1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999 |
- //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This family of functions perform manipulations on basic blocks, and
- // instructions contained within basic blocks.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/DomTreeUpdater.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/MemoryDependenceAnalysis.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <cassert>
- #include <cstdint>
- #include <string>
- #include <utility>
- #include <vector>
- using namespace llvm;
- #define DEBUG_TYPE "basicblock-utils"
- static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
- "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
- cl::desc("Set the maximum path length when checking whether a basic block "
- "is followed by a block that either has a terminating "
- "deoptimizing call or is terminated with an unreachable"));
- void llvm::detachDeadBlocks(
- ArrayRef<BasicBlock *> BBs,
- SmallVectorImpl<DominatorTree::UpdateType> *Updates,
- bool KeepOneInputPHIs) {
- for (auto *BB : BBs) {
- // Loop through all of our successors and make sure they know that one
- // of their predecessors is going away.
- SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
- for (BasicBlock *Succ : successors(BB)) {
- Succ->removePredecessor(BB, KeepOneInputPHIs);
- if (Updates && UniqueSuccessors.insert(Succ).second)
- Updates->push_back({DominatorTree::Delete, BB, Succ});
- }
- // Zap all the instructions in the block.
- while (!BB->empty()) {
- Instruction &I = BB->back();
- // If this instruction is used, replace uses with an arbitrary value.
- // Because control flow can't get here, we don't care what we replace the
- // value with. Note that since this block is unreachable, and all values
- // contained within it must dominate their uses, that all uses will
- // eventually be removed (they are themselves dead).
- if (!I.use_empty())
- I.replaceAllUsesWith(PoisonValue::get(I.getType()));
- BB->back().eraseFromParent();
- }
- new UnreachableInst(BB->getContext(), BB);
- assert(BB->size() == 1 &&
- isa<UnreachableInst>(BB->getTerminator()) &&
- "The successor list of BB isn't empty before "
- "applying corresponding DTU updates.");
- }
- }
- void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
- bool KeepOneInputPHIs) {
- DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
- }
- void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
- bool KeepOneInputPHIs) {
- #ifndef NDEBUG
- // Make sure that all predecessors of each dead block is also dead.
- SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
- assert(Dead.size() == BBs.size() && "Duplicating blocks?");
- for (auto *BB : Dead)
- for (BasicBlock *Pred : predecessors(BB))
- assert(Dead.count(Pred) && "All predecessors must be dead!");
- #endif
- SmallVector<DominatorTree::UpdateType, 4> Updates;
- detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
- if (DTU)
- DTU->applyUpdates(Updates);
- for (BasicBlock *BB : BBs)
- if (DTU)
- DTU->deleteBB(BB);
- else
- BB->eraseFromParent();
- }
- bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
- bool KeepOneInputPHIs) {
- df_iterator_default_set<BasicBlock*> Reachable;
- // Mark all reachable blocks.
- for (BasicBlock *BB : depth_first_ext(&F, Reachable))
- (void)BB/* Mark all reachable blocks */;
- // Collect all dead blocks.
- std::vector<BasicBlock*> DeadBlocks;
- for (BasicBlock &BB : F)
- if (!Reachable.count(&BB))
- DeadBlocks.push_back(&BB);
- // Delete the dead blocks.
- DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
- return !DeadBlocks.empty();
- }
- bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
- MemoryDependenceResults *MemDep) {
- if (!isa<PHINode>(BB->begin()))
- return false;
- while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
- if (PN->getIncomingValue(0) != PN)
- PN->replaceAllUsesWith(PN->getIncomingValue(0));
- else
- PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
- if (MemDep)
- MemDep->removeInstruction(PN); // Memdep updates AA itself.
- PN->eraseFromParent();
- }
- return true;
- }
- bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
- MemorySSAUpdater *MSSAU) {
- // Recursively deleting a PHI may cause multiple PHIs to be deleted
- // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
- SmallVector<WeakTrackingVH, 8> PHIs;
- for (PHINode &PN : BB->phis())
- PHIs.push_back(&PN);
- bool Changed = false;
- for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
- if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
- Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
- return Changed;
- }
- bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
- LoopInfo *LI, MemorySSAUpdater *MSSAU,
- MemoryDependenceResults *MemDep,
- bool PredecessorWithTwoSuccessors,
- DominatorTree *DT) {
- if (BB->hasAddressTaken())
- return false;
- // Can't merge if there are multiple predecessors, or no predecessors.
- BasicBlock *PredBB = BB->getUniquePredecessor();
- if (!PredBB) return false;
- // Don't break self-loops.
- if (PredBB == BB) return false;
- // Don't break unwinding instructions or terminators with other side-effects.
- Instruction *PTI = PredBB->getTerminator();
- if (PTI->isExceptionalTerminator() || PTI->mayHaveSideEffects())
- return false;
- // Can't merge if there are multiple distinct successors.
- if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
- return false;
- // Currently only allow PredBB to have two predecessors, one being BB.
- // Update BI to branch to BB's only successor instead of BB.
- BranchInst *PredBB_BI;
- BasicBlock *NewSucc = nullptr;
- unsigned FallThruPath;
- if (PredecessorWithTwoSuccessors) {
- if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
- return false;
- BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
- if (!BB_JmpI || !BB_JmpI->isUnconditional())
- return false;
- NewSucc = BB_JmpI->getSuccessor(0);
- FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
- }
- // Can't merge if there is PHI loop.
- for (PHINode &PN : BB->phis())
- if (llvm::is_contained(PN.incoming_values(), &PN))
- return false;
- LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
- << PredBB->getName() << "\n");
- // Begin by getting rid of unneeded PHIs.
- SmallVector<AssertingVH<Value>, 4> IncomingValues;
- if (isa<PHINode>(BB->front())) {
- for (PHINode &PN : BB->phis())
- if (!isa<PHINode>(PN.getIncomingValue(0)) ||
- cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
- IncomingValues.push_back(PN.getIncomingValue(0));
- FoldSingleEntryPHINodes(BB, MemDep);
- }
- if (DT) {
- assert(!DTU && "cannot use both DT and DTU for updates");
- DomTreeNode *PredNode = DT->getNode(PredBB);
- DomTreeNode *BBNode = DT->getNode(BB);
- if (PredNode) {
- assert(BBNode && "PredNode unreachable but BBNode reachable?");
- for (DomTreeNode *C : to_vector(BBNode->children()))
- C->setIDom(PredNode);
- }
- }
- // DTU update: Collect all the edges that exit BB.
- // These dominator edges will be redirected from Pred.
- std::vector<DominatorTree::UpdateType> Updates;
- if (DTU) {
- assert(!DT && "cannot use both DT and DTU for updates");
- // To avoid processing the same predecessor more than once.
- SmallPtrSet<BasicBlock *, 8> SeenSuccs;
- SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
- succ_end(PredBB));
- Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
- // Add insert edges first. Experimentally, for the particular case of two
- // blocks that can be merged, with a single successor and single predecessor
- // respectively, it is beneficial to have all insert updates first. Deleting
- // edges first may lead to unreachable blocks, followed by inserting edges
- // making the blocks reachable again. Such DT updates lead to high compile
- // times. We add inserts before deletes here to reduce compile time.
- for (BasicBlock *SuccOfBB : successors(BB))
- // This successor of BB may already be a PredBB's successor.
- if (!SuccsOfPredBB.contains(SuccOfBB))
- if (SeenSuccs.insert(SuccOfBB).second)
- Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
- SeenSuccs.clear();
- for (BasicBlock *SuccOfBB : successors(BB))
- if (SeenSuccs.insert(SuccOfBB).second)
- Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
- Updates.push_back({DominatorTree::Delete, PredBB, BB});
- }
- Instruction *STI = BB->getTerminator();
- Instruction *Start = &*BB->begin();
- // If there's nothing to move, mark the starting instruction as the last
- // instruction in the block. Terminator instruction is handled separately.
- if (Start == STI)
- Start = PTI;
- // Move all definitions in the successor to the predecessor...
- PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator());
- if (MSSAU)
- MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
- // Make all PHI nodes that referred to BB now refer to Pred as their
- // source...
