123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991 |
- //===- FunctionComparator.h - Function Comparator -------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the FunctionComparator and GlobalNumberState classes
- // which are used by the MergeFunctions pass for comparing functions.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/FunctionComparator.h"
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "functioncomparator"
- int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
- if (L < R)
- return -1;
- if (L > R)
- return 1;
- return 0;
- }
- int FunctionComparator::cmpAligns(Align L, Align R) const {
- if (L.value() < R.value())
- return -1;
- if (L.value() > R.value())
- return 1;
- return 0;
- }
- int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
- if ((int)L < (int)R)
- return -1;
- if ((int)L > (int)R)
- return 1;
- return 0;
- }
- int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
- if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
- return Res;
- if (L.ugt(R))
- return 1;
- if (R.ugt(L))
- return -1;
- return 0;
- }
- int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
- // Floats are ordered first by semantics (i.e. float, double, half, etc.),
- // then by value interpreted as a bitstring (aka APInt).
- const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
- if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
- APFloat::semanticsPrecision(SR)))
- return Res;
- if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
- APFloat::semanticsMaxExponent(SR)))
- return Res;
- if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
- APFloat::semanticsMinExponent(SR)))
- return Res;
- if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
- APFloat::semanticsSizeInBits(SR)))
- return Res;
- return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
- }
- int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
- // Prevent heavy comparison, compare sizes first.
- if (int Res = cmpNumbers(L.size(), R.size()))
- return Res;
- // Compare strings lexicographically only when it is necessary: only when
- // strings are equal in size.
- return std::clamp(L.compare(R), -1, 1);
- }
- int FunctionComparator::cmpAttrs(const AttributeList L,
- const AttributeList R) const {
- if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
- return Res;
- for (unsigned i : L.indexes()) {
- AttributeSet LAS = L.getAttributes(i);
- AttributeSet RAS = R.getAttributes(i);
- AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
- AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
- for (; LI != LE && RI != RE; ++LI, ++RI) {
- Attribute LA = *LI;
- Attribute RA = *RI;
- if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
- if (LA.getKindAsEnum() != RA.getKindAsEnum())
- return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
- Type *TyL = LA.getValueAsType();
- Type *TyR = RA.getValueAsType();
- if (TyL && TyR) {
- if (int Res = cmpTypes(TyL, TyR))
- return Res;
- continue;
- }
- // Two pointers, at least one null, so the comparison result is
- // independent of the value of a real pointer.
- if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR))
- return Res;
- continue;
- }
- if (LA < RA)
- return -1;
- if (RA < LA)
- return 1;
- }
- if (LI != LE)
- return 1;
- if (RI != RE)
- return -1;
- }
- return 0;
- }
- int FunctionComparator::cmpRangeMetadata(const MDNode *L,
- const MDNode *R) const {
- if (L == R)
- return 0;
- if (!L)
- return -1;
- if (!R)
- return 1;
- // Range metadata is a sequence of numbers. Make sure they are the same
- // sequence.
- // TODO: Note that as this is metadata, it is possible to drop and/or merge
- // this data when considering functions to merge. Thus this comparison would
- // return 0 (i.e. equivalent), but merging would become more complicated
- // because the ranges would need to be unioned. It is not likely that
- // functions differ ONLY in this metadata if they are actually the same
- // function semantically.
- if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
- return Res;
- for (size_t I = 0; I < L->getNumOperands(); ++I) {
- ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
- ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
- if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
- return Res;
- }
- return 0;
- }
- int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS,
- const CallBase &RCS) const {
- assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!");
- if (int Res =
- cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
- return Res;
- for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) {
- auto OBL = LCS.getOperandBundleAt(I);
- auto OBR = RCS.getOperandBundleAt(I);
- if (int Res = OBL.getTagName().compare(OBR.getTagName()))
- return Res;
- if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
- return Res;
- }
- return 0;
- }
- /// Constants comparison:
- /// 1. Check whether type of L constant could be losslessly bitcasted to R
- /// type.
