded by masking, the vector value to leave the loop should be
- // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
- // instead of the former. For an inloop reduction the reduction will already
- // be predicated, and does not need to be handled here.
- if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
- SelectInst *Sel = nullptr;
- for (User *U : VecLoopExitInst->users()) {
- if (isa<SelectInst>(U)) {
- assert(!Sel && "Reduction exit feeding two selects");
- Sel = cast<SelectInst>(U);
- } else
- assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
- }
- assert(Sel && "Reduction exit feeds no select");
- State.reset(LoopExitInstDef, Sel, Part);
- if (isa<FPMathOperator>(Sel))
- Sel->setFastMathFlags(RdxDesc.getFastMathFlags());
- // If the target can create a predicated operator for the reduction at no
- // extra cost in the loop (for example a predicated vadd), it can be
- // cheaper for the select to remain in the loop than be sunk out of it,
- // and so use the select value for the phi instead of the old
- // LoopExitValue.
- if (PreferPredicatedReductionSelect ||
- TTI->preferPredicatedReductionSelect(
- RdxDesc.getOpcode(), PhiTy,
- TargetTransformInfo::ReductionFlags())) {
- auto *VecRdxPhi =
- cast<PHINode>(State.get(PhiR, Part));
- VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
- }
- }
- }
- // If the vector reduction can be performed in a smaller type, we truncate
- // then extend the loop exit value to enable InstCombine to evaluate the
- // entire expression in the smaller type.
- if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
- assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
- Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
- Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
- VectorParts RdxParts(UF);
- for (unsigned Part = 0; Part < UF; ++Part) {
- RdxParts[Part] = State.get(LoopExitInstDef, Part);
- Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
- Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
- : Builder.CreateZExt(Trunc, VecTy);
- for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
- if (U != Trunc) {
- U->replaceUsesOfWith(RdxParts[Part], Extnd);
- RdxParts[Part] = Extnd;
- }
- }
- Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
- for (unsigned Part = 0; Part < UF; ++Part) {
- RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
- State.reset(LoopExitInstDef, RdxParts[Part], Part);
- }
- }
- // Reduce all of the unrolled parts into a single vector.
- Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
- unsigned Op = RecurrenceDescriptor::getOpcode(RK);
- // The middle block terminator has already been assigned a DebugLoc here (the
- // OrigLoop's single latch terminator). We want the whole middle block to
- // appear to execute on this line because: (a) it is all compiler generated,
- // (b) these instructions are always executed after evaluating the latch
- // conditional branch, and (c) other passes may add new predecessors which
- // terminate on this line. This is the easiest way to ensure we don't
- // accidentally cause an extra step back into the loop while debugging.
- State.setDebugLocFromInst(LoopMiddleBlock->getTerminator());
- if (PhiR->isOrdered())
- ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
- else {
- // Floating-point operations should have some FMF to enable the reduction.
- IRBuilderBase::FastMathFlagGuard FMFG(Builder);
- Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
- for (unsigned Part = 1; Part < UF; ++Part) {
- Value *RdxPart = State.get(LoopExitInstDef, Part);
- if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
- ReducedPartRdx = Builder.CreateBinOp(
- (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
- } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
- ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
- ReducedPartRdx, RdxPart);
- else
- ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
- }
- }
- // Create the reduction after the loop. Note that inloop reductions create the
- // target reduction in the loop using a Reduction recipe.
- if (VF.isVector() && !PhiR->isInLoop()) {
- ReducedPartRdx =
- createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
- // If the reduction can be performed in a smaller type, we need to extend
- // the reduction to the wider type before we branch to the original loop.
- if (PhiTy != RdxDesc.getRecurrenceType())
- ReducedPartRdx = RdxDesc.isSigned()
- ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
- : Builder.CreateZExt(ReducedPartRdx, PhiTy);
- }
- PHINode *ResumePhi =
- dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
- // Create a phi node that merges control-flow from the backedge-taken check
- // block and the middle block.
- PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
- LoopScalarPreHeader->getTerminator());
- // If we are fixing reductions in the epilogue loop then we should already
- // have created a bc.merge.rdx Phi after the main vector body. Ensure that
- // we carry over the incoming values correctly.
- for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
- if (Incoming == LoopMiddleBlock)
- BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
- else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
- BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
- Incoming);
- else
- BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
- }
- // Set the resume value for this reduction
- ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
- // If there were stores of the reduction value to a uniform memory address
- // inside the loop, create the final store here.
- if (StoreInst *SI = RdxDesc.IntermediateStore) {
- StoreInst *NewSI =
- Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand());
- propagateMetadata(NewSI, SI);
- // If the reduction value is used in other places,
- // then let the code below create PHI's for that.
- }
- // Now, we need to fix the users of the reduction variable
- // inside and outside of the scalar remainder loop.
- // We know that the loop is in LCSSA form. We need to update the PHI nodes
- // in the exit blocks. See comment on analogous loop in
- // fixFixedOrderRecurrence for a more complete explaination of the logic.
- if (!Cost->requiresScalarEpilogue(VF))
- for (PHINode &LCSSAPhi : LoopExitBlock->phis())
- if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) {
- LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
- State.Plan->removeLiveOut(&LCSSAPhi);
- }
- // Fix the scalar loop reduction variable with the incoming reduction sum
- // from the vector body and from the backedge value.
- int IncomingEdgeBlockIdx =
- OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
- assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
- // Pick the other block.
- int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
- OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
- OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
- }
- void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
- VPTransformState &State) {
- const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
- RecurKind RK = RdxDesc.getRecurrenceKind();
- if (RK != RecurKind::Add && RK != RecurKind::Mul)
- return;
- SmallVector<VPValue *, 8> Worklist;
- SmallPtrSet<VPValue *, 8> Visited;
- Worklist.push_back(PhiR);
- Visited.insert(PhiR);
- while (!Worklist.empty()) {
- VPValue *Cur = Worklist.pop_back_val();
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *V = State.get(Cur, Part);
- if (!isa<OverflowingBinaryOperator>(V))
- break;
- cast<Instruction>(V)->dropPoisonGeneratingFlags();
- }
- for (VPUser *U : Cur->users()) {
- auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
- if (!UserRecipe)
- continue;
- for (VPValue *V : UserRecipe->definedValues())
- if (Visited.insert(V).second)
- Worklist.push_back(V);
- }
- }
- }
- void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
- // The basic block and loop containing the predicated instruction.
- auto *PredBB = PredInst->getParent();
- auto *VectorLoop = LI->getLoopFor(PredBB);
- // Initialize a worklist with the operands of the predicated instruction.
- SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
- // Holds instructions that we need to analyze again. An instruction may be
- // reanalyzed if we don't yet know if we can sink it or not.
- SmallVector<Instruction *, 8> InstsToReanalyze;
- // Returns true if a given use occurs in the predicated block. Phi nodes use
- // their operands in their corresponding predecessor blocks.
- auto isBlockOfUsePredicated = [&](Use &U) -> bool {
- auto *I = cast<Instruction>(U.getUser());
- BasicBlock *BB = I->getParent();
- if (auto *Phi = dyn_cast<PHINode>(I))
- BB = Phi->getIncomingBlock(
- PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
- return BB == PredBB;
- };
- // Iteratively sink the scalarized operands of the predicated instruction
- // into the block we created for it. When an instruction is sunk, it's
- // operands are then added to the worklist. The algorithm ends after one pass
- // through the worklist doesn't sink a single instruction.
- bool Changed;
- do {
- // Add the instructions that need to be reanalyzed to the worklist, and
- // reset the changed indicator.
- Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
- InstsToReanalyze.clear();
- Changed = false;
- while (!Worklist.empty()) {
- auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
- // We can't sink an instruction if it is a phi node, is not in the loop,
- // or may have side effects.
- if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
- I->mayHaveSideEffects())
- continue;
- // If the instruction is already in PredBB, check if we can sink its
- // operands. In that case, VPlan's sinkScalarOperands() succeeded in
- // sinking the scalar instruction I, hence it appears in PredBB; but it
- // may have failed to sink I's operands (recursively), which we try
- // (again) here.
- if (I->getParent() == PredBB) {
- Worklist.insert(I->op_begin(), I->op_end());
- continue;
- }
- // It's legal to sink the instruction if all its uses occur in the
- // predicated block. Otherwise, there's nothing to do yet, and we may
- // need to reanalyze the instruction.
- if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
- InstsToReanalyze.push_back(I);
- continue;
- }
- // Move the instruction to the beginning of the predicated block, and add
- // it's operands to the worklist.
- I->moveBefore(&*PredBB->getFirstInsertionPt());
- Worklist.insert(I->op_begin(), I->op_end());
- // The sinking may have enabled other instructions to be sunk, so we will
- // need to iterate.
- Changed = true;
- }
- } while (Changed);
- }
- void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan,
- VPTransformState &State) {
- auto Iter = vp_depth_first_deep(Plan.getEntry());
- for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
- for (VPRecipeBase &P : VPBB->phis()) {
- VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P);
- if (!VPPhi)
- continue;
- PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
- // Make sure the builder has a valid insert point.
- Builder.SetInsertPoint(NewPhi);
- for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
- VPValue *Inc = VPPhi->getIncomingValue(i);
- VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
- NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
- }
- }
- }
- }
- bool InnerLoopVectorizer::useOrderedReductions(
- const RecurrenceDescriptor &RdxDesc) {
- return Cost->useOrderedReductions(RdxDesc);
- }
- void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
- // We should not collect Scalars more than once per VF. Right now, this
- // function is called from collectUniformsAndScalars(), which already does
- // this check. Collecting Scalars for VF=1 does not make any sense.
- assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
- "This function should not be visited twice for the same VF");
- // This avoids any chances of creating a REPLICATE recipe during planning
- // since that would result in generation of scalarized code during execution,
- // which is not supported for scalable vectors.
- if (VF.isScalable()) {
- Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
- return;
- }
- SmallSetVector<Instruction *, 8> Worklist;
- // These sets are used to seed the analysis with pointers used by memory
- // accesses that will remain scalar.
- SmallSetVector<Instruction *, 8> ScalarPtrs;
- SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
- auto *Latch = TheLoop->getLoopLatch();
- // A helper that returns true if the use of Ptr by MemAccess will be scalar.
- // The pointer operands of loads and stores will be scalar as long as the
- // memory access is not a gather or scatter operation. The value operand of a
- // store will remain scalar if the store is scalarized.
- auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
- InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
- assert(WideningDecision != CM_Unknown &&
- "Widening decision should be ready at this moment");
- if (auto *Store = dyn_cast<StoreInst>(MemAccess))
- if (Ptr == Store->getValueOperand())
- return WideningDecision == CM_Scalarize;
- assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
- "Ptr is neither a value or pointer operand");
- return WideningDecision != CM_GatherScatter;
- };
- // A helper that returns true if the given value is a bitcast or
- // getelementptr instruction contained in the loop.
- auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
- return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
- isa<GetElementPtrInst>(V)) &&
- !TheLoop->isLoopInvariant(V);
- };
- // A helper that evaluates a memory access's use of a pointer. If the use will
- // be a scalar use and the pointer is only used by memory accesses, we place
- // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
- // PossibleNonScalarPtrs.
- auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
- // We only care about bitcast and getelementptr instructions contained in
- // the loop.
- if (!isLoopVaryingBitCastOrGEP(Ptr))
- return;
- // If the pointer has already been identified as scalar (e.g., if it was
- // also identified as uniform), there's nothing to do.
- auto *I = cast<Instruction>(Ptr);
- if (Worklist.count(I))
- return;
- // If the use of the pointer will be a scalar use, and all users of the
- // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
- // place the pointer in PossibleNonScalarPtrs.
- if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
- return isa<LoadInst>(U) || isa<StoreInst>(U);
- }))
- ScalarPtrs.insert(I);
- else
- PossibleNonScalarPtrs.insert(I);
- };
- // We seed the scalars analysis with three classes of instructions: (1)
- // instructions marked uniform-after-vectorization and (2) bitcast,
- // getelementptr and (pointer) phi instructions used by memory accesses
- // requiring a scalar use.
- //
- // (1) Add to the worklist all instructions that have been identified as
- // uniform-after-vectorization.
- Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
- // (2) Add to the worklist all bitcast and getelementptr instructions used by
- // memory accesses requiring a scalar use. The pointer operands of loads and
- // stores will be scalar as long as the memory accesses is not a gather or
- // scatter operation. The value operand of a store will remain scalar if the
- // store is scalarized.
- for (auto *BB : TheLoop->blocks())
- for (auto &I : *BB) {
- if (auto *Load = dyn_cast<LoadInst>(&I)) {
- evaluatePtrUse(Load, Load->getPointerOperand());
- } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
- evaluatePtrUse(Store, Store->getPointerOperand());
- evaluatePtrUse(Store, Store->getValueOperand());
- }
- }
- for (auto *I : ScalarPtrs)
- if (!PossibleNonScalarPtrs.count(I)) {
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
- Worklist.insert(I);
- }
- // Insert the forced scalars.
- // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
- // induction variable when the PHI user is scalarized.
- auto ForcedScalar = ForcedScalars.find(VF);
- if (ForcedScalar != ForcedScalars.end())
- for (auto *I : ForcedScalar->second) {
- LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
- Worklist.insert(I);
- }
- // Expand the worklist by looking through any bitcasts and getelementptr
- // instructions we've already identified as scalar. This is similar to the
- // expansion step in collectLoopUniforms(); however, here we're only
- // expanding to include additional bitcasts and getelementptr instructions.
- unsigned Idx = 0;
- while (Idx != Worklist.size()) {
- Instruction *Dst = Worklist[Idx++];
- if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
- continue;
- auto *Src = cast<Instruction>(Dst->getOperand(0));
- if (llvm::all_of(Src->users(), [&](User *U) -> bool {
- auto *J = cast<Instruction>(U);
- return !TheLoop->contains(J) || Worklist.count(J) ||
- ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
- isScalarUse(J, Src));
- })) {
- Worklist.insert(Src);
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
- }
- }
- // An induction variable will remain scalar if all users of the induction
- // variable and induction variable update remain scalar.
- for (const auto &Induction : Legal->getInductionVars()) {
- auto *Ind = Induction.first;
- auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
- // If tail-folding is applied, the primary induction variable will be used
- // to feed a vector compare.
- if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
- continue;
- // Returns true if \p Indvar is a pointer induction that is used directly by
- // load/store instruction \p I.
- auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
- Instruction *I) {
- return Induction.second.getKind() ==
- InductionDescriptor::IK_PtrInduction &&
- (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
- Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
- };
- // Determine if all users of the induction variable are scalar after
- // vectorization.
- auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
- IsDirectLoadStoreFromPtrIndvar(Ind, I);
- });
- if (!ScalarInd)
- continue;
- // Determine if all users of the induction variable update instruction are
- // scalar after vectorization.
- auto ScalarIndUpdate =
- llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
- IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
- });
- if (!ScalarIndUpdate)
- continue;
- // The induction variable and its update instruction will remain scalar.
- Worklist.insert(Ind);
- Worklist.insert(IndUpdate);
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
- << "\n");
- }
- Scalars[VF].insert(Worklist.begin(), Worklist.end());
- }
- bool LoopVectorizationCostModel::isScalarWithPredication(
- Instruction *I, ElementCount VF) const {
- if (!isPredicatedInst(I))
- return false;
- // Do we have a non-scalar lowering for this predicated
- // instruction? No - it is scalar with predication.
- switch(I->getOpcode()) {
- default:
- return true;
- case Instruction::Load:
- case Instruction::Store: {
- auto *Ptr = getLoadStorePointerOperand(I);
- auto *Ty = getLoadStoreType(I);
- Type *VTy = Ty;
- if (VF.isVector())
- VTy = VectorType::get(Ty, VF);
- const Align Alignment = getLoadStoreAlignment(I);
- return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
- TTI.isLegalMaskedGather(VTy, Alignment))
- : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
- TTI.isLegalMaskedScatter(VTy, Alignment));
- }
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::SRem:
- case Instruction::URem: {
- // We have the option to use the safe-divisor idiom to avoid predication.
- // The cost based decision here will always select safe-divisor for
- // scalable vectors as scalarization isn't legal.
- const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
- return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
- }
- }
- }
- bool LoopVectorizationCostModel::isPredicatedInst(Instruction *I) const {
- if (!blockNeedsPredicationForAnyReason(I->getParent()))
- return false;
- // Can we prove this instruction is safe to unconditionally execute?
- // If not, we must use some form of predication.
- switch(I->getOpcode()) {
- default:
- return false;
- case Instruction::Load:
- case Instruction::Store: {
- if (!Legal->isMaskRequired(I))
- return false;
- // When we know the load's address is loop invariant and the instruction
- // in the original scalar loop was unconditionally executed then we
- // don't need to mark it as a predicated instruction. Tail folding may
- // introduce additional predication, but we're guaranteed to always have
- // at least one active lane. We call Legal->blockNeedsPredication here
- // because it doesn't query tail-folding. For stores, we need to prove
- // both speculation safety (which follows from the same argument as loads),
- // but also must prove the value being stored is correct. The easiest
- // form of the later is to require that all values stored are the same.
- if (Legal->isUniformMemOp(*I) &&
- (isa<LoadInst>(I) ||
- (isa<StoreInst>(I) &&
- TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()))) &&
- !Legal->blockNeedsPredication(I->getParent()))
- return false;
- return true;
- }
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::SRem:
- case Instruction::URem:
- // TODO: We can use the loop-preheader as context point here and get
- // context sensitive reasoning
- return !isSafeToSpeculativelyExecute(I);
- }
- }
- std::pair<InstructionCost, InstructionCost>
- LoopVectorizationCostModel::getDivRemSpeculationCost(Instruction *I,
- ElementCount VF) const {
- assert(I->getOpcode() == Instruction::UDiv ||
- I->getOpcode() == Instruction::SDiv ||
- I->getOpcode() == Instruction::SRem ||
- I->getOpcode() == Instruction::URem);
- assert(!isSafeToSpeculativelyExecute(I));
- const TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
- // Scalarization isn't legal for scalable vector types
- InstructionCost ScalarizationCost = InstructionCost::getInvalid();
- if (!VF.isScalable()) {
- // Get the scalarization cost and scale this amount by the probability of
- // executing the predicated block. If the instruction is not predicated,
- // we fall through to the next case.
- ScalarizationCost = 0;
- // These instructions have a non-void type, so account for the phi nodes
- // that we will create. This cost is likely to be zero. The phi node
- // cost, if any, should be scaled by the block probability because it
- // models a copy at the end of each predicated block.
- ScalarizationCost += VF.getKnownMinValue() *
- TTI.getCFInstrCost(Instruction::PHI, CostKind);
- // The cost of the non-predicated instruction.
- ScalarizationCost += VF.getKnownMinValue() *
- TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
- // The cost of insertelement and extractelement instructions needed for
- // scalarization.
- ScalarizationCost += getScalarizationOverhead(I, VF, CostKind);
- // Scale the cost by the probability of executing the predicated blocks.
- // This assumes the predicated block for each vector lane is equally
- // likely.
- ScalarizationCost = ScalarizationCost / getReciprocalPredBlockProb();
- }
- InstructionCost SafeDivisorCost = 0;
- auto *VecTy = ToVectorTy(I->getType(), VF);
- // The cost of the select guard to ensure all lanes are well defined
- // after we speculate above any internal control flow.
- SafeDivisorCost += TTI.getCmpSelInstrCost(
- Instruction::Select, VecTy,
- ToVectorTy(Type::getInt1Ty(I->getContext()), VF),
- CmpInst::BAD_ICMP_PREDICATE, CostKind);
- // Certain instructions can be cheaper to vectorize if they have a constant
- // second vector operand. One example of this are shifts on x86.
- Value *Op2 = I->getOperand(1);
- auto Op2Info = TTI.getOperandInfo(Op2);
- if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
- Op2Info.Kind = TargetTransformInfo::OK_UniformValue;
- SmallVector<const Value *, 4> Operands(I->operand_values());
- SafeDivisorCost += TTI.getArithmeticInstrCost(
- I->getOpcode(), VecTy, CostKind,
- {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
- Op2Info, Operands, I);
- return {ScalarizationCost, SafeDivisorCost};
- }
- bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
- Instruction *I, ElementCount VF) {
- assert(isAccessInterleaved(I) && "Expecting interleaved access.");
- assert(getWideningDecision(I, VF) == CM_Unknown &&
- "Decision should not be set yet.");
- auto *Group = getInterleavedAccessGroup(I);
- assert(Group && "Must have a group.");
- // If the instruction's allocated size doesn't equal it's type size, it
- // requires padding and will be scalarized.
- auto &DL = I->getModule()->getDataLayout();
- auto *ScalarTy = getLoadStoreType(I);
- if (hasIrregularType(ScalarTy, DL))
- return false;
- // If the group involves a non-integral pointer, we may not be able to
- // losslessly cast all values to a common type.
- unsigned InterleaveFactor = Group->getFactor();
- bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
- for (unsigned i = 0; i < InterleaveFactor; i++) {
- Instruction *Member = Group->getMember(i);
- if (!Member)
- continue;
- auto *MemberTy = getLoadStoreType(Member);
- bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
- // Don't coerce non-integral pointers to integers or vice versa.
- if (MemberNI != ScalarNI) {
- // TODO: Consider adding special nullptr value case here
- return false;
- } else if (MemberNI && ScalarNI &&
- ScalarTy->getPointerAddressSpace() !=
- MemberTy->getPointerAddressSpace()) {
- return false;
- }
- }
- // Check if masking is required.
- // A Group may need masking for one of two reasons: it resides in a block that
- // needs predication, or it was decided to use masking to deal with gaps
- // (either a gap at the end of a load-access that may result in a speculative
- // load, or any gaps in a store-access).
- bool PredicatedAccessRequiresMasking =
- blockNeedsPredicationForAnyReason(I->getParent()) &&
- Legal->isMaskRequired(I);
- bool LoadAccessWithGapsRequiresEpilogMasking =
- isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
- !isScalarEpilogueAllowed();
- bool StoreAccessWithGapsRequiresMasking =
- isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
- if (!PredicatedAccessRequiresMasking &&
- !LoadAccessWithGapsRequiresEpilogMasking &&
- !StoreAccessWithGapsRequiresMasking)
- return true;
- // If masked interleaving is required, we expect that the user/target had
- // enabled it, because otherwise it either wouldn't have been created or
- // it should have been invalidated by the CostModel.
- assert(useMaskedInterleavedAccesses(TTI) &&
- "Masked interleave-groups for predicated accesses are not enabled.");
- if (Group->isReverse())
- return false;
- auto *Ty = getLoadStoreType(I);
- const Align Alignment = getLoadStoreAlignment(I);
- return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
- : TTI.isLegalMaskedStore(Ty, Alignment);
- }
- bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
- Instruction *I, ElementCount VF) {
- // Get and ensure we have a valid memory instruction.
- assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
- auto *Ptr = getLoadStorePointerOperand(I);
- auto *ScalarTy = getLoadStoreType(I);
- // In order to be widened, the pointer should be consecutive, first of all.
- if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
- return false;
- // If the instruction is a store located in a predicated block, it will be
- // scalarized.
- if (isScalarWithPredication(I, VF))
- return false;
- // If the instruction's allocated size doesn't equal it's type size, it
- // requires padding and will be scalarized.
- auto &DL = I->getModule()->getDataLayout();
- if (hasIrregularType(ScalarTy, DL))
- return false;
- return true;
- }
- void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
- // We should not collect Uniforms more than once per VF. Right now,
- // this function is called from collectUniformsAndScalars(), which
- // already does this check. Collecting Uniforms for VF=1 does not make any
- // sense.
- assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
- "This function should not be visited twice for the same VF");
- // Visit the list of Uniforms. If we'll not find any uniform value, we'll
- // not analyze again. Uniforms.count(VF) will return 1.
- Uniforms[VF].clear();
- // We now know that the loop is vectorizable!
- // Collect instructions inside the loop that will remain uniform after
- // vectorization.
- // Global values, params and instructions outside of current loop are out of
- // scope.
- auto isOutOfScope = [&](Value *V) -> bool {
- Instruction *I = dyn_cast<Instruction>(V);
- return (!I || !TheLoop->contains(I));
- };
- // Worklist containing uniform instructions demanding lane 0.
- SetVector<Instruction *> Worklist;
- BasicBlock *Latch = TheLoop->getLoopLatch();
- // Add uniform instructions demanding lane 0 to the worklist. Instructions
- // that are scalar with predication must not be considered uniform after
- // vectorization, because that would create an erroneous replicating region
- // where only a single instance out of VF should be formed.
- // TODO: optimize such seldom cases if found important, see PR40816.
- auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
- if (isOutOfScope(I)) {
- LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
- << *I << "\n");
- return;
- }
- if (isScalarWithPredication(I, VF)) {
- LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
- << *I << "\n");
- return;
- }
- LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
- Worklist.insert(I);
- };
- // Start with the conditional branch. If the branch condition is an
- // instruction contained in the loop that is only used by the branch, it is
- // uniform.
- auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
- if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
- addToWorklistIfAllowed(Cmp);
- // Return true if all lanes perform the same memory operation, and we can
- // thus chose to execute only one.
- auto isUniformMemOpUse = [&](Instruction *I) {
- if (!Legal->isUniformMemOp(*I))
- return false;
- if (isa<LoadInst>(I))
- // Loading the same address always produces the same result - at least
- // assuming aliasing and ordering which have already been checked.
- return true;
- // Storing the same value on every iteration.
- return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
- };
- auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
- InstWidening WideningDecision = getWideningDecision(I, VF);
- assert(WideningDecision != CM_Unknown &&
- "Widening decision should be ready at this moment");
- if (isUniformMemOpUse(I))
- return true;
- return (WideningDecision == CM_Widen ||
- WideningDecision == CM_Widen_Reverse ||
- WideningDecision == CM_Interleave);
- };
- // Returns true if Ptr is the pointer operand of a memory access instruction
- // I, and I is known to not require scalarization.
- auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
- return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
- };
- // Holds a list of values which are known to have at least one uniform use.
- // Note that there may be other uses which aren't uniform. A "uniform use"
- // here is something which only demands lane 0 of the unrolled iterations;
- // it does not imply that all lanes produce the same value (e.g. this is not
- // the usual meaning of uniform)
- SetVector<Value *> HasUniformUse;
- // Scan the loop for instructions which are either a) known to have only
- // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
- for (auto *BB : TheLoop->blocks())
- for (auto &I : *BB) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
- switch (II->getIntrinsicID()) {
- case Intrinsic::sideeffect:
- case Intrinsic::experimental_noalias_scope_decl:
- case Intrinsic::assume:
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- if (TheLoop->hasLoopInvariantOperands(&I))
- addToWorklistIfAllowed(&I);
- break;
- default:
- break;
- }
- }
- // ExtractValue instructions must be uniform, because the operands are
- // known to be loop-invariant.