- BB->replaceAllUsesWith(PredBB);
- if (PredecessorWithTwoSuccessors) {
- // Delete the unconditional branch from BB.
- BB->back().eraseFromParent();
- // Update branch in the predecessor.
- PredBB_BI->setSuccessor(FallThruPath, NewSucc);
- } else {
- // Delete the unconditional branch from the predecessor.
- PredBB->back().eraseFromParent();
- // Move terminator instruction.
- PredBB->splice(PredBB->end(), BB);
- // Terminator may be a memory accessing instruction too.
- if (MSSAU)
- if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
- MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
- MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
- }
- // Add unreachable to now empty BB.
- new UnreachableInst(BB->getContext(), BB);
- // Inherit predecessors name if it exists.
- if (!PredBB->hasName())
- PredBB->takeName(BB);
- if (LI)
- LI->removeBlock(BB);
- if (MemDep)
- MemDep->invalidateCachedPredecessors();
- if (DTU)
- DTU->applyUpdates(Updates);
- if (DT) {
- assert(succ_empty(BB) &&
- "successors should have been transferred to PredBB");
- DT->eraseNode(BB);
- }
- // Finally, erase the old block and update dominator info.
- DeleteDeadBlock(BB, DTU);
- return true;
- }
- bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
- SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
- LoopInfo *LI) {
- assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
- bool BlocksHaveBeenMerged = false;
- while (!MergeBlocks.empty()) {
- BasicBlock *BB = *MergeBlocks.begin();
- BasicBlock *Dest = BB->getSingleSuccessor();
- if (Dest && (!L || L->contains(Dest))) {
- BasicBlock *Fold = Dest->getUniquePredecessor();
- (void)Fold;
- if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
- assert(Fold == BB &&
- "Expecting BB to be unique predecessor of the Dest block");
- MergeBlocks.erase(Dest);
- BlocksHaveBeenMerged = true;
- } else
- MergeBlocks.erase(BB);
- } else
- MergeBlocks.erase(BB);
- }
- return BlocksHaveBeenMerged;
- }
- /// Remove redundant instructions within sequences of consecutive dbg.value
- /// instructions. This is done using a backward scan to keep the last dbg.value
- /// describing a specific variable/fragment.
- ///
- /// BackwardScan strategy:
- /// ----------------------
- /// Given a sequence of consecutive DbgValueInst like this
- ///
- /// dbg.value ..., "x", FragmentX1 (*)
- /// dbg.value ..., "y", FragmentY1
- /// dbg.value ..., "x", FragmentX2
- /// dbg.value ..., "x", FragmentX1 (**)
- ///
- /// then the instruction marked with (*) can be removed (it is guaranteed to be
- /// obsoleted by the instruction marked with (**) as the latter instruction is
- /// describing the same variable using the same fragment info).
- ///
- /// Possible improvements:
- /// - Check fully overlapping fragments and not only identical fragments.
- /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
- /// instructions being part of the sequence of consecutive instructions.
- static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
- SmallVector<DbgValueInst *, 8> ToBeRemoved;
- SmallDenseSet<DebugVariable> VariableSet;
- for (auto &I : reverse(*BB)) {
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
- DebugVariable Key(DVI->getVariable(),
- DVI->getExpression(),
- DVI->getDebugLoc()->getInlinedAt());
- auto R = VariableSet.insert(Key);
- // If the variable fragment hasn't been seen before then we don't want
- // to remove this dbg intrinsic.
- if (R.second)
- continue;
- if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) {
- // Don't delete dbg.assign intrinsics that are linked to instructions.
- if (!at::getAssignmentInsts(DAI).empty())
- continue;
- // Unlinked dbg.assign intrinsics can be treated like dbg.values.
- }
- // If the same variable fragment is described more than once it is enough
- // to keep the last one (i.e. the first found since we for reverse
- // iteration).
- ToBeRemoved.push_back(DVI);
- continue;
- }
- // Sequence with consecutive dbg.value instrs ended. Clear the map to
- // restart identifying redundant instructions if case we find another
- // dbg.value sequence.
- VariableSet.clear();
- }
- for (auto &Instr : ToBeRemoved)
- Instr->eraseFromParent();
- return !ToBeRemoved.empty();
- }
- /// Remove redundant dbg.value instructions using a forward scan. This can
- /// remove a dbg.value instruction that is redundant due to indicating that a
- /// variable has the same value as already being indicated by an earlier
- /// dbg.value.
- ///
- /// ForwardScan strategy:
- /// ---------------------
- /// Given two identical dbg.value instructions, separated by a block of
- /// instructions that isn't describing the same variable, like this
- ///
- /// dbg.value X1, "x", FragmentX1 (**)
- /// <block of instructions, none being "dbg.value ..., "x", ...">
- /// dbg.value X1, "x", FragmentX1 (*)
- ///
- /// then the instruction marked with (*) can be removed. Variable "x" is already
- /// described as being mapped to the SSA value X1.
- ///
- /// Possible improvements:
- /// - Keep track of non-overlapping fragments.
- static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
- SmallVector<DbgValueInst *, 8> ToBeRemoved;
- DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
- VariableMap;
- for (auto &I : *BB) {
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
- DebugVariable Key(DVI->getVariable(), std::nullopt,
- DVI->getDebugLoc()->getInlinedAt());
- auto VMI = VariableMap.find(Key);
- auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
- // A dbg.assign with no linked instructions can be treated like a
- // dbg.value (i.e. can be deleted).
- bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
- // Update the map if we found a new value/expression describing the
- // variable, or if the variable wasn't mapped already.
- SmallVector<Value *, 4> Values(DVI->getValues());
- if (VMI == VariableMap.end() || VMI->second.first != Values ||
- VMI->second.second != DVI->getExpression()) {
- // Use a sentinal value (nullptr) for the DIExpression when we see a
- // linked dbg.assign so that the next debug intrinsic will never match
- // it (i.e. always treat linked dbg.assigns as if they're unique).
- if (IsDbgValueKind)
- VariableMap[Key] = {Values, DVI->getExpression()};
- else
- VariableMap[Key] = {Values, nullptr};
- continue;
- }
- // Don't delete dbg.assign intrinsics that are linked to instructions.
- if (!IsDbgValueKind)
- continue;
- ToBeRemoved.push_back(DVI);
- }
- }
- for (auto &Instr : ToBeRemoved)
- Instr->eraseFromParent();
- return !ToBeRemoved.empty();
- }
- /// Remove redundant undef dbg.assign intrinsic from an entry block using a
- /// forward scan.
- /// Strategy:
- /// ---------------------
- /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not
- /// linked to an intrinsic, and don't share an aggregate variable with a debug
- /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns
- /// that come before non-undef debug intrinsics for the variable are
- /// deleted. Given:
- ///
- /// dbg.assign undef, "x", FragmentX1 (*)
- /// <block of instructions, none being "dbg.value ..., "x", ...">
- /// dbg.value %V, "x", FragmentX2
- /// <block of instructions, none being "dbg.value ..., "x", ...">
- /// dbg.assign undef, "x", FragmentX1
- ///
- /// then (only) the instruction marked with (*) can be removed.
- /// Possible improvements:
- /// - Keep track of non-overlapping fragments.
- static bool remomveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
- assert(BB->isEntryBlock() && "expected entry block");
- SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved;
- DenseSet<DebugVariable> SeenDefForAggregate;
- // Returns the DebugVariable for DVI with no fragment info.
- auto GetAggregateVariable = [](DbgValueInst *DVI) {
- return DebugVariable(DVI->getVariable(), std::nullopt,
- DVI->getDebugLoc()->getInlinedAt());
- };
- // Remove undef dbg.assign intrinsics that are encountered before
- // any non-undef intrinsics from the entry block.