- /// 2. Compare constant contents.
- /// For more details see declaration comments.
- int FunctionComparator::cmpConstants(const Constant *L,
- const Constant *R) const {
- Type *TyL = L->getType();
- Type *TyR = R->getType();
- // Check whether types are bitcastable. This part is just re-factored
- // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
- // we also pack into result which type is "less" for us.
- int TypesRes = cmpTypes(TyL, TyR);
- if (TypesRes != 0) {
- // Types are different, but check whether we can bitcast them.
- if (!TyL->isFirstClassType()) {
- if (TyR->isFirstClassType())
- return -1;
- // Neither TyL nor TyR are values of first class type. Return the result
- // of comparing the types
- return TypesRes;
- }
- if (!TyR->isFirstClassType()) {
- if (TyL->isFirstClassType())
- return 1;
- return TypesRes;
- }
- // Vector -> Vector conversions are always lossless if the two vector types
- // have the same size, otherwise not.
- unsigned TyLWidth = 0;
- unsigned TyRWidth = 0;
- if (auto *VecTyL = dyn_cast<VectorType>(TyL))
- TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedValue();
- if (auto *VecTyR = dyn_cast<VectorType>(TyR))
- TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedValue();
- if (TyLWidth != TyRWidth)
- return cmpNumbers(TyLWidth, TyRWidth);
- // Zero bit-width means neither TyL nor TyR are vectors.
- if (!TyLWidth) {
- PointerType *PTyL = dyn_cast<PointerType>(TyL);
- PointerType *PTyR = dyn_cast<PointerType>(TyR);
- if (PTyL && PTyR) {
- unsigned AddrSpaceL = PTyL->getAddressSpace();
- unsigned AddrSpaceR = PTyR->getAddressSpace();
- if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
- return Res;
- }
- if (PTyL)
- return 1;
- if (PTyR)
- return -1;
- // TyL and TyR aren't vectors, nor pointers. We don't know how to
- // bitcast them.
- return TypesRes;
- }
- }
- // OK, types are bitcastable, now check constant contents.
- if (L->isNullValue() && R->isNullValue())
- return TypesRes;
- if (L->isNullValue() && !R->isNullValue())
- return 1;
- if (!L->isNullValue() && R->isNullValue())
- return -1;
- auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
- auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
- if (GlobalValueL && GlobalValueR) {
- return cmpGlobalValues(GlobalValueL, GlobalValueR);
- }
- if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
- return Res;
- if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
- const auto *SeqR = cast<ConstantDataSequential>(R);
- // This handles ConstantDataArray and ConstantDataVector. Note that we
- // compare the two raw data arrays, which might differ depending on the host
- // endianness. This isn't a problem though, because the endiness of a module
- // will affect the order of the constants, but this order is the same
- // for a given input module and host platform.