- if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
- assert(isOutOfScope(EVI->getAggregateOperand()) &&
- "Expected aggregate value to be loop invariant");
- addToWorklistIfAllowed(EVI);
- continue;
- }
- // If there's no pointer operand, there's nothing to do.
- auto *Ptr = getLoadStorePointerOperand(&I);
- if (!Ptr)
- continue;
- if (isUniformMemOpUse(&I))
- addToWorklistIfAllowed(&I);
- if (isUniformDecision(&I, VF)) {
- assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
- HasUniformUse.insert(Ptr);
- }
- }
- // Add to the worklist any operands which have *only* uniform (e.g. lane 0
- // demanding) users. Since loops are assumed to be in LCSSA form, this
- // disallows uses outside the loop as well.
- for (auto *V : HasUniformUse) {
- if (isOutOfScope(V))
- continue;
- auto *I = cast<Instruction>(V);
- auto UsersAreMemAccesses =
- llvm::all_of(I->users(), [&](User *U) -> bool {
- return isVectorizedMemAccessUse(cast<Instruction>(U), V);
- });
- if (UsersAreMemAccesses)
- addToWorklistIfAllowed(I);
- }
- // Expand Worklist in topological order: whenever a new instruction
- // is added , its users should be already inside Worklist. It ensures
- // a uniform instruction will only be used by uniform instructions.
- unsigned idx = 0;
- while (idx != Worklist.size()) {
- Instruction *I = Worklist[idx++];
- for (auto *OV : I->operand_values()) {
- // isOutOfScope operands cannot be uniform instructions.
- if (isOutOfScope(OV))
- continue;
- // First order recurrence Phi's should typically be considered
- // non-uniform.
- auto *OP = dyn_cast<PHINode>(OV);
- if (OP && Legal->isFixedOrderRecurrence(OP))
- continue;
- // If all the users of the operand are uniform, then add the
- // operand into the uniform worklist.
- auto *OI = cast<Instruction>(OV);
- if (llvm::all_of(OI->users(), [&](User *U) -> bool {
- auto *J = cast<Instruction>(U);
- return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
- }))
- addToWorklistIfAllowed(OI);
- }
- }
- // For an instruction to be added into Worklist above, all its users inside
- // the loop should also be in Worklist. However, this condition cannot be
- // true for phi nodes that form a cyclic dependence. We must process phi
- // nodes separately. An induction variable will remain uniform if all users
- // of the induction variable and induction variable update remain uniform.
- // The code below handles both pointer and non-pointer induction variables.
- for (const auto &Induction : Legal->getInductionVars()) {
- auto *Ind = Induction.first;
- auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
- // Determine if all users of the induction variable are uniform after
- // vectorization.
- auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
- isVectorizedMemAccessUse(I, Ind);
- });
- if (!UniformInd)
- continue;
- // Determine if all users of the induction variable update instruction are
- // uniform after vectorization.
- auto UniformIndUpdate =
- llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
- isVectorizedMemAccessUse(I, IndUpdate);
- });
- if (!UniformIndUpdate)
- continue;
- // The induction variable and its update instruction will remain uniform.
- addToWorklistIfAllowed(Ind);
- addToWorklistIfAllowed(IndUpdate);
- }
- Uniforms[VF].insert(Worklist.begin(), Worklist.end());
- }
- bool LoopVectorizationCostModel::runtimeChecksRequired() {
- LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
- if (Legal->getRuntimePointerChecking()->Need) {
- reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
- "runtime pointer checks needed. Enable vectorization of this "
- "loop with '#pragma clang loop vectorize(enable)' when "
- "compiling with -Os/-Oz",
- "CantVersionLoopWithOptForSize", ORE, TheLoop);
- return true;
- }
- if (!PSE.getPredicate().isAlwaysTrue()) {
- reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
- "runtime SCEV checks needed. Enable vectorization of this "
- "loop with '#pragma clang loop vectorize(enable)' when "
- "compiling with -Os/-Oz",
- "CantVersionLoopWithOptForSize", ORE, TheLoop);
- return true;
- }
- // FIXME: Avoid specializing for stride==1 instead of bailing out.
- if (!Legal->getLAI()->getSymbolicStrides().empty()) {
- reportVectorizationFailure("Runtime stride check for small trip count",
- "runtime stride == 1 checks needed. Enable vectorization of "
- "this loop without such check by compiling with -Os/-Oz",
- "CantVersionLoopWithOptForSize", ORE, TheLoop);
- return true;
- }
- return false;
- }
- ElementCount
- LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
- if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
- return ElementCount::getScalable(0);
- if (Hints->isScalableVectorizationDisabled()) {
- reportVectorizationInfo("Scalable vectorization is explicitly disabled",
- "ScalableVectorizationDisabled", ORE, TheLoop);
- return ElementCount::getScalable(0);
- }
- LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
- auto MaxScalableVF = ElementCount::getScalable(
- std::numeric_limits<ElementCount::ScalarTy>::max());
- // Test that the loop-vectorizer can legalize all operations for this MaxVF.
- // FIXME: While for scalable vectors this is currently sufficient, this should
- // be replaced by a more detailed mechanism that filters out specific VFs,
- // instead of invalidating vectorization for a whole set of VFs based on the
- // MaxVF.
- // Disable scalable vectorization if the loop contains unsupported reductions.
- if (!canVectorizeReductions(MaxScalableVF)) {
- reportVectorizationInfo(
- "Scalable vectorization not supported for the reduction "
- "operations found in this loop.",
- "ScalableVFUnfeasible", ORE, TheLoop);
- return ElementCount::getScalable(0);
- }
- // Disable scalable vectorization if the loop contains any instructions
- // with element types not supported for scalable vectors.
- if (any_of(ElementTypesInLoop, [&](Type *Ty) {
- return !Ty->isVoidTy() &&
- !this->TTI.isElementTypeLegalForScalableVector(Ty);
- })) {
- reportVectorizationInfo("Scalable vectorization is not supported "
- "for all element types found in this loop.",
- "ScalableVFUnfeasible", ORE, TheLoop);
- return ElementCount::getScalable(0);
- }
- if (Legal->isSafeForAnyVectorWidth())
- return MaxScalableVF;
- // Limit MaxScalableVF by the maximum safe dependence distance.
- std::optional<unsigned> MaxVScale = TTI.getMaxVScale();
- if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
- MaxVScale =
- TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
- MaxScalableVF =
- ElementCount::getScalable(MaxVScale ? (MaxSafeElements / *MaxVScale) : 0);
- if (!MaxScalableVF)
- reportVectorizationInfo(
- "Max legal vector width too small, scalable vectorization "
- "unfeasible.",
- "ScalableVFUnfeasible", ORE, TheLoop);
- return MaxScalableVF;
- }
- FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
- unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
- MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
- unsigned SmallestType, WidestType;
- std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
- // Get the maximum safe dependence distance in bits computed by LAA.
- // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
- // the memory accesses that is most restrictive (involved in the smallest
- // dependence distance).
- unsigned MaxSafeElements =
- PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
- auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
- auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
- LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
- << ".\n");
- LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
- << ".\n");
- // First analyze the UserVF, fall back if the UserVF should be ignored.
- if (UserVF) {
- auto MaxSafeUserVF =
- UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
- if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
- // If `VF=vscale x N` is safe, then so is `VF=N`
- if (UserVF.isScalable())
- return FixedScalableVFPair(
- ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
- else
- return UserVF;
- }
- assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
- // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
- // is better to ignore the hint and let the compiler choose a suitable VF.
- if (!UserVF.isScalable()) {
- LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
- << " is unsafe, clamping to max safe VF="
- << MaxSafeFixedVF << ".\n");
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
- TheLoop->getStartLoc(),
- TheLoop->getHeader())
- << "User-specified vectorization factor "
- << ore::NV("UserVectorizationFactor", UserVF)
- << " is unsafe, clamping to maximum safe vectorization factor "
- << ore::NV("VectorizationFactor", MaxSafeFixedVF);
- });
- return MaxSafeFixedVF;
- }
- if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
- LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
- << " is ignored because scalable vectors are not "
- "available.\n");
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
- TheLoop->getStartLoc(),
- TheLoop->getHeader())
- << "User-specified vectorization factor "
- << ore::NV("UserVectorizationFactor", UserVF)
- << " is ignored because the target does not support scalable "
- "vectors. The compiler will pick a more suitable value.";
- });
- } else {
- LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
- << " is unsafe. Ignoring scalable UserVF.\n");
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
- TheLoop->getStartLoc(),
- TheLoop->getHeader())
- << "User-specified vectorization factor "
- << ore::NV("UserVectorizationFactor", UserVF)
- << " is unsafe. Ignoring the hint to let the compiler pick a "
- "more suitable value.";
- });
- }
- }
- LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
- << " / " << WidestType << " bits.\n");
- FixedScalableVFPair Result(ElementCount::getFixed(1),
- ElementCount::getScalable(0));
- if (auto MaxVF =
- getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
- MaxSafeFixedVF, FoldTailByMasking))
- Result.FixedVF = MaxVF;
- if (auto MaxVF =
- getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
- MaxSafeScalableVF, FoldTailByMasking))
- if (MaxVF.isScalable()) {
- Result.ScalableVF = MaxVF;
- LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
- << "\n");
- }
- return Result;
- }
- FixedScalableVFPair
- LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
- if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
- // TODO: It may by useful to do since it's still likely to be dynamically
- // uniform if the target can skip.
- reportVectorizationFailure(
- "Not inserting runtime ptr check for divergent target",
- "runtime pointer checks needed. Not enabled for divergent target",
- "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
- return FixedScalableVFPair::getNone();
- }
- unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
- LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
- if (TC == 1) {
- reportVectorizationFailure("Single iteration (non) loop",
- "loop trip count is one, irrelevant for vectorization",
- "SingleIterationLoop", ORE, TheLoop);
- return FixedScalableVFPair::getNone();
- }
- switch (ScalarEpilogueStatus) {
- case CM_ScalarEpilogueAllowed:
- return computeFeasibleMaxVF(TC, UserVF, false);
- case CM_ScalarEpilogueNotAllowedUsePredicate:
- [[fallthrough]];
- case CM_ScalarEpilogueNotNeededUsePredicate:
- LLVM_DEBUG(
- dbgs() << "LV: vector predicate hint/switch found.\n"
- << "LV: Not allowing scalar epilogue, creating predicated "
- << "vector loop.\n");
- break;
- case CM_ScalarEpilogueNotAllowedLowTripLoop:
- // fallthrough as a special case of OptForSize
- case CM_ScalarEpilogueNotAllowedOptSize:
- if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
- LLVM_DEBUG(
- dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
- else
- LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
- << "count.\n");
- // Bail if runtime checks are required, which are not good when optimising
- // for size.
- if (runtimeChecksRequired())
- return FixedScalableVFPair::getNone();
- break;
- }
- // The only loops we can vectorize without a scalar epilogue, are loops with
- // a bottom-test and a single exiting block. We'd have to handle the fact
- // that not every instruction executes on the last iteration. This will
- // require a lane mask which varies through the vector loop body. (TODO)
- if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
- // If there was a tail-folding hint/switch, but we can't fold the tail by
- // masking, fallback to a vectorization with a scalar epilogue.
- if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
- LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
- "scalar epilogue instead.\n");
- ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
- return computeFeasibleMaxVF(TC, UserVF, false);
- }
- return FixedScalableVFPair::getNone();
- }
- // Now try the tail folding
- // Invalidate interleave groups that require an epilogue if we can't mask
- // the interleave-group.
- if (!useMaskedInterleavedAccesses(TTI)) {
- assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
- "No decisions should have been taken at this point");
- // Note: There is no need to invalidate any cost modeling decisions here, as
- // non where taken so far.
- InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
- }
- FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
- // Avoid tail folding if the trip count is known to be a multiple of any VF
- // we chose.
- // FIXME: The condition below pessimises the case for fixed-width vectors,
- // when scalable VFs are also candidates for vectorization.
- if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
- ElementCount MaxFixedVF = MaxFactors.FixedVF;
- assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
- "MaxFixedVF must be a power of 2");
- unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
- : MaxFixedVF.getFixedValue();
- ScalarEvolution *SE = PSE.getSE();
- const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
- const SCEV *ExitCount = SE->getAddExpr(
- BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
- const SCEV *Rem = SE->getURemExpr(
- SE->applyLoopGuards(ExitCount, TheLoop),
- SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
- if (Rem->isZero()) {
- // Accept MaxFixedVF if we do not have a tail.
- LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
- return MaxFactors;
- }
- }
- // If we don't know the precise trip count, or if the trip count that we
- // found modulo the vectorization factor is not zero, try to fold the tail
- // by masking.
- // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
- if (Legal->prepareToFoldTailByMasking()) {
- FoldTailByMasking = true;
- return MaxFactors;
- }
- // If there was a tail-folding hint/switch, but we can't fold the tail by
- // masking, fallback to a vectorization with a scalar epilogue.
- if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
- LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
- "scalar epilogue instead.\n");
- ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
- return MaxFactors;
- }
- if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
- LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
- return FixedScalableVFPair::getNone();
- }
- if (TC == 0) {
- reportVectorizationFailure(
- "Unable to calculate the loop count due to complex control flow",
- "unable to calculate the loop count due to complex control flow",
- "UnknownLoopCountComplexCFG", ORE, TheLoop);
- return FixedScalableVFPair::getNone();
- }
- reportVectorizationFailure(
- "Cannot optimize for size and vectorize at the same time.",
- "cannot optimize for size and vectorize at the same time. "
- "Enable vectorization of this loop with '#pragma clang loop "
- "vectorize(enable)' when compiling with -Os/-Oz",
- "NoTailLoopWithOptForSize", ORE, TheLoop);
- return FixedScalableVFPair::getNone();
- }
- ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
- unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
- ElementCount MaxSafeVF, bool FoldTailByMasking) {
- bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
- const TypeSize WidestRegister = TTI.getRegisterBitWidth(
- ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
- : TargetTransformInfo::RGK_FixedWidthVector);
- // Convenience function to return the minimum of two ElementCounts.
- auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
- assert((LHS.isScalable() == RHS.isScalable()) &&
- "Scalable flags must match");
- return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
- };
- // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
- // Note that both WidestRegister and WidestType may not be a powers of 2.
- auto MaxVectorElementCount = ElementCount::get(
- PowerOf2Floor(WidestRegister.getKnownMinValue() / WidestType),
- ComputeScalableMaxVF);
- MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
- LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
- << (MaxVectorElementCount * WidestType) << " bits.\n");
- if (!MaxVectorElementCount) {
- LLVM_DEBUG(dbgs() << "LV: The target has no "
- << (ComputeScalableMaxVF ? "scalable" : "fixed")
- << " vector registers.\n");
- return ElementCount::getFixed(1);
- }
- unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue();
- if (MaxVectorElementCount.isScalable() &&
- TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
- auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
- auto Min = Attr.getVScaleRangeMin();
- WidestRegisterMinEC *= Min;
- }
- if (ConstTripCount && ConstTripCount <= WidestRegisterMinEC &&
- (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
- // If loop trip count (TC) is known at compile time there is no point in
- // choosing VF greater than TC (as done in the loop below). Select maximum
- // power of two which doesn't exceed TC.
- // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
- // when the TC is less than or equal to the known number of lanes.
- auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
- LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
- "exceeding the constant trip count: "
- << ClampedConstTripCount << "\n");
- return ElementCount::getFixed(ClampedConstTripCount);
- }
- TargetTransformInfo::RegisterKind RegKind =
- ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
- : TargetTransformInfo::RGK_FixedWidthVector;
- ElementCount MaxVF = MaxVectorElementCount;
- if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
- TTI.shouldMaximizeVectorBandwidth(RegKind))) {
- auto MaxVectorElementCountMaxBW = ElementCount::get(
- PowerOf2Floor(WidestRegister.getKnownMinValue() / SmallestType),
- ComputeScalableMaxVF);
- MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
- // Collect all viable vectorization factors larger than the default MaxVF
- // (i.e. MaxVectorElementCount).
- SmallVector<ElementCount, 8> VFs;
- for (ElementCount VS = MaxVectorElementCount * 2;
- ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
- VFs.push_back(VS);
- // For each VF calculate its register usage.
- auto RUs = calculateRegisterUsage(VFs);
- // Select the largest VF which doesn't require more registers than existing
- // ones.
- for (int i = RUs.size() - 1; i >= 0; --i) {
- bool Selected = true;
- for (auto &pair : RUs[i].MaxLocalUsers) {
- unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
- if (pair.second > TargetNumRegisters)
- Selected = false;
- }
- if (Selected) {
- MaxVF = VFs[i];
- break;
- }
- }
- if (ElementCount MinVF =
- TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
- if (ElementCount::isKnownLT(MaxVF, MinVF)) {
- LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
- << ") with target's minimum: " << MinVF << '\n');
- MaxVF = MinVF;
- }
- }
- // Invalidate any widening decisions we might have made, in case the loop
- // requires prediction (decided later), but we have already made some
- // load/store widening decisions.
- invalidateCostModelingDecisions();
- }
- return MaxVF;
- }
- std::optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
- if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
- auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
- auto Min = Attr.getVScaleRangeMin();
- auto Max = Attr.getVScaleRangeMax();
- if (Max && Min == Max)
- return Max;
- }
- return TTI.getVScaleForTuning();
- }
- bool LoopVectorizationCostModel::isMoreProfitable(
- const VectorizationFactor &A, const VectorizationFactor &B) const {
- InstructionCost CostA = A.Cost;
- InstructionCost CostB = B.Cost;
- unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
- if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
- MaxTripCount) {
- // If we are folding the tail and the trip count is a known (possibly small)
- // constant, the trip count will be rounded up to an integer number of
- // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
- // which we compare directly. When not folding the tail, the total cost will
- // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
- // approximated with the per-lane cost below instead of using the tripcount
- // as here.
- auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
- auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
- return RTCostA < RTCostB;
- }
- // Improve estimate for the vector width if it is scalable.
- unsigned EstimatedWidthA = A.Width.getKnownMinValue();
- unsigned EstimatedWidthB = B.Width.getKnownMinValue();
- if (std::optional<unsigned> VScale = getVScaleForTuning()) {
- if (A.Width.isScalable())
- EstimatedWidthA *= *VScale;
- if (B.Width.isScalable())
- EstimatedWidthB *= *VScale;
- }
- // Assume vscale may be larger than 1 (or the value being tuned for),
- // so that scalable vectorization is slightly favorable over fixed-width
- // vectorization.
- if (A.Width.isScalable() && !B.Width.isScalable())
- return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
- // To avoid the need for FP division:
- // (CostA / A.Width) < (CostB / B.Width)
- // <=> (CostA * B.Width) < (CostB * A.Width)
- return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
- }
- VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
- const ElementCountSet &VFCandidates) {
- InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
- LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
- assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
- assert(VFCandidates.count(ElementCount::getFixed(1)) &&
- "Expected Scalar VF to be a candidate");
- const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
- ExpectedCost);
- VectorizationFactor ChosenFactor = ScalarCost;
- bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
- if (ForceVectorization && VFCandidates.size() > 1) {
- // Ignore scalar width, because the user explicitly wants vectorization.
- // Initialize cost to max so that VF = 2 is, at least, chosen during cost
- // evaluation.
- ChosenFactor.Cost = InstructionCost::getMax();
- }
- SmallVector<InstructionVFPair> InvalidCosts;
- for (const auto &i : VFCandidates) {
- // The cost for scalar VF=1 is already calculated, so ignore it.
- if (i.isScalar())
- continue;
- VectorizationCostTy C = expectedCost(i, &InvalidCosts);
- VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost);
- #ifndef NDEBUG
- unsigned AssumedMinimumVscale = 1;
- if (std::optional<unsigned> VScale = getVScaleForTuning())
- AssumedMinimumVscale = *VScale;
- unsigned Width =
- Candidate.Width.isScalable()
- ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
- : Candidate.Width.getFixedValue();
- LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
- << " costs: " << (Candidate.Cost / Width));
- if (i.isScalable())
- LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
- << AssumedMinimumVscale << ")");
- LLVM_DEBUG(dbgs() << ".\n");
- #endif
- if (!C.second && !ForceVectorization) {
- LLVM_DEBUG(
- dbgs() << "LV: Not considering vector loop of width " << i
- << " because it will not generate any vector instructions.\n");
- continue;
- }
- // If profitable add it to ProfitableVF list.
- if (isMoreProfitable(Candidate, ScalarCost))
- ProfitableVFs.push_back(Candidate);
- if (isMoreProfitable(Candidate, ChosenFactor))
- ChosenFactor = Candidate;
- }
- // Emit a report of VFs with invalid costs in the loop.
- if (!InvalidCosts.empty()) {
- // Group the remarks per instruction, keeping the instruction order from
- // InvalidCosts.
- std::map<Instruction *, unsigned> Numbering;
- unsigned I = 0;
- for (auto &Pair : InvalidCosts)
- if (!Numbering.count(Pair.first))
- Numbering[Pair.first] = I++;
- // Sort the list, first on instruction(number) then on VF.
- llvm::sort(InvalidCosts,
- [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
- if (Numbering[A.first] != Numbering[B.first])
- return Numbering[A.first] < Numbering[B.first];
- ElementCountComparator ECC;
- return ECC(A.second, B.second);
- });
- // For a list of ordered instruction-vf pairs:
- // [(load, vf1), (load, vf2), (store, vf1)]
- // Group the instructions together to emit separate remarks for:
- // load (vf1, vf2)
- // store (vf1)
- auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
- auto Subset = ArrayRef<InstructionVFPair>();
- do {
- if (Subset.empty())
- Subset = Tail.take_front(1);
- Instruction *I = Subset.front().first;
- // If the next instruction is different, or if there are no other pairs,
- // emit a remark for the collated subset. e.g.
- // [(load, vf1), (load, vf2))]
- // to emit:
- // remark: invalid costs for 'load' at VF=(vf, vf2)
- if (Subset == Tail || Tail[Subset.size()].first != I) {
- std::string OutString;
- raw_string_ostream OS(OutString);
- assert(!Subset.empty() && "Unexpected empty range");
- OS << "Instruction with invalid costs prevented vectorization at VF=(";
- for (const auto &Pair : Subset)
- OS << (Pair.second == Subset.front().second ? "" : ", ")
- << Pair.second;
- OS << "):";
- if (auto *CI = dyn_cast<CallInst>(I))
- OS << " call to " << CI->getCalledFunction()->getName();
- else
- OS << " " << I->getOpcodeName();
- OS.flush();
- reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
- Tail = Tail.drop_front(Subset.size());
- Subset = {};
- } else
- // Grow the subset by one element
- Subset = Tail.take_front(Subset.size() + 1);
- } while (!Tail.empty());
- }
- if (!EnableCondStoresVectorization && NumPredStores) {
- reportVectorizationFailure("There are conditional stores.",
- "store that is conditionally executed prevents vectorization",
- "ConditionalStore", ORE, TheLoop);
- ChosenFactor = ScalarCost;
- }
- LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
- !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs()
- << "LV: Vectorization seems to be not beneficial, "
- << "but was forced by a user.\n");
- LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
- return ChosenFactor;
- }
- bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
- const Loop &L, ElementCount VF) const {
- // Cross iteration phis such as reductions need special handling and are
- // currently unsupported.
- if (any_of(L.getHeader()->phis(),
- [&](PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); }))
- return false;
- // Phis with uses outside of the loop require special handling and are
- // currently unsupported.
- for (const auto &Entry : Legal->getInductionVars()) {
- // Look for uses of the value of the induction at the last iteration.
- Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
- for (User *U : PostInc->users())
- if (!L.contains(cast<Instruction>(U)))
- return false;
- // Look for uses of penultimate value of the induction.
- for (User *U : Entry.first->users())
- if (!L.contains(cast<Instruction>(U)))
- return false;
- }
- // Epilogue vectorization code has not been auditted to ensure it handles
- // non-latch exits properly. It may be fine, but it needs auditted and
- // tested.
- if (L.getExitingBlock() != L.getLoopLatch())
- return false;
- return true;
- }
- bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
- const ElementCount VF) const {
- // FIXME: We need a much better cost-model to take different parameters such
- // as register pressure, code size increase and cost of extra branches into
- // account. For now we apply a very crude heuristic and only consider loops
- // with vectorization factors larger than a certain value.
- // Allow the target to opt out entirely.
- if (!TTI.preferEpilogueVectorization())
- return false;
- // We also consider epilogue vectorization unprofitable for targets that don't
- // consider interleaving beneficial (eg. MVE).
- if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
- return false;
- // FIXME: We should consider changing the threshold for scalable
- // vectors to take VScaleForTuning into account.
- if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
- return true;
- return false;
- }
- VectorizationFactor
- LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
- const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
- VectorizationFactor Result = VectorizationFactor::Disabled();
- if (!EnableEpilogueVectorization) {
- LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
- return Result;
- }
- if (!isScalarEpilogueAllowed()) {
- LLVM_DEBUG(
- dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
- "allowed.\n";);
- return Result;
- }
- // Not really a cost consideration, but check for unsupported cases here to
- // simplify the logic.
- if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
- LLVM_DEBUG(
- dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
- "not a supported candidate.\n";);
- return Result;
- }
- if (EpilogueVectorizationForceVF > 1) {
- LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
- ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
- if (LVP.hasPlanWithVF(ForcedEC))
- return {ForcedEC, 0, 0};
- else {
- LLVM_DEBUG(
- dbgs()
- << "LEV: Epilogue vectorization forced factor is not viable.\n";);
- return Result;
- }
- }
- if (TheLoop->getHeader()->getParent()->hasOptSize() ||
- TheLoop->getHeader()->getParent()->hasMinSize()) {
- LLVM_DEBUG(
- dbgs()
- << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
- return Result;
- }
- if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
- LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
- "this loop\n");
- return Result;
- }
- // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
- // the main loop handles 8 lanes per iteration. We could still benefit from
- // vectorizing the epilogue loop with VF=4.
- ElementCount EstimatedRuntimeVF = MainLoopVF;
- if (MainLoopVF.isScalable()) {
- EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
- if (std::optional<unsigned> VScale = getVScaleForTuning())
- EstimatedRuntimeVF *= *VScale;
- }
- for (auto &NextVF : ProfitableVFs)
- if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
- ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
- ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
- (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
- LVP.hasPlanWithVF(NextVF.Width))
- Result = NextVF;
- if (Result != VectorizationFactor::Disabled())
- LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
- << Result.Width << "\n";);
- return Result;
- }
- std::pair<unsigned, unsigned>
- LoopVectorizationCostModel::getSmallestAndWidestTypes() {
- unsigned MinWidth = -1U;
- unsigned MaxWidth = 8;
- const DataLayout &DL = TheFunction->getParent()->getDataLayout();
- // For in-loop reductions, no element types are added to ElementTypesInLoop
- // if there are no loads/stores in the loop. In this case, check through the
- // reduction variables to determine the maximum width.