- for (auto &I : *BB) {
- DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I);
- if (!DVI)
- continue;
- auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
- bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
- DebugVariable Aggregate = GetAggregateVariable(DVI);
- if (!SeenDefForAggregate.contains(Aggregate)) {
- bool IsKill = DVI->isKillLocation() && IsDbgValueKind;
- if (!IsKill) {
- SeenDefForAggregate.insert(Aggregate);
- } else if (DAI) {
- ToBeRemoved.push_back(DAI);
- }
- }
- }
- for (DbgAssignIntrinsic *DAI : ToBeRemoved)
- DAI->eraseFromParent();
- return !ToBeRemoved.empty();
- }
- bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
- bool MadeChanges = false;
- // By using the "backward scan" strategy before the "forward scan" strategy we
- // can remove both dbg.value (2) and (3) in a situation like this:
- //
- // (1) dbg.value V1, "x", DIExpression()
- // ...
- // (2) dbg.value V2, "x", DIExpression()
- // (3) dbg.value V1, "x", DIExpression()
- //
- // The backward scan will remove (2), it is made obsolete by (3). After
- // getting (2) out of the way, the foward scan will remove (3) since "x"
- // already is described as having the value V1 at (1).
- MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
- if (BB->isEntryBlock() &&
- isAssignmentTrackingEnabled(*BB->getParent()->getParent()))
- MadeChanges |= remomveUndefDbgAssignsFromEntryBlock(BB);
- MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
- if (MadeChanges)
- LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
- << BB->getName() << "\n");
- return MadeChanges;
- }
- void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) {
- Instruction &I = *BI;
- // Replaces all of the uses of the instruction with uses of the value
- I.replaceAllUsesWith(V);
- // Make sure to propagate a name if there is one already.
- if (I.hasName() && !V->hasName())
- V->takeName(&I);
- // Delete the unnecessary instruction now...
- BI = BI->eraseFromParent();
- }
- void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI,
- Instruction *I) {
- assert(I->getParent() == nullptr &&
- "ReplaceInstWithInst: Instruction already inserted into basic block!");
- // Copy debug location to newly added instruction, if it wasn't already set
- // by the caller.
- if (!I->getDebugLoc())
- I->setDebugLoc(BI->getDebugLoc());
- // Insert the new instruction into the basic block...
- BasicBlock::iterator New = I->insertInto(BB, BI);
- // Replace all uses of the old instruction, and delete it.
- ReplaceInstWithValue(BI, I);
- // Move BI back to point to the newly inserted instruction
- BI = New;
- }
- bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
- // Remember visited blocks to avoid infinite loop
- SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
- unsigned Depth = 0;
- while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
- VisitedBlocks.insert(BB).second) {
- if (BB->getTerminatingDeoptimizeCall() ||
- isa<UnreachableInst>(BB->getTerminator()))
- return true;
- BB = BB->getUniqueSuccessor();
- }
- return false;
- }
- void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
- BasicBlock::iterator BI(From);
- ReplaceInstWithInst(From->getParent(), BI, To);
- }
- BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
- LoopInfo *LI, MemorySSAUpdater *MSSAU,
- const Twine &BBName) {
- unsigned SuccNum = GetSuccessorNumber(BB, Succ);
- Instruction *LatchTerm = BB->getTerminator();
- CriticalEdgeSplittingOptions Options =
- CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
- if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
- // If it is a critical edge, and the succesor is an exception block, handle
- // the split edge logic in this specific function
- if (Succ->isEHPad())
- return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
- // If this is a critical edge, let SplitKnownCriticalEdge do it.
- return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
- }
- // If the edge isn't critical, then BB has a single successor or Succ has a
- // single pred. Split the block.
- if (BasicBlock *SP = Succ->getSinglePredecessor()) {
- // If the successor only has a single pred, split the top of the successor
- // block.
- assert(SP == BB && "CFG broken");
- SP = nullptr;
- return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
- /*Before=*/true);
- }
- // Otherwise, if BB has a single successor, split it at the bottom of the
- // block.
- assert(BB->getTerminator()->getNumSuccessors() == 1 &&
- "Should have a single succ!");
- return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
- }
- void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
- if (auto *II = dyn_cast<InvokeInst>(TI))
- II->setUnwindDest(Succ);
- else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
- CS->setUnwindDest(Succ);
- else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
- CR->setUnwindDest(Succ);
- else
- llvm_unreachable("unexpected terminator instruction");
- }
- void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
- BasicBlock *NewPred, PHINode *Until) {
- int BBIdx = 0;
- for (PHINode &PN : DestBB->phis()) {
- // We manually update the LandingPadReplacement PHINode and it is the last
- // PHI Node. So, if we find it, we are done.
- if (Until == &PN)
- break;
- // Reuse the previous value of BBIdx if it lines up. In cases where we
- // have multiple phi nodes with *lots* of predecessors, this is a speed
- // win because we don't have to scan the PHI looking for TIBB. This
- // happens because the BB list of PHI nodes are usually in the same
- // order.
- if (PN.getIncomingBlock(BBIdx) != OldPred)
- BBIdx = PN.getBasicBlockIndex(OldPred);
- assert(BBIdx != -1 && "Invalid PHI Index!");
- PN.setIncomingBlock(BBIdx, NewPred);
- }
- }
- BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
- LandingPadInst *OriginalPad,
- PHINode *LandingPadReplacement,
- const CriticalEdgeSplittingOptions &Options,
- const Twine &BBName) {
- auto *PadInst = Succ->getFirstNonPHI();
- if (!LandingPadReplacement && !PadInst->isEHPad())
- return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
- auto *LI = Options.LI;
- SmallVector<BasicBlock *, 4> LoopPreds;
- // Check if extra modifications will be required to preserve loop-simplify
- // form after splitting. If it would require splitting blocks with IndirectBr
- // terminators, bail out if preserving loop-simplify form is requested.
- if (Options.PreserveLoopSimplify && LI) {
- if (Loop *BBLoop = LI->getLoopFor(BB)) {
- // The only way that we can break LoopSimplify form by splitting a
- // critical edge is when there exists some edge from BBLoop to Succ *and*
- // the only edge into Succ from outside of BBLoop is that of NewBB after
- // the split. If the first isn't true, then LoopSimplify still holds,
- // NewBB is the new exit block and it has no non-loop predecessors. If the
- // second isn't true, then Succ was not in LoopSimplify form prior to
- // the split as it had a non-loop predecessor. In both of these cases,
- // the predecessor must be directly in BBLoop, not in a subloop, or again
- // LoopSimplify doesn't hold.
- for (BasicBlock *P : predecessors(Succ)) {
- if (P == BB)
- continue; // The new block is known.
- if (LI->getLoopFor(P) != BBLoop) {
- // Loop is not in LoopSimplify form, no need to re simplify after
- // splitting edge.
- LoopPreds.clear();
- break;
- }
- LoopPreds.push_back(P);
- }
- // Loop-simplify form can be preserved, if we can split all in-loop
- // predecessors.
- if (any_of(LoopPreds, [](BasicBlock *Pred) {
- return isa<IndirectBrInst>(Pred->getTerminator());
- })) {
- return nullptr;
- }
- }
- }
- auto *NewBB =
- BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
- setUnwindEdgeTo(BB->getTerminator(), NewBB);
- updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
- if (LandingPadReplacement) {
- auto *NewLP = OriginalPad->clone();
- auto *Terminator = BranchInst::Create(Succ, NewBB);
- NewLP->insertBefore(Terminator);
- LandingPadReplacement->addIncoming(NewLP, NewBB);
- } else {
- Value *ParentPad = nullptr;
- if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
- ParentPad = FuncletPad->getParentPad();
- else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
- ParentPad = CatchSwitch->getParentPad();
- else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
- ParentPad = CleanupPad->getParentPad();
- else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
- ParentPad = LandingPad->getParent();
- else
- llvm_unreachable("handling for other EHPads not implemented yet");
- auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
- CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
- }
- auto *DT = Options.DT;
- auto *MSSAU = Options.MSSAU;
- if (!DT && !LI)
- return NewBB;
- if (DT) {
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
- SmallVector<DominatorTree::UpdateType, 3> Updates;
- Updates.push_back({DominatorTree::Insert, BB, NewBB});
- Updates.push_back({DominatorTree::Insert, NewBB, Succ});
- Updates.push_back({DominatorTree::Delete, BB, Succ});
- DTU.applyUpdates(Updates);
- DTU.flush();
- if (MSSAU) {
- MSSAU->applyUpdates(Updates, *DT);
- if (VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- }
- }
- if (LI) {
- if (Loop *BBLoop = LI->getLoopFor(BB)) {
- // If one or the other blocks were not in a loop, the new block is not
- // either, and thus LI doesn't need to be updated.
