123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- //===- X86EvexToVex.cpp ---------------------------------------------------===//
- // Compress EVEX instructions to VEX encoding when possible to reduce code size
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- /// \file
- /// This file defines the pass that goes over all AVX-512 instructions which
- /// are encoded using the EVEX prefix and if possible replaces them by their
- /// corresponding VEX encoding which is usually shorter by 2 bytes.
- /// EVEX instructions may be encoded via the VEX prefix when the AVX-512
- /// instruction has a corresponding AVX/AVX2 opcode, when vector length
- /// accessed by instruction is less than 512 bits and when it does not use
- // the xmm or the mask registers or xmm/ymm registers with indexes higher than 15.
- /// The pass applies code reduction on the generated code for AVX-512 instrs.
- //
- //===----------------------------------------------------------------------===//
- #include "MCTargetDesc/X86BaseInfo.h"
- #include "MCTargetDesc/X86InstComments.h"
- #include "X86.h"
- #include "X86InstrInfo.h"
- #include "X86Subtarget.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/MC/MCInstrDesc.h"
- #include "llvm/Pass.h"
- #include <atomic>
- #include <cassert>
- #include <cstdint>
- using namespace llvm;
- // Including the generated EVEX2VEX tables.
- struct X86EvexToVexCompressTableEntry {
- uint16_t EvexOpcode;
- uint16_t VexOpcode;
- bool operator<(const X86EvexToVexCompressTableEntry &RHS) const {
- return EvexOpcode < RHS.EvexOpcode;
- }
- friend bool operator<(const X86EvexToVexCompressTableEntry &TE,
- unsigned Opc) {
- return TE.EvexOpcode < Opc;
- }
- };
- #include "X86GenEVEX2VEXTables.inc"
- #define EVEX2VEX_DESC "Compressing EVEX instrs to VEX encoding when possible"
- #define EVEX2VEX_NAME "x86-evex-to-vex-compress"
- #define DEBUG_TYPE EVEX2VEX_NAME
- namespace {
- class EvexToVexInstPass : public MachineFunctionPass {
- /// For EVEX instructions that can be encoded using VEX encoding, replace
- /// them by the VEX encoding in order to reduce size.
- bool CompressEvexToVexImpl(MachineInstr &MI) const;
- public:
- static char ID;
- EvexToVexInstPass() : MachineFunctionPass(ID) { }
- StringRef getPassName() const override { return EVEX2VEX_DESC; }
- /// Loop over all of the basic blocks, replacing EVEX instructions
- /// by equivalent VEX instructions when possible for reducing code size.
- bool runOnMachineFunction(MachineFunction &MF) override;
- // This pass runs after regalloc and doesn't support VReg operands.
- MachineFunctionProperties getRequiredProperties() const override {
- return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::NoVRegs);
- }
- private:
- /// Machine instruction info used throughout the class.
- const X86InstrInfo *TII = nullptr;
- const X86Subtarget *ST = nullptr;
- };
- } // end anonymous namespace
- char EvexToVexInstPass::ID = 0;
- bool EvexToVexInstPass::runOnMachineFunction(MachineFunction &MF) {
- TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
- ST = &MF.getSubtarget<X86Subtarget>();
- if (!ST->hasAVX512())
- return false;
- bool Changed = false;
- /// Go over all basic blocks in function and replace
- /// EVEX encoded instrs by VEX encoding when possible.
- for (MachineBasicBlock &MBB : MF) {
- // Traverse the basic block.
- for (MachineInstr &MI : MBB)
- Changed |= CompressEvexToVexImpl(MI);
- }
- return Changed;
- }
- static bool usesExtendedRegister(const MachineInstr &MI) {
- auto isHiRegIdx = [](unsigned Reg) {
- // Check for XMM register with indexes between 16 - 31.
- if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
- return true;
- // Check for YMM register with indexes between 16 - 31.
- if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
- return true;
- return false;
- };
- // Check that operands are not ZMM regs or
- // XMM/YMM regs with hi indexes between 16 - 31.
- for (const MachineOperand &MO : MI.explicit_operands()) {
- if (!MO.isReg())
- continue;
- Register Reg = MO.getReg();
- assert(!(Reg >= X86::ZMM0 && Reg <= X86::ZMM31) &&
- "ZMM instructions should not be in the EVEX->VEX tables");
- if (isHiRegIdx(Reg))
- return true;
- }
- return false;
- }
- // Do any custom cleanup needed to finalize the conversion.