- return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
- }
- switch (L->getValueID()) {
- case Value::UndefValueVal:
- case Value::PoisonValueVal:
- case Value::ConstantTokenNoneVal:
- return TypesRes;
- case Value::ConstantIntVal: {
- const APInt &LInt = cast<ConstantInt>(L)->getValue();
- const APInt &RInt = cast<ConstantInt>(R)->getValue();
- return cmpAPInts(LInt, RInt);
- }
- case Value::ConstantFPVal: {
- const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
- const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
- return cmpAPFloats(LAPF, RAPF);
- }
- case Value::ConstantArrayVal: {
- const ConstantArray *LA = cast<ConstantArray>(L);
- const ConstantArray *RA = cast<ConstantArray>(R);
- uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
- uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
- if (int Res = cmpNumbers(NumElementsL, NumElementsR))
- return Res;
- for (uint64_t i = 0; i < NumElementsL; ++i) {
- if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
- cast<Constant>(RA->getOperand(i))))
- return Res;
- }
- return 0;
- }
- case Value::ConstantStructVal: {
- const ConstantStruct *LS = cast<ConstantStruct>(L);
- const ConstantStruct *RS = cast<ConstantStruct>(R);
- unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
- unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
- if (int Res = cmpNumbers(NumElementsL, NumElementsR))
- return Res;
- for (unsigned i = 0; i != NumElementsL; ++i) {
- if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
- cast<Constant>(RS->getOperand(i))))
- return Res;
- }
- return 0;
- }
- case Value::ConstantVectorVal: {
- const ConstantVector *LV = cast<ConstantVector>(L);
- const ConstantVector *RV = cast<ConstantVector>(R);
- unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements();
- unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements();
- if (int Res = cmpNumbers(NumElementsL, NumElementsR))
- return Res;
- for (uint64_t i = 0; i < NumElementsL; ++i) {
- if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
- cast<Constant>(RV->getOperand(i))))
- return Res;
- }
- return 0;
- }
- case Value::ConstantExprVal: {
- const ConstantExpr *LE = cast<ConstantExpr>(L);
- const ConstantExpr *RE = cast<ConstantExpr>(R);
- unsigned NumOperandsL = LE->getNumOperands();
- unsigned NumOperandsR = RE->getNumOperands();
- if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
- return Res;
- for (unsigned i = 0; i < NumOperandsL; ++i) {
- if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
- cast<Constant>(RE->getOperand(i))))
- return Res;
- }
- return 0;
- }
- case Value::BlockAddressVal: {
- const BlockAddress *LBA = cast<BlockAddress>(L);
- const BlockAddress *RBA = cast<BlockAddress>(R);
- if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
- return Res;
- if (LBA->getFunction() == RBA->getFunction()) {
- // They are BBs in the same function. Order by which comes first in the
- // BB order of the function. This order is deterministic.
- Function *F = LBA->getFunction();
- BasicBlock *LBB = LBA->getBasicBlock();
- BasicBlock *RBB = RBA->getBasicBlock();
- if (LBB == RBB)
- return 0;
- for (BasicBlock &BB : *F) {
- if (&BB == LBB) {
- assert(&BB != RBB);
- return -1;
- }
- if (&BB == RBB)
- return 1;
- }
- llvm_unreachable("Basic Block Address does not point to a basic block in "
- "its function.");
- return -1;
- } else {
- // cmpValues said the functions are the same. So because they aren't
- // literally the same pointer, they must respectively be the left and
- // right functions.
- assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
- // cmpValues will tell us if these are equivalent BasicBlocks, in the
- // context of their respective functions.
- return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
- }
- }
- case Value::DSOLocalEquivalentVal: {
- // dso_local_equivalent is functionally equivalent to whatever it points to.
- // This means the behavior of the IR should be the exact same as if the
- // function was referenced directly rather than through a
- // dso_local_equivalent.
- const auto *LEquiv = cast<DSOLocalEquivalent>(L);
- const auto *REquiv = cast<DSOLocalEquivalent>(R);
- return cmpGlobalValues(LEquiv->getGlobalValue(), REquiv->getGlobalValue());
- }
- default: // Unknown constant, abort.
- LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
- llvm_unreachable("Constant ValueID not recognized.");
- return -1;
- }
- }
- int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
- uint64_t LNumber = GlobalNumbers->getNumber(L);
- uint64_t RNumber = GlobalNumbers->getNumber(R);
- return cmpNumbers(LNumber, RNumber);
- }
- /// cmpType - compares two types,
- /// defines total ordering among the types set.
- /// See method declaration comments for more details.