- if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
- if (BBLoop == SuccLoop) {
- // Both in the same loop, the NewBB joins loop.
- SuccLoop->addBasicBlockToLoop(NewBB, *LI);
- } else if (BBLoop->contains(SuccLoop)) {
- // Edge from an outer loop to an inner loop. Add to the outer loop.
- BBLoop->addBasicBlockToLoop(NewBB, *LI);
- } else if (SuccLoop->contains(BBLoop)) {
- // Edge from an inner loop to an outer loop. Add to the outer loop.
- SuccLoop->addBasicBlockToLoop(NewBB, *LI);
- } else {
- // Edge from two loops with no containment relation. Because these
- // are natural loops, we know that the destination block must be the
- // header of its loop (adding a branch into a loop elsewhere would
- // create an irreducible loop).
- assert(SuccLoop->getHeader() == Succ &&
- "Should not create irreducible loops!");
- if (Loop *P = SuccLoop->getParentLoop())
- P->addBasicBlockToLoop(NewBB, *LI);
- }
- }
- // If BB is in a loop and Succ is outside of that loop, we may need to
- // update LoopSimplify form and LCSSA form.
- if (!BBLoop->contains(Succ)) {
- assert(!BBLoop->contains(NewBB) &&
- "Split point for loop exit is contained in loop!");
- // Update LCSSA form in the newly created exit block.
- if (Options.PreserveLCSSA) {
- createPHIsForSplitLoopExit(BB, NewBB, Succ);
- }
- if (!LoopPreds.empty()) {
- BasicBlock *NewExitBB = SplitBlockPredecessors(
- Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
- if (Options.PreserveLCSSA)
- createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
- }
- }
- }
- }
- return NewBB;
- }
- void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
- BasicBlock *SplitBB, BasicBlock *DestBB) {
- // SplitBB shouldn't have anything non-trivial in it yet.
- assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
- SplitBB->isLandingPad()) &&
- "SplitBB has non-PHI nodes!");
- // For each PHI in the destination block.
- for (PHINode &PN : DestBB->phis()) {
- int Idx = PN.getBasicBlockIndex(SplitBB);
- assert(Idx >= 0 && "Invalid Block Index");
- Value *V = PN.getIncomingValue(Idx);
- // If the input is a PHI which already satisfies LCSSA, don't create
- // a new one.
- if (const PHINode *VP = dyn_cast<PHINode>(V))
- if (VP->getParent() == SplitBB)
- continue;
- // Otherwise a new PHI is needed. Create one and populate it.
- PHINode *NewPN = PHINode::Create(
- PN.getType(), Preds.size(), "split",
- SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
- for (BasicBlock *BB : Preds)
- NewPN->addIncoming(V, BB);
- // Update the original PHI.
- PN.setIncomingValue(Idx, NewPN);
- }
- }
- unsigned
- llvm::SplitAllCriticalEdges(Function &F,
- const CriticalEdgeSplittingOptions &Options) {
- unsigned NumBroken = 0;
- for (BasicBlock &BB : F) {
- Instruction *TI = BB.getTerminator();
- if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
- if (SplitCriticalEdge(TI, i, Options))
- ++NumBroken;
- }
- return NumBroken;
- }
- static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
- DomTreeUpdater *DTU, DominatorTree *DT,
- LoopInfo *LI, MemorySSAUpdater *MSSAU,
- const Twine &BBName, bool Before) {
- if (Before) {
- DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
- return splitBlockBefore(Old, SplitPt,
- DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
- BBName);
- }
- BasicBlock::iterator SplitIt = SplitPt->getIterator();
- while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
- ++SplitIt;
- assert(SplitIt != SplitPt->getParent()->end());
- }
- std::string Name = BBName.str();
- BasicBlock *New = Old->splitBasicBlock(
- SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
- // The new block lives in whichever loop the old one did. This preserves
- // LCSSA as well, because we force the split point to be after any PHI nodes.
- if (LI)
- if (Loop *L = LI->getLoopFor(Old))
- L->addBasicBlockToLoop(New, *LI);
- if (DTU) {
- SmallVector<DominatorTree::UpdateType, 8> Updates;
- // Old dominates New. New node dominates all other nodes dominated by Old.
- SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
- Updates.push_back({DominatorTree::Insert, Old, New});
- Updates.reserve(Updates.size() + 2 * succ_size(New));
- for (BasicBlock *SuccessorOfOld : successors(New))
- if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
- Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
- Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
- }
- DTU->applyUpdates(Updates);
- } else if (DT)
- // Old dominates New. New node dominates all other nodes dominated by Old.
- if (DomTreeNode *OldNode = DT->getNode(Old)) {
- std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
- DomTreeNode *NewNode = DT->addNewBlock(New, Old);
- for (DomTreeNode *I : Children)
- DT->changeImmediateDominator(I, NewNode);
- }
- // Move MemoryAccesses still tracked in Old, but part of New now.
- // Update accesses in successor blocks accordingly.
- if (MSSAU)
- MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
- return New;
- }
- BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
- DominatorTree *DT, LoopInfo *LI,
- MemorySSAUpdater *MSSAU, const Twine &BBName,
- bool Before) {
- return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
- Before);
- }
- BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
- DomTreeUpdater *DTU, LoopInfo *LI,
- MemorySSAUpdater *MSSAU, const Twine &BBName,
- bool Before) {
- return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
- Before);
- }
- BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
- DomTreeUpdater *DTU, LoopInfo *LI,
- MemorySSAUpdater *MSSAU,
- const Twine &BBName) {
- BasicBlock::iterator SplitIt = SplitPt->getIterator();
- while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
- ++SplitIt;
- std::string Name = BBName.str();
- BasicBlock *New = Old->splitBasicBlock(
- SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
- /* Before=*/true);
- // The new block lives in whichever loop the old one did. This preserves
- // LCSSA as well, because we force the split point to be after any PHI nodes.
- if (LI)
- if (Loop *L = LI->getLoopFor(Old))
- L->addBasicBlockToLoop(New, *LI);
- if (DTU) {
- SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
- // New dominates Old. The predecessor nodes of the Old node dominate
- // New node.
- SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
- DTUpdates.push_back({DominatorTree::Insert, New, Old});
- DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
- for (BasicBlock *PredecessorOfOld : predecessors(New))
- if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
- DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
- DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
- }
- DTU->applyUpdates(DTUpdates);
- // Move MemoryAccesses still tracked in Old, but part of New now.
- // Update accesses in successor blocks accordingly.
- if (MSSAU) {
- MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
- if (VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- }
- }
- return New;
- }
- /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
- static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
- ArrayRef<BasicBlock *> Preds,
- DomTreeUpdater *DTU, DominatorTree *DT,
- LoopInfo *LI, MemorySSAUpdater *MSSAU,
- bool PreserveLCSSA, bool &HasLoopExit) {
- // Update dominator tree if available.
- if (DTU) {
- // Recalculation of DomTree is needed when updating a forward DomTree and
- // the Entry BB is replaced.
- if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
- // The entry block was removed and there is no external interface for
- // the dominator tree to be notified of this change. In this corner-case
- // we recalculate the entire tree.
- DTU->recalculate(*NewBB->getParent());
- } else {
- // Split block expects NewBB to have a non-empty set of predecessors.
- SmallVector<DominatorTree::UpdateType, 8> Updates;
- SmallPtrSet<BasicBlock *, 8> UniquePreds;
- Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
- Updates.reserve(Updates.size() + 2 * Preds.size());
- for (auto *Pred : Preds)
- if (UniquePreds.insert(Pred).second) {
- Updates.push_back({DominatorTree::Insert, Pred, NewBB});
- Updates.push_back({DominatorTree::Delete, Pred, OldBB});
- }
- DTU->applyUpdates(Updates);
- }
- } else if (DT) {
- if (OldBB == DT->getRootNode()->getBlock()) {
- assert(NewBB->isEntryBlock());
- DT->setNewRoot(NewBB);
- } else {
- // Split block expects NewBB to have a non-empty set of predecessors.