- if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
- // Reset MaxWidth so that we can find the smallest type used by recurrences
- // in the loop.
- MaxWidth = -1U;
- for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
- const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
- // When finding the min width used by the recurrence we need to account
- // for casts on the input operands of the recurrence.
- MaxWidth = std::min<unsigned>(
- MaxWidth, std::min<unsigned>(
- RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
- RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
- }
- } else {
- for (Type *T : ElementTypesInLoop) {
- MinWidth = std::min<unsigned>(
- MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
- MaxWidth = std::max<unsigned>(
- MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
- }
- }
- return {MinWidth, MaxWidth};
- }
- void LoopVectorizationCostModel::collectElementTypesForWidening() {
- ElementTypesInLoop.clear();
- // For each block.
- for (BasicBlock *BB : TheLoop->blocks()) {
- // For each instruction in the loop.
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- Type *T = I.getType();
- // Skip ignored values.
- if (ValuesToIgnore.count(&I))
- continue;
- // Only examine Loads, Stores and PHINodes.
- if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
- continue;
- // Examine PHI nodes that are reduction variables. Update the type to
- // account for the recurrence type.
- if (auto *PN = dyn_cast<PHINode>(&I)) {
- if (!Legal->isReductionVariable(PN))
- continue;
- const RecurrenceDescriptor &RdxDesc =
- Legal->getReductionVars().find(PN)->second;
- if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
- TTI.preferInLoopReduction(RdxDesc.getOpcode(),
- RdxDesc.getRecurrenceType(),
- TargetTransformInfo::ReductionFlags()))
- continue;
- T = RdxDesc.getRecurrenceType();
- }
- // Examine the stored values.
- if (auto *ST = dyn_cast<StoreInst>(&I))
- T = ST->getValueOperand()->getType();
- assert(T->isSized() &&
- "Expected the load/store/recurrence type to be sized");
- ElementTypesInLoop.insert(T);
- }
- }
- }
- unsigned
- LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
- InstructionCost LoopCost) {
- // -- The interleave heuristics --
- // We interleave the loop in order to expose ILP and reduce the loop overhead.
- // There are many micro-architectural considerations that we can't predict
- // at this level. For example, frontend pressure (on decode or fetch) due to
- // code size, or the number and capabilities of the execution ports.
- //
- // We use the following heuristics to select the interleave count:
- // 1. If the code has reductions, then we interleave to break the cross
- // iteration dependency.
- // 2. If the loop is really small, then we interleave to reduce the loop
- // overhead.
- // 3. We don't interleave if we think that we will spill registers to memory
- // due to the increased register pressure.
- if (!isScalarEpilogueAllowed())
- return 1;
- // We used the distance for the interleave count.
- if (Legal->getMaxSafeDepDistBytes() != -1U)
- return 1;
- auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
- const bool HasReductions = !Legal->getReductionVars().empty();
- // Do not interleave loops with a relatively small known or estimated trip
- // count. But we will interleave when InterleaveSmallLoopScalarReduction is
- // enabled, and the code has scalar reductions(HasReductions && VF = 1),
- // because with the above conditions interleaving can expose ILP and break
- // cross iteration dependences for reductions.
- if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
- !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
- return 1;
- // If we did not calculate the cost for VF (because the user selected the VF)
- // then we calculate the cost of VF here.
- if (LoopCost == 0) {
- LoopCost = expectedCost(VF).first;
- assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
- // Loop body is free and there is no need for interleaving.
- if (LoopCost == 0)
- return 1;
- }
- RegisterUsage R = calculateRegisterUsage({VF})[0];
- // We divide by these constants so assume that we have at least one
- // instruction that uses at least one register.
- for (auto& pair : R.MaxLocalUsers) {
- pair.second = std::max(pair.second, 1U);
- }
- // We calculate the interleave count using the following formula.
- // Subtract the number of loop invariants from the number of available
- // registers. These registers are used by all of the interleaved instances.
- // Next, divide the remaining registers by the number of registers that is
- // required by the loop, in order to estimate how many parallel instances
- // fit without causing spills. All of this is rounded down if necessary to be
- // a power of two. We want power of two interleave count to simplify any
- // addressing operations or alignment considerations.
- // We also want power of two interleave counts to ensure that the induction
- // variable of the vector loop wraps to zero, when tail is folded by masking;
- // this currently happens when OptForSize, in which case IC is set to 1 above.
- unsigned IC = UINT_MAX;
- for (auto& pair : R.MaxLocalUsers) {
- unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
- LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
- << " registers of "
- << TTI.getRegisterClassName(pair.first) << " register class\n");
- if (VF.isScalar()) {
- if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
- TargetNumRegisters = ForceTargetNumScalarRegs;
- } else {
- if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
- TargetNumRegisters = ForceTargetNumVectorRegs;
- }
- unsigned MaxLocalUsers = pair.second;
- unsigned LoopInvariantRegs = 0;
- if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
- LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
- unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
- // Don't count the induction variable as interleaved.
- if (EnableIndVarRegisterHeur) {
- TmpIC =
- PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
- std::max(1U, (MaxLocalUsers - 1)));
- }
- IC = std::min(IC, TmpIC);
- }
- // Clamp the interleave ranges to reasonable counts.
- unsigned MaxInterleaveCount =
- TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
- // Check if the user has overridden the max.
- if (VF.isScalar()) {
- if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
- MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
- } else {
- if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
- MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
- }
- // If trip count is known or estimated compile time constant, limit the
- // interleave count to be less than the trip count divided by VF, provided it
- // is at least 1.
- //
- // For scalable vectors we can't know if interleaving is beneficial. It may
- // not be beneficial for small loops if none of the lanes in the second vector
- // iterations is enabled. However, for larger loops, there is likely to be a
- // similar benefit as for fixed-width vectors. For now, we choose to leave
- // the InterleaveCount as if vscale is '1', although if some information about
- // the vector is known (e.g. min vector size), we can make a better decision.
- if (BestKnownTC) {
- MaxInterleaveCount =
- std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
- // Make sure MaxInterleaveCount is greater than 0.
- MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
- }
- assert(MaxInterleaveCount > 0 &&
- "Maximum interleave count must be greater than 0");
- // Clamp the calculated IC to be between the 1 and the max interleave count
- // that the target and trip count allows.
- if (IC > MaxInterleaveCount)
- IC = MaxInterleaveCount;
- else
- // Make sure IC is greater than 0.
- IC = std::max(1u, IC);
- assert(IC > 0 && "Interleave count must be greater than 0.");
- // Interleave if we vectorized this loop and there is a reduction that could
- // benefit from interleaving.
- if (VF.isVector() && HasReductions) {
- LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
- return IC;
- }
- // For any scalar loop that either requires runtime checks or predication we
- // are better off leaving this to the unroller. Note that if we've already
- // vectorized the loop we will have done the runtime check and so interleaving
- // won't require further checks.
- bool ScalarInterleavingRequiresPredication =
- (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
- return Legal->blockNeedsPredication(BB);
- }));
- bool ScalarInterleavingRequiresRuntimePointerCheck =
- (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
- // We want to interleave small loops in order to reduce the loop overhead and
- // potentially expose ILP opportunities.
- LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
- << "LV: IC is " << IC << '\n'
- << "LV: VF is " << VF << '\n');
- const bool AggressivelyInterleaveReductions =
- TTI.enableAggressiveInterleaving(HasReductions);
- if (!ScalarInterleavingRequiresRuntimePointerCheck &&
- !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
- // We assume that the cost overhead is 1 and we use the cost model
- // to estimate the cost of the loop and interleave until the cost of the
- // loop overhead is about 5% of the cost of the loop.
- unsigned SmallIC = std::min(
- IC, (unsigned)PowerOf2Floor(SmallLoopCost / *LoopCost.getValue()));
- // Interleave until store/load ports (estimated by max interleave count) are
- // saturated.
- unsigned NumStores = Legal->getNumStores();
- unsigned NumLoads = Legal->getNumLoads();
- unsigned StoresIC = IC / (NumStores ? NumStores : 1);
- unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
- // There is little point in interleaving for reductions containing selects
- // and compares when VF=1 since it may just create more overhead than it's
- // worth for loops with small trip counts. This is because we still have to
- // do the final reduction after the loop.
- bool HasSelectCmpReductions =
- HasReductions &&
- any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
- const RecurrenceDescriptor &RdxDesc = Reduction.second;
- return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
- RdxDesc.getRecurrenceKind());
- });
- if (HasSelectCmpReductions) {
- LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
- return 1;
- }
- // If we have a scalar reduction (vector reductions are already dealt with
- // by this point), we can increase the critical path length if the loop
- // we're interleaving is inside another loop. For tree-wise reductions
- // set the limit to 2, and for ordered reductions it's best to disable
- // interleaving entirely.
- if (HasReductions && TheLoop->getLoopDepth() > 1) {
- bool HasOrderedReductions =
- any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
- const RecurrenceDescriptor &RdxDesc = Reduction.second;
- return RdxDesc.isOrdered();
- });
- if (HasOrderedReductions) {
- LLVM_DEBUG(
- dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
- return 1;
- }
- unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
- SmallIC = std::min(SmallIC, F);
- StoresIC = std::min(StoresIC, F);
- LoadsIC = std::min(LoadsIC, F);
- }
- if (EnableLoadStoreRuntimeInterleave &&
- std::max(StoresIC, LoadsIC) > SmallIC) {
- LLVM_DEBUG(
- dbgs() << "LV: Interleaving to saturate store or load ports.\n");
- return std::max(StoresIC, LoadsIC);
- }
- // If there are scalar reductions and TTI has enabled aggressive
- // interleaving for reductions, we will interleave to expose ILP.
- if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
- AggressivelyInterleaveReductions) {
- LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
- // Interleave no less than SmallIC but not as aggressive as the normal IC
- // to satisfy the rare situation when resources are too limited.
- return std::max(IC / 2, SmallIC);
- } else {
- LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
- return SmallIC;
- }
- }
- // Interleave if this is a large loop (small loops are already dealt with by
- // this point) that could benefit from interleaving.
- if (AggressivelyInterleaveReductions) {
- LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
- return IC;
- }
- LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
- return 1;
- }
- SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
- LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
- // This function calculates the register usage by measuring the highest number
- // of values that are alive at a single location. Obviously, this is a very
- // rough estimation. We scan the loop in a topological order in order and
- // assign a number to each instruction. We use RPO to ensure that defs are
- // met before their users. We assume that each instruction that has in-loop
- // users starts an interval. We record every time that an in-loop value is
- // used, so we have a list of the first and last occurrences of each
- // instruction. Next, we transpose this data structure into a multi map that
- // holds the list of intervals that *end* at a specific location. This multi
- // map allows us to perform a linear search. We scan the instructions linearly
- // and record each time that a new interval starts, by placing it in a set.
- // If we find this value in the multi-map then we remove it from the set.
- // The max register usage is the maximum size of the set.
- // We also search for instructions that are defined outside the loop, but are
- // used inside the loop. We need this number separately from the max-interval
- // usage number because when we unroll, loop-invariant values do not take
- // more register.
- LoopBlocksDFS DFS(TheLoop);
- DFS.perform(LI);
- RegisterUsage RU;
- // Each 'key' in the map opens a new interval. The values
- // of the map are the index of the 'last seen' usage of the
- // instruction that is the key.
- using IntervalMap = DenseMap<Instruction *, unsigned>;
- // Maps instruction to its index.
- SmallVector<Instruction *, 64> IdxToInstr;
- // Marks the end of each interval.
- IntervalMap EndPoint;
- // Saves the list of instruction indices that are used in the loop.
- SmallPtrSet<Instruction *, 8> Ends;
- // Saves the list of values that are used in the loop but are defined outside
- // the loop (not including non-instruction values such as arguments and
- // constants).
- SmallPtrSet<Instruction *, 8> LoopInvariants;
- for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- IdxToInstr.push_back(&I);
- // Save the end location of each USE.
- for (Value *U : I.operands()) {
- auto *Instr = dyn_cast<Instruction>(U);
- // Ignore non-instruction values such as arguments, constants, etc.
- // FIXME: Might need some motivation why these values are ignored. If
- // for example an argument is used inside the loop it will increase the
- // register pressure (so shouldn't we add it to LoopInvariants).
- if (!Instr)
- continue;
- // If this instruction is outside the loop then record it and continue.
- if (!TheLoop->contains(Instr)) {
- LoopInvariants.insert(Instr);
- continue;
- }
- // Overwrite previous end points.
- EndPoint[Instr] = IdxToInstr.size();
- Ends.insert(Instr);
- }
- }
- }
- // Saves the list of intervals that end with the index in 'key'.
- using InstrList = SmallVector<Instruction *, 2>;
- DenseMap<unsigned, InstrList> TransposeEnds;
- // Transpose the EndPoints to a list of values that end at each index.
- for (auto &Interval : EndPoint)
- TransposeEnds[Interval.second].push_back(Interval.first);
- SmallPtrSet<Instruction *, 8> OpenIntervals;
- SmallVector<RegisterUsage, 8> RUs(VFs.size());
- SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
- LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
- const auto &TTICapture = TTI;
- auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
- if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
- return 0;
- return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
- };
- for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
- Instruction *I = IdxToInstr[i];
- // Remove all of the instructions that end at this location.
- InstrList &List = TransposeEnds[i];
- for (Instruction *ToRemove : List)
- OpenIntervals.erase(ToRemove);
- // Ignore instructions that are never used within the loop.
- if (!Ends.count(I))
- continue;
- // Skip ignored values.
- if (ValuesToIgnore.count(I))
- continue;
- // For each VF find the maximum usage of registers.
- for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
- // Count the number of registers used, per register class, given all open
- // intervals.
- // Note that elements in this SmallMapVector will be default constructed
- // as 0. So we can use "RegUsage[ClassID] += n" in the code below even if
- // there is no previous entry for ClassID.
- SmallMapVector<unsigned, unsigned, 4> RegUsage;
- if (VFs[j].isScalar()) {
- for (auto *Inst : OpenIntervals) {
- unsigned ClassID =
- TTI.getRegisterClassForType(false, Inst->getType());
- // FIXME: The target might use more than one register for the type
- // even in the scalar case.
- RegUsage[ClassID] += 1;
- }
- } else {
- collectUniformsAndScalars(VFs[j]);
- for (auto *Inst : OpenIntervals) {
- // Skip ignored values for VF > 1.
- if (VecValuesToIgnore.count(Inst))
- continue;
- if (isScalarAfterVectorization(Inst, VFs[j])) {
- unsigned ClassID =
- TTI.getRegisterClassForType(false, Inst->getType());
- // FIXME: The target might use more than one register for the type
- // even in the scalar case.
- RegUsage[ClassID] += 1;
- } else {
- unsigned ClassID =
- TTI.getRegisterClassForType(true, Inst->getType());
- RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
- }
- }
- }
- for (auto& pair : RegUsage) {
- auto &Entry = MaxUsages[j][pair.first];
- Entry = std::max(Entry, pair.second);
- }
- }
- LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
- << OpenIntervals.size() << '\n');
- // Add the current instruction to the list of open intervals.
- OpenIntervals.insert(I);
- }
- for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
- // Note that elements in this SmallMapVector will be default constructed
- // as 0. So we can use "Invariant[ClassID] += n" in the code below even if
- // there is no previous entry for ClassID.
- SmallMapVector<unsigned, unsigned, 4> Invariant;
- for (auto *Inst : LoopInvariants) {
- // FIXME: The target might use more than one register for the type
- // even in the scalar case.
- bool IsScalar = all_of(Inst->users(), [&](User *U) {
- auto *I = cast<Instruction>(U);
- return TheLoop != LI->getLoopFor(I->getParent()) ||
- isScalarAfterVectorization(I, VFs[i]);
- });
- ElementCount VF = IsScalar ? ElementCount::getFixed(1) : VFs[i];
- unsigned ClassID =
- TTI.getRegisterClassForType(VF.isVector(), Inst->getType());
- Invariant[ClassID] += GetRegUsage(Inst->getType(), VF);
- }
- LLVM_DEBUG({
- dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
- dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
- << " item\n";
- for (const auto &pair : MaxUsages[i]) {
- dbgs() << "LV(REG): RegisterClass: "
- << TTI.getRegisterClassName(pair.first) << ", " << pair.second
- << " registers\n";
- }
- dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
- << " item\n";
- for (const auto &pair : Invariant) {
- dbgs() << "LV(REG): RegisterClass: "
- << TTI.getRegisterClassName(pair.first) << ", " << pair.second
- << " registers\n";
- }
- });
- RU.LoopInvariantRegs = Invariant;
- RU.MaxLocalUsers = MaxUsages[i];
- RUs[i] = RU;
- }
- return RUs;
- }
- bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
- ElementCount VF) {
- // TODO: Cost model for emulated masked load/store is completely
- // broken. This hack guides the cost model to use an artificially
- // high enough value to practically disable vectorization with such
- // operations, except where previously deployed legality hack allowed
- // using very low cost values. This is to avoid regressions coming simply
- // from moving "masked load/store" check from legality to cost model.
- // Masked Load/Gather emulation was previously never allowed.
- // Limited number of Masked Store/Scatter emulation was allowed.
- assert((isPredicatedInst(I)) &&
- "Expecting a scalar emulated instruction");
- return isa<LoadInst>(I) ||
- (isa<StoreInst>(I) &&
- NumPredStores > NumberOfStoresToPredicate);
- }
- void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
- // If we aren't vectorizing the loop, or if we've already collected the
- // instructions to scalarize, there's nothing to do. Collection may already
- // have occurred if we have a user-selected VF and are now computing the
- // expected cost for interleaving.
- if (VF.isScalar() || VF.isZero() ||
- InstsToScalarize.find(VF) != InstsToScalarize.end())
- return;
- // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
- // not profitable to scalarize any instructions, the presence of VF in the
- // map will indicate that we've analyzed it already.
- ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
- PredicatedBBsAfterVectorization[VF].clear();
- // Find all the instructions that are scalar with predication in the loop and
- // determine if it would be better to not if-convert the blocks they are in.
- // If so, we also record the instructions to scalarize.
- for (BasicBlock *BB : TheLoop->blocks()) {
- if (!blockNeedsPredicationForAnyReason(BB))
- continue;
- for (Instruction &I : *BB)
- if (isScalarWithPredication(&I, VF)) {
- ScalarCostsTy ScalarCosts;
- // Do not apply discount if scalable, because that would lead to
- // invalid scalarization costs.
- // Do not apply discount logic if hacked cost is needed
- // for emulated masked memrefs.
- if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
- computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
- ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
- // Remember that BB will remain after vectorization.
- PredicatedBBsAfterVectorization[VF].insert(BB);
- }
- }
- }
- InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
- Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
- assert(!isUniformAfterVectorization(PredInst, VF) &&
- "Instruction marked uniform-after-vectorization will be predicated");
- // Initialize the discount to zero, meaning that the scalar version and the
- // vector version cost the same.
- InstructionCost Discount = 0;
- // Holds instructions to analyze. The instructions we visit are mapped in
- // ScalarCosts. Those instructions are the ones that would be scalarized if
- // we find that the scalar version costs less.
- SmallVector<Instruction *, 8> Worklist;
- // Returns true if the given instruction can be scalarized.
- auto canBeScalarized = [&](Instruction *I) -> bool {
- // We only attempt to scalarize instructions forming a single-use chain
- // from the original predicated block that would otherwise be vectorized.
- // Although not strictly necessary, we give up on instructions we know will
- // already be scalar to avoid traversing chains that are unlikely to be
- // beneficial.
- if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
- isScalarAfterVectorization(I, VF))
- return false;
- // If the instruction is scalar with predication, it will be analyzed
- // separately. We ignore it within the context of PredInst.
- if (isScalarWithPredication(I, VF))
- return false;
- // If any of the instruction's operands are uniform after vectorization,
- // the instruction cannot be scalarized. This prevents, for example, a
- // masked load from being scalarized.
- //
- // We assume we will only emit a value for lane zero of an instruction
- // marked uniform after vectorization, rather than VF identical values.
- // Thus, if we scalarize an instruction that uses a uniform, we would
- // create uses of values corresponding to the lanes we aren't emitting code
- // for. This behavior can be changed by allowing getScalarValue to clone
- // the lane zero values for uniforms rather than asserting.
- for (Use &U : I->operands())
- if (auto *J = dyn_cast<Instruction>(U.get()))
- if (isUniformAfterVectorization(J, VF))
- return false;
- // Otherwise, we can scalarize the instruction.
- return true;
- };
- // Compute the expected cost discount from scalarizing the entire expression
- // feeding the predicated instruction. We currently only consider expressions
- // that are single-use instruction chains.
- Worklist.push_back(PredInst);
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- // If we've already analyzed the instruction, there's nothing to do.
- if (ScalarCosts.find(I) != ScalarCosts.end())
- continue;
- // Compute the cost of the vector instruction. Note that this cost already
- // includes the scalarization overhead of the predicated instruction.
- InstructionCost VectorCost = getInstructionCost(I, VF).first;
- // Compute the cost of the scalarized instruction. This cost is the cost of
- // the instruction as if it wasn't if-converted and instead remained in the
- // predicated block. We will scale this cost by block probability after
- // computing the scalarization overhead.
- InstructionCost ScalarCost =
- VF.getFixedValue() *
- getInstructionCost(I, ElementCount::getFixed(1)).first;
- // Compute the scalarization overhead of needed insertelement instructions
- // and phi nodes.
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
- if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
- ScalarCost += TTI.getScalarizationOverhead(
- cast<VectorType>(ToVectorTy(I->getType(), VF)),
- APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ true,
- /*Extract*/ false, CostKind);
- ScalarCost +=
- VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
- }
- // Compute the scalarization overhead of needed extractelement
- // instructions. For each of the instruction's operands, if the operand can
- // be scalarized, add it to the worklist; otherwise, account for the
- // overhead.
- for (Use &U : I->operands())
- if (auto *J = dyn_cast<Instruction>(U.get())) {
- assert(VectorType::isValidElementType(J->getType()) &&
- "Instruction has non-scalar type");
- if (canBeScalarized(J))
- Worklist.push_back(J);
- else if (needsExtract(J, VF)) {
- ScalarCost += TTI.getScalarizationOverhead(
- cast<VectorType>(ToVectorTy(J->getType(), VF)),
- APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
- /*Extract*/ true, CostKind);
- }
- }
- // Scale the total scalar cost by block probability.
- ScalarCost /= getReciprocalPredBlockProb();
- // Compute the discount. A non-negative discount means the vector version
- // of the instruction costs more, and scalarizing would be beneficial.
- Discount += VectorCost - ScalarCost;
- ScalarCosts[I] = ScalarCost;
- }
- return Discount;
- }
- LoopVectorizationCostModel::VectorizationCostTy
- LoopVectorizationCostModel::expectedCost(
- ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
- VectorizationCostTy Cost;
- // For each block.
- for (BasicBlock *BB : TheLoop->blocks()) {
- VectorizationCostTy BlockCost;
- // For each instruction in the old loop.
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- // Skip ignored values.
- if (ValuesToIgnore.count(&I) ||
- (VF.isVector() && VecValuesToIgnore.count(&I)))
- continue;
- VectorizationCostTy C = getInstructionCost(&I, VF);
- // Check if we should override the cost.
- if (C.first.isValid() &&
- ForceTargetInstructionCost.getNumOccurrences() > 0)
- C.first = InstructionCost(ForceTargetInstructionCost);
- // Keep a list of instructions with invalid costs.
- if (Invalid && !C.first.isValid())
- Invalid->emplace_back(&I, VF);
- BlockCost.first += C.first;
- BlockCost.second |= C.second;
- LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
- << " for VF " << VF << " For instruction: " << I
- << '\n');
- }
- // If we are vectorizing a predicated block, it will have been
- // if-converted. This means that the block's instructions (aside from
- // stores and instructions that may divide by zero) will now be
- // unconditionally executed. For the scalar case, we may not always execute
- // the predicated block, if it is an if-else block. Thus, scale the block's
- // cost by the probability of executing it. blockNeedsPredication from
- // Legal is used so as to not include all blocks in tail folded loops.
- if (VF.isScalar() && Legal->blockNeedsPredication(BB))
- BlockCost.first /= getReciprocalPredBlockProb();
- Cost.first += BlockCost.first;
- Cost.second |= BlockCost.second;
- }
- return Cost;
- }
- /// Gets Address Access SCEV after verifying that the access pattern
- /// is loop invariant except the induction variable dependence.
- ///
- /// This SCEV can be sent to the Target in order to estimate the address
- /// calculation cost.
- static const SCEV *getAddressAccessSCEV(
- Value *Ptr,
- LoopVectorizationLegality *Legal,
- PredicatedScalarEvolution &PSE,
- const Loop *TheLoop) {
- auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
- if (!Gep)
- return nullptr;
- // We are looking for a gep with all loop invariant indices except for one
- // which should be an induction variable.
- auto SE = PSE.getSE();
- unsigned NumOperands = Gep->getNumOperands();
- for (unsigned i = 1; i < NumOperands; ++i) {
- Value *Opd = Gep->getOperand(i);
- if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
- !Legal->isInductionVariable(Opd))
- return nullptr;
- }
- // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
- return PSE.getSCEV(Ptr);
- }
- static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
- return Legal->hasStride(I->getOperand(0)) ||
- Legal->hasStride(I->getOperand(1));
- }
- InstructionCost
- LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
- ElementCount VF) {
- assert(VF.isVector() &&
- "Scalarization cost of instruction implies vectorization.");
- if (VF.isScalable())
- return InstructionCost::getInvalid();
- Type *ValTy = getLoadStoreType(I);
- auto SE = PSE.getSE();
- unsigned AS = getLoadStoreAddressSpace(I);
- Value *Ptr = getLoadStorePointerOperand(I);
- Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
- // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
- // that it is being called from this specific place.
- // Figure out whether the access is strided and get the stride value
- // if it's known in compile time
- const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
- // Get the cost of the scalar memory instruction and address computation.
- InstructionCost Cost =
- VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
- // Don't pass *I here, since it is scalar but will actually be part of a
- // vectorized loop where the user of it is a vectorized instruction.
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
- const Align Alignment = getLoadStoreAlignment(I);
- Cost += VF.getKnownMinValue() * TTI.getMemoryOpCost(I->getOpcode(),
- ValTy->getScalarType(),
- Alignment, AS, CostKind);
- // Get the overhead of the extractelement and insertelement instructions
- // we might create due to scalarization.
- Cost += getScalarizationOverhead(I, VF, CostKind);
- // If we have a predicated load/store, it will need extra i1 extracts and
- // conditional branches, but may not be executed for each vector lane. Scale
- // the cost by the probability of executing the predicated block.