- int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
- PointerType *PTyL = dyn_cast<PointerType>(TyL);
- PointerType *PTyR = dyn_cast<PointerType>(TyR);
- const DataLayout &DL = FnL->getParent()->getDataLayout();
- if (PTyL && PTyL->getAddressSpace() == 0)
- TyL = DL.getIntPtrType(TyL);
- if (PTyR && PTyR->getAddressSpace() == 0)
- TyR = DL.getIntPtrType(TyR);
- if (TyL == TyR)
- return 0;
- if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
- return Res;
- switch (TyL->getTypeID()) {
- default:
- llvm_unreachable("Unknown type!");
- case Type::IntegerTyID:
- return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
- cast<IntegerType>(TyR)->getBitWidth());
- // TyL == TyR would have returned true earlier, because types are uniqued.
- case Type::VoidTyID:
- case Type::FloatTyID:
- case Type::DoubleTyID:
- case Type::X86_FP80TyID:
- case Type::FP128TyID:
- case Type::PPC_FP128TyID:
- case Type::LabelTyID:
- case Type::MetadataTyID:
- case Type::TokenTyID:
- return 0;
- case Type::PointerTyID:
- assert(PTyL && PTyR && "Both types must be pointers here.");
- return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
- case Type::StructTyID: {
- StructType *STyL = cast<StructType>(TyL);
- StructType *STyR = cast<StructType>(TyR);
- if (STyL->getNumElements() != STyR->getNumElements())
- return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
- if (STyL->isPacked() != STyR->isPacked())
- return cmpNumbers(STyL->isPacked(), STyR->isPacked());
- for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
- if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
- return Res;
- }
- return 0;
- }
- case Type::FunctionTyID: {
- FunctionType *FTyL = cast<FunctionType>(TyL);
- FunctionType *FTyR = cast<FunctionType>(TyR);
- if (FTyL->getNumParams() != FTyR->getNumParams())
- return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
- if (FTyL->isVarArg() != FTyR->isVarArg())
- return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
- if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
- return Res;
- for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
- if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
- return Res;
- }
- return 0;
- }
- case Type::ArrayTyID: {
- auto *STyL = cast<ArrayType>(TyL);
- auto *STyR = cast<ArrayType>(TyR);
- if (STyL->getNumElements() != STyR->getNumElements())
- return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
- return cmpTypes(STyL->getElementType(), STyR->getElementType());
- }
- case Type::FixedVectorTyID:
- case Type::ScalableVectorTyID: {
- auto *STyL = cast<VectorType>(TyL);
- auto *STyR = cast<VectorType>(TyR);
- if (STyL->getElementCount().isScalable() !=
- STyR->getElementCount().isScalable())
- return cmpNumbers(STyL->getElementCount().isScalable(),
- STyR->getElementCount().isScalable());
- if (STyL->getElementCount() != STyR->getElementCount())
- return cmpNumbers(STyL->getElementCount().getKnownMinValue(),
- STyR->getElementCount().getKnownMinValue());
- return cmpTypes(STyL->getElementType(), STyR->getElementType());
- }
- }
- }
- // Determine whether the two operations are the same except that pointer-to-A
- // and pointer-to-B are equivalent. This should be kept in sync with
- // Instruction::isSameOperationAs.
- // Read method declaration comments for more details.
- int FunctionComparator::cmpOperations(const Instruction *L,
- const Instruction *R,
- bool &needToCmpOperands) const {
- needToCmpOperands = true;
- if (int Res = cmpValues(L, R))
- return Res;
- // Differences from Instruction::isSameOperationAs:
- // * replace type comparison with calls to cmpTypes.
- // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
- // * because of the above, we don't test for the tail bit on calls later on.
- if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
- return Res;
- if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
- needToCmpOperands = false;
- const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
- if (int Res =
- cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
- return Res;
- return cmpGEPs(GEPL, GEPR);
- }
- if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
- return Res;
- if (int Res = cmpTypes(L->getType(), R->getType()))
- return Res;
- if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
- R->getRawSubclassOptionalData()))
- return Res;
- // We have two instructions of identical opcode and #operands. Check to see
- // if all operands are the same type
- for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
- if (int Res =
- cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
- return Res;
- }
- // Check special state that is a part of some instructions.