- DT->splitBlock(NewBB);
- }
- }
- // Update MemoryPhis after split if MemorySSA is available
- if (MSSAU)
- MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
- // The rest of the logic is only relevant for updating the loop structures.
- if (!LI)
- return;
- if (DTU && DTU->hasDomTree())
- DT = &DTU->getDomTree();
- assert(DT && "DT should be available to update LoopInfo!");
- Loop *L = LI->getLoopFor(OldBB);
- // If we need to preserve loop analyses, collect some information about how
- // this split will affect loops.
- bool IsLoopEntry = !!L;
- bool SplitMakesNewLoopHeader = false;
- for (BasicBlock *Pred : Preds) {
- // Preds that are not reachable from entry should not be used to identify if
- // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
- // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
- // as true and make the NewBB the header of some loop. This breaks LI.
- if (!DT->isReachableFromEntry(Pred))
- continue;
- // If we need to preserve LCSSA, determine if any of the preds is a loop
- // exit.
- if (PreserveLCSSA)
- if (Loop *PL = LI->getLoopFor(Pred))
- if (!PL->contains(OldBB))
- HasLoopExit = true;
- // If we need to preserve LoopInfo, note whether any of the preds crosses
- // an interesting loop boundary.
- if (!L)
- continue;
- if (L->contains(Pred))
- IsLoopEntry = false;
- else
- SplitMakesNewLoopHeader = true;
- }
- // Unless we have a loop for OldBB, nothing else to do here.
- if (!L)
- return;
- if (IsLoopEntry) {
- // Add the new block to the nearest enclosing loop (and not an adjacent
- // loop). To find this, examine each of the predecessors and determine which
- // loops enclose them, and select the most-nested loop which contains the
- // loop containing the block being split.
- Loop *InnermostPredLoop = nullptr;
- for (BasicBlock *Pred : Preds) {
- if (Loop *PredLoop = LI->getLoopFor(Pred)) {
- // Seek a loop which actually contains the block being split (to avoid
- // adjacent loops).
- while (PredLoop && !PredLoop->contains(OldBB))
- PredLoop = PredLoop->getParentLoop();
- // Select the most-nested of these loops which contains the block.
- if (PredLoop && PredLoop->contains(OldBB) &&
- (!InnermostPredLoop ||
- InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
- InnermostPredLoop = PredLoop;
- }
- }
- if (InnermostPredLoop)
- InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
- } else {
- L->addBasicBlockToLoop(NewBB, *LI);
- if (SplitMakesNewLoopHeader)
- L->moveToHeader(NewBB);
- }
- }
- /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
- /// This also updates AliasAnalysis, if available.
- static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
- ArrayRef<BasicBlock *> Preds, BranchInst *BI,
- bool HasLoopExit) {
- // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
- SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
- for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
- PHINode *PN = cast<PHINode>(I++);
- // Check to see if all of the values coming in are the same. If so, we
- // don't need to create a new PHI node, unless it's needed for LCSSA.
- Value *InVal = nullptr;
- if (!HasLoopExit) {
- InVal = PN->getIncomingValueForBlock(Preds[0]);
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- if (!PredSet.count(PN->getIncomingBlock(i)))
- continue;
- if (!InVal)
- InVal = PN->getIncomingValue(i);
- else if (InVal != PN->getIncomingValue(i)) {
- InVal = nullptr;
- break;
- }
- }
- }
- if (InVal) {
- // If all incoming values for the new PHI would be the same, just don't
- // make a new PHI. Instead, just remove the incoming values from the old
- // PHI.
- // NOTE! This loop walks backwards for a reason! First off, this minimizes
- // the cost of removal if we end up removing a large number of values, and
- // second off, this ensures that the indices for the incoming values
- // aren't invalidated when we remove one.
- for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
- if (PredSet.count(PN->getIncomingBlock(i)))
- PN->removeIncomingValue(i, false);
- // Add an incoming value to the PHI node in the loop for the preheader
- // edge.
- PN->addIncoming(InVal, NewBB);
- continue;
- }
- // If the values coming into the block are not the same, we need a new
- // PHI.
- // Create the new PHI node, insert it into NewBB at the end of the block
- PHINode *NewPHI =
- PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
- // NOTE! This loop walks backwards for a reason! First off, this minimizes
- // the cost of removal if we end up removing a large number of values, and
- // second off, this ensures that the indices for the incoming values aren't
- // invalidated when we remove one.
- for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
- BasicBlock *IncomingBB = PN->getIncomingBlock(i);
- if (PredSet.count(IncomingBB)) {
- Value *V = PN->removeIncomingValue(i, false);
- NewPHI->addIncoming(V, IncomingBB);
- }
- }
- PN->addIncoming(NewPHI, NewBB);
- }
- }
- static void SplitLandingPadPredecessorsImpl(
- BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
- const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
- DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
- MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
- static BasicBlock *
- SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
- const char *Suffix, DomTreeUpdater *DTU,
- DominatorTree *DT, LoopInfo *LI,
- MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
- // Do not attempt to split that which cannot be split.
- if (!BB->canSplitPredecessors())
- return nullptr;
- // For the landingpads we need to act a bit differently.
- // Delegate this work to the SplitLandingPadPredecessors.
- if (BB->isLandingPad()) {
- SmallVector<BasicBlock*, 2> NewBBs;
- std::string NewName = std::string(Suffix) + ".split-lp";
- SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
- DTU, DT, LI, MSSAU, PreserveLCSSA);
- return NewBBs[0];
- }
- // Create new basic block, insert right before the original block.
- BasicBlock *NewBB = BasicBlock::Create(
- BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
- // The new block unconditionally branches to the old block.
- BranchInst *BI = BranchInst::Create(BB, NewBB);
- Loop *L = nullptr;
- BasicBlock *OldLatch = nullptr;
- // Splitting the predecessors of a loop header creates a preheader block.
- if (LI && LI->isLoopHeader(BB)) {
- L = LI->getLoopFor(BB);
- // Using the loop start line number prevents debuggers stepping into the
- // loop body for this instruction.
- BI->setDebugLoc(L->getStartLoc());
- // If BB is the header of the Loop, it is possible that the loop is
- // modified, such that the current latch does not remain the latch of the
- // loop. If that is the case, the loop metadata from the current latch needs
- // to be applied to the new latch.
- OldLatch = L->getLoopLatch();
- } else
- BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
- // Move the edges from Preds to point to NewBB instead of BB.
- for (BasicBlock *Pred : Preds) {
- // This is slightly more strict than necessary; the minimum requirement
- // is that there be no more than one indirectbr branching to BB. And
- // all BlockAddress uses would need to be updated.
- assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
- "Cannot split an edge from an IndirectBrInst");
- Pred->getTerminator()->replaceSuccessorWith(BB, NewBB);
- }
- // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
- // node becomes an incoming value for BB's phi node. However, if the Preds
- // list is empty, we need to insert dummy entries into the PHI nodes in BB to
- // account for the newly created predecessor.
- if (Preds.empty()) {
- // Insert dummy values as the incoming value.
- for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
- cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
- }
- // Update DominatorTree, LoopInfo, and LCCSA analysis information.
- bool HasLoopExit = false;
- UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
- HasLoopExit);
- if (!Preds.empty()) {
- // Update the PHI nodes in BB with the values coming from NewBB.
- UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
- }
- if (OldLatch) {
- BasicBlock *NewLatch = L->getLoopLatch();
- if (NewLatch != OldLatch) {
- MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
- NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
- // It's still possible that OldLatch is the latch of another inner loop,
- // in which case we do not remove the metadata.