- if (isPredicatedInst(I)) {
- Cost /= getReciprocalPredBlockProb();
- // Add the cost of an i1 extract and a branch
- auto *Vec_i1Ty =
- VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
- Cost += TTI.getScalarizationOverhead(
- Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
- /*Insert=*/false, /*Extract=*/true, CostKind);
- Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
- if (useEmulatedMaskMemRefHack(I, VF))
- // Artificially setting to a high enough value to practically disable
- // vectorization with such operations.
- Cost = 3000000;
- }
- return Cost;
- }
- InstructionCost
- LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
- ElementCount VF) {
- Type *ValTy = getLoadStoreType(I);
- auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
- Value *Ptr = getLoadStorePointerOperand(I);
- unsigned AS = getLoadStoreAddressSpace(I);
- int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
- enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
- assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
- "Stride should be 1 or -1 for consecutive memory access");
- const Align Alignment = getLoadStoreAlignment(I);
- InstructionCost Cost = 0;
- if (Legal->isMaskRequired(I)) {
- Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
- CostKind);
- } else {
- TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
- Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
- CostKind, OpInfo, I);
- }
- bool Reverse = ConsecutiveStride < 0;
- if (Reverse)
- Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy,
- std::nullopt, CostKind, 0);
- return Cost;
- }
- InstructionCost
- LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
- ElementCount VF) {
- assert(Legal->isUniformMemOp(*I));
- Type *ValTy = getLoadStoreType(I);
- auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
- const Align Alignment = getLoadStoreAlignment(I);
- unsigned AS = getLoadStoreAddressSpace(I);
- enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
- if (isa<LoadInst>(I)) {
- return TTI.getAddressComputationCost(ValTy) +
- TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
- CostKind) +
- TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
- }
- StoreInst *SI = cast<StoreInst>(I);
- bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
- return TTI.getAddressComputationCost(ValTy) +
- TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
- CostKind) +
- (isLoopInvariantStoreValue
- ? 0
- : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
- CostKind, VF.getKnownMinValue() - 1));
- }
- InstructionCost
- LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
- ElementCount VF) {
- Type *ValTy = getLoadStoreType(I);
- auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
- const Align Alignment = getLoadStoreAlignment(I);
- const Value *Ptr = getLoadStorePointerOperand(I);
- return TTI.getAddressComputationCost(VectorTy) +
- TTI.getGatherScatterOpCost(
- I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
- TargetTransformInfo::TCK_RecipThroughput, I);
- }
- InstructionCost
- LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
- ElementCount VF) {
- // TODO: Once we have support for interleaving with scalable vectors
- // we can calculate the cost properly here.
- if (VF.isScalable())
- return InstructionCost::getInvalid();
- Type *ValTy = getLoadStoreType(I);
- auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
- unsigned AS = getLoadStoreAddressSpace(I);
- enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
- auto Group = getInterleavedAccessGroup(I);
- assert(Group && "Fail to get an interleaved access group.");
- unsigned InterleaveFactor = Group->getFactor();
- auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
- // Holds the indices of existing members in the interleaved group.
- SmallVector<unsigned, 4> Indices;
- for (unsigned IF = 0; IF < InterleaveFactor; IF++)
- if (Group->getMember(IF))
- Indices.push_back(IF);
- // Calculate the cost of the whole interleaved group.
- bool UseMaskForGaps =
- (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
- (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
- InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
- I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
- AS, CostKind, Legal->isMaskRequired(I), UseMaskForGaps);
- if (Group->isReverse()) {
- // TODO: Add support for reversed masked interleaved access.
- assert(!Legal->isMaskRequired(I) &&
- "Reverse masked interleaved access not supported.");
- Cost += Group->getNumMembers() *
- TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy,
- std::nullopt, CostKind, 0);
- }
- return Cost;
- }
- std::optional<InstructionCost>
- LoopVectorizationCostModel::getReductionPatternCost(
- Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
- using namespace llvm::PatternMatch;
- // Early exit for no inloop reductions
- if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
- return std::nullopt;
- auto *VectorTy = cast<VectorType>(Ty);
- // We are looking for a pattern of, and finding the minimal acceptable cost:
- // reduce(mul(ext(A), ext(B))) or
- // reduce(mul(A, B)) or
- // reduce(ext(A)) or
- // reduce(A).
- // The basic idea is that we walk down the tree to do that, finding the root
- // reduction instruction in InLoopReductionImmediateChains. From there we find
- // the pattern of mul/ext and test the cost of the entire pattern vs the cost
- // of the components. If the reduction cost is lower then we return it for the
- // reduction instruction and 0 for the other instructions in the pattern. If
- // it is not we return an invalid cost specifying the orignal cost method
- // should be used.
- Instruction *RetI = I;
- if (match(RetI, m_ZExtOrSExt(m_Value()))) {
- if (!RetI->hasOneUser())
- return std::nullopt;
- RetI = RetI->user_back();
- }
- if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
- RetI->user_back()->getOpcode() == Instruction::Add) {
- RetI = RetI->user_back();
- }
- // Test if the found instruction is a reduction, and if not return an invalid
- // cost specifying the parent to use the original cost modelling.
- if (!InLoopReductionImmediateChains.count(RetI))
- return std::nullopt;
- // Find the reduction this chain is a part of and calculate the basic cost of
- // the reduction on its own.
- Instruction *LastChain = InLoopReductionImmediateChains[RetI];
- Instruction *ReductionPhi = LastChain;
- while (!isa<PHINode>(ReductionPhi))
- ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
- const RecurrenceDescriptor &RdxDesc =
- Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
- InstructionCost BaseCost = TTI.getArithmeticReductionCost(
- RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
- // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
- // normal fmul instruction to the cost of the fadd reduction.
- if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
- BaseCost +=
- TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
- // If we're using ordered reductions then we can just return the base cost
- // here, since getArithmeticReductionCost calculates the full ordered
- // reduction cost when FP reassociation is not allowed.
- if (useOrderedReductions(RdxDesc))
- return BaseCost;
- // Get the operand that was not the reduction chain and match it to one of the
- // patterns, returning the better cost if it is found.
- Instruction *RedOp = RetI->getOperand(1) == LastChain
- ? dyn_cast<Instruction>(RetI->getOperand(0))
- : dyn_cast<Instruction>(RetI->getOperand(1));
- VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
- Instruction *Op0, *Op1;
- if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
- match(RedOp,
- m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
- match(Op0, m_ZExtOrSExt(m_Value())) &&
- Op0->getOpcode() == Op1->getOpcode() &&
- Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
- !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
- (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
- // Matched reduce.add(ext(mul(ext(A), ext(B)))
- // Note that the extend opcodes need to all match, or if A==B they will have
- // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
- // which is equally fine.
- bool IsUnsigned = isa<ZExtInst>(Op0);
- auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
- auto *MulType = VectorType::get(Op0->getType(), VectorTy);
- InstructionCost ExtCost =
- TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
- TTI::CastContextHint::None, CostKind, Op0);
- InstructionCost MulCost =
- TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
- InstructionCost Ext2Cost =
- TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
- TTI::CastContextHint::None, CostKind, RedOp);
- InstructionCost RedCost = TTI.getMulAccReductionCost(
- IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind);
- if (RedCost.isValid() &&
- RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
- return I == RetI ? RedCost : 0;
- } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
- !TheLoop->isLoopInvariant(RedOp)) {
- // Matched reduce(ext(A))
- bool IsUnsigned = isa<ZExtInst>(RedOp);
- auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
- InstructionCost RedCost = TTI.getExtendedReductionCost(
- RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
- RdxDesc.getFastMathFlags(), CostKind);
- InstructionCost ExtCost =
- TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
- TTI::CastContextHint::None, CostKind, RedOp);
- if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
- return I == RetI ? RedCost : 0;
- } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
- match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
- if (match(Op0, m_ZExtOrSExt(m_Value())) &&
- Op0->getOpcode() == Op1->getOpcode() &&
- !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
- bool IsUnsigned = isa<ZExtInst>(Op0);
- Type *Op0Ty = Op0->getOperand(0)->getType();
- Type *Op1Ty = Op1->getOperand(0)->getType();
- Type *LargestOpTy =
- Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
- : Op0Ty;
- auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
- // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
- // different sizes. We take the largest type as the ext to reduce, and add
- // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
- InstructionCost ExtCost0 = TTI.getCastInstrCost(
- Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
- TTI::CastContextHint::None, CostKind, Op0);
- InstructionCost ExtCost1 = TTI.getCastInstrCost(
- Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
- TTI::CastContextHint::None, CostKind, Op1);
- InstructionCost MulCost =
- TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
- InstructionCost RedCost = TTI.getMulAccReductionCost(
- IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind);
- InstructionCost ExtraExtCost = 0;
- if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
- Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
- ExtraExtCost = TTI.getCastInstrCost(
- ExtraExtOp->getOpcode(), ExtType,
- VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
- TTI::CastContextHint::None, CostKind, ExtraExtOp);
- }
- if (RedCost.isValid() &&
- (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
- return I == RetI ? RedCost : 0;
- } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
- // Matched reduce.add(mul())
- InstructionCost MulCost =
- TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
- InstructionCost RedCost = TTI.getMulAccReductionCost(
- true, RdxDesc.getRecurrenceType(), VectorTy, CostKind);
- if (RedCost.isValid() && RedCost < MulCost + BaseCost)
- return I == RetI ? RedCost : 0;
- }
- }
- return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
- }
- InstructionCost
- LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
- ElementCount VF) {
- // Calculate scalar cost only. Vectorization cost should be ready at this
- // moment.
- if (VF.isScalar()) {
- Type *ValTy = getLoadStoreType(I);
- const Align Alignment = getLoadStoreAlignment(I);
- unsigned AS = getLoadStoreAddressSpace(I);
- TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
- return TTI.getAddressComputationCost(ValTy) +
- TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
- TTI::TCK_RecipThroughput, OpInfo, I);
- }
- return getWideningCost(I, VF);
- }
- LoopVectorizationCostModel::VectorizationCostTy
- LoopVectorizationCostModel::getInstructionCost(Instruction *I,
- ElementCount VF) {
- // If we know that this instruction will remain uniform, check the cost of
- // the scalar version.
- if (isUniformAfterVectorization(I, VF))
- VF = ElementCount::getFixed(1);
- if (VF.isVector() && isProfitableToScalarize(I, VF))
- return VectorizationCostTy(InstsToScalarize[VF][I], false);
- // Forced scalars do not have any scalarization overhead.
- auto ForcedScalar = ForcedScalars.find(VF);
- if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
- auto InstSet = ForcedScalar->second;
- if (InstSet.count(I))
- return VectorizationCostTy(
- (getInstructionCost(I, ElementCount::getFixed(1)).first *
- VF.getKnownMinValue()),
- false);
- }
- Type *VectorTy;
- InstructionCost C = getInstructionCost(I, VF, VectorTy);
- bool TypeNotScalarized = false;
- if (VF.isVector() && VectorTy->isVectorTy()) {
- if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) {
- if (VF.isScalable())
- // <vscale x 1 x iN> is assumed to be profitable over iN because
- // scalable registers are a distinct register class from scalar ones.
- // If we ever find a target which wants to lower scalable vectors
- // back to scalars, we'll need to update this code to explicitly
- // ask TTI about the register class uses for each part.
- TypeNotScalarized = NumParts <= VF.getKnownMinValue();
- else
- TypeNotScalarized = NumParts < VF.getKnownMinValue();
- } else
- C = InstructionCost::getInvalid();
- }
- return VectorizationCostTy(C, TypeNotScalarized);
- }
- InstructionCost LoopVectorizationCostModel::getScalarizationOverhead(
- Instruction *I, ElementCount VF, TTI::TargetCostKind CostKind) const {
- // There is no mechanism yet to create a scalable scalarization loop,
- // so this is currently Invalid.
- if (VF.isScalable())
- return InstructionCost::getInvalid();
- if (VF.isScalar())
- return 0;
- InstructionCost Cost = 0;
- Type *RetTy = ToVectorTy(I->getType(), VF);
- if (!RetTy->isVoidTy() &&
- (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
- Cost += TTI.getScalarizationOverhead(
- cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()),
- /*Insert*/ true,
- /*Extract*/ false, CostKind);
- // Some targets keep addresses scalar.
- if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
- return Cost;
- // Some targets support efficient element stores.
- if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
- return Cost;
- // Collect operands to consider.
- CallInst *CI = dyn_cast<CallInst>(I);
- Instruction::op_range Ops = CI ? CI->args() : I->operands();
- // Skip operands that do not require extraction/scalarization and do not incur
- // any overhead.
- SmallVector<Type *> Tys;
- for (auto *V : filterExtractingOperands(Ops, VF))
- Tys.push_back(MaybeVectorizeType(V->getType(), VF));
- return Cost + TTI.getOperandsScalarizationOverhead(
- filterExtractingOperands(Ops, VF), Tys, CostKind);
- }
- void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
- if (VF.isScalar())
- return;
- NumPredStores = 0;
- for (BasicBlock *BB : TheLoop->blocks()) {
- // For each instruction in the old loop.
- for (Instruction &I : *BB) {
- Value *Ptr = getLoadStorePointerOperand(&I);
- if (!Ptr)
- continue;
- // TODO: We should generate better code and update the cost model for
- // predicated uniform stores. Today they are treated as any other
- // predicated store (see added test cases in
- // invariant-store-vectorization.ll).
- if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
- NumPredStores++;
- if (Legal->isUniformMemOp(I)) {
- auto isLegalToScalarize = [&]() {
- if (!VF.isScalable())
- // Scalarization of fixed length vectors "just works".
- return true;
- // We have dedicated lowering for unpredicated uniform loads and
- // stores. Note that even with tail folding we know that at least
- // one lane is active (i.e. generalized predication is not possible
- // here), and the logic below depends on this fact.
- if (!foldTailByMasking())
- return true;
- // For scalable vectors, a uniform memop load is always
- // uniform-by-parts and we know how to scalarize that.
- if (isa<LoadInst>(I))
- return true;
- // A uniform store isn't neccessarily uniform-by-part
- // and we can't assume scalarization.
- auto &SI = cast<StoreInst>(I);
- return TheLoop->isLoopInvariant(SI.getValueOperand());
- };
- const InstructionCost GatherScatterCost =
- isLegalGatherOrScatter(&I, VF) ?
- getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
- // Load: Scalar load + broadcast
- // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
- // FIXME: This cost is a significant under-estimate for tail folded
- // memory ops.
- const InstructionCost ScalarizationCost = isLegalToScalarize() ?
- getUniformMemOpCost(&I, VF) : InstructionCost::getInvalid();
- // Choose better solution for the current VF, Note that Invalid
- // costs compare as maximumal large. If both are invalid, we get
- // scalable invalid which signals a failure and a vectorization abort.
- if (GatherScatterCost < ScalarizationCost)
- setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
- else
- setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
- continue;
- }
- // We assume that widening is the best solution when possible.
- if (memoryInstructionCanBeWidened(&I, VF)) {
- InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
- int ConsecutiveStride = Legal->isConsecutivePtr(
- getLoadStoreType(&I), getLoadStorePointerOperand(&I));
- assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
- "Expected consecutive stride.");
- InstWidening Decision =
- ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
- setWideningDecision(&I, VF, Decision, Cost);
- continue;
- }
- // Choose between Interleaving, Gather/Scatter or Scalarization.
- InstructionCost InterleaveCost = InstructionCost::getInvalid();
- unsigned NumAccesses = 1;
- if (isAccessInterleaved(&I)) {
- auto Group = getInterleavedAccessGroup(&I);
- assert(Group && "Fail to get an interleaved access group.");
- // Make one decision for the whole group.
- if (getWideningDecision(&I, VF) != CM_Unknown)
- continue;
- NumAccesses = Group->getNumMembers();
- if (interleavedAccessCanBeWidened(&I, VF))
- InterleaveCost = getInterleaveGroupCost(&I, VF);
- }
- InstructionCost GatherScatterCost =
- isLegalGatherOrScatter(&I, VF)
- ? getGatherScatterCost(&I, VF) * NumAccesses
- : InstructionCost::getInvalid();
- InstructionCost ScalarizationCost =
- getMemInstScalarizationCost(&I, VF) * NumAccesses;
- // Choose better solution for the current VF,
- // write down this decision and use it during vectorization.
- InstructionCost Cost;
- InstWidening Decision;
- if (InterleaveCost <= GatherScatterCost &&
- InterleaveCost < ScalarizationCost) {
- Decision = CM_Interleave;
- Cost = InterleaveCost;
- } else if (GatherScatterCost < ScalarizationCost) {
- Decision = CM_GatherScatter;
- Cost = GatherScatterCost;
- } else {
- Decision = CM_Scalarize;
- Cost = ScalarizationCost;
- }
- // If the instructions belongs to an interleave group, the whole group
- // receives the same decision. The whole group receives the cost, but
- // the cost will actually be assigned to one instruction.
- if (auto Group = getInterleavedAccessGroup(&I))
- setWideningDecision(Group, VF, Decision, Cost);
- else
- setWideningDecision(&I, VF, Decision, Cost);
- }
- }
- // Make sure that any load of address and any other address computation
- // remains scalar unless there is gather/scatter support. This avoids
- // inevitable extracts into address registers, and also has the benefit of
- // activating LSR more, since that pass can't optimize vectorized
- // addresses.
- if (TTI.prefersVectorizedAddressing())
- return;
- // Start with all scalar pointer uses.
- SmallPtrSet<Instruction *, 8> AddrDefs;
- for (BasicBlock *BB : TheLoop->blocks())
- for (Instruction &I : *BB) {
- Instruction *PtrDef =
- dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
- if (PtrDef && TheLoop->contains(PtrDef) &&
- getWideningDecision(&I, VF) != CM_GatherScatter)
- AddrDefs.insert(PtrDef);
- }
- // Add all instructions used to generate the addresses.
- SmallVector<Instruction *, 4> Worklist;
- append_range(Worklist, AddrDefs);
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- for (auto &Op : I->operands())
- if (auto *InstOp = dyn_cast<Instruction>(Op))
- if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
- AddrDefs.insert(InstOp).second)
- Worklist.push_back(InstOp);
- }
- for (auto *I : AddrDefs) {
- if (isa<LoadInst>(I)) {
- // Setting the desired widening decision should ideally be handled in
- // by cost functions, but since this involves the task of finding out
- // if the loaded register is involved in an address computation, it is
- // instead changed here when we know this is the case.
- InstWidening Decision = getWideningDecision(I, VF);
- if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
- // Scalarize a widened load of address.
- setWideningDecision(
- I, VF, CM_Scalarize,
- (VF.getKnownMinValue() *
- getMemoryInstructionCost(I, ElementCount::getFixed(1))));
- else if (auto Group = getInterleavedAccessGroup(I)) {
- // Scalarize an interleave group of address loads.
- for (unsigned I = 0; I < Group->getFactor(); ++I) {
- if (Instruction *Member = Group->getMember(I))
- setWideningDecision(
- Member, VF, CM_Scalarize,
- (VF.getKnownMinValue() *
- getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
- }
- }
- } else
- // Make sure I gets scalarized and a cost estimate without
- // scalarization overhead.
- ForcedScalars[VF].insert(I);
- }
- }
- InstructionCost
- LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
- Type *&VectorTy) {
- Type *RetTy = I->getType();
- if (canTruncateToMinimalBitwidth(I, VF))
- RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
- auto SE = PSE.getSE();
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
- auto hasSingleCopyAfterVectorization = [this](Instruction *I,
- ElementCount VF) -> bool {
- if (VF.isScalar())
- return true;
- auto Scalarized = InstsToScalarize.find(VF);
- assert(Scalarized != InstsToScalarize.end() &&
- "VF not yet analyzed for scalarization profitability");
- return !Scalarized->second.count(I) &&
- llvm::all_of(I->users(), [&](User *U) {
- auto *UI = cast<Instruction>(U);
- return !Scalarized->second.count(UI);
- });
- };
- (void) hasSingleCopyAfterVectorization;
- if (isScalarAfterVectorization(I, VF)) {
- // With the exception of GEPs and PHIs, after scalarization there should
- // only be one copy of the instruction generated in the loop. This is
- // because the VF is either 1, or any instructions that need scalarizing
- // have already been dealt with by the the time we get here. As a result,
- // it means we don't have to multiply the instruction cost by VF.
- assert(I->getOpcode() == Instruction::GetElementPtr ||
- I->getOpcode() == Instruction::PHI ||
- (I->getOpcode() == Instruction::BitCast &&
- I->getType()->isPointerTy()) ||
- hasSingleCopyAfterVectorization(I, VF));
- VectorTy = RetTy;
- } else
- VectorTy = ToVectorTy(RetTy, VF);
- // TODO: We need to estimate the cost of intrinsic calls.
- switch (I->getOpcode()) {
- case Instruction::GetElementPtr:
- // We mark this instruction as zero-cost because the cost of GEPs in
- // vectorized code depends on whether the corresponding memory instruction
- // is scalarized or not. Therefore, we handle GEPs with the memory
- // instruction cost.
- return 0;
- case Instruction::Br: {
- // In cases of scalarized and predicated instructions, there will be VF
- // predicated blocks in the vectorized loop. Each branch around these
- // blocks requires also an extract of its vector compare i1 element.
- bool ScalarPredicatedBB = false;
- BranchInst *BI = cast<BranchInst>(I);
- if (VF.isVector() && BI->isConditional() &&
- (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
- PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))))
- ScalarPredicatedBB = true;
- if (ScalarPredicatedBB) {
- // Not possible to scalarize scalable vector with predicated instructions.
- if (VF.isScalable())
- return InstructionCost::getInvalid();
- // Return cost for branches around scalarized and predicated blocks.
- auto *Vec_i1Ty =
- VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
- return (
- TTI.getScalarizationOverhead(
- Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()),
- /*Insert*/ false, /*Extract*/ true, CostKind) +
- (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
- } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
- // The back-edge branch will remain, as will all scalar branches.
- return TTI.getCFInstrCost(Instruction::Br, CostKind);
- else
- // This branch will be eliminated by if-conversion.
- return 0;
- // Note: We currently assume zero cost for an unconditional branch inside
- // a predicated block since it will become a fall-through, although we
- // may decide in the future to call TTI for all branches.
- }
- case Instruction::PHI: {
- auto *Phi = cast<PHINode>(I);
- // First-order recurrences are replaced by vector shuffles inside the loop.
- if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
- SmallVector<int> Mask(VF.getKnownMinValue());
- std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
- return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
- cast<VectorType>(VectorTy), Mask, CostKind,
- VF.getKnownMinValue() - 1);
- }
- // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
- // converted into select instructions. We require N - 1 selects per phi
- // node, where N is the number of incoming values.
- if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
- return (Phi->getNumIncomingValues() - 1) *
- TTI.getCmpSelInstrCost(
- Instruction::Select, ToVectorTy(Phi->getType(), VF),
- ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
- CmpInst::BAD_ICMP_PREDICATE, CostKind);
- return TTI.getCFInstrCost(Instruction::PHI, CostKind);
- }
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- if (VF.isVector() && isPredicatedInst(I)) {
- const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
- return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
- ScalarCost : SafeDivisorCost;
- }
- // We've proven all lanes safe to speculate, fall through.
- [[fallthrough]];
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Since we will replace the stride by 1 the multiplication should go away.
- if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
- return 0;
- // Detect reduction patterns
- if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
- return *RedCost;
- // Certain instructions can be cheaper to vectorize if they have a constant
- // second vector operand. One example of this are shifts on x86.
- Value *Op2 = I->getOperand(1);
- auto Op2Info = TTI.getOperandInfo(Op2);
- if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
- Op2Info.Kind = TargetTransformInfo::OK_UniformValue;
- SmallVector<const Value *, 4> Operands(I->operand_values());
- return TTI.getArithmeticInstrCost(
- I->getOpcode(), VectorTy, CostKind,
- {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
- Op2Info, Operands, I);
- }
- case Instruction::FNeg: {
- return TTI.getArithmeticInstrCost(
- I->getOpcode(), VectorTy, CostKind,
- {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
- {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
- I->getOperand(0), I);
- }
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
- bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
- const Value *Op0, *Op1;
- using namespace llvm::PatternMatch;
- if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
- match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
- // select x, y, false --> x & y
- // select x, true, y --> x | y
- const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
- const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
- assert(Op0->getType()->getScalarSizeInBits() == 1 &&
- Op1->getType()->getScalarSizeInBits() == 1);
- SmallVector<const Value *, 2> Operands{Op0, Op1};
- return TTI.getArithmeticInstrCost(
- match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
- CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, I);
- }
- Type *CondTy = SI->getCondition()->getType();
- if (!ScalarCond)
- CondTy = VectorType::get(CondTy, VF);
- CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
- if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
- Pred = Cmp->getPredicate();
- return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
- CostKind, I);
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- Type *ValTy = I->getOperand(0)->getType();
- Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
- if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
- ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
- VectorTy = ToVectorTy(ValTy, VF);
- return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
- cast<CmpInst>(I)->getPredicate(), CostKind,
- I);
- }
- case Instruction::Store:
- case Instruction::Load: {
- ElementCount Width = VF;
- if (Width.isVector()) {
- InstWidening Decision = getWideningDecision(I, Width);
- assert(Decision != CM_Unknown &&
- "CM decision should be taken at this point");
- if (getWideningCost(I, VF) == InstructionCost::getInvalid())
- return InstructionCost::getInvalid();
- if (Decision == CM_Scalarize)
- Width = ElementCount::getFixed(1);
- }
- VectorTy = ToVectorTy(getLoadStoreType(I), Width);
- return getMemoryInstructionCost(I, VF);
- }
- case Instruction::BitCast:
- if (I->getType()->isPointerTy())
- return 0;
- [[fallthrough]];
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc: {
- // Computes the CastContextHint from a Load/Store instruction.
- auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
- assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
- "Expected a load or a store!");
- if (VF.isScalar() || !TheLoop->contains(I))
- return TTI::CastContextHint::Normal;
- switch (getWideningDecision(I, VF)) {
- case LoopVectorizationCostModel::CM_GatherScatter:
- return TTI::CastContextHint::GatherScatter;
- case LoopVectorizationCostModel::CM_Interleave:
- return TTI::CastContextHint::Interleave;
- case LoopVectorizationCostModel::CM_Scalarize:
- case LoopVectorizationCostModel::CM_Widen:
- return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
- : TTI::CastContextHint::Normal;
- case LoopVectorizationCostModel::CM_Widen_Reverse:
- return TTI::CastContextHint::Reversed;
- case LoopVectorizationCostModel::CM_Unknown:
- llvm_unreachable("Instr did not go through cost modelling?");
- }
- llvm_unreachable("Unhandled case!");
- };
- unsigned Opcode = I->getOpcode();
- TTI::CastContextHint CCH = TTI::CastContextHint::None;
- // For Trunc, the context is the only user, which must be a StoreInst.