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
- if (int Res = cmpTypes(AI->getAllocatedType(),
- cast<AllocaInst>(R)->getAllocatedType()))
- return Res;
- return cmpAligns(AI->getAlign(), cast<AllocaInst>(R)->getAlign());
- }
- if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
- if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
- return Res;
- if (int Res = cmpAligns(LI->getAlign(), cast<LoadInst>(R)->getAlign()))
- return Res;
- if (int Res =
- cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
- return Res;
- if (int Res = cmpNumbers(LI->getSyncScopeID(),
- cast<LoadInst>(R)->getSyncScopeID()))
- return Res;
- return cmpRangeMetadata(
- LI->getMetadata(LLVMContext::MD_range),
- cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
- }
- if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
- if (int Res =
- cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
- return Res;
- if (int Res = cmpAligns(SI->getAlign(), cast<StoreInst>(R)->getAlign()))
- return Res;
- if (int Res =
- cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
- return Res;
- return cmpNumbers(SI->getSyncScopeID(),
- cast<StoreInst>(R)->getSyncScopeID());
- }
- if (const CmpInst *CI = dyn_cast<CmpInst>(L))
- return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
- if (auto *CBL = dyn_cast<CallBase>(L)) {
- auto *CBR = cast<CallBase>(R);
- if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv()))
- return Res;
- if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes()))
- return Res;
- if (int Res = cmpOperandBundlesSchema(*CBL, *CBR))
- return Res;
- if (const CallInst *CI = dyn_cast<CallInst>(L))
- if (int Res = cmpNumbers(CI->getTailCallKind(),
- cast<CallInst>(R)->getTailCallKind()))
- return Res;
- return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range),
- R->getMetadata(LLVMContext::MD_range));
- }
- if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
- ArrayRef<unsigned> LIndices = IVI->getIndices();
- ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
- if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
- return Res;
- for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
- if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
- return Res;
- }
- return 0;
- }
- if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
- ArrayRef<unsigned> LIndices = EVI->getIndices();
- ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
- if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
- return Res;
- for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
- if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
- return Res;
- }
- }
- if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
- if (int Res =
- cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
- return Res;
- return cmpNumbers(FI->getSyncScopeID(),
- cast<FenceInst>(R)->getSyncScopeID());
- }
- if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
- if (int Res = cmpNumbers(CXI->isVolatile(),
- cast<AtomicCmpXchgInst>(R)->isVolatile()))
- return Res;
- if (int Res =
- cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak()))
- return Res;
- if (int Res =
- cmpOrderings(CXI->getSuccessOrdering(),
- cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
- return Res;
- if (int Res =
- cmpOrderings(CXI->getFailureOrdering(),
- cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
- return Res;
- return cmpNumbers(CXI->getSyncScopeID(),
- cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
- }
- if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
- if (int Res = cmpNumbers(RMWI->getOperation(),
- cast<AtomicRMWInst>(R)->getOperation()))
- return Res;
- if (int Res = cmpNumbers(RMWI->isVolatile(),
- cast<AtomicRMWInst>(R)->isVolatile()))
- return Res;
- if (int Res = cmpOrderings(RMWI->getOrdering(),
- cast<AtomicRMWInst>(R)->getOrdering()))
- return Res;
- return cmpNumbers(RMWI->getSyncScopeID(),
- cast<AtomicRMWInst>(R)->getSyncScopeID());
- }
- if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) {
- ArrayRef<int> LMask = SVI->getShuffleMask();
- ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask();
- if (int Res = cmpNumbers(LMask.size(), RMask.size()))
- return Res;
- for (size_t i = 0, e = LMask.size(); i != e; ++i) {
- if (int Res = cmpNumbers(LMask[i], RMask[i]))
- return Res;
- }
- }
- if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
- const PHINode *PNR = cast<PHINode>(R);
- // Ensure that in addition to the incoming values being identical
- // (checked by the caller of this function), the incoming blocks
- // are also identical.