- Loop *IL = LI->getLoopFor(OldLatch);
- if (IL && IL->getLoopLatch() != OldLatch)
- OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
- }
- }
- return NewBB;
- }
- BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
- ArrayRef<BasicBlock *> Preds,
- const char *Suffix, DominatorTree *DT,
- LoopInfo *LI, MemorySSAUpdater *MSSAU,
- bool PreserveLCSSA) {
- return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
- MSSAU, PreserveLCSSA);
- }
- BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
- ArrayRef<BasicBlock *> Preds,
- const char *Suffix,
- DomTreeUpdater *DTU, LoopInfo *LI,
- MemorySSAUpdater *MSSAU,
- bool PreserveLCSSA) {
- return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
- /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
- }
- static void SplitLandingPadPredecessorsImpl(
- BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
- const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
- DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
- MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
- assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
- // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
- // it right before the original block.
- BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
- OrigBB->getName() + Suffix1,
- OrigBB->getParent(), OrigBB);
- NewBBs.push_back(NewBB1);
- // The new block unconditionally branches to the old block.
- BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
- BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
- // Move the edges from Preds to point to NewBB1 instead of OrigBB.
- for (BasicBlock *Pred : Preds) {
- // This is slightly more strict than necessary; the minimum requirement
- // is that there be no more than one indirectbr branching to BB. And
- // all BlockAddress uses would need to be updated.
- assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
- "Cannot split an edge from an IndirectBrInst");
- Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
- }
- bool HasLoopExit = false;
- UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
- PreserveLCSSA, HasLoopExit);
- // Update the PHI nodes in OrigBB with the values coming from NewBB1.
- UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
- // Move the remaining edges from OrigBB to point to NewBB2.
- SmallVector<BasicBlock*, 8> NewBB2Preds;
- for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
- i != e; ) {
- BasicBlock *Pred = *i++;
- if (Pred == NewBB1) continue;
- assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
- "Cannot split an edge from an IndirectBrInst");
- NewBB2Preds.push_back(Pred);
- e = pred_end(OrigBB);
- }
- BasicBlock *NewBB2 = nullptr;
- if (!NewBB2Preds.empty()) {
- // Create another basic block for the rest of OrigBB's predecessors.
- NewBB2 = BasicBlock::Create(OrigBB->getContext(),
- OrigBB->getName() + Suffix2,
- OrigBB->getParent(), OrigBB);
- NewBBs.push_back(NewBB2);
- // The new block unconditionally branches to the old block.
- BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
- BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
- // Move the remaining edges from OrigBB to point to NewBB2.
- for (BasicBlock *NewBB2Pred : NewBB2Preds)
- NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
- // Update DominatorTree, LoopInfo, and LCCSA analysis information.
- HasLoopExit = false;
- UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
- PreserveLCSSA, HasLoopExit);
- // Update the PHI nodes in OrigBB with the values coming from NewBB2.
- UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
- }
- LandingPadInst *LPad = OrigBB->getLandingPadInst();
- Instruction *Clone1 = LPad->clone();
- Clone1->setName(Twine("lpad") + Suffix1);
- Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt());
- if (NewBB2) {
- Instruction *Clone2 = LPad->clone();
- Clone2->setName(Twine("lpad") + Suffix2);
- Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt());
- // Create a PHI node for the two cloned landingpad instructions only
- // if the original landingpad instruction has some uses.
- if (!LPad->use_empty()) {
- assert(!LPad->getType()->isTokenTy() &&
- "Split cannot be applied if LPad is token type. Otherwise an "
- "invalid PHINode of token type would be created.");
- PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
- PN->addIncoming(Clone1, NewBB1);
- PN->addIncoming(Clone2, NewBB2);
- LPad->replaceAllUsesWith(PN);
- }
- LPad->eraseFromParent();
- } else {
- // There is no second clone. Just replace the landing pad with the first
- // clone.
- LPad->replaceAllUsesWith(Clone1);
- LPad->eraseFromParent();
- }
- }
- void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
- ArrayRef<BasicBlock *> Preds,
- const char *Suffix1, const char *Suffix2,
- SmallVectorImpl<BasicBlock *> &NewBBs,
- DominatorTree *DT, LoopInfo *LI,
- MemorySSAUpdater *MSSAU,
- bool PreserveLCSSA) {
- return SplitLandingPadPredecessorsImpl(
- OrigBB, Preds, Suffix1, Suffix2, NewBBs,
- /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
- }
- void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
- ArrayRef<BasicBlock *> Preds,
- const char *Suffix1, const char *Suffix2,
- SmallVectorImpl<BasicBlock *> &NewBBs,
- DomTreeUpdater *DTU, LoopInfo *LI,
- MemorySSAUpdater *MSSAU,
- bool PreserveLCSSA) {
- return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
- NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
- PreserveLCSSA);
- }
- ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
- BasicBlock *Pred,
- DomTreeUpdater *DTU) {
- Instruction *UncondBranch = Pred->getTerminator();
- // Clone the return and add it to the end of the predecessor.
- Instruction *NewRet = RI->clone();
- NewRet->insertInto(Pred, Pred->end());
- // If the return instruction returns a value, and if the value was a
- // PHI node in "BB", propagate the right value into the return.
- for (Use &Op : NewRet->operands()) {
- Value *V = Op;
- Instruction *NewBC = nullptr;
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
- // Return value might be bitcasted. Clone and insert it before the
- // return instruction.
- V = BCI->getOperand(0);
- NewBC = BCI->clone();
- NewBC->insertInto(Pred, NewRet->getIterator());
- Op = NewBC;
- }
- Instruction *NewEV = nullptr;
- if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
- V = EVI->getOperand(0);
- NewEV = EVI->clone();
- if (NewBC) {
- NewBC->setOperand(0, NewEV);
- NewEV->insertInto(Pred, NewBC->getIterator());
- } else {
- NewEV->insertInto(Pred, NewRet->getIterator());
- Op = NewEV;
- }
- }
- if (PHINode *PN = dyn_cast<PHINode>(V)) {
- if (PN->getParent() == BB) {
- if (NewEV) {
- NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
- } else if (NewBC)
- NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
- else
- Op = PN->getIncomingValueForBlock(Pred);
- }
- }
- }
- // Update any PHI nodes in the returning block to realize that we no
- // longer branch to them.
- BB->removePredecessor(Pred);
- UncondBranch->eraseFromParent();
- if (DTU)
- DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
- return cast<ReturnInst>(NewRet);
- }
- static Instruction *
- SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
- bool Unreachable, MDNode *BranchWeights,
- DomTreeUpdater *DTU, DominatorTree *DT,
- LoopInfo *LI, BasicBlock *ThenBlock) {
- SmallVector<DominatorTree::UpdateType, 8> Updates;
- BasicBlock *Head = SplitBefore->getParent();
- BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
- if (DTU) {
- SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead;
- Updates.push_back({DominatorTree::Insert, Head, Tail});
- Updates.reserve(Updates.size() + 2 * succ_size(Tail));
- for (BasicBlock *SuccessorOfHead : successors(Tail))
- if (UniqueSuccessorsOfHead.insert(SuccessorOfHead).second) {
- Updates.push_back({DominatorTree::Insert, Tail, SuccessorOfHead});
- Updates.push_back({DominatorTree::Delete, Head, SuccessorOfHead});
- }
- }
- Instruction *HeadOldTerm = Head->getTerminator();
- LLVMContext &C = Head->getContext();
- Instruction *CheckTerm;
- bool CreateThenBlock = (ThenBlock == nullptr);
- if (CreateThenBlock) {
- ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
- if (Unreachable)
- CheckTerm = new UnreachableInst(C, ThenBlock);
- else {
- CheckTerm = BranchInst::Create(Tail, ThenBlock);
- if (DTU)
- Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
- }
- CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
- } else
- CheckTerm = ThenBlock->getTerminator();
- BranchInst *HeadNewTerm =
- BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
- if (DTU)
- Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
- HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
- ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
- if (DTU)
- DTU->applyUpdates(Updates);
- else if (DT) {
- if (DomTreeNode *OldNode = DT->getNode(Head)) {
- std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
- DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
- for (DomTreeNode *Child : Children)
- DT->changeImmediateDominator(Child, NewNode);
- // Head dominates ThenBlock.