- static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc,
- const X86Subtarget *ST) {
- (void)NewOpc;
- unsigned Opc = MI.getOpcode();
- switch (Opc) {
- case X86::VALIGNDZ128rri:
- case X86::VALIGNDZ128rmi:
- case X86::VALIGNQZ128rri:
- case X86::VALIGNQZ128rmi: {
- assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) &&
- "Unexpected new opcode!");
- unsigned Scale = (Opc == X86::VALIGNQZ128rri ||
- Opc == X86::VALIGNQZ128rmi) ? 8 : 4;
- MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1);
- Imm.setImm(Imm.getImm() * Scale);
- break;
- }
- case X86::VSHUFF32X4Z256rmi:
- case X86::VSHUFF32X4Z256rri:
- case X86::VSHUFF64X2Z256rmi:
- case X86::VSHUFF64X2Z256rri:
- case X86::VSHUFI32X4Z256rmi:
- case X86::VSHUFI32X4Z256rri:
- case X86::VSHUFI64X2Z256rmi:
- case X86::VSHUFI64X2Z256rri: {
- assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr ||
- NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) &&
- "Unexpected new opcode!");
- MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1);
- int64_t ImmVal = Imm.getImm();
- // Set bit 5, move bit 1 to bit 4, copy bit 0.
- Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1));
- break;
- }
- case X86::VRNDSCALEPDZ128rri:
- case X86::VRNDSCALEPDZ128rmi:
- case X86::VRNDSCALEPSZ128rri:
- case X86::VRNDSCALEPSZ128rmi:
- case X86::VRNDSCALEPDZ256rri:
- case X86::VRNDSCALEPDZ256rmi:
- case X86::VRNDSCALEPSZ256rri:
- case X86::VRNDSCALEPSZ256rmi:
- case X86::VRNDSCALESDZr:
- case X86::VRNDSCALESDZm:
- case X86::VRNDSCALESSZr:
- case X86::VRNDSCALESSZm:
- case X86::VRNDSCALESDZr_Int:
- case X86::VRNDSCALESDZm_Int:
- case X86::VRNDSCALESSZr_Int:
- case X86::VRNDSCALESSZm_Int:
- const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1);
- int64_t ImmVal = Imm.getImm();
- // Ensure that only bits 3:0 of the immediate are used.
- if ((ImmVal & 0xf) != ImmVal)
- return false;
- break;
- }
- return true;
- }
- // For EVEX instructions that can be encoded using VEX encoding
- // replace them by the VEX encoding in order to reduce size.
- bool EvexToVexInstPass::CompressEvexToVexImpl(MachineInstr &MI) const {
- // VEX format.
- // # of bytes: 0,2,3 1 1 0,1 0,1,2,4 0,1
- // [Prefixes] [VEX] OPCODE ModR/M [SIB] [DISP] [IMM]
- //
- // EVEX format.
- // # of bytes: 4 1 1 1 4 / 1 1
- // [Prefixes] EVEX Opcode ModR/M [SIB] [Disp32] / [Disp8*N] [Immediate]
- const MCInstrDesc &Desc = MI.getDesc();
- // Check for EVEX instructions only.
- if ((Desc.TSFlags & X86II::EncodingMask) != X86II::EVEX)
- return false;
- // Check for EVEX instructions with mask or broadcast as in these cases
- // the EVEX prefix is needed in order to carry this information
- // thus preventing the transformation to VEX encoding.
- if (Desc.TSFlags & (X86II::EVEX_K | X86II::EVEX_B))
- return false;
- // Check for EVEX instructions with L2 set. These instructions are 512-bits
- // and can't be converted to VEX.
- if (Desc.TSFlags & X86II::EVEX_L2)
- return false;
- #ifndef NDEBUG
- // Make sure the tables are sorted.
- static std::atomic<bool> TableChecked(false);
- if (!TableChecked.load(std::memory_order_relaxed)) {
- assert(llvm::is_sorted(X86EvexToVex128CompressTable) &&
- "X86EvexToVex128CompressTable is not sorted!");
- assert(llvm::is_sorted(X86EvexToVex256CompressTable) &&
- "X86EvexToVex256CompressTable is not sorted!");
- TableChecked.store(true, std::memory_order_relaxed);
- }
- #endif
- // Use the VEX.L bit to select the 128 or 256-bit table.
- ArrayRef<X86EvexToVexCompressTableEntry> Table =
- (Desc.TSFlags & X86II::VEX_L) ? ArrayRef(X86EvexToVex256CompressTable)
- : ArrayRef(X86EvexToVex128CompressTable);
- const auto *I = llvm::lower_bound(Table, MI.getOpcode());
- if (I == Table.end() || I->EvexOpcode != MI.getOpcode())
- return false;
- unsigned NewOpc = I->VexOpcode;
- if (usesExtendedRegister(MI))
- return false;
- if (!CheckVEXInstPredicate(MI, ST))
- return false;
- if (!performCustomAdjustments(MI, NewOpc, ST))
- return false;
- MI.setDesc(TII->get(NewOpc));
- MI.setAsmPrinterFlag(X86::AC_EVEX_2_VEX);
- return true;
- }
- INITIALIZE_PASS(EvexToVexInstPass, EVEX2VEX_NAME, EVEX2VEX_DESC, false, false)
- FunctionPass *llvm::createX86EvexToVexInsts() {
- return new EvexToVexInstPass();
- }
|