- if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
- if (I->hasOneUse())
- if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
- CCH = ComputeCCH(Store);
- }
- // For Z/Sext, the context is the operand, which must be a LoadInst.
- else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
- Opcode == Instruction::FPExt) {
- if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
- CCH = ComputeCCH(Load);
- }
- // We optimize the truncation of induction variables having constant
- // integer steps. The cost of these truncations is the same as the scalar
- // operation.
- if (isOptimizableIVTruncate(I, VF)) {
- auto *Trunc = cast<TruncInst>(I);
- return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
- Trunc->getSrcTy(), CCH, CostKind, Trunc);
- }
- // Detect reduction patterns
- if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
- return *RedCost;
- Type *SrcScalarTy = I->getOperand(0)->getType();
- Type *SrcVecTy =
- VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
- if (canTruncateToMinimalBitwidth(I, VF)) {
- // This cast is going to be shrunk. This may remove the cast or it might
- // turn it into slightly different cast. For example, if MinBW == 16,
- // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
- //
- // Calculate the modified src and dest types.
- Type *MinVecTy = VectorTy;
- if (Opcode == Instruction::Trunc) {
- SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
- VectorTy =
- largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
- } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
- SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
- VectorTy =
- smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
- }
- }
- return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
- }
- case Instruction::Call: {
- if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
- if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
- return *RedCost;
- bool NeedToScalarize;
- CallInst *CI = cast<CallInst>(I);
- InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
- if (getVectorIntrinsicIDForCall(CI, TLI)) {
- InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
- return std::min(CallCost, IntrinsicCost);
- }
- return CallCost;
- }
- case Instruction::ExtractValue:
- return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
- case Instruction::Alloca:
- // We cannot easily widen alloca to a scalable alloca, as
- // the result would need to be a vector of pointers.
- if (VF.isScalable())
- return InstructionCost::getInvalid();
- [[fallthrough]];
- default:
- // This opcode is unknown. Assume that it is the same as 'mul'.
- return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
- } // end of switch.
- }
- char LoopVectorize::ID = 0;
- static const char lv_name[] = "Loop Vectorization";
- INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
- INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
- INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
- namespace llvm {
- Pass *createLoopVectorizePass() { return new LoopVectorize(); }
- Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
- bool VectorizeOnlyWhenForced) {
- return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
- }
- } // end namespace llvm
- void LoopVectorizationCostModel::collectValuesToIgnore() {
- // Ignore ephemeral values.
- CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
- // Find all stores to invariant variables. Since they are going to sink
- // outside the loop we do not need calculate cost for them.
- for (BasicBlock *BB : TheLoop->blocks())
- for (Instruction &I : *BB) {
- StoreInst *SI;
- if ((SI = dyn_cast<StoreInst>(&I)) &&
- Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
- ValuesToIgnore.insert(&I);
- }
- // Ignore type-promoting instructions we identified during reduction
- // detection.
- for (const auto &Reduction : Legal->getReductionVars()) {
- const RecurrenceDescriptor &RedDes = Reduction.second;
- const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
- VecValuesToIgnore.insert(Casts.begin(), Casts.end());
- }
- // Ignore type-casting instructions we identified during induction
- // detection.
- for (const auto &Induction : Legal->getInductionVars()) {
- const InductionDescriptor &IndDes = Induction.second;
- const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
- VecValuesToIgnore.insert(Casts.begin(), Casts.end());
- }
- }
- void LoopVectorizationCostModel::collectInLoopReductions() {
- for (const auto &Reduction : Legal->getReductionVars()) {
- PHINode *Phi = Reduction.first;
- const RecurrenceDescriptor &RdxDesc = Reduction.second;
- // We don't collect reductions that are type promoted (yet).
- if (RdxDesc.getRecurrenceType() != Phi->getType())
- continue;
- // If the target would prefer this reduction to happen "in-loop", then we
- // want to record it as such.
- unsigned Opcode = RdxDesc.getOpcode();
- if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
- !TTI.preferInLoopReduction(Opcode, Phi->getType(),
- TargetTransformInfo::ReductionFlags()))
- continue;
- // Check that we can correctly put the reductions into the loop, by
- // finding the chain of operations that leads from the phi to the loop
- // exit value.
- SmallVector<Instruction *, 4> ReductionOperations =
- RdxDesc.getReductionOpChain(Phi, TheLoop);
- bool InLoop = !ReductionOperations.empty();
- if (InLoop) {
- InLoopReductionChains[Phi] = ReductionOperations;
- // Add the elements to InLoopReductionImmediateChains for cost modelling.
- Instruction *LastChain = Phi;
- for (auto *I : ReductionOperations) {
- InLoopReductionImmediateChains[I] = LastChain;
- LastChain = I;
- }
- }
- LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
- << " reduction for phi: " << *Phi << "\n");
- }
- }
- // TODO: we could return a pair of values that specify the max VF and
- // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
- // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
- // doesn't have a cost model that can choose which plan to execute if
- // more than one is generated.
- static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
- LoopVectorizationCostModel &CM) {
- unsigned WidestType;
- std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
- return WidestVectorRegBits / WidestType;
- }
- VectorizationFactor
- LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
- assert(!UserVF.isScalable() && "scalable vectors not yet supported");
- ElementCount VF = UserVF;
- // Outer loop handling: They may require CFG and instruction level
- // transformations before even evaluating whether vectorization is profitable.
- // Since we cannot modify the incoming IR, we need to build VPlan upfront in
- // the vectorization pipeline.
- if (!OrigLoop->isInnermost()) {
- // If the user doesn't provide a vectorization factor, determine a
- // reasonable one.
- if (UserVF.isZero()) {
- VF = ElementCount::getFixed(determineVPlanVF(
- TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
- .getFixedValue(),
- CM));
- LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
- // Make sure we have a VF > 1 for stress testing.
- if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
- LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
- << "overriding computed VF.\n");
- VF = ElementCount::getFixed(4);
- }
- }
- assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
- assert(isPowerOf2_32(VF.getKnownMinValue()) &&
- "VF needs to be a power of two");
- LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
- << "VF " << VF << " to build VPlans.\n");
- buildVPlans(VF, VF);
- // For VPlan build stress testing, we bail out after VPlan construction.
- if (VPlanBuildStressTest)
- return VectorizationFactor::Disabled();
- return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
- }
- LLVM_DEBUG(
- dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
- "VPlan-native path.\n");
- return VectorizationFactor::Disabled();
- }
- std::optional<VectorizationFactor>
- LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
- assert(OrigLoop->isInnermost() && "Inner loop expected.");
- FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
- if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
- return std::nullopt;
- // Invalidate interleave groups if all blocks of loop will be predicated.
- if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
- !useMaskedInterleavedAccesses(*TTI)) {
- LLVM_DEBUG(
- dbgs()
- << "LV: Invalidate all interleaved groups due to fold-tail by masking "
- "which requires masked-interleaved support.\n");
- if (CM.InterleaveInfo.invalidateGroups())
- // Invalidating interleave groups also requires invalidating all decisions
- // based on them, which includes widening decisions and uniform and scalar
- // values.
- CM.invalidateCostModelingDecisions();
- }
- ElementCount MaxUserVF =
- UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
- bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
- if (!UserVF.isZero() && UserVFIsLegal) {
- assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
- "VF needs to be a power of two");
- // Collect the instructions (and their associated costs) that will be more
- // profitable to scalarize.
- if (CM.selectUserVectorizationFactor(UserVF)) {
- LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
- CM.collectInLoopReductions();
- buildVPlansWithVPRecipes(UserVF, UserVF);
- LLVM_DEBUG(printPlans(dbgs()));
- return {{UserVF, 0, 0}};
- } else
- reportVectorizationInfo("UserVF ignored because of invalid costs.",
- "InvalidCost", ORE, OrigLoop);
- }
- // Populate the set of Vectorization Factor Candidates.
- ElementCountSet VFCandidates;
- for (auto VF = ElementCount::getFixed(1);
- ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
- VFCandidates.insert(VF);
- for (auto VF = ElementCount::getScalable(1);
- ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
- VFCandidates.insert(VF);
- for (const auto &VF : VFCandidates) {
- // Collect Uniform and Scalar instructions after vectorization with VF.
- CM.collectUniformsAndScalars(VF);
- // Collect the instructions (and their associated costs) that will be more
- // profitable to scalarize.
- if (VF.isVector())
- CM.collectInstsToScalarize(VF);
- }
- CM.collectInLoopReductions();
- buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
- buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
- LLVM_DEBUG(printPlans(dbgs()));
- if (!MaxFactors.hasVector())
- return VectorizationFactor::Disabled();
- // Select the optimal vectorization factor.
- VectorizationFactor VF = CM.selectVectorizationFactor(VFCandidates);
- assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero.");
- return VF;
- }
- VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
- assert(count_if(VPlans,
- [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
- 1 &&
- "Best VF has not a single VPlan.");
- for (const VPlanPtr &Plan : VPlans) {
- if (Plan->hasVF(VF))
- return *Plan.get();
- }
- llvm_unreachable("No plan found!");
- }
- static void AddRuntimeUnrollDisableMetaData(Loop *L) {
- SmallVector<Metadata *, 4> MDs;
- // Reserve first location for self reference to the LoopID metadata node.
- MDs.push_back(nullptr);
- bool IsUnrollMetadata = false;
- MDNode *LoopID = L->getLoopID();
- if (LoopID) {
- // First find existing loop unrolling disable metadata.
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (MD) {
- const auto *S = dyn_cast<MDString>(MD->getOperand(0));
- IsUnrollMetadata =
- S && S->getString().startswith("llvm.loop.unroll.disable");
- }
- MDs.push_back(LoopID->getOperand(i));
- }
- }
- if (!IsUnrollMetadata) {
- // Add runtime unroll disable metadata.
- LLVMContext &Context = L->getHeader()->getContext();
- SmallVector<Metadata *, 1> DisableOperands;
- DisableOperands.push_back(
- MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
- MDNode *DisableNode = MDNode::get(Context, DisableOperands);
- MDs.push_back(DisableNode);
- MDNode *NewLoopID = MDNode::get(Context, MDs);
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
- L->setLoopID(NewLoopID);
- }
- }
- void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
- VPlan &BestVPlan,
- InnerLoopVectorizer &ILV,
- DominatorTree *DT,
- bool IsEpilogueVectorization) {
- assert(BestVPlan.hasVF(BestVF) &&
- "Trying to execute plan with unsupported VF");
- assert(BestVPlan.hasUF(BestUF) &&
- "Trying to execute plan with unsupported UF");
- LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
- << '\n');
- // Workaround! Compute the trip count of the original loop and cache it
- // before we start modifying the CFG. This code has a systemic problem
- // wherein it tries to run analysis over partially constructed IR; this is
- // wrong, and not simply for SCEV. The trip count of the original loop
- // simply happens to be prone to hitting this in practice. In theory, we
- // can hit the same issue for any SCEV, or ValueTracking query done during
- // mutation. See PR49900.
- ILV.getOrCreateTripCount(OrigLoop->getLoopPreheader());
- if (!IsEpilogueVectorization)
- VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
- // Perform the actual loop transformation.
- // 1. Set up the skeleton for vectorization, including vector pre-header and
- // middle block. The vector loop is created during VPlan execution.
- VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
- Value *CanonicalIVStartValue;
- std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
- ILV.createVectorizedLoopSkeleton();
- // Only use noalias metadata when using memory checks guaranteeing no overlap
- // across all iterations.
- const LoopAccessInfo *LAI = ILV.Legal->getLAI();
- if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() &&
- !LAI->getRuntimePointerChecking()->getDiffChecks()) {
- // We currently don't use LoopVersioning for the actual loop cloning but we
- // still use it to add the noalias metadata.
- // TODO: Find a better way to re-use LoopVersioning functionality to add
- // metadata.
- State.LVer = std::make_unique<LoopVersioning>(
- *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT,
- PSE.getSE());
- State.LVer->prepareNoAliasMetadata();
- }
- ILV.collectPoisonGeneratingRecipes(State);
- ILV.printDebugTracesAtStart();
- //===------------------------------------------------===//
- //
- // Notice: any optimization or new instruction that go
- // into the code below should also be implemented in
- // the cost-model.
- //
- //===------------------------------------------------===//
- // 2. Copy and widen instructions from the old loop into the new loop.
- BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
- ILV.getOrCreateVectorTripCount(nullptr),
- CanonicalIVStartValue, State,
- IsEpilogueVectorization);
- BestVPlan.execute(&State);
- // Keep all loop hints from the original loop on the vector loop (we'll
- // replace the vectorizer-specific hints below).
- MDNode *OrigLoopID = OrigLoop->getLoopID();
- std::optional<MDNode *> VectorizedLoopID =
- makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
- LLVMLoopVectorizeFollowupVectorized});
- VPBasicBlock *HeaderVPBB =
- BestVPlan.getVectorLoopRegion()->getEntryBasicBlock();
- Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]);
- if (VectorizedLoopID)
- L->setLoopID(*VectorizedLoopID);
- else {
- // Keep all loop hints from the original loop on the vector loop (we'll
- // replace the vectorizer-specific hints below).
- if (MDNode *LID = OrigLoop->getLoopID())
- L->setLoopID(LID);
- LoopVectorizeHints Hints(L, true, *ORE);
- Hints.setAlreadyVectorized();
- }
- AddRuntimeUnrollDisableMetaData(L);
- // 3. Fix the vectorized code: take care of header phi's, live-outs,
- // predication, updating analyses.
- ILV.fixVectorizedLoop(State, BestVPlan);
- ILV.printDebugTracesAtEnd();
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
- for (const auto &Plan : VPlans)
- if (PrintVPlansInDotFormat)
- Plan->printDOT(O);
- else
- Plan->print(O);
- }
- #endif
- Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
- //===--------------------------------------------------------------------===//
- // EpilogueVectorizerMainLoop
- //===--------------------------------------------------------------------===//
- /// This function is partially responsible for generating the control flow
- /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
- std::pair<BasicBlock *, Value *>
- EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
- createVectorLoopSkeleton("");
- // Generate the code to check the minimum iteration count of the vector
- // epilogue (see below).
- EPI.EpilogueIterationCountCheck =
- emitIterationCountCheck(LoopScalarPreHeader, true);
- EPI.EpilogueIterationCountCheck->setName("iter.check");
- // Generate the code to check any assumptions that we've made for SCEV
- // expressions.
- EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
- // Generate the code that checks at runtime if arrays overlap. We put the
- // checks into a separate block to make the more common case of few elements
- // faster.
- EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
- // Generate the iteration count check for the main loop, *after* the check
- // for the epilogue loop, so that the path-length is shorter for the case
- // that goes directly through the vector epilogue. The longer-path length for
- // the main loop is compensated for, by the gain from vectorizing the larger
- // trip count. Note: the branch will get updated later on when we vectorize
- // the epilogue.
- EPI.MainLoopIterationCountCheck =
- emitIterationCountCheck(LoopScalarPreHeader, false);
- // Generate the induction variable.
- EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
- // Skip induction resume value creation here because they will be created in
- // the second pass for the scalar loop. The induction resume values for the
- // inductions in the epilogue loop are created before executing the plan for
- // the epilogue loop.
- return {completeLoopSkeleton(), nullptr};
- }
- void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
- LLVM_DEBUG({
- dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
- << "Main Loop VF:" << EPI.MainLoopVF
- << ", Main Loop UF:" << EPI.MainLoopUF
- << ", Epilogue Loop VF:" << EPI.EpilogueVF
- << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
- });
- }
- void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
- DEBUG_WITH_TYPE(VerboseDebug, {
- dbgs() << "intermediate fn:\n"
- << *OrigLoop->getHeader()->getParent() << "\n";
- });
- }
- BasicBlock *
- EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass,
- bool ForEpilogue) {
- assert(Bypass && "Expected valid bypass basic block.");
- ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
- unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
- Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
- // Reuse existing vector loop preheader for TC checks.
- // Note that new preheader block is generated for vector loop.
- BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
- IRBuilder<> Builder(TCCheckBlock->getTerminator());
- // Generate code to check if the loop's trip count is less than VF * UF of the
- // main vector loop.
- auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
- ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
- Value *CheckMinIters = Builder.CreateICmp(
- P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
- "min.iters.check");
- if (!ForEpilogue)
- TCCheckBlock->setName("vector.main.loop.iter.check");
- // Create new preheader for vector loop.
- LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
- DT, LI, nullptr, "vector.ph");
- if (ForEpilogue) {
- assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
- DT->getNode(Bypass)->getIDom()) &&
- "TC check is expected to dominate Bypass");
- // Update dominator for Bypass & LoopExit.
- DT->changeImmediateDominator(Bypass, TCCheckBlock);
- if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
- // For loops with multiple exits, there's no edge from the middle block
- // to exit blocks (as the epilogue must run) and thus no need to update
- // the immediate dominator of the exit blocks.
- DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
- LoopBypassBlocks.push_back(TCCheckBlock);
- // Save the trip count so we don't have to regenerate it in the
- // vec.epilog.iter.check. This is safe to do because the trip count
- // generated here dominates the vector epilog iter check.
- EPI.TripCount = Count;
- }
- ReplaceInstWithInst(
- TCCheckBlock->getTerminator(),
- BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
- return TCCheckBlock;
- }
- //===--------------------------------------------------------------------===//
- // EpilogueVectorizerEpilogueLoop
- //===--------------------------------------------------------------------===//
- /// This function is partially responsible for generating the control flow
- /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
- std::pair<BasicBlock *, Value *>
- EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
- createVectorLoopSkeleton("vec.epilog.");
- // Now, compare the remaining count and if there aren't enough iterations to
- // execute the vectorized epilogue skip to the scalar part.
- BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
- VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
- LoopVectorPreHeader =
- SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
- LI, nullptr, "vec.epilog.ph");
- emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
- VecEpilogueIterationCountCheck);
- // Adjust the control flow taking the state info from the main loop
- // vectorization into account.
- assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
- "expected this to be saved from the previous pass.");
- EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
- VecEpilogueIterationCountCheck, LoopVectorPreHeader);
- DT->changeImmediateDominator(LoopVectorPreHeader,
- EPI.MainLoopIterationCountCheck);
- EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
- VecEpilogueIterationCountCheck, LoopScalarPreHeader);
- if (EPI.SCEVSafetyCheck)
- EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
- VecEpilogueIterationCountCheck, LoopScalarPreHeader);
- if (EPI.MemSafetyCheck)
- EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
- VecEpilogueIterationCountCheck, LoopScalarPreHeader);
- DT->changeImmediateDominator(
- VecEpilogueIterationCountCheck,
- VecEpilogueIterationCountCheck->getSinglePredecessor());
- DT->changeImmediateDominator(LoopScalarPreHeader,
- EPI.EpilogueIterationCountCheck);
- if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
- // If there is an epilogue which must run, there's no edge from the
- // middle block to exit blocks and thus no need to update the immediate
- // dominator of the exit blocks.
- DT->changeImmediateDominator(LoopExitBlock,
- EPI.EpilogueIterationCountCheck);
- // Keep track of bypass blocks, as they feed start values to the induction and
- // reduction phis in the scalar loop preheader.
- if (EPI.SCEVSafetyCheck)
- LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
- if (EPI.MemSafetyCheck)
- LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
- LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
- // The vec.epilog.iter.check block may contain Phi nodes from inductions or
- // reductions which merge control-flow from the latch block and the middle
- // block. Update the incoming values here and move the Phi into the preheader.
- SmallVector<PHINode *, 4> PhisInBlock;
- for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
- PhisInBlock.push_back(&Phi);
- for (PHINode *Phi : PhisInBlock) {
- Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
- Phi->replaceIncomingBlockWith(
- VecEpilogueIterationCountCheck->getSinglePredecessor(),
- VecEpilogueIterationCountCheck);
- // If the phi doesn't have an incoming value from the
- // EpilogueIterationCountCheck, we are done. Otherwise remove the incoming
- // value and also those from other check blocks. This is needed for
- // reduction phis only.
- if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
- return EPI.EpilogueIterationCountCheck == IncB;
- }))
- continue;
- Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
- if (EPI.SCEVSafetyCheck)
- Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
- if (EPI.MemSafetyCheck)
- Phi->removeIncomingValue(EPI.MemSafetyCheck);
- }
- // Generate a resume induction for the vector epilogue and put it in the
- // vector epilogue preheader
- Type *IdxTy = Legal->getWidestInductionType();
- PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
- LoopVectorPreHeader->getFirstNonPHI());
- EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
- EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
- EPI.MainLoopIterationCountCheck);
- // Generate induction resume values. These variables save the new starting
- // indexes for the scalar loop. They are used to test if there are any tail
- // iterations left once the vector loop has completed.
- // Note that when the vectorized epilogue is skipped due to iteration count
- // check, then the resume value for the induction variable comes from
- // the trip count of the main vector loop, hence passing the AdditionalBypass
- // argument.
- createInductionResumeValues({VecEpilogueIterationCountCheck,
- EPI.VectorTripCount} /* AdditionalBypass */);
- return {completeLoopSkeleton(), EPResumeVal};
- }
- BasicBlock *
- EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
- BasicBlock *Bypass, BasicBlock *Insert) {
- assert(EPI.TripCount &&
- "Expected trip count to have been safed in the first pass.");
- assert(
- (!isa<Instruction>(EPI.TripCount) ||
- DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
- "saved trip count does not dominate insertion point.");
- Value *TC = EPI.TripCount;
- IRBuilder<> Builder(Insert->getTerminator());
- Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
- // Generate code to check if the loop's trip count is less than VF * UF of the
- // vector epilogue loop.
- auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
- ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
- Value *CheckMinIters =
- Builder.CreateICmp(P, Count,
- createStepForVF(Builder, Count->getType(),
- EPI.EpilogueVF, EPI.EpilogueUF),
- "min.epilog.iters.check");
- ReplaceInstWithInst(
- Insert->getTerminator(),
- BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
- LoopBypassBlocks.push_back(Insert);
- return Insert;
- }
- void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
- LLVM_DEBUG({
- dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
- << "Epilogue Loop VF:" << EPI.EpilogueVF
- << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
- });
- }
- void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
- DEBUG_WITH_TYPE(VerboseDebug, {
- dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
- });
- }
- bool LoopVectorizationPlanner::getDecisionAndClampRange(
- const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
- assert(!Range.isEmpty() && "Trying to test an empty VF range.");
- bool PredicateAtRangeStart = Predicate(Range.Start);
- for (ElementCount TmpVF = Range.Start * 2;
- ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
- if (Predicate(TmpVF) != PredicateAtRangeStart) {
- Range.End = TmpVF;
- break;
- }
- return PredicateAtRangeStart;
- }
- /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
- /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
- /// of VF's starting at a given VF and extending it as much as possible. Each
- /// vectorization decision can potentially shorten this sub-range during
- /// buildVPlan().
- void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
- ElementCount MaxVF) {
- auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
- for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
- VFRange SubRange = {VF, MaxVFPlusOne};
- VPlans.push_back(buildVPlan(SubRange));
- VF = SubRange.End;
- }
- }
- VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
- VPlanPtr &Plan) {
- assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
- // Look for cached value.
- std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
- EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
- if (ECEntryIt != EdgeMaskCache.end())
- return ECEntryIt->second;
- VPValue *SrcMask = createBlockInMask(Src, Plan);
- // The terminator has to be a branch inst!
- BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
- assert(BI && "Unexpected terminator found");
- if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
- return EdgeMaskCache[Edge] = SrcMask;
- // If source is an exiting block, we know the exit edge is dynamically dead
- // in the vector loop, and thus we don't need to restrict the mask. Avoid
- // adding uses of an otherwise potentially dead instruction.
- if (OrigLoop->isLoopExiting(Src))
- return EdgeMaskCache[Edge] = SrcMask;
- VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
- assert(EdgeMask && "No Edge Mask found for condition");
- if (BI->getSuccessor(0) != Dst)
- EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
- if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
- // The condition is 'SrcMask && EdgeMask', which is equivalent to
- // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
- // The select version does not introduce new UB if SrcMask is false and
- // EdgeMask is poison. Using 'and' here introduces undefined behavior.
- VPValue *False = Plan->getOrAddVPValue(
- ConstantInt::getFalse(BI->getCondition()->getType()));
- EdgeMask =
- Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
- }
- return EdgeMaskCache[Edge] = EdgeMask;
- }
- VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
- assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
- // Look for cached value.
- BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
- if (BCEntryIt != BlockMaskCache.end())
- return BCEntryIt->second;
- // All-one mask is modelled as no-mask following the convention for masked
- // load/store/gather/scatter. Initialize BlockMask to no-mask.
- VPValue *BlockMask = nullptr;
- if (OrigLoop->getHeader() == BB) {
- if (!CM.blockNeedsPredicationForAnyReason(BB))
- return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
- assert(CM.foldTailByMasking() && "must fold the tail");
- // If we're using the active lane mask for control flow, then we get the
- // mask from the active lane mask PHI that is cached in the VPlan.
- PredicationStyle EmitGetActiveLaneMask = CM.TTI.emitGetActiveLaneMask();
- if (EmitGetActiveLaneMask == PredicationStyle::DataAndControlFlow)
- return BlockMaskCache[BB] = Plan->getActiveLaneMaskPhi();
- // Introduce the early-exit compare IV <= BTC to form header block mask.
- // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
- // constructing the desired canonical IV in the header block as its first
- // non-phi instructions.
- VPBasicBlock *HeaderVPBB =
- Plan->getVectorLoopRegion()->getEntryBasicBlock();
- auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
- auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
- HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
- VPBuilder::InsertPointGuard Guard(Builder);
- Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
- if (EmitGetActiveLaneMask != PredicationStyle::None) {
- VPValue *TC = Plan->getOrCreateTripCount();
- BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC},
- nullptr, "active.lane.mask");
- } else {
- VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
- BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
- }
- return BlockMaskCache[BB] = BlockMask;
- }
- // This is the block mask. We OR all incoming edges.
- for (auto *Predecessor : predecessors(BB)) {
- VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
- if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
- return BlockMaskCache[BB] = EdgeMask;
- if (!BlockMask) { // BlockMask has its initialized nullptr value.
- BlockMask = EdgeMask;
- continue;
- }
- BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
- }
- return BlockMaskCache[BB] = BlockMask;
- }
- VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
- ArrayRef<VPValue *> Operands,
- VFRange &Range,
- VPlanPtr &Plan) {
- assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
- "Must be called with either a load or store");
- auto willWiden = [&](ElementCount VF) -> bool {
- LoopVectorizationCostModel::InstWidening Decision =
- CM.getWideningDecision(I, VF);
- assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
- "CM decision should be taken at this point.");
- if (Decision == LoopVectorizationCostModel::CM_Interleave)
- return true;
- if (CM.isScalarAfterVectorization(I, VF) ||
- CM.isProfitableToScalarize(I, VF))
- return false;
- return Decision != LoopVectorizationCostModel::CM_Scalarize;
- };
- if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
- return nullptr;
- VPValue *Mask = nullptr;
- if (Legal->isMaskRequired(I))
- Mask = createBlockInMask(I->getParent(), Plan);
- // Determine if the pointer operand of the access is either consecutive or
- // reverse consecutive.