- if (CreateThenBlock)
- DT->addNewBlock(ThenBlock, Head);
- else
- DT->changeImmediateDominator(ThenBlock, Head);
- }
- }
- if (LI) {
- if (Loop *L = LI->getLoopFor(Head)) {
- L->addBasicBlockToLoop(ThenBlock, *LI);
- L->addBasicBlockToLoop(Tail, *LI);
- }
- }
- return CheckTerm;
- }
- Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
- Instruction *SplitBefore,
- bool Unreachable,
- MDNode *BranchWeights,
- DominatorTree *DT, LoopInfo *LI,
- BasicBlock *ThenBlock) {
- return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
- BranchWeights,
- /*DTU=*/nullptr, DT, LI, ThenBlock);
- }
- Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
- Instruction *SplitBefore,
- bool Unreachable,
- MDNode *BranchWeights,
- DomTreeUpdater *DTU, LoopInfo *LI,
- BasicBlock *ThenBlock) {
- return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
- BranchWeights, DTU, /*DT=*/nullptr, LI,
- ThenBlock);
- }
- void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
- Instruction **ThenTerm,
- Instruction **ElseTerm,
- MDNode *BranchWeights,
- DomTreeUpdater *DTU) {
- BasicBlock *Head = SplitBefore->getParent();
- SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors;
- if (DTU)
- UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head));
- BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
- Instruction *HeadOldTerm = Head->getTerminator();
- LLVMContext &C = Head->getContext();
- BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
- BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
- *ThenTerm = BranchInst::Create(Tail, ThenBlock);
- (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
- *ElseTerm = BranchInst::Create(Tail, ElseBlock);
- (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
- BranchInst *HeadNewTerm =
- BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
- HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
- ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
- if (DTU) {
- SmallVector<DominatorTree::UpdateType, 8> Updates;
- Updates.reserve(4 + 2 * UniqueOrigSuccessors.size());
- for (BasicBlock *Succ : successors(Head)) {
- Updates.push_back({DominatorTree::Insert, Head, Succ});
- Updates.push_back({DominatorTree::Insert, Succ, Tail});
- }
- for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
- Updates.push_back({DominatorTree::Insert, Tail, UniqueOrigSuccessor});
- for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
- Updates.push_back({DominatorTree::Delete, Head, UniqueOrigSuccessor});
- DTU->applyUpdates(Updates);
- }
- }
- BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
- BasicBlock *&IfFalse) {
- PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
- BasicBlock *Pred1 = nullptr;
- BasicBlock *Pred2 = nullptr;
- if (SomePHI) {
- if (SomePHI->getNumIncomingValues() != 2)
- return nullptr;
- Pred1 = SomePHI->getIncomingBlock(0);
- Pred2 = SomePHI->getIncomingBlock(1);
- } else {
- pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
- if (PI == PE) // No predecessor
- return nullptr;
- Pred1 = *PI++;
- if (PI == PE) // Only one predecessor
- return nullptr;
- Pred2 = *PI++;
- if (PI != PE) // More than two predecessors
- return nullptr;
- }
- // We can only handle branches. Other control flow will be lowered to
- // branches if possible anyway.
- BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
- BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
- if (!Pred1Br || !Pred2Br)
- return nullptr;
- // Eliminate code duplication by ensuring that Pred1Br is conditional if
- // either are.
- if (Pred2Br->isConditional()) {
- // If both branches are conditional, we don't have an "if statement". In
- // reality, we could transform this case, but since the condition will be
- // required anyway, we stand no chance of eliminating it, so the xform is
- // probably not profitable.
- if (Pred1Br->isConditional())
- return nullptr;
- std::swap(Pred1, Pred2);
- std::swap(Pred1Br, Pred2Br);
- }
- if (Pred1Br->isConditional()) {
- // The only thing we have to watch out for here is to make sure that Pred2
- // doesn't have incoming edges from other blocks. If it does, the condition
- // doesn't dominate BB.
- if (!Pred2->getSinglePredecessor())
- return nullptr;
- // If we found a conditional branch predecessor, make sure that it branches
- // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
- if (Pred1Br->getSuccessor(0) == BB &&
- Pred1Br->getSuccessor(1) == Pred2) {
- IfTrue = Pred1;
- IfFalse = Pred2;
- } else if (Pred1Br->getSuccessor(0) == Pred2 &&
- Pred1Br->getSuccessor(1) == BB) {
- IfTrue = Pred2;
- IfFalse = Pred1;
- } else {
- // We know that one arm of the conditional goes to BB, so the other must
- // go somewhere unrelated, and this must not be an "if statement".
- return nullptr;
- }
- return Pred1Br;
- }
- // Ok, if we got here, both predecessors end with an unconditional branch to
- // BB. Don't panic! If both blocks only have a single (identical)
- // predecessor, and THAT is a conditional branch, then we're all ok!
- BasicBlock *CommonPred = Pred1->getSinglePredecessor();
- if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
- return nullptr;
- // Otherwise, if this is a conditional branch, then we can use it!
- BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
- if (!BI) return nullptr;
- assert(BI->isConditional() && "Two successors but not conditional?");
- if (BI->getSuccessor(0) == Pred1) {
- IfTrue = Pred1;
- IfFalse = Pred2;
- } else {
- IfTrue = Pred2;
- IfFalse = Pred1;
- }
- return BI;
- }
- // After creating a control flow hub, the operands of PHINodes in an outgoing
- // block Out no longer match the predecessors of that block. Predecessors of Out
- // that are incoming blocks to the hub are now replaced by just one edge from
- // the hub. To match this new control flow, the corresponding values from each
- // PHINode must now be moved a new PHINode in the first guard block of the hub.
- //
- // This operation cannot be performed with SSAUpdater, because it involves one
- // new use: If the block Out is in the list of Incoming blocks, then the newly
- // created PHI in the Hub will use itself along that edge from Out to Hub.
- static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
- const SetVector<BasicBlock *> &Incoming,
- BasicBlock *FirstGuardBlock) {
- auto I = Out->begin();
- while (I != Out->end() && isa<PHINode>(I)) {
- auto Phi = cast<PHINode>(I);
- auto NewPhi =
- PHINode::Create(Phi->getType(), Incoming.size(),
- Phi->getName() + ".moved", &FirstGuardBlock->front());
- for (auto *In : Incoming) {
- Value *V = UndefValue::get(Phi->getType());
- if (In == Out) {
- V = NewPhi;
- } else if (Phi->getBasicBlockIndex(In) != -1) {
- V = Phi->removeIncomingValue(In, false);
- }
- NewPhi->addIncoming(V, In);
- }
- assert(NewPhi->getNumIncomingValues() == Incoming.size());
- if (Phi->getNumOperands() == 0) {
- Phi->replaceAllUsesWith(NewPhi);
- I = Phi->eraseFromParent();
- continue;
- }
- Phi->addIncoming(NewPhi, GuardBlock);
- ++I;
- }
- }
- using BBPredicates = DenseMap<BasicBlock *, Instruction *>;
- using BBSetVector = SetVector<BasicBlock *>;
- // Redirects the terminator of the incoming block to the first guard
- // block in the hub. The condition of the original terminator (if it
- // was conditional) and its original successors are returned as a
- // tuple <condition, succ0, succ1>. The function additionally filters
- // out successors that are not in the set of outgoing blocks.
- //
- // - condition is non-null iff the branch is conditional.
- // - Succ1 is non-null iff the sole/taken target is an outgoing block.
- // - Succ2 is non-null iff condition is non-null and the fallthrough
- // target is an outgoing block.