- for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
- if (int Res =
- cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
- return Res;
- }
- }
- return 0;
- }
- // Determine whether two GEP operations perform the same underlying arithmetic.
- // Read method declaration comments for more details.
- int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
- const GEPOperator *GEPR) const {
- unsigned int ASL = GEPL->getPointerAddressSpace();
- unsigned int ASR = GEPR->getPointerAddressSpace();
- if (int Res = cmpNumbers(ASL, ASR))
- return Res;
- // When we have target data, we can reduce the GEP down to the value in bytes
- // added to the address.
- const DataLayout &DL = FnL->getParent()->getDataLayout();
- unsigned BitWidth = DL.getPointerSizeInBits(ASL);
- APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
- if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
- GEPR->accumulateConstantOffset(DL, OffsetR))
- return cmpAPInts(OffsetL, OffsetR);
- if (int Res =
- cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType()))
- return Res;
- if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
- return Res;
- for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
- if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
- return Res;
- }
- return 0;
- }
- int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
- const InlineAsm *R) const {
- // InlineAsm's are uniqued. If they are the same pointer, obviously they are
- // the same, otherwise compare the fields.
- if (L == R)
- return 0;
- if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
- return Res;
- if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
- return Res;
- if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
- return Res;
- if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
- return Res;
- if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
- return Res;
- if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
- return Res;
- assert(L->getFunctionType() != R->getFunctionType());
- return 0;
- }
- /// Compare two values used by the two functions under pair-wise comparison. If
- /// this is the first time the values are seen, they're added to the mapping so
- /// that we will detect mismatches on next use.
- /// See comments in declaration for more details.
- int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
- // Catch self-reference case.
- if (L == FnL) {
- if (R == FnR)
- return 0;
- return -1;
- }
- if (R == FnR) {
- if (L == FnL)
- return 0;
- return 1;
- }
- const Constant *ConstL = dyn_cast<Constant>(L);
- const Constant *ConstR = dyn_cast<Constant>(R);
- if (ConstL && ConstR) {
- if (L == R)
- return 0;
- return cmpConstants(ConstL, ConstR);
- }
- if (ConstL)
- return 1;
- if (ConstR)
- return -1;
- const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
- const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
- if (InlineAsmL && InlineAsmR)
- return cmpInlineAsm(InlineAsmL, InlineAsmR);
- if (InlineAsmL)
- return 1;
- if (InlineAsmR)
- return -1;
- auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
- RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
- return cmpNumbers(LeftSN.first->second, RightSN.first->second);
- }
- // Test whether two basic blocks have equivalent behaviour.
- int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
- const BasicBlock *BBR) const {
- BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
- BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
- do {
- bool needToCmpOperands = true;
- if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
- return Res;
- if (needToCmpOperands) {
- assert(InstL->getNumOperands() == InstR->getNumOperands());
- for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
- Value *OpL = InstL->getOperand(i);
- Value *OpR = InstR->getOperand(i);
- if (int Res = cmpValues(OpL, OpR))
- return Res;
- // cmpValues should ensure this is true.
- assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
- }
- }
- ++InstL;
- ++InstR;
- } while (InstL != InstLE && InstR != InstRE);
- if (InstL != InstLE && InstR == InstRE)
- return 1;
- if (InstL == InstLE && InstR != InstRE)
- return -1;
- return 0;
- }
- int FunctionComparator::compareSignature() const {
- if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
- return Res;
- if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
- return Res;
- if (FnL->hasGC()) {
- if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
- return Res;
- }
- if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
- return Res;
- if (FnL->hasSection()) {
- if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
- return Res;
- }
- if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
- return Res;
- // TODO: if it's internal and only used in direct calls, we could handle this
- // case too.