- LoopVectorizationCostModel::InstWidening Decision =
- CM.getWideningDecision(I, Range.Start);
- bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
- bool Consecutive =
- Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
- if (LoadInst *Load = dyn_cast<LoadInst>(I))
- return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
- Consecutive, Reverse);
- StoreInst *Store = cast<StoreInst>(I);
- return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
- Mask, Consecutive, Reverse);
- }
- /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
- /// insert a recipe to expand the step for the induction recipe.
- static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes(
- PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start,
- const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM,
- VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) {
- // Returns true if an instruction \p I should be scalarized instead of
- // vectorized for the chosen vectorization factor.
- auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
- return CM.isScalarAfterVectorization(I, VF) ||
- CM.isProfitableToScalarize(I, VF);
- };
- bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
- [&](ElementCount VF) {
- return ShouldScalarizeInstruction(PhiOrTrunc, VF);
- },
- Range);
- assert(IndDesc.getStartValue() ==
- Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
- assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
- "step must be loop invariant");
- VPValue *Step =
- vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE);
- if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
- return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI,
- !NeedsScalarIVOnly);
- }
- assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
- return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc,
- !NeedsScalarIVOnly);
- }
- VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
- PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) {
- // Check if this is an integer or fp induction. If so, build the recipe that
- // produces its scalar and vector values.
- if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
- return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan,
- *PSE.getSE(), *OrigLoop, Range);
- // Check if this is pointer induction. If so, build the recipe for it.
- if (auto *II = Legal->getPointerInductionDescriptor(Phi)) {
- VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep(),
- *PSE.getSE());
- assert(isa<SCEVConstant>(II->getStep()));
- return new VPWidenPointerInductionRecipe(
- Phi, Operands[0], Step, *II,
- LoopVectorizationPlanner::getDecisionAndClampRange(
- [&](ElementCount VF) {
- return CM.isScalarAfterVectorization(Phi, VF);
- },
- Range));
- }
- return nullptr;
- }
- VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
- TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) {
- // Optimize the special case where the source is a constant integer
- // induction variable. Notice that we can only optimize the 'trunc' case
- // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
- // (c) other casts depend on pointer size.
- // Determine whether \p K is a truncation based on an induction variable that
- // can be optimized.
- auto isOptimizableIVTruncate =
- [&](Instruction *K) -> std::function<bool(ElementCount)> {
- return [=](ElementCount VF) -> bool {
- return CM.isOptimizableIVTruncate(K, VF);
- };
- };
- if (LoopVectorizationPlanner::getDecisionAndClampRange(
- isOptimizableIVTruncate(I), Range)) {
- auto *Phi = cast<PHINode>(I->getOperand(0));
- const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
- VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
- return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan,
- *PSE.getSE(), *OrigLoop, Range);
- }
- return nullptr;
- }
- VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
- ArrayRef<VPValue *> Operands,
- VPlanPtr &Plan) {
- // If all incoming values are equal, the incoming VPValue can be used directly
- // instead of creating a new VPBlendRecipe.
- if (llvm::all_equal(Operands))
- return Operands[0];
- unsigned NumIncoming = Phi->getNumIncomingValues();
- // For in-loop reductions, we do not need to create an additional select.
- VPValue *InLoopVal = nullptr;
- for (unsigned In = 0; In < NumIncoming; In++) {
- PHINode *PhiOp =
- dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
- if (PhiOp && CM.isInLoopReduction(PhiOp)) {
- assert(!InLoopVal && "Found more than one in-loop reduction!");
- InLoopVal = Operands[In];
- }
- }
- assert((!InLoopVal || NumIncoming == 2) &&
- "Found an in-loop reduction for PHI with unexpected number of "
- "incoming values");
- if (InLoopVal)
- return Operands[Operands[0] == InLoopVal ? 1 : 0];
- // We know that all PHIs in non-header blocks are converted into selects, so
- // we don't have to worry about the insertion order and we can just use the
- // builder. At this point we generate the predication tree. There may be
- // duplications since this is a simple recursive scan, but future
- // optimizations will clean it up.
- SmallVector<VPValue *, 2> OperandsWithMask;
- for (unsigned In = 0; In < NumIncoming; In++) {
- VPValue *EdgeMask =
- createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
- assert((EdgeMask || NumIncoming == 1) &&
- "Multiple predecessors with one having a full mask");
- OperandsWithMask.push_back(Operands[In]);
- if (EdgeMask)
- OperandsWithMask.push_back(EdgeMask);
- }
- return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
- }
- VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
- ArrayRef<VPValue *> Operands,
- VFRange &Range) const {
- bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
- [this, CI](ElementCount VF) {
- return CM.isScalarWithPredication(CI, VF);
- },
- Range);
- if (IsPredicated)
- return nullptr;
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
- ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
- ID == Intrinsic::pseudoprobe ||
- ID == Intrinsic::experimental_noalias_scope_decl))
- return nullptr;
- ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
- // Is it beneficial to perform intrinsic call compared to lib call?
- bool ShouldUseVectorIntrinsic =
- ID && LoopVectorizationPlanner::getDecisionAndClampRange(
- [&](ElementCount VF) -> bool {
- bool NeedToScalarize = false;
- // Is it beneficial to perform intrinsic call compared to lib
- // call?
- InstructionCost CallCost =
- CM.getVectorCallCost(CI, VF, NeedToScalarize);
- InstructionCost IntrinsicCost =
- CM.getVectorIntrinsicCost(CI, VF);
- return IntrinsicCost <= CallCost;
- },
- Range);
- if (ShouldUseVectorIntrinsic)
- return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()), ID);
- // Is better to call a vectorized version of the function than to to scalarize
- // the call?
- auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
- [&](ElementCount VF) -> bool {
- // The following case may be scalarized depending on the VF.
- // The flag shows whether we can use a usual Call for vectorized
- // version of the instruction.
- bool NeedToScalarize = false;
- CM.getVectorCallCost(CI, VF, NeedToScalarize);
- return !NeedToScalarize;
- },
- Range);
- if (ShouldUseVectorCall)
- return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()),
- Intrinsic::not_intrinsic);
- return nullptr;
- }
- bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
- assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
- !isa<StoreInst>(I) && "Instruction should have been handled earlier");
- // Instruction should be widened, unless it is scalar after vectorization,
- // scalarization is profitable or it is predicated.
- auto WillScalarize = [this, I](ElementCount VF) -> bool {
- return CM.isScalarAfterVectorization(I, VF) ||
- CM.isProfitableToScalarize(I, VF) ||
- CM.isScalarWithPredication(I, VF);
- };
- return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
- Range);
- }
- VPRecipeBase *VPRecipeBuilder::tryToWiden(Instruction *I,
- ArrayRef<VPValue *> Operands,
- VPBasicBlock *VPBB, VPlanPtr &Plan) {
- switch (I->getOpcode()) {
- default:
- return nullptr;
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::SRem:
- case Instruction::URem: {
- // If not provably safe, use a select to form a safe divisor before widening the
- // div/rem operation itself. Otherwise fall through to general handling below.
- if (CM.isPredicatedInst(I)) {
- SmallVector<VPValue *> Ops(Operands.begin(), Operands.end());
- VPValue *Mask = createBlockInMask(I->getParent(), Plan);
- VPValue *One =
- Plan->getOrAddExternalDef(ConstantInt::get(I->getType(), 1u, false));
- auto *SafeRHS =
- new VPInstruction(Instruction::Select, {Mask, Ops[1], One},
- I->getDebugLoc());
- VPBB->appendRecipe(SafeRHS);
- Ops[1] = SafeRHS;
- return new VPWidenRecipe(*I, make_range(Ops.begin(), Ops.end()));
- }
- LLVM_FALLTHROUGH;
- }
- case Instruction::Add:
- case Instruction::And:
- case Instruction::AShr:
- case Instruction::BitCast:
- case Instruction::FAdd:
- case Instruction::FCmp:
- case Instruction::FDiv:
- case Instruction::FMul:
- case Instruction::FNeg:
- case Instruction::FPExt:
- case Instruction::FPToSI:
- case Instruction::FPToUI:
- case Instruction::FPTrunc:
- case Instruction::FRem:
- case Instruction::FSub:
- case Instruction::ICmp:
- case Instruction::IntToPtr:
- case Instruction::LShr:
- case Instruction::Mul:
- case Instruction::Or:
- case Instruction::PtrToInt:
- case Instruction::Select:
- case Instruction::SExt:
- case Instruction::Shl:
- case Instruction::SIToFP:
- case Instruction::Sub:
- case Instruction::Trunc:
- case Instruction::UIToFP:
- case Instruction::Xor:
- case Instruction::ZExt:
- case Instruction::Freeze:
- return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
- };
- }
- void VPRecipeBuilder::fixHeaderPhis() {
- BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
- for (VPHeaderPHIRecipe *R : PhisToFix) {
- auto *PN = cast<PHINode>(R->getUnderlyingValue());
- VPRecipeBase *IncR =
- getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
- R->addOperand(IncR->getVPSingleValue());
- }
- }
- VPBasicBlock *VPRecipeBuilder::handleReplication(
- Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
- VPlanPtr &Plan) {
- bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
- [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
- Range);
- bool IsPredicated = CM.isPredicatedInst(I);
- // Even if the instruction is not marked as uniform, there are certain
- // intrinsic calls that can be effectively treated as such, so we check for
- // them here. Conservatively, we only do this for scalable vectors, since
- // for fixed-width VFs we can always fall back on full scalarization.
- if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
- switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
- case Intrinsic::assume:
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- // For scalable vectors if one of the operands is variant then we still
- // want to mark as uniform, which will generate one instruction for just
- // the first lane of the vector. We can't scalarize the call in the same
- // way as for fixed-width vectors because we don't know how many lanes
- // there are.
- //
- // The reasons for doing it this way for scalable vectors are:
- // 1. For the assume intrinsic generating the instruction for the first
- // lane is still be better than not generating any at all. For
- // example, the input may be a splat across all lanes.
- // 2. For the lifetime start/end intrinsics the pointer operand only
- // does anything useful when the input comes from a stack object,
- // which suggests it should always be uniform. For non-stack objects
- // the effect is to poison the object, which still allows us to
- // remove the call.
- IsUniform = true;
- break;
- default:
- break;
- }
- }
- auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
- IsUniform, IsPredicated);
- // Find if I uses a predicated instruction. If so, it will use its scalar
- // value. Avoid hoisting the insert-element which packs the scalar value into
- // a vector value, as that happens iff all users use the vector value.
- for (VPValue *Op : Recipe->operands()) {
- auto *PredR =
- dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDefiningRecipe());
- if (!PredR)
- continue;
- auto *RepR = cast<VPReplicateRecipe>(
- PredR->getOperand(0)->getDefiningRecipe());
- assert(RepR->isPredicated() &&
- "expected Replicate recipe to be predicated");
- RepR->setAlsoPack(false);
- }
- // Finalize the recipe for Instr, first if it is not predicated.
- if (!IsPredicated) {
- LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
- setRecipe(I, Recipe);
- Plan->addVPValue(I, Recipe);
- VPBB->appendRecipe(Recipe);
- return VPBB;
- }
- LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
- VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
- assert(SingleSucc && "VPBB must have a single successor when handling "
- "predicated replication.");
- VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
- // Record predicated instructions for above packing optimizations.
- VPBlockBase *Region = createReplicateRegion(Recipe, Plan);
- VPBlockUtils::insertBlockAfter(Region, VPBB);
- auto *RegSucc = new VPBasicBlock();
- VPBlockUtils::insertBlockAfter(RegSucc, Region);
- VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
- return RegSucc;
- }
- VPRegionBlock *
- VPRecipeBuilder::createReplicateRegion(VPReplicateRecipe *PredRecipe,
- VPlanPtr &Plan) {
- Instruction *Instr = PredRecipe->getUnderlyingInstr();
- // Instructions marked for predication are replicated and placed under an
- // if-then construct to prevent side-effects.
- // Generate recipes to compute the block mask for this region.
- VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
- // Build the triangular if-then region.
- std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
- assert(Instr->getParent() && "Predicated instruction not in any basic block");
- auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
- auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
- auto *PHIRecipe = Instr->getType()->isVoidTy()
- ? nullptr
- : new VPPredInstPHIRecipe(PredRecipe);
- if (PHIRecipe) {
- setRecipe(Instr, PHIRecipe);
- Plan->addVPValue(Instr, PHIRecipe);
- } else {
- setRecipe(Instr, PredRecipe);
- Plan->addVPValue(Instr, PredRecipe);
- }
- auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
- auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
- VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
- // Note: first set Entry as region entry and then connect successors starting
- // from it in order, to propagate the "parent" of each VPBasicBlock.
- VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
- VPBlockUtils::connectBlocks(Pred, Exiting);
- return Region;
- }
- VPRecipeOrVPValueTy
- VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
- ArrayRef<VPValue *> Operands,
- VFRange &Range, VPBasicBlock *VPBB,
- VPlanPtr &Plan) {
- // First, check for specific widening recipes that deal with inductions, Phi
- // nodes, calls and memory operations.
- VPRecipeBase *Recipe;
- if (auto Phi = dyn_cast<PHINode>(Instr)) {
- if (Phi->getParent() != OrigLoop->getHeader())
- return tryToBlend(Phi, Operands, Plan);
- // Always record recipes for header phis. Later first-order recurrence phis
- // can have earlier phis as incoming values.
- recordRecipeOf(Phi);
- if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range)))
- return toVPRecipeResult(Recipe);
- VPHeaderPHIRecipe *PhiRecipe = nullptr;
- assert((Legal->isReductionVariable(Phi) ||
- Legal->isFixedOrderRecurrence(Phi)) &&
- "can only widen reductions and fixed-order recurrences here");
- VPValue *StartV = Operands[0];
- if (Legal->isReductionVariable(Phi)) {
- const RecurrenceDescriptor &RdxDesc =
- Legal->getReductionVars().find(Phi)->second;
- assert(RdxDesc.getRecurrenceStartValue() ==
- Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
- PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
- CM.isInLoopReduction(Phi),
- CM.useOrderedReductions(RdxDesc));
- } else {
- // TODO: Currently fixed-order recurrences are modeled as chains of
- // first-order recurrences. If there are no users of the intermediate
- // recurrences in the chain, the fixed order recurrence should be modeled
- // directly, enabling more efficient codegen.
- PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
- }
- // Record the incoming value from the backedge, so we can add the incoming
- // value from the backedge after all recipes have been created.
- auto *Inc = cast<Instruction>(
- Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
- auto RecipeIter = Ingredient2Recipe.find(Inc);
- if (RecipeIter == Ingredient2Recipe.end())
- recordRecipeOf(Inc);
- PhisToFix.push_back(PhiRecipe);
- return toVPRecipeResult(PhiRecipe);
- }
- if (isa<TruncInst>(Instr) &&
- (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
- Range, *Plan)))
- return toVPRecipeResult(Recipe);
- // All widen recipes below deal only with VF > 1.
- if (LoopVectorizationPlanner::getDecisionAndClampRange(
- [&](ElementCount VF) { return VF.isScalar(); }, Range))
- return nullptr;
- if (auto *CI = dyn_cast<CallInst>(Instr))
- return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
- if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
- return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
- if (!shouldWiden(Instr, Range))
- return nullptr;
- if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
- return toVPRecipeResult(new VPWidenGEPRecipe(
- GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
- if (auto *SI = dyn_cast<SelectInst>(Instr)) {
- bool InvariantCond =
- PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
- return toVPRecipeResult(new VPWidenSelectRecipe(
- *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
- }
- return toVPRecipeResult(tryToWiden(Instr, Operands, VPBB, Plan));
- }
- void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
- ElementCount MaxVF) {
- assert(OrigLoop->isInnermost() && "Inner loop expected.");
- // Add assume instructions we need to drop to DeadInstructions, to prevent
- // them from being added to the VPlan.
- // TODO: We only need to drop assumes in blocks that get flattend. If the
- // control flow is preserved, we should keep them.
- SmallPtrSet<Instruction *, 4> DeadInstructions;
- auto &ConditionalAssumes = Legal->getConditionalAssumes();
- DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
- MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
- // Dead instructions do not need sinking. Remove them from SinkAfter.
- for (Instruction *I : DeadInstructions)
- SinkAfter.erase(I);
- // Cannot sink instructions after dead instructions (there won't be any
- // recipes for them). Instead, find the first non-dead previous instruction.
- for (auto &P : Legal->getSinkAfter()) {
- Instruction *SinkTarget = P.second;
- Instruction *FirstInst = &*SinkTarget->getParent()->begin();
- (void)FirstInst;
- while (DeadInstructions.contains(SinkTarget)) {
- assert(
- SinkTarget != FirstInst &&
- "Must find a live instruction (at least the one feeding the "
- "fixed-order recurrence PHI) before reaching beginning of the block");
- SinkTarget = SinkTarget->getPrevNode();
- assert(SinkTarget != P.first &&
- "sink source equals target, no sinking required");
- }
- P.second = SinkTarget;
- }
- auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
- for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
- VFRange SubRange = {VF, MaxVFPlusOne};
- VPlans.push_back(
- buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
- VF = SubRange.End;
- }
- }
- // Add the necessary canonical IV and branch recipes required to control the
- // loop.
- static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
- bool HasNUW,
- bool UseLaneMaskForLoopControlFlow) {
- Value *StartIdx = ConstantInt::get(IdxTy, 0);
- auto *StartV = Plan.getOrAddVPValue(StartIdx);
- // Add a VPCanonicalIVPHIRecipe starting at 0 to the header.
- auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
- VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
- VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
- Header->insert(CanonicalIVPHI, Header->begin());
- // Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar
- // IV by VF * UF.
- auto *CanonicalIVIncrement =
- new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
- : VPInstruction::CanonicalIVIncrement,
- {CanonicalIVPHI}, DL, "index.next");
- CanonicalIVPHI->addOperand(CanonicalIVIncrement);
- VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
- EB->appendRecipe(CanonicalIVIncrement);
- if (UseLaneMaskForLoopControlFlow) {
- // Create the active lane mask instruction in the vplan preheader.
- VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock();
- // We can't use StartV directly in the ActiveLaneMask VPInstruction, since
- // we have to take unrolling into account. Each part needs to start at
- // Part * VF
- auto *CanonicalIVIncrementParts =
- new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW
- : VPInstruction::CanonicalIVIncrementForPart,
- {StartV}, DL, "index.part.next");
- Preheader->appendRecipe(CanonicalIVIncrementParts);
- // Create the ActiveLaneMask instruction using the correct start values.
- VPValue *TC = Plan.getOrCreateTripCount();
- auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask,
- {CanonicalIVIncrementParts, TC}, DL,
- "active.lane.mask.entry");
- Preheader->appendRecipe(EntryALM);
- // Now create the ActiveLaneMaskPhi recipe in the main loop using the
- // preheader ActiveLaneMask instruction.
- auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
- Header->insert(LaneMaskPhi, Header->getFirstNonPhi());
- // Create the active lane mask for the next iteration of the loop.
- CanonicalIVIncrementParts =
- new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW
- : VPInstruction::CanonicalIVIncrementForPart,
- {CanonicalIVIncrement}, DL);
- EB->appendRecipe(CanonicalIVIncrementParts);
- auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask,
- {CanonicalIVIncrementParts, TC}, DL,
- "active.lane.mask.next");
- EB->appendRecipe(ALM);
- LaneMaskPhi->addOperand(ALM);
- // We have to invert the mask here because a true condition means jumping
- // to the exit block.
- auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL);
- EB->appendRecipe(NotMask);
- VPInstruction *BranchBack =
- new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL);
- EB->appendRecipe(BranchBack);
- } else {
- // Add the BranchOnCount VPInstruction to the latch.
- VPInstruction *BranchBack = new VPInstruction(
- VPInstruction::BranchOnCount,
- {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
- EB->appendRecipe(BranchBack);
- }
- }
- // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the
- // original exit block.
- static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB,
- VPBasicBlock *MiddleVPBB, Loop *OrigLoop,
- VPlan &Plan) {
- BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock();
- BasicBlock *ExitingBB = OrigLoop->getExitingBlock();
- // Only handle single-exit loops with unique exit blocks for now.
- if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB)
- return;
- // Introduce VPUsers modeling the exit values.
- for (PHINode &ExitPhi : ExitBB->phis()) {
- Value *IncomingValue =
- ExitPhi.getIncomingValueForBlock(ExitingBB);
- VPValue *V = Plan.getOrAddVPValue(IncomingValue, true);
- Plan.addLiveOut(&ExitPhi, V);
- }
- }
- VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
- VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
- const MapVector<Instruction *, Instruction *> &SinkAfter) {
- SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
- VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
- // ---------------------------------------------------------------------------
- // Pre-construction: record ingredients whose recipes we'll need to further
- // process after constructing the initial VPlan.
- // ---------------------------------------------------------------------------
- // Mark instructions we'll need to sink later and their targets as
- // ingredients whose recipe we'll need to record.
- for (const auto &Entry : SinkAfter) {
- RecipeBuilder.recordRecipeOf(Entry.first);
- RecipeBuilder.recordRecipeOf(Entry.second);
- }
- for (const auto &Reduction : CM.getInLoopReductionChains()) {
- PHINode *Phi = Reduction.first;
- RecurKind Kind =
- Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
- const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
- RecipeBuilder.recordRecipeOf(Phi);
- for (const auto &R : ReductionOperations) {
- RecipeBuilder.recordRecipeOf(R);
- // For min/max reductions, where we have a pair of icmp/select, we also
- // need to record the ICmp recipe, so it can be removed later.
- assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
- "Only min/max recurrences allowed for inloop reductions");
- if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
- RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
- }
- }
- // For each interleave group which is relevant for this (possibly trimmed)
- // Range, add it to the set of groups to be later applied to the VPlan and add
- // placeholders for its members' Recipes which we'll be replacing with a
- // single VPInterleaveRecipe.
- for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
- auto applyIG = [IG, this](ElementCount VF) -> bool {
- return (VF.isVector() && // Query is illegal for VF == 1
- CM.getWideningDecision(IG->getInsertPos(), VF) ==
- LoopVectorizationCostModel::CM_Interleave);
- };
- if (!getDecisionAndClampRange(applyIG, Range))
- continue;
- InterleaveGroups.insert(IG);
- for (unsigned i = 0; i < IG->getFactor(); i++)
- if (Instruction *Member = IG->getMember(i))
- RecipeBuilder.recordRecipeOf(Member);
- };
- // ---------------------------------------------------------------------------
- // Build initial VPlan: Scan the body of the loop in a topological order to
- // visit each basic block after having visited its predecessor basic blocks.
- // ---------------------------------------------------------------------------
- // Create initial VPlan skeleton, starting with a block for the pre-header,
- // followed by a region for the vector loop, followed by the middle block. The
- // skeleton vector loop region contains a header and latch block.
- VPBasicBlock *Preheader = new VPBasicBlock("vector.ph");
- auto Plan = std::make_unique<VPlan>(Preheader);
- VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
- VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
- VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
- auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
- VPBlockUtils::insertBlockAfter(TopRegion, Preheader);
- VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
- VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
- Instruction *DLInst =
- getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
- addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
- DLInst ? DLInst->getDebugLoc() : DebugLoc(),
- !CM.foldTailByMasking(),
- CM.useActiveLaneMaskForControlFlow());
- // Scan the body of the loop in a topological order to visit each basic block
- // after having visited its predecessor basic blocks.
- LoopBlocksDFS DFS(OrigLoop);
- DFS.perform(LI);
- VPBasicBlock *VPBB = HeaderVPBB;
- SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
- for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
- // Relevant instructions from basic block BB will be grouped into VPRecipe
- // ingredients and fill a new VPBasicBlock.
- unsigned VPBBsForBB = 0;
- if (VPBB != HeaderVPBB)
- VPBB->setName(BB->getName());
- Builder.setInsertPoint(VPBB);
- // Introduce each ingredient into VPlan.
- // TODO: Model and preserve debug intrinsics in VPlan.
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- Instruction *Instr = &I;
- // First filter out irrelevant instructions, to ensure no recipes are
- // built for them.
- if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
- continue;
- SmallVector<VPValue *, 4> Operands;
- auto *Phi = dyn_cast<PHINode>(Instr);
- if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
- Operands.push_back(Plan->getOrAddVPValue(
- Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
- } else {
- auto OpRange = Plan->mapToVPValues(Instr->operands());
- Operands = {OpRange.begin(), OpRange.end()};
- }
- // Invariant stores inside loop will be deleted and a single store
- // with the final reduction value will be added to the exit block
- StoreInst *SI;
- if ((SI = dyn_cast<StoreInst>(&I)) &&
- Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
- continue;
- if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
- Instr, Operands, Range, VPBB, Plan)) {
- // If Instr can be simplified to an existing VPValue, use it.
- if (RecipeOrValue.is<VPValue *>()) {
- auto *VPV = RecipeOrValue.get<VPValue *>();
- Plan->addVPValue(Instr, VPV);
- // If the re-used value is a recipe, register the recipe for the
- // instruction, in case the recipe for Instr needs to be recorded.
- if (VPRecipeBase *R = VPV->getDefiningRecipe())
- RecipeBuilder.setRecipe(Instr, R);
- continue;
- }
- // Otherwise, add the new recipe.
- VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
- for (auto *Def : Recipe->definedValues()) {
- auto *UV = Def->getUnderlyingValue();
- Plan->addVPValue(UV, Def);
- }
- if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
- HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
- // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
- // of the header block. That can happen for truncates of induction
- // variables. Those recipes are moved to the phi section of the header
- // block after applying SinkAfter, which relies on the original
- // position of the trunc.
- assert(isa<TruncInst>(Instr));
- InductionsToMove.push_back(
- cast<VPWidenIntOrFpInductionRecipe>(Recipe));
- }
- RecipeBuilder.setRecipe(Instr, Recipe);
- VPBB->appendRecipe(Recipe);
- continue;
- }
- // Otherwise, if all widening options failed, Instruction is to be
- // replicated. This may create a successor for VPBB.
- VPBasicBlock *NextVPBB =
- RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
- if (NextVPBB != VPBB) {
- VPBB = NextVPBB;
- VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
- : "");
- }
- }
- VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
- VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
- }
- // After here, VPBB should not be used.
- VPBB = nullptr;
- addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan);
- assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
- !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
- "entry block must be set to a VPRegionBlock having a non-empty entry "
- "VPBasicBlock");
- RecipeBuilder.fixHeaderPhis();
- // ---------------------------------------------------------------------------
- // Transform initial VPlan: Apply previously taken decisions, in order, to
- // bring the VPlan to its final state.