- static std::tuple<Value *, BasicBlock *, BasicBlock *>
- redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
- const BBSetVector &Outgoing) {
- assert(isa<BranchInst>(BB->getTerminator()) &&
- "Only support branch terminator.");
- auto Branch = cast<BranchInst>(BB->getTerminator());
- auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
- BasicBlock *Succ0 = Branch->getSuccessor(0);
- BasicBlock *Succ1 = nullptr;
- Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
- if (Branch->isUnconditional()) {
- Branch->setSuccessor(0, FirstGuardBlock);
- assert(Succ0);
- } else {
- Succ1 = Branch->getSuccessor(1);
- Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
- assert(Succ0 || Succ1);
- if (Succ0 && !Succ1) {
- Branch->setSuccessor(0, FirstGuardBlock);
- } else if (Succ1 && !Succ0) {
- Branch->setSuccessor(1, FirstGuardBlock);
- } else {
- Branch->eraseFromParent();
- BranchInst::Create(FirstGuardBlock, BB);
- }
- }
- assert(Succ0 || Succ1);
- return std::make_tuple(Condition, Succ0, Succ1);
- }
- // Setup the branch instructions for guard blocks.
- //
- // Each guard block terminates in a conditional branch that transfers
- // control to the corresponding outgoing block or the next guard
- // block. The last guard block has two outgoing blocks as successors
- // since the condition for the final outgoing block is trivially
- // true. So we create one less block (including the first guard block)
- // than the number of outgoing blocks.
- static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks,
- const BBSetVector &Outgoing,
- BBPredicates &GuardPredicates) {
- // To help keep the loop simple, temporarily append the last
- // outgoing block to the list of guard blocks.
- GuardBlocks.push_back(Outgoing.back());
- for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
- auto Out = Outgoing[i];
- assert(GuardPredicates.count(Out));
- BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
- GuardBlocks[i]);
- }
- // Remove the last block from the guard list.
- GuardBlocks.pop_back();
- }
- /// We are using one integer to represent the block we are branching to. Then at
- /// each guard block, the predicate was calcuated using a simple `icmp eq`.
- static void calcPredicateUsingInteger(
- const BBSetVector &Incoming, const BBSetVector &Outgoing,
- SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) {
- auto &Context = Incoming.front()->getContext();
- auto FirstGuardBlock = GuardBlocks.front();
- auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(),
- "merged.bb.idx", FirstGuardBlock);
- for (auto In : Incoming) {
- Value *Condition;
- BasicBlock *Succ0;
- BasicBlock *Succ1;
- std::tie(Condition, Succ0, Succ1) =
- redirectToHub(In, FirstGuardBlock, Outgoing);
- Value *IncomingId = nullptr;
- if (Succ0 && Succ1) {
- // target_bb_index = Condition ? index_of_succ0 : index_of_succ1.
- auto Succ0Iter = find(Outgoing, Succ0);
- auto Succ1Iter = find(Outgoing, Succ1);
- Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context),
- std::distance(Outgoing.begin(), Succ0Iter));
- Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context),
- std::distance(Outgoing.begin(), Succ1Iter));
- IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx",
- In->getTerminator());
- } else {
- // Get the index of the non-null successor.
- auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1);
- IncomingId = ConstantInt::get(Type::getInt32Ty(Context),
- std::distance(Outgoing.begin(), SuccIter));
- }
- Phi->addIncoming(IncomingId, In);
- }
- for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
- auto Out = Outgoing[i];
- auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
- ConstantInt::get(Type::getInt32Ty(Context), i),
- Out->getName() + ".predicate", GuardBlocks[i]);
- GuardPredicates[Out] = Cmp;
- }
- }
- /// We record the predicate of each outgoing block using a phi of boolean.
- static void calcPredicateUsingBooleans(
- const BBSetVector &Incoming, const BBSetVector &Outgoing,
- SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates,
- SmallVectorImpl<WeakVH> &DeletionCandidates) {
- auto &Context = Incoming.front()->getContext();
- auto BoolTrue = ConstantInt::getTrue(Context);
- auto BoolFalse = ConstantInt::getFalse(Context);
- auto FirstGuardBlock = GuardBlocks.front();
- // The predicate for the last outgoing is trivially true, and so we
- // process only the first N-1 successors.
- for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
- auto Out = Outgoing[i];
- LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
- auto Phi =
- PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
- StringRef("Guard.") + Out->getName(), FirstGuardBlock);
- GuardPredicates[Out] = Phi;
- }
- for (auto *In : Incoming) {
- Value *Condition;
- BasicBlock *Succ0;
- BasicBlock *Succ1;
- std::tie(Condition, Succ0, Succ1) =
- redirectToHub(In, FirstGuardBlock, Outgoing);
- // Optimization: Consider an incoming block A with both successors
- // Succ0 and Succ1 in the set of outgoing blocks. The predicates
- // for Succ0 and Succ1 complement each other. If Succ0 is visited
- // first in the loop below, control will branch to Succ0 using the
- // corresponding predicate. But if that branch is not taken, then
- // control must reach Succ1, which means that the incoming value of
- // the predicate from `In` is true for Succ1.
- bool OneSuccessorDone = false;
- for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
- auto Out = Outgoing[i];
- PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
- if (Out != Succ0 && Out != Succ1) {
- Phi->addIncoming(BoolFalse, In);
- } else if (!Succ0 || !Succ1 || OneSuccessorDone) {
- // Optimization: When only one successor is an outgoing block,
- // the incoming predicate from `In` is always true.
- Phi->addIncoming(BoolTrue, In);
- } else {
- assert(Succ0 && Succ1);
- if (Out == Succ0) {
- Phi->addIncoming(Condition, In);
- } else {
- auto Inverted = invertCondition(Condition);
- DeletionCandidates.push_back(Condition);
- Phi->addIncoming(Inverted, In);
- }
- OneSuccessorDone = true;
- }
- }
- }
- }
- // Capture the existing control flow as guard predicates, and redirect
- // control flow from \p Incoming block through the \p GuardBlocks to the
- // \p Outgoing blocks.
- //
- // There is one guard predicate for each outgoing block OutBB. The
- // predicate represents whether the hub should transfer control flow
- // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates
- // them in the same order as the Outgoing set-vector, and control
- // branches to the first outgoing block whose predicate evaluates to true.
- static void
- convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks,
- SmallVectorImpl<WeakVH> &DeletionCandidates,
- const BBSetVector &Incoming,
- const BBSetVector &Outgoing, const StringRef Prefix,
- std::optional<unsigned> MaxControlFlowBooleans) {
- BBPredicates GuardPredicates;
- auto F = Incoming.front()->getParent();
- for (int i = 0, e = Outgoing.size() - 1; i != e; ++i)
- GuardBlocks.push_back(
- BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
- // When we are using an integer to record which target block to jump to, we
- // are creating less live values, actually we are using one single integer to
- // store the index of the target block. When we are using booleans to store
- // the branching information, we need (N-1) boolean values, where N is the
- // number of outgoing block.
- if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans)
- calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates,
- DeletionCandidates);
- else
- calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates);
- setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates);
- }
- BasicBlock *llvm::CreateControlFlowHub(
- DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
- const BBSetVector &Incoming, const BBSetVector &Outgoing,
- const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
- if (Outgoing.size() < 2)
- return Outgoing.front();
- SmallVector<DominatorTree::UpdateType, 16> Updates;
- if (DTU) {
- for (auto *In : Incoming) {
- for (auto Succ : successors(In))
- if (Outgoing.count(Succ))
- Updates.push_back({DominatorTree::Delete, In, Succ});
- }
- }
- SmallVector<WeakVH, 8> DeletionCandidates;
- convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing,
- Prefix, MaxControlFlowBooleans);
- auto FirstGuardBlock = GuardBlocks.front();
-
- // Update the PHINodes in each outgoing block to match the new control flow.
- for (int i = 0, e = GuardBlocks.size(); i != e; ++i)
- reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
- reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
- if (DTU) {
- int NumGuards = GuardBlocks.size();
- assert((int)Outgoing.size() == NumGuards + 1);
- for (auto In : Incoming)
- Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
- for (int i = 0; i != NumGuards - 1; ++i) {
- Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
- Updates.push_back(
- {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
- }
- Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
- Outgoing[NumGuards - 1]});
- Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
- Outgoing[NumGuards]});
- DTU->applyUpdates(Updates);
- }
- for (auto I : DeletionCandidates) {
- if (I->use_empty())
- if (auto Inst = dyn_cast_or_null<Instruction>(I))
- Inst->eraseFromParent();
- }
- return FirstGuardBlock;
- }
|