- if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
- return Res;
- if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
- return Res;
- assert(FnL->arg_size() == FnR->arg_size() &&
- "Identically typed functions have different numbers of args!");
- // Visit the arguments so that they get enumerated in the order they're
- // passed in.
- for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
- ArgRI = FnR->arg_begin(),
- ArgLE = FnL->arg_end();
- ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
- if (cmpValues(&*ArgLI, &*ArgRI) != 0)
- llvm_unreachable("Arguments repeat!");
- }
- return 0;
- }
- // Test whether the two functions have equivalent behaviour.
- int FunctionComparator::compare() {
- beginCompare();
- if (int Res = compareSignature())
- return Res;
- // We do a CFG-ordered walk since the actual ordering of the blocks in the
- // linked list is immaterial. Our walk starts at the entry block for both
- // functions, then takes each block from each terminator in order. As an
- // artifact, this also means that unreachable blocks are ignored.
- SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
- SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
- FnLBBs.push_back(&FnL->getEntryBlock());
- FnRBBs.push_back(&FnR->getEntryBlock());
- VisitedBBs.insert(FnLBBs[0]);
- while (!FnLBBs.empty()) {
- const BasicBlock *BBL = FnLBBs.pop_back_val();
- const BasicBlock *BBR = FnRBBs.pop_back_val();
- if (int Res = cmpValues(BBL, BBR))
- return Res;
- if (int Res = cmpBasicBlocks(BBL, BBR))
- return Res;
- const Instruction *TermL = BBL->getTerminator();
- const Instruction *TermR = BBR->getTerminator();
- assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
- for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
- if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
- continue;
- FnLBBs.push_back(TermL->getSuccessor(i));
- FnRBBs.push_back(TermR->getSuccessor(i));
- }
- }
- return 0;
- }
- namespace {
- // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
- // hash of a sequence of 64bit ints, but the entire input does not need to be
- // available at once. This interface is necessary for functionHash because it
- // needs to accumulate the hash as the structure of the function is traversed
- // without saving these values to an intermediate buffer. This form of hashing
- // is not often needed, as usually the object to hash is just read from a
- // buffer.
- class HashAccumulator64 {
- uint64_t Hash;
- public:
- // Initialize to random constant, so the state isn't zero.
- HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
- void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); }
- // No finishing is required, because the entire hash value is used.
- uint64_t getHash() { return Hash; }
- };
- } // end anonymous namespace
- // A function hash is calculated by considering only the number of arguments and
- // whether a function is varargs, the order of basic blocks (given by the
- // successors of each basic block in depth first order), and the order of
- // opcodes of each instruction within each of these basic blocks. This mirrors
- // the strategy compare() uses to compare functions by walking the BBs in depth
- // first order and comparing each instruction in sequence. Because this hash
- // does not look at the operands, it is insensitive to things such as the
- // target of calls and the constants used in the function, which makes it useful
- // when possibly merging functions which are the same modulo constants and call
- // targets.
- FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
- HashAccumulator64 H;
- H.add(F.isVarArg());
- H.add(F.arg_size());
- SmallVector<const BasicBlock *, 8> BBs;
- SmallPtrSet<const BasicBlock *, 16> VisitedBBs;
- // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
- // accumulating the hash of the function "structure." (BB and opcode sequence)
- BBs.push_back(&F.getEntryBlock());
- VisitedBBs.insert(BBs[0]);
- while (!BBs.empty()) {
- const BasicBlock *BB = BBs.pop_back_val();
- // This random value acts as a block header, as otherwise the partition of
- // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
- H.add(45798);
- for (const auto &Inst : *BB) {
- H.add(Inst.getOpcode());
- }
- const Instruction *Term = BB->getTerminator();
- for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
- if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
- continue;
- BBs.push_back(Term->getSuccessor(i));
- }
- }
- return H.getHash();
- }
|