- // ---------------------------------------------------------------------------
- // Apply Sink-After legal constraints.
- auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
- auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
- if (Region && Region->isReplicator()) {
- assert(Region->getNumSuccessors() == 1 &&
- Region->getNumPredecessors() == 1 && "Expected SESE region!");
- assert(R->getParent()->size() == 1 &&
- "A recipe in an original replicator region must be the only "
- "recipe in its block");
- return Region;
- }
- return nullptr;
- };
- for (const auto &Entry : SinkAfter) {
- VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
- VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
- auto *TargetRegion = GetReplicateRegion(Target);
- auto *SinkRegion = GetReplicateRegion(Sink);
- if (!SinkRegion) {
- // If the sink source is not a replicate region, sink the recipe directly.
- if (TargetRegion) {
- // The target is in a replication region, make sure to move Sink to
- // the block after it, not into the replication region itself.
- VPBasicBlock *NextBlock =
- cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
- Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
- } else
- Sink->moveAfter(Target);
- continue;
- }
- // The sink source is in a replicate region. Unhook the region from the CFG.
- auto *SinkPred = SinkRegion->getSinglePredecessor();
- auto *SinkSucc = SinkRegion->getSingleSuccessor();
- VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
- VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
- VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
- if (TargetRegion) {
- // The target recipe is also in a replicate region, move the sink region
- // after the target region.
- auto *TargetSucc = TargetRegion->getSingleSuccessor();
- VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
- VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
- VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
- } else {
- // The sink source is in a replicate region, we need to move the whole
- // replicate region, which should only contain a single recipe in the
- // main block.
- auto *SplitBlock =
- Target->getParent()->splitAt(std::next(Target->getIterator()));
- auto *SplitPred = SplitBlock->getSinglePredecessor();
- VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
- VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
- VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
- }
- }
- VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
- VPlanTransforms::removeRedundantInductionCasts(*Plan);
- // Now that sink-after is done, move induction recipes for optimized truncates
- // to the phi section of the header block.
- for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
- Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
- // Adjust the recipes for any inloop reductions.
- adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan,
- RecipeBuilder, Range.Start);
- // Introduce a recipe to combine the incoming and previous values of a
- // fixed-order recurrence.
- for (VPRecipeBase &R :
- Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
- auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
- if (!RecurPhi)
- continue;
- VPRecipeBase *PrevRecipe = &RecurPhi->getBackedgeRecipe();
- // Fixed-order recurrences do not contain cycles, so this loop is guaranteed
- // to terminate.
- while (auto *PrevPhi =
- dyn_cast<VPFirstOrderRecurrencePHIRecipe>(PrevRecipe))
- PrevRecipe = &PrevPhi->getBackedgeRecipe();
- VPBasicBlock *InsertBlock = PrevRecipe->getParent();
- auto *Region = GetReplicateRegion(PrevRecipe);
- if (Region)
- InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor());
- if (!InsertBlock) {
- InsertBlock = new VPBasicBlock(Region->getName() + ".succ");
- VPBlockUtils::insertBlockAfter(InsertBlock, Region);
- }
- if (Region || PrevRecipe->isPhi())
- Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
- else
- Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
- auto *RecurSplice = cast<VPInstruction>(
- Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
- {RecurPhi, RecurPhi->getBackedgeValue()}));
- RecurPhi->replaceAllUsesWith(RecurSplice);
- // Set the first operand of RecurSplice to RecurPhi again, after replacing
- // all users.
- RecurSplice->setOperand(0, RecurPhi);
- }
- // Interleave memory: for each Interleave Group we marked earlier as relevant
- // for this VPlan, replace the Recipes widening its memory instructions with a
- // single VPInterleaveRecipe at its insertion point.
- for (const auto *IG : InterleaveGroups) {
- auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
- RecipeBuilder.getRecipe(IG->getInsertPos()));
- SmallVector<VPValue *, 4> StoredValues;
- for (unsigned i = 0; i < IG->getFactor(); ++i)
- if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
- auto *StoreR =
- cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
- StoredValues.push_back(StoreR->getStoredValue());
- }
- auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
- Recipe->getMask());
- VPIG->insertBefore(Recipe);
- unsigned J = 0;
- for (unsigned i = 0; i < IG->getFactor(); ++i)
- if (Instruction *Member = IG->getMember(i)) {
- if (!Member->getType()->isVoidTy()) {
- VPValue *OriginalV = Plan->getVPValue(Member);
- Plan->removeVPValueFor(Member);
- Plan->addVPValue(Member, VPIG->getVPValue(J));
- OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
- J++;
- }
- RecipeBuilder.getRecipe(Member)->eraseFromParent();
- }
- }
- for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
- VF *= 2)
- Plan->addVF(VF);
- Plan->setName("Initial VPlan");
- // From this point onwards, VPlan-to-VPlan transformations may change the plan
- // in ways that accessing values using original IR values is incorrect.
- Plan->disableValue2VPValue();
- VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
- VPlanTransforms::removeDeadRecipes(*Plan);
- bool ShouldSimplify = true;
- while (ShouldSimplify) {
- ShouldSimplify = VPlanTransforms::sinkScalarOperands(*Plan);
- ShouldSimplify |=
- VPlanTransforms::mergeReplicateRegionsIntoSuccessors(*Plan);
- ShouldSimplify |= VPlanTransforms::mergeBlocksIntoPredecessors(*Plan);
- }
- VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan);
- VPlanTransforms::mergeBlocksIntoPredecessors(*Plan);
- assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
- return Plan;
- }
- VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
- // Outer loop handling: They may require CFG and instruction level
- // transformations before even evaluating whether vectorization is profitable.
- // Since we cannot modify the incoming IR, we need to build VPlan upfront in
- // the vectorization pipeline.
- assert(!OrigLoop->isInnermost());
- assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
- // Create new empty VPlan
- auto Plan = std::make_unique<VPlan>();
- // Build hierarchical CFG
- VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
- HCFGBuilder.buildHierarchicalCFG();
- for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
- VF *= 2)
- Plan->addVF(VF);
- SmallPtrSet<Instruction *, 1> DeadInstructions;
- VPlanTransforms::VPInstructionsToVPRecipes(
- OrigLoop, Plan,
- [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
- DeadInstructions, *PSE.getSE(), *TLI);
- // Remove the existing terminator of the exiting block of the top-most region.
- // A BranchOnCount will be added instead when adding the canonical IV recipes.
- auto *Term =
- Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
- Term->eraseFromParent();
- addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
- true, CM.useActiveLaneMaskForControlFlow());
- return Plan;
- }
- // Adjust the recipes for reductions. For in-loop reductions the chain of
- // instructions leading from the loop exit instr to the phi need to be converted
- // to reductions, with one operand being vector and the other being the scalar
- // reduction chain. For other reductions, a select is introduced between the phi
- // and live-out recipes when folding the tail.
- void LoopVectorizationPlanner::adjustRecipesForReductions(
- VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
- ElementCount MinVF) {
- for (const auto &Reduction : CM.getInLoopReductionChains()) {
- PHINode *Phi = Reduction.first;
- const RecurrenceDescriptor &RdxDesc =
- Legal->getReductionVars().find(Phi)->second;
- const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
- if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
- continue;
- // ReductionOperations are orders top-down from the phi's use to the
- // LoopExitValue. We keep a track of the previous item (the Chain) to tell
- // which of the two operands will remain scalar and which will be reduced.
- // For minmax the chain will be the select instructions.
- Instruction *Chain = Phi;
- for (Instruction *R : ReductionOperations) {
- VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
- RecurKind Kind = RdxDesc.getRecurrenceKind();
- VPValue *ChainOp = Plan->getVPValue(Chain);
- unsigned FirstOpId;
- assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
- "Only min/max recurrences allowed for inloop reductions");
- // Recognize a call to the llvm.fmuladd intrinsic.
- bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
- assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
- "Expected instruction to be a call to the llvm.fmuladd intrinsic");
- if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
- assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
- "Expected to replace a VPWidenSelectSC");
- FirstOpId = 1;
- } else {
- assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
- (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
- "Expected to replace a VPWidenSC");
- FirstOpId = 0;
- }
- unsigned VecOpId =
- R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
- VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
- VPValue *CondOp = nullptr;
- if (CM.blockNeedsPredicationForAnyReason(R->getParent())) {
- VPBuilder::InsertPointGuard Guard(Builder);
- Builder.setInsertPoint(WidenRecipe->getParent(),
- WidenRecipe->getIterator());
- CondOp = RecipeBuilder.createBlockInMask(R->getParent(), Plan);
- }
- if (IsFMulAdd) {
- // If the instruction is a call to the llvm.fmuladd intrinsic then we
- // need to create an fmul recipe to use as the vector operand for the
- // fadd reduction.
- VPInstruction *FMulRecipe = new VPInstruction(
- Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
- FMulRecipe->setFastMathFlags(R->getFastMathFlags());
- WidenRecipe->getParent()->insert(FMulRecipe,
- WidenRecipe->getIterator());
- VecOp = FMulRecipe;
- }
- VPReductionRecipe *RedRecipe =
- new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
- WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
- Plan->removeVPValueFor(R);
- Plan->addVPValue(R, RedRecipe);
- // Append the recipe to the end of the VPBasicBlock because we need to
- // ensure that it comes after all of it's inputs, including CondOp.
- WidenRecipe->getParent()->appendRecipe(RedRecipe);
- WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
- WidenRecipe->eraseFromParent();
- if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
- VPRecipeBase *CompareRecipe =
- RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
- assert(isa<VPWidenRecipe>(CompareRecipe) &&
- "Expected to replace a VPWidenSC");
- assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
- "Expected no remaining users");
- CompareRecipe->eraseFromParent();
- }
- Chain = R;
- }
- }
- // If tail is folded by masking, introduce selects between the phi
- // and the live-out instruction of each reduction, at the beginning of the
- // dedicated latch block.
- if (CM.foldTailByMasking()) {
- Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
- for (VPRecipeBase &R :
- Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
- VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
- if (!PhiR || PhiR->isInLoop())
- continue;
- VPValue *Cond =
- RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
- VPValue *Red = PhiR->getBackedgeValue();
- assert(Red->getDefiningRecipe()->getParent() != LatchVPBB &&
- "reduction recipe must be defined before latch");
- Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
- }
- }
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
- VPSlotTracker &SlotTracker) const {
- O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
- IG->getInsertPos()->printAsOperand(O, false);
- O << ", ";
- getAddr()->printAsOperand(O, SlotTracker);
- VPValue *Mask = getMask();
- if (Mask) {
- O << ", ";
- Mask->printAsOperand(O, SlotTracker);
- }
- unsigned OpIdx = 0;
- for (unsigned i = 0; i < IG->getFactor(); ++i) {
- if (!IG->getMember(i))
- continue;
- if (getNumStoreOperands() > 0) {
- O << "\n" << Indent << " store ";
- getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
- O << " to index " << i;
- } else {
- O << "\n" << Indent << " ";
- getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
- O << " = load from index " << i;
- }
- ++OpIdx;
- }
- }
- #endif
- void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
- assert(!State.Instance && "Int or FP induction being replicated.");
- Value *Start = getStartValue()->getLiveInIRValue();
- const InductionDescriptor &ID = getInductionDescriptor();
- TruncInst *Trunc = getTruncInst();
- IRBuilderBase &Builder = State.Builder;
- assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
- assert(State.VF.isVector() && "must have vector VF");
- // The value from the original loop to which we are mapping the new induction
- // variable.
- Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
- // Fast-math-flags propagate from the original induction instruction.
- IRBuilder<>::FastMathFlagGuard FMFG(Builder);
- if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
- Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
- // Now do the actual transformations, and start with fetching the step value.
- Value *Step = State.get(getStepValue(), VPIteration(0, 0));
- assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
- "Expected either an induction phi-node or a truncate of it!");
- // Construct the initial value of the vector IV in the vector loop preheader
- auto CurrIP = Builder.saveIP();
- BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
- Builder.SetInsertPoint(VectorPH->getTerminator());
- if (isa<TruncInst>(EntryVal)) {
- assert(Start->getType()->isIntegerTy() &&
- "Truncation requires an integer type");
- auto *TruncType = cast<IntegerType>(EntryVal->getType());
- Step = Builder.CreateTrunc(Step, TruncType);
- Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
- }
- Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
- Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
- Value *SteppedStart = getStepVector(
- SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
- // We create vector phi nodes for both integer and floating-point induction
- // variables. Here, we determine the kind of arithmetic we will perform.
- Instruction::BinaryOps AddOp;
- Instruction::BinaryOps MulOp;
- if (Step->getType()->isIntegerTy()) {
- AddOp = Instruction::Add;
- MulOp = Instruction::Mul;
- } else {
- AddOp = ID.getInductionOpcode();
- MulOp = Instruction::FMul;
- }
- // Multiply the vectorization factor by the step using integer or
- // floating-point arithmetic as appropriate.
- Type *StepType = Step->getType();
- Value *RuntimeVF;
- if (Step->getType()->isFloatingPointTy())
- RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
- else
- RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
- Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
- // Create a vector splat to use in the induction update.
- //
- // FIXME: If the step is non-constant, we create the vector splat with
- // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
- // handle a constant vector splat.
- Value *SplatVF = isa<Constant>(Mul)
- ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
- : Builder.CreateVectorSplat(State.VF, Mul);
- Builder.restoreIP(CurrIP);
- // We may need to add the step a number of times, depending on the unroll
- // factor. The last of those goes into the PHI.
- PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
- &*State.CFG.PrevBB->getFirstInsertionPt());
- VecInd->setDebugLoc(EntryVal->getDebugLoc());
- Instruction *LastInduction = VecInd;
- for (unsigned Part = 0; Part < State.UF; ++Part) {
- State.set(this, LastInduction, Part);
- if (isa<TruncInst>(EntryVal))
- State.addMetadata(LastInduction, EntryVal);
- LastInduction = cast<Instruction>(
- Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
- LastInduction->setDebugLoc(EntryVal->getDebugLoc());
- }
- LastInduction->setName("vec.ind.next");
- VecInd->addIncoming(SteppedStart, VectorPH);
- // Add induction update using an incorrect block temporarily. The phi node
- // will be fixed after VPlan execution. Note that at this point the latch
- // block cannot be used, as it does not exist yet.
- // TODO: Model increment value in VPlan, by turning the recipe into a
- // multi-def and a subclass of VPHeaderPHIRecipe.
- VecInd->addIncoming(LastInduction, VectorPH);
- }
- void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
- assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
- "Not a pointer induction according to InductionDescriptor!");
- assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
- "Unexpected type.");
- auto *IVR = getParent()->getPlan()->getCanonicalIV();
- PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
- if (onlyScalarsGenerated(State.VF)) {
- // This is the normalized GEP that starts counting at zero.
- Value *PtrInd = State.Builder.CreateSExtOrTrunc(
- CanonicalIV, IndDesc.getStep()->getType());
- // Determine the number of scalars we need to generate for each unroll
- // iteration. If the instruction is uniform, we only need to generate the
- // first lane. Otherwise, we generate all VF values.
- bool IsUniform = vputils::onlyFirstLaneUsed(this);
- assert((IsUniform || !State.VF.isScalable()) &&
- "Cannot scalarize a scalable VF");
- unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
- for (unsigned Part = 0; Part < State.UF; ++Part) {
- Value *PartStart =
- createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
- for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
- Value *Idx = State.Builder.CreateAdd(
- PartStart, ConstantInt::get(PtrInd->getType(), Lane));
- Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
- Value *Step = State.get(getOperand(1), VPIteration(0, Part));
- Value *SclrGep = emitTransformedIndex(
- State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
- SclrGep->setName("next.gep");
- State.set(this, SclrGep, VPIteration(Part, Lane));
- }
- }
- return;
- }
- assert(isa<SCEVConstant>(IndDesc.getStep()) &&
- "Induction step not a SCEV constant!");
- Type *PhiType = IndDesc.getStep()->getType();
- // Build a pointer phi
- Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
- Type *ScStValueType = ScalarStartValue->getType();
- PHINode *NewPointerPhi =
- PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
- BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
- NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
- // A pointer induction, performed by using a gep
- Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
- Value *ScalarStepValue = State.get(getOperand(1), VPIteration(0, 0));
- Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
- Value *NumUnrolledElems =
- State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
- Value *InductionGEP = GetElementPtrInst::Create(
- IndDesc.getElementType(), NewPointerPhi,
- State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
- InductionLoc);
- // Add induction update using an incorrect block temporarily. The phi node
- // will be fixed after VPlan execution. Note that at this point the latch
- // block cannot be used, as it does not exist yet.
- // TODO: Model increment value in VPlan, by turning the recipe into a
- // multi-def and a subclass of VPHeaderPHIRecipe.
- NewPointerPhi->addIncoming(InductionGEP, VectorPH);
- // Create UF many actual address geps that use the pointer
- // phi as base and a vectorized version of the step value
- // (<step*0, ..., step*N>) as offset.
- for (unsigned Part = 0; Part < State.UF; ++Part) {
- Type *VecPhiType = VectorType::get(PhiType, State.VF);
- Value *StartOffsetScalar =
- State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
- Value *StartOffset =
- State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
- // Create a vector of consecutive numbers from zero to VF.
- StartOffset = State.Builder.CreateAdd(
- StartOffset, State.Builder.CreateStepVector(VecPhiType));
- assert(ScalarStepValue == State.get(getOperand(1), VPIteration(0, Part)) &&
- "scalar step must be the same across all parts");
- Value *GEP = State.Builder.CreateGEP(
- IndDesc.getElementType(), NewPointerPhi,
- State.Builder.CreateMul(
- StartOffset,
- State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
- "vector.gep"));
- State.set(this, GEP, Part);
- }
- }
- void VPDerivedIVRecipe::execute(VPTransformState &State) {
- assert(!State.Instance && "VPDerivedIVRecipe being replicated.");
- // Fast-math-flags propagate from the original induction instruction.
- IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
- if (IndDesc.getInductionBinOp() &&
- isa<FPMathOperator>(IndDesc.getInductionBinOp()))
- State.Builder.setFastMathFlags(
- IndDesc.getInductionBinOp()->getFastMathFlags());
- Value *Step = State.get(getStepValue(), VPIteration(0, 0));
- Value *CanonicalIV = State.get(getCanonicalIV(), VPIteration(0, 0));
- Value *DerivedIV =
- emitTransformedIndex(State.Builder, CanonicalIV,
- getStartValue()->getLiveInIRValue(), Step, IndDesc);
- DerivedIV->setName("offset.idx");
- if (ResultTy != DerivedIV->getType()) {
- assert(Step->getType()->isIntegerTy() &&
- "Truncation requires an integer step");
- DerivedIV = State.Builder.CreateTrunc(DerivedIV, ResultTy);
- }
- assert(DerivedIV != CanonicalIV && "IV didn't need transforming?");
- State.set(this, DerivedIV, VPIteration(0, 0));
- }
- void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
- // Fast-math-flags propagate from the original induction instruction.
- IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
- if (IndDesc.getInductionBinOp() &&
- isa<FPMathOperator>(IndDesc.getInductionBinOp()))
- State.Builder.setFastMathFlags(
- IndDesc.getInductionBinOp()->getFastMathFlags());
- Value *BaseIV = State.get(getOperand(0), VPIteration(0, 0));
- Value *Step = State.get(getStepValue(), VPIteration(0, 0));
- buildScalarSteps(BaseIV, Step, IndDesc, this, State);
- }
- void VPInterleaveRecipe::execute(VPTransformState &State) {
- assert(!State.Instance && "Interleave group being replicated.");
- State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
- getStoredValues(), getMask());
- }
- void VPReductionRecipe::execute(VPTransformState &State) {
- assert(!State.Instance && "Reduction being replicated.");
- Value *PrevInChain = State.get(getChainOp(), 0);
- RecurKind Kind = RdxDesc->getRecurrenceKind();
- bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
- // Propagate the fast-math flags carried by the underlying instruction.
- IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
- State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
- for (unsigned Part = 0; Part < State.UF; ++Part) {
- Value *NewVecOp = State.get(getVecOp(), Part);
- if (VPValue *Cond = getCondOp()) {
- Value *NewCond = State.get(Cond, Part);
- VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
- Value *Iden = RdxDesc->getRecurrenceIdentity(
- Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
- Value *IdenVec =
- State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
- Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
- NewVecOp = Select;
- }
- Value *NewRed;
- Value *NextInChain;
- if (IsOrdered) {
- if (State.VF.isVector())
- NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
- PrevInChain);
- else
- NewRed = State.Builder.CreateBinOp(
- (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
- NewVecOp);
- PrevInChain = NewRed;
- } else {
- PrevInChain = State.get(getChainOp(), Part);
- NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
- }
- if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
- NextInChain =
- createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
- NewRed, PrevInChain);
- } else if (IsOrdered)
- NextInChain = NewRed;
- else
- NextInChain = State.Builder.CreateBinOp(
- (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
- PrevInChain);
- State.set(this, NextInChain, Part);
- }
- }
- void VPReplicateRecipe::execute(VPTransformState &State) {
- Instruction *UI = getUnderlyingInstr();
- if (State.Instance) { // Generate a single instance.
- assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
- State.ILV->scalarizeInstruction(UI, this, *State.Instance,
- IsPredicated, State);
- // Insert scalar instance packing it into a vector.
- if (AlsoPack && State.VF.isVector()) {
- // If we're constructing lane 0, initialize to start from poison.
- if (State.Instance->Lane.isFirstLane()) {
- assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
- Value *Poison = PoisonValue::get(
- VectorType::get(UI->getType(), State.VF));
- State.set(this, Poison, State.Instance->Part);
- }
- State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
- }
- return;
- }
- if (IsUniform) {
- // If the recipe is uniform across all parts (instead of just per VF), only
- // generate a single instance.
- if ((isa<LoadInst>(UI) || isa<StoreInst>(UI)) &&
- all_of(operands(), [](VPValue *Op) {
- return Op->isDefinedOutsideVectorRegions();
- })) {
- State.ILV->scalarizeInstruction(UI, this, VPIteration(0, 0), IsPredicated,
- State);
- if (user_begin() != user_end()) {
- for (unsigned Part = 1; Part < State.UF; ++Part)
- State.set(this, State.get(this, VPIteration(0, 0)),
- VPIteration(Part, 0));
- }
- return;
- }
- // Uniform within VL means we need to generate lane 0 only for each
- // unrolled copy.
- for (unsigned Part = 0; Part < State.UF; ++Part)
- State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, 0),
- IsPredicated, State);
- return;
- }
- // A store of a loop varying value to a loop invariant address only
- // needs only the last copy of the store.
- if (isa<StoreInst>(UI) && !getOperand(1)->hasDefiningRecipe()) {
- auto Lane = VPLane::getLastLaneForVF(State.VF);
- State.ILV->scalarizeInstruction(UI, this, VPIteration(State.UF - 1, Lane), IsPredicated,
- State);
- return;
- }
- // Generate scalar instances for all VF lanes of all UF parts.
- assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
- const unsigned EndLane = State.VF.getKnownMinValue();
- for (unsigned Part = 0; Part < State.UF; ++Part)
- for (unsigned Lane = 0; Lane < EndLane; ++Lane)
- State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, Lane),
- IsPredicated, State);
- }
- void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
- VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
- // Attempt to issue a wide load.
- LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
- StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
- assert((LI || SI) && "Invalid Load/Store instruction");
- assert((!SI || StoredValue) && "No stored value provided for widened store");
- assert((!LI || !StoredValue) && "Stored value provided for widened load");
- Type *ScalarDataTy = getLoadStoreType(&Ingredient);
- auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
- const Align Alignment = getLoadStoreAlignment(&Ingredient);
- bool CreateGatherScatter = !Consecutive;
- auto &Builder = State.Builder;
- InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
- bool isMaskRequired = getMask();
- if (isMaskRequired)
- for (unsigned Part = 0; Part < State.UF; ++Part)
- BlockInMaskParts[Part] = State.get(getMask(), Part);
- const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
- // Calculate the pointer for the specific unroll-part.
- GetElementPtrInst *PartPtr = nullptr;
- bool InBounds = false;
- if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
- InBounds = gep->isInBounds();
- if (Reverse) {
- // If the address is consecutive but reversed, then the
- // wide store needs to start at the last vector element.
- // RunTimeVF = VScale * VF.getKnownMinValue()
- // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
- Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
- // NumElt = -Part * RunTimeVF
- Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
- // LastLane = 1 - RunTimeVF
- Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
- PartPtr =
- cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
- PartPtr->setIsInBounds(InBounds);
- PartPtr = cast<GetElementPtrInst>(
- Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
- PartPtr->setIsInBounds(InBounds);
- if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
- BlockInMaskParts[Part] =
- Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
- } else {
- Value *Increment =
- createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
- PartPtr = cast<GetElementPtrInst>(
- Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
- PartPtr->setIsInBounds(InBounds);
- }
- unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
- return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
- };
- // Handle Stores:
- if (SI) {
- State.setDebugLocFromInst(SI);
- for (unsigned Part = 0; Part < State.UF; ++Part) {
- Instruction *NewSI = nullptr;
- Value *StoredVal = State.get(StoredValue, Part);
- if (CreateGatherScatter) {
- Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
- Value *VectorGep = State.get(getAddr(), Part);
- NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
- MaskPart);
- } else {
- if (Reverse) {
- // If we store to reverse consecutive memory locations, then we need
- // to reverse the order of elements in the stored value.
- StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
- // We don't want to update the value in the map as it might be used in
- // another expression. So don't call resetVectorValue(StoredVal).
- }
- auto *VecPtr =
- CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
- if (isMaskRequired)
- NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
- BlockInMaskParts[Part]);
- else
- NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
- }
- State.addMetadata(NewSI, SI);
- }
- return;
- }
- // Handle loads.
- assert(LI && "Must have a load instruction");
- State.setDebugLocFromInst(LI);
- for (unsigned Part = 0; Part < State.UF; ++Part) {
- Value *NewLI;
- if (CreateGatherScatter) {
- Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
- Value *VectorGep = State.get(getAddr(), Part);
- NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
- nullptr, "wide.masked.gather");
- State.addMetadata(NewLI, LI);
- } else {
- auto *VecPtr =
- CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
- if (isMaskRequired)
- NewLI = Builder.CreateMaskedLoad(
- DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
- PoisonValue::get(DataTy), "wide.masked.load");
- else
- NewLI =
- Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
- // Add metadata to the load, but setVectorValue to the reverse shuffle.
- State.addMetadata(NewLI, LI);
- if (Reverse)
- NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
- }
- State.set(getVPSingleValue(), NewLI, Part);
- }
- }
- // Determine how to lower the scalar epilogue, which depends on 1) optimising
- // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
- // predication, and 4) a TTI hook that analyses whether the loop is suitable
- // for predication.
- static ScalarEpilogueLowering getScalarEpilogueLowering(
- Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
- BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
- AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
- LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI) {
- // 1) OptSize takes precedence over all other options, i.e. if this is set,
- // don't look at hints or options, and don't request a scalar epilogue.
- // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
- // LoopAccessInfo (due to code dependency and not being able to reliably get
- // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
- // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
- // versioning when the vectorization is forced, unlike hasOptSize. So revert
- // back to the old way and vectorize with versioning when forced. See D81345.)
- if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
- PGSOQueryType::IRPass) &&
- Hints.getForce() != LoopVectorizeHints::FK_Enabled))
- return CM_ScalarEpilogueNotAllowedOptSize;
- // 2) If set, obey the directives
- if (PreferPredicateOverEpilogue.getNumOccurrences()) {
- switch (PreferPredicateOverEpilogue) {
- case PreferPredicateTy::ScalarEpilogue:
- return CM_ScalarEpilogueAllowed;
- case PreferPredicateTy::PredicateElseScalarEpilogue:
- return CM_ScalarEpilogueNotNeededUsePredicate;
- case PreferPredicateTy::PredicateOrDontVectorize:
- return CM_ScalarEpilogueNotAllowedUsePredicate;
- };
- }
- // 3) If set, obey the hints
- switch (Hints.getPredicate()) {
- case LoopVectorizeHints::FK_Enabled:
- return CM_ScalarEpilogueNotNeededUsePredicate;
- case LoopVectorizeHints::FK_Disabled:
- return CM_ScalarEpilogueAllowed;
- };
- // 4) if the TTI hook indicates this is profitable, request predication.
- if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, &LVL, IAI))
- return CM_ScalarEpilogueNotNeededUsePredicate;
- return CM_ScalarEpilogueAllowed;
- }
- Value *VPTransformState::get(VPValue *Def, unsigned Part) {
- // If Values have been set for this Def return the one relevant for \p Part.
- if (hasVectorValue(Def, Part))
- return Data.PerPartOutput[Def][Part];
- if (!hasScalarValue(Def, {Part, 0})) {
- Value *IRV = Def->getLiveInIRValue();
- Value *B = ILV->getBroadcastInstrs(IRV);
- set(Def, B, Part);
- return B;
- }
- Value *ScalarValue = get(Def, {Part, 0});
- // If we aren't vectorizing, we can just copy the scalar map values over
- // to the vector map.
- if (VF.isScalar()) {
- set(Def, ScalarValue, Part);
- return ScalarValue;
- }
- bool IsUniform = vputils::isUniformAfterVectorization(Def);
- unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
- // Check if there is a scalar value for the selected lane.
- if (!hasScalarValue(Def, {Part, LastLane})) {
- // At the moment, VPWidenIntOrFpInductionRecipes and VPScalarIVStepsRecipes can also be uniform.
- assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
- isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe())) &&
- "unexpected recipe found to be invariant");
- IsUniform = true;
- LastLane = 0;
- }
- auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
- // Set the insert point after the last scalarized instruction or after the
- // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
- // will directly follow the scalar definitions.
- auto OldIP = Builder.saveIP();
- auto NewIP =
- isa<PHINode>(LastInst)
- ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
- : std::next(BasicBlock::iterator(LastInst));
- Builder.SetInsertPoint(&*NewIP);
- // However, if we are vectorizing, we need to construct the vector values.
- // If the value is known to be uniform after vectorization, we can just
- // broadcast the scalar value corresponding to lane zero for each unroll
- // iteration. Otherwise, we construct the vector values using
- // insertelement instructions. Since the resulting vectors are stored in
- // State, we will only generate the insertelements once.
- Value *VectorValue = nullptr;
- if (IsUniform) {
- VectorValue = ILV->getBroadcastInstrs(ScalarValue);
- set(Def, VectorValue, Part);
- } else {
- // Initialize packing with insertelements to start from undef.
- assert(!VF.isScalable() && "VF is assumed to be non scalable.");
- Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
- set(Def, Undef, Part);
- for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
- ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
- VectorValue = get(Def, Part);
- }
- Builder.restoreIP(OldIP);
- return VectorValue;
- }
- // Process the loop in the VPlan-native vectorization path. This path builds
- // VPlan upfront in the vectorization pipeline, which allows to apply
- // VPlan-to-VPlan transformations from the very beginning without modifying the
- // input LLVM IR.
- static bool processLoopInVPlanNativePath(
- Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
- LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
- TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
- ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
- LoopVectorizationRequirements &Requirements) {
- if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
- LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
- return false;
- }
- assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
- Function *F = L->getHeader()->getParent();
- InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
- ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
- F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL, &IAI);
- LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
- &Hints, IAI);
- // Use the planner for outer loop vectorization.
- // TODO: CM is not used at this point inside the planner. Turn CM into an
- // optional argument if we don't need it in the future.
- LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, ORE);
- // Get user vectorization factor.
- ElementCount UserVF = Hints.getWidth();
- CM.collectElementTypesForWidening();
- // Plan how to best vectorize, return the best VF and its cost.
- const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
- // If we are stress testing VPlan builds, do not attempt to generate vector
- // code. Masked vector code generation support will follow soon.
- // Also, do not attempt to vectorize if no vector code will be produced.
- if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF)
- return false;
- VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
- {
- GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI,
- F->getParent()->getDataLayout());
- InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
- VF.Width, 1, LVL, &CM, BFI, PSI, Checks);
- LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
- << L->getHeader()->getParent()->getName() << "\"\n");
- LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false);
- }
- // Mark the loop as already vectorized to avoid vectorizing again.
- Hints.setAlreadyVectorized();
- assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
- return true;
- }
- // Emit a remark if there are stores to floats that required a floating point
- // extension. If the vectorized loop was generated with floating point there
- // will be a performance penalty from the conversion overhead and the change in
- // the vector width.
- static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
- SmallVector<Instruction *, 4> Worklist;
- for (BasicBlock *BB : L->getBlocks()) {
- for (Instruction &Inst : *BB) {
- if (auto *S = dyn_cast<StoreInst>(&Inst)) {
- if (S->getValueOperand()->getType()->isFloatTy())
- Worklist.push_back(S);
- }
- }
- }
- // Traverse the floating point stores upwards searching, for floating point
- // conversions.
- SmallPtrSet<const Instruction *, 4> Visited;
- SmallPtrSet<const Instruction *, 4> EmittedRemark;
- while (!Worklist.empty()) {
- auto *I = Worklist.pop_back_val();
- if (!L->contains(I))
- continue;
- if (!Visited.insert(I).second)
- continue;
- // Emit a remark if the floating point store required a floating
- // point conversion.
- // TODO: More work could be done to identify the root cause such as a
- // constant or a function return type and point the user to it.
- if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
- I->getDebugLoc(), L->getHeader())
- << "floating point conversion changes vector width. "
- << "Mixed floating point precision requires an up/down "
- << "cast that will negatively impact performance.";
- });
- for (Use &Op : I->operands())
- if (auto *OpI = dyn_cast<Instruction>(Op))
- Worklist.push_back(OpI);
- }
- }
- static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks,
- VectorizationFactor &VF,
- std::optional<unsigned> VScale, Loop *L,
- ScalarEvolution &SE) {
- InstructionCost CheckCost = Checks.getCost();
- if (!CheckCost.isValid())
- return false;
- // When interleaving only scalar and vector cost will be equal, which in turn
- // would lead to a divide by 0. Fall back to hard threshold.
- if (VF.Width.isScalar()) {
- if (CheckCost > VectorizeMemoryCheckThreshold) {
- LLVM_DEBUG(
- dbgs()
- << "LV: Interleaving only is not profitable due to runtime checks\n");
- return false;
- }
- return true;
- }
- // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated.
- double ScalarC = *VF.ScalarCost.getValue();
- if (ScalarC == 0)
- return true;
- // First, compute the minimum iteration count required so that the vector
- // loop outperforms the scalar loop.
- // The total cost of the scalar loop is
- // ScalarC * TC
- // where
- // * TC is the actual trip count of the loop.
- // * ScalarC is the cost of a single scalar iteration.
- //
- // The total cost of the vector loop is
- // RtC + VecC * (TC / VF) + EpiC
- // where
- // * RtC is the cost of the generated runtime checks
- // * VecC is the cost of a single vector iteration.
- // * TC is the actual trip count of the loop
- // * VF is the vectorization factor
- // * EpiCost is the cost of the generated epilogue, including the cost
- // of the remaining scalar operations.
- //
- // Vectorization is profitable once the total vector cost is less than the
- // total scalar cost:
- // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
- //
- // Now we can compute the minimum required trip count TC as
- // (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC
- //
- // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
- // the computations are performed on doubles, not integers and the result
- // is rounded up, hence we get an upper estimate of the TC.
- unsigned IntVF = VF.Width.getKnownMinValue();
- if (VF.Width.isScalable()) {
- unsigned AssumedMinimumVscale = 1;
- if (VScale)
- AssumedMinimumVscale = *VScale;
- IntVF *= AssumedMinimumVscale;
- }
- double VecCOverVF = double(*VF.Cost.getValue()) / IntVF;
- double RtC = *CheckCost.getValue();
- double MinTC1 = RtC / (ScalarC - VecCOverVF);
- // Second, compute a minimum iteration count so that the cost of the
- // runtime checks is only a fraction of the total scalar loop cost. This
- // adds a loop-dependent bound on the overhead incurred if the runtime
- // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
- // * TC. To bound the runtime check to be a fraction 1/X of the scalar
- // cost, compute
- // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
- double MinTC2 = RtC * 10 / ScalarC;
- // Now pick the larger minimum. If it is not a multiple of VF, choose the
- // next closest multiple of VF. This should partly compensate for ignoring
- // the epilogue cost.
- uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2));
- VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF));
- LLVM_DEBUG(
- dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
- << VF.MinProfitableTripCount << "\n");
- // Skip vectorization if the expected trip count is less than the minimum
- // required trip count.
- if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) {
- if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC),
- VF.MinProfitableTripCount)) {
- LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
- "trip count < minimum profitable VF ("
- << *ExpectedTC << " < " << VF.MinProfitableTripCount
- << ")\n");
- return false;
- }
- }
- return true;
- }
- LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
- : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
- !EnableLoopInterleaving),
- VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
- !EnableLoopVectorization) {}
- bool LoopVectorizePass::processLoop(Loop *L) {
- assert((EnableVPlanNativePath || L->isInnermost()) &&
- "VPlan-native path is not enabled. Only process inner loops.");
- #ifndef NDEBUG
- const std::string DebugLocStr = getDebugLocString(L);
- #endif /* NDEBUG */
- LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
- << L->getHeader()->getParent()->getName() << "' from "
- << DebugLocStr << "\n");
- LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
- LLVM_DEBUG(
- dbgs() << "LV: Loop hints:"
- << " force="
- << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
- ? "disabled"
- : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
- ? "enabled"
- : "?"))
- << " width=" << Hints.getWidth()
- << " interleave=" << Hints.getInterleave() << "\n");
- // Function containing loop
- Function *F = L->getHeader()->getParent();
- // Looking at the diagnostic output is the only way to determine if a loop
- // was vectorized (other than looking at the IR or machine code), so it
- // is important to generate an optimization remark for each loop. Most of
- // these messages are generated as OptimizationRemarkAnalysis. Remarks
- // generated as OptimizationRemark and OptimizationRemarkMissed are
- // less verbose reporting vectorized loops and unvectorized loops that may
- // benefit from vectorization, respectively.
- if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
- LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
- return false;
- }
- PredicatedScalarEvolution PSE(*SE, *L);
- // Check if it is legal to vectorize the loop.
- LoopVectorizationRequirements Requirements;
- LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
- &Requirements, &Hints, DB, AC, BFI, PSI);
- if (!LVL.canVectorize(EnableVPlanNativePath)) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
- Hints.emitRemarkWithHints();
- return false;
- }
- // Entrance to the VPlan-native vectorization path. Outer loops are processed
- // here. They may require CFG and instruction level transformations before
- // even evaluating whether vectorization is profitable. Since we cannot modify
- // the incoming IR, we need to build VPlan upfront in the vectorization
- // pipeline.
- if (!L->isInnermost())
- return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
- ORE, BFI, PSI, Hints, Requirements);
- assert(L->isInnermost() && "Inner loop expected.");
- InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
- bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
- // If an override option has been passed in for interleaved accesses, use it.
- if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
- UseInterleaved = EnableInterleavedMemAccesses;
- // Analyze interleaved memory accesses.
- if (UseInterleaved)
- IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
- // Check the function attributes and profiles to find out if this function
- // should be optimized for size.
- ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
- F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL, &IAI);
- // Check the loop for a trip count threshold: vectorize loops with a tiny trip
- // count by optimizing for size, to minimize overheads.
- auto ExpectedTC = getSmallBestKnownTC(*SE, L);
- if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
- LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
- << "This loop is worth vectorizing only if no scalar "
- << "iteration overheads are incurred.");
- if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
- LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
- else {
- if (*ExpectedTC > TTI->getMinTripCountTailFoldingThreshold()) {
- LLVM_DEBUG(dbgs() << "\n");
- SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
- } else {
- LLVM_DEBUG(dbgs() << " But the target considers the trip count too "
- "small to consider vectorizing.\n");
- reportVectorizationFailure(
- "The trip count is below the minial threshold value.",
- "loop trip count is too low, avoiding vectorization",
- "LowTripCount", ORE, L);
- Hints.emitRemarkWithHints();
- return false;
- }
- }
- }
- // Check the function attributes to see if implicit floats or vectors are
- // allowed.
- if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
- reportVectorizationFailure(
- "Can't vectorize when the NoImplicitFloat attribute is used",
- "loop not vectorized due to NoImplicitFloat attribute",
- "NoImplicitFloat", ORE, L);
- Hints.emitRemarkWithHints();
- return false;
- }
- // Check if the target supports potentially unsafe FP vectorization.
- // FIXME: Add a check for the type of safety issue (denormal, signaling)
- // for the target we're vectorizing for, to make sure none of the
- // additional fp-math flags can help.
- if (Hints.isPotentiallyUnsafe() &&
- TTI->isFPVectorizationPotentiallyUnsafe()) {
- reportVectorizationFailure(
- "Potentially unsafe FP op prevents vectorization",
- "loop not vectorized due to unsafe FP support.",
- "UnsafeFP", ORE, L);
- Hints.emitRemarkWithHints();
- return false;
- }
- bool AllowOrderedReductions;
- // If the flag is set, use that instead and override the TTI behaviour.
- if (ForceOrderedReductions.getNumOccurrences() > 0)
- AllowOrderedReductions = ForceOrderedReductions;
- else
- AllowOrderedReductions = TTI->enableOrderedReductions();
- if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
- ORE->emit([&]() {
- auto *ExactFPMathInst = Requirements.getExactFPInst();
- return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
- ExactFPMathInst->getDebugLoc(),
- ExactFPMathInst->getParent())
- << "loop not vectorized: cannot prove it is safe to reorder "
- "floating-point operations";
- });
- LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
- "reorder floating-point operations\n");
- Hints.emitRemarkWithHints();
- return false;
- }
- // Use the cost model.
- LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
- F, &Hints, IAI);
- CM.collectValuesToIgnore();
- CM.collectElementTypesForWidening();
- // Use the planner for vectorization.
- LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, ORE);
- // Get user vectorization factor and interleave count.
- ElementCount UserVF = Hints.getWidth();
- unsigned UserIC = Hints.getInterleave();
- // Plan how to best vectorize, return the best VF and its cost.
- std::optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
- VectorizationFactor VF = VectorizationFactor::Disabled();
- unsigned IC = 1;
- GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI,
- F->getParent()->getDataLayout());
- if (MaybeVF) {
- VF = *MaybeVF;
- // Select the interleave count.
- IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
- unsigned SelectedIC = std::max(IC, UserIC);
- // Optimistically generate runtime checks if they are needed. Drop them if
- // they turn out to not be profitable.
- if (VF.Width.isVector() || SelectedIC > 1)
- Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
- // Check if it is profitable to vectorize with runtime checks.
- bool ForceVectorization =
- Hints.getForce() == LoopVectorizeHints::FK_Enabled;
- if (!ForceVectorization &&
- !areRuntimeChecksProfitable(Checks, VF, CM.getVScaleForTuning(), L,
- *PSE.getSE())) {
- ORE->emit([&]() {
- return OptimizationRemarkAnalysisAliasing(
- DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
- L->getHeader())
- << "loop not vectorized: cannot prove it is safe to reorder "
- "memory operations";
- });
- LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
- Hints.emitRemarkWithHints();
- return false;
- }
- }
- // Identify the diagnostic messages that should be produced.
- std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
- bool VectorizeLoop = true, InterleaveLoop = true;
- if (VF.Width.isScalar()) {
- LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
- VecDiagMsg = std::make_pair(
- "VectorizationNotBeneficial",
- "the cost-model indicates that vectorization is not beneficial");
- VectorizeLoop = false;
- }
- if (!MaybeVF && UserIC > 1) {
- // Tell the user interleaving was avoided up-front, despite being explicitly
- // requested.
- LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
- "interleaving should be avoided up front\n");
- IntDiagMsg = std::make_pair(
- "InterleavingAvoided",
- "Ignoring UserIC, because interleaving was avoided up front");
- InterleaveLoop = false;
- } else if (IC == 1 && UserIC <= 1) {
- // Tell the user interleaving is not beneficial.
- LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
- IntDiagMsg = std::make_pair(
- "InterleavingNotBeneficial",
- "the cost-model indicates that interleaving is not beneficial");
- InterleaveLoop = false;
- if (UserIC == 1) {
- IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
- IntDiagMsg.second +=
- " and is explicitly disabled or interleave count is set to 1";
- }
- } else if (IC > 1 && UserIC == 1) {
- // Tell the user interleaving is beneficial, but it explicitly disabled.
- LLVM_DEBUG(
- dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
- IntDiagMsg = std::make_pair(
- "InterleavingBeneficialButDisabled",
- "the cost-model indicates that interleaving is beneficial "
- "but is explicitly disabled or interleave count is set to 1");
- InterleaveLoop = false;
- }
- // Override IC if user provided an interleave count.
- IC = UserIC > 0 ? UserIC : IC;
- // Emit diagnostic messages, if any.
- const char *VAPassName = Hints.vectorizeAnalysisPassName();
- if (!VectorizeLoop && !InterleaveLoop) {
- // Do not vectorize or interleaving the loop.
- ORE->emit([&]() {
- return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
- L->getStartLoc(), L->getHeader())
- << VecDiagMsg.second;
- });
- ORE->emit([&]() {
- return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
- L->getStartLoc(), L->getHeader())
- << IntDiagMsg.second;
- });
- return false;
- } else if (!VectorizeLoop && InterleaveLoop) {
- LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
- L->getStartLoc(), L->getHeader())
- << VecDiagMsg.second;
- });
- } else if (VectorizeLoop && !InterleaveLoop) {
- LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
- << ") in " << DebugLocStr << '\n');
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
- L->getStartLoc(), L->getHeader())
- << IntDiagMsg.second;
- });
- } else if (VectorizeLoop && InterleaveLoop) {
- LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
- << ") in " << DebugLocStr << '\n');
- LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
- }
- bool DisableRuntimeUnroll = false;
- MDNode *OrigLoopID = L->getLoopID();
- {
- using namespace ore;
- if (!VectorizeLoop) {
- assert(IC > 1 && "interleave count should not be 1 or 0");
- // If we decided that it is not legal to vectorize the loop, then
- // interleave it.
- InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
- &CM, BFI, PSI, Checks);
- VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
- LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false);
- ORE->emit([&]() {
- return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
- L->getHeader())
- << "interleaved loop (interleaved count: "
- << NV("InterleaveCount", IC) << ")";
- });
- } else {
- // If we decided that it is *legal* to vectorize the loop, then do it.
- // Consider vectorizing the epilogue too if it's profitable.
- VectorizationFactor EpilogueVF =
- CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
- if (EpilogueVF.Width.isVector()) {
- // The first pass vectorizes the main loop and creates a scalar epilogue
- // to be vectorized by executing the plan (potentially with a different
- // factor) again shortly afterwards.
- EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
- EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
- EPI, &LVL, &CM, BFI, PSI, Checks);
- VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
- LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
- DT, true);
- ++LoopsVectorized;
- // Second pass vectorizes the epilogue and adjusts the control flow
- // edges from the first pass.
- EPI.MainLoopVF = EPI.EpilogueVF;
- EPI.MainLoopUF = EPI.EpilogueUF;
- EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
- ORE, EPI, &LVL, &CM, BFI, PSI,
- Checks);
- VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
- VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion();
- VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
- Header->setName("vec.epilog.vector.body");
- // Ensure that the start values for any VPWidenIntOrFpInductionRecipe,
- // VPWidenPointerInductionRecipe and VPReductionPHIRecipes are updated
- // before vectorizing the epilogue loop.
- for (VPRecipeBase &R : Header->phis()) {
- if (isa<VPCanonicalIVPHIRecipe>(&R))
- continue;
- Value *ResumeV = nullptr;
- // TODO: Move setting of resume values to prepareToExecute.
- if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
- ResumeV = MainILV.getReductionResumeValue(
- ReductionPhi->getRecurrenceDescriptor());
- } else {
- // Create induction resume values for both widened pointer and
- // integer/fp inductions and update the start value of the induction
- // recipes to use the resume value.
- PHINode *IndPhi = nullptr;
- const InductionDescriptor *ID;
- if (auto *Ind = dyn_cast<VPWidenPointerInductionRecipe>(&R)) {
- IndPhi = cast<PHINode>(Ind->getUnderlyingValue());
- ID = &Ind->getInductionDescriptor();
- } else {
- auto *WidenInd = cast<VPWidenIntOrFpInductionRecipe>(&R);
- IndPhi = WidenInd->getPHINode();
- ID = &WidenInd->getInductionDescriptor();
- }
- ResumeV = MainILV.createInductionResumeValue(
- IndPhi, *ID, {EPI.MainLoopIterationCountCheck});
- }
- assert(ResumeV && "Must have a resume value");
- VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(ResumeV);
- cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
- }
- LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
- DT, true);
- ++LoopsEpilogueVectorized;
- if (!MainILV.areSafetyChecksAdded())
- DisableRuntimeUnroll = true;
- } else {
- InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
- VF.MinProfitableTripCount, IC, &LVL, &CM, BFI,
- PSI, Checks);
- VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
- LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
- ++LoopsVectorized;
- // Add metadata to disable runtime unrolling a scalar loop when there
- // are no runtime checks about strides and memory. A scalar loop that is
- // rarely used is not worth unrolling.
- if (!LB.areSafetyChecksAdded())
- DisableRuntimeUnroll = true;
- }
- // Report the vectorization decision.
- ORE->emit([&]() {
- return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
- L->getHeader())
- << "vectorized loop (vectorization width: "
- << NV("VectorizationFactor", VF.Width)
- << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
- });
- }
- if (ORE->allowExtraAnalysis(LV_NAME))
- checkMixedPrecision(L, ORE);
- }
- std::optional<MDNode *> RemainderLoopID =
- makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
- LLVMLoopVectorizeFollowupEpilogue});
- if (RemainderLoopID) {
- L->setLoopID(*RemainderLoopID);
- } else {
- if (DisableRuntimeUnroll)
- AddRuntimeUnrollDisableMetaData(L);
- // Mark the loop as already vectorized to avoid vectorizing again.
- Hints.setAlreadyVectorized();
- }
- assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
- return true;
- }
- LoopVectorizeResult LoopVectorizePass::runImpl(
- Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
- DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
- DemandedBits &DB_, AssumptionCache &AC_, LoopAccessInfoManager &LAIs_,
- OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
- SE = &SE_;
- LI = &LI_;
- TTI = &TTI_;
- DT = &DT_;
- BFI = &BFI_;
- TLI = TLI_;
- AC = &AC_;
- LAIs = &LAIs_;
- DB = &DB_;
- ORE = &ORE_;
- PSI = PSI_;
- // Don't attempt if
- // 1. the target claims to have no vector registers, and
- // 2. interleaving won't help ILP.
- //
- // The second condition is necessary because, even if the target has no
- // vector registers, loop vectorization may still enable scalar
- // interleaving.
- if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
- TTI->getMaxInterleaveFactor(1) < 2)
- return LoopVectorizeResult(false, false);
- bool Changed = false, CFGChanged = false;
- // The vectorizer requires loops to be in simplified form.
- // Since simplification may add new inner loops, it has to run before the
- // legality and profitability checks. This means running the loop vectorizer
- // will simplify all loops, regardless of whether anything end up being
- // vectorized.
- for (const auto &L : *LI)
- Changed |= CFGChanged |=
- simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
- // Build up a worklist of inner-loops to vectorize. This is necessary as
- // the act of vectorizing or partially unrolling a loop creates new loops
- // and can invalidate iterators across the loops.
- SmallVector<Loop *, 8> Worklist;
- for (Loop *L : *LI)
- collectSupportedLoops(*L, LI, ORE, Worklist);
- LoopsAnalyzed += Worklist.size();
- // Now walk the identified inner loops.
- while (!Worklist.empty()) {
- Loop *L = Worklist.pop_back_val();
- // For the inner loops we actually process, form LCSSA to simplify the
- // transform.
- Changed |= formLCSSARecursively(*L, *DT, LI, SE);
- Changed |= CFGChanged |= processLoop(L);
- if (Changed)
- LAIs->clear();
- }
- // Process each loop nest in the function.
- return LoopVectorizeResult(Changed, CFGChanged);
- }
- PreservedAnalyses LoopVectorizePass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &LI = AM.getResult<LoopAnalysis>(F);
- // There are no loops in the function. Return before computing other expensive
- // analyses.
- if (LI.empty())
- return PreservedAnalyses::all();
- auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
- auto &TTI = AM.getResult<TargetIRAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
- auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
- LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
- auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
- ProfileSummaryInfo *PSI =
- MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
- LoopVectorizeResult Result =
- runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AC, LAIs, ORE, PSI);
- if (!Result.MadeAnyChange)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- // We currently do not preserve loopinfo/dominator analyses with outer loop
- // vectorization. Until this is addressed, mark these analyses as preserved
- // only for non-VPlan-native path.
- // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
- if (!EnableVPlanNativePath) {
- PA.preserve<LoopAnalysis>();
- PA.preserve<DominatorTreeAnalysis>();
- }
- if (Result.MadeCFGChange) {
- // Making CFG changes likely means a loop got vectorized. Indicate that
- // extra simplification passes should be run.
- // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
- // be run if runtime checks have been added.
- AM.getResult<ShouldRunExtraVectorPasses>(F);
- PA.preserve<ShouldRunExtraVectorPasses>();
- } else {
- PA.preserveSet<CFGAnalyses>();
- }
- return PA;
- }
- void LoopVectorizePass::printPipeline(
- raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
- static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
- OS, MapClassName2PassName);
- OS << "<";
- OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
- OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
- OS << ">";
- }
|