123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879 |
- //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- /// \file
- /// This file implements a pass that converts X86 cmov instructions into
- /// branches when profitable. This pass is conservative. It transforms if and
- /// only if it can guarantee a gain with high confidence.
- ///
- /// Thus, the optimization applies under the following conditions:
- /// 1. Consider as candidates only CMOVs in innermost loops (assume that
- /// most hotspots are represented by these loops).
- /// 2. Given a group of CMOV instructions that are using the same EFLAGS def
- /// instruction:
- /// a. Consider them as candidates only if all have the same code condition
- /// or the opposite one to prevent generating more than one conditional
- /// jump per EFLAGS def instruction.
- /// b. Consider them as candidates only if all are profitable to be
- /// converted (assume that one bad conversion may cause a degradation).
- /// 3. Apply conversion only for loops that are found profitable and only for
- /// CMOV candidates that were found profitable.
- /// a. A loop is considered profitable only if conversion will reduce its
- /// depth cost by some threshold.
- /// b. CMOV is considered profitable if the cost of its condition is higher
- /// than the average cost of its true-value and false-value by 25% of
- /// branch-misprediction-penalty. This assures no degradation even with
- /// 25% branch misprediction.
- ///
- /// Note: This pass is assumed to run on SSA machine code.
- //
- //===----------------------------------------------------------------------===//
- //
- // External interfaces:
- // FunctionPass *llvm::createX86CmovConverterPass();
- // bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
- //
- //===----------------------------------------------------------------------===//
- #include "X86.h"
- #include "X86InstrInfo.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSchedule.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/MC/MCSchedule.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/CGPassBuilderOption.h"
- #include <algorithm>
- #include <cassert>
- #include <iterator>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "x86-cmov-conversion"
- STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups");
- STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates");
- STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops");
- STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups");
- // This internal switch can be used to turn off the cmov/branch optimization.
- static cl::opt<bool>
- EnableCmovConverter("x86-cmov-converter",
- cl::desc("Enable the X86 cmov-to-branch optimization."),
- cl::init(true), cl::Hidden);
- static cl::opt<unsigned>
- GainCycleThreshold("x86-cmov-converter-threshold",
- cl::desc("Minimum gain per loop (in cycles) threshold."),
- cl::init(4), cl::Hidden);
- static cl::opt<bool> ForceMemOperand(
- "x86-cmov-converter-force-mem-operand",
- cl::desc("Convert cmovs to branches whenever they have memory operands."),
- cl::init(true), cl::Hidden);
- static cl::opt<bool> ForceAll(
- "x86-cmov-converter-force-all",
- cl::desc("Convert all cmovs to branches."),
- cl::init(false), cl::Hidden);
- namespace {
- /// Converts X86 cmov instructions into branches when profitable.
- class X86CmovConverterPass : public MachineFunctionPass {
- public:
- X86CmovConverterPass() : MachineFunctionPass(ID) { }
- StringRef getPassName() const override { return "X86 cmov Conversion"; }
- bool runOnMachineFunction(MachineFunction &MF) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- /// Pass identification, replacement for typeid.
- static char ID;
- private:
- MachineRegisterInfo *MRI = nullptr;
- const TargetInstrInfo *TII = nullptr;
- const TargetRegisterInfo *TRI = nullptr;
- MachineLoopInfo *MLI = nullptr;
- TargetSchedModel TSchedModel;
- /// List of consecutive CMOV instructions.
- using CmovGroup = SmallVector<MachineInstr *, 2>;
- using CmovGroups = SmallVector<CmovGroup, 2>;
- /// Collect all CMOV-group-candidates in \p CurrLoop and update \p
- /// CmovInstGroups accordingly.
- ///
- /// \param Blocks List of blocks to process.
- /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
- /// \returns true iff it found any CMOV-group-candidate.
- bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
- CmovGroups &CmovInstGroups,
- bool IncludeLoads = false);
- /// Check if it is profitable to transform each CMOV-group-candidates into
- /// branch. Remove all groups that are not profitable from \p CmovInstGroups.
- ///
- /// \param Blocks List of blocks to process.
- /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
- /// \returns true iff any CMOV-group-candidate remain.
- bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
- CmovGroups &CmovInstGroups);
- /// Convert the given list of consecutive CMOV instructions into a branch.
- ///
- /// \param Group Consecutive CMOV instructions to be converted into branch.
- void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const;
- };
- } // end anonymous namespace
- char X86CmovConverterPass::ID = 0;
- void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const {
- MachineFunctionPass::getAnalysisUsage(AU);
- AU.addRequired<MachineLoopInfo>();
- }
- bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) {
- if (skipFunction(MF.getFunction()))
- return false;
- if (!EnableCmovConverter)
- return false;
- // If the SelectOptimize pass is enabled, cmovs have already been optimized.
- if (!getCGPassBuilderOption().DisableSelectOptimize)
- return false;
- LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
- << "**********\n");
- bool Changed = false;
- MLI = &getAnalysis<MachineLoopInfo>();
- const TargetSubtargetInfo &STI = MF.getSubtarget();
- MRI = &MF.getRegInfo();
- TII = STI.getInstrInfo();
- TRI = STI.getRegisterInfo();
- TSchedModel.init(&STI);
- // Before we handle the more subtle cases of register-register CMOVs inside
- // of potentially hot loops, we want to quickly remove all CMOVs (ForceAll) or
- // the ones with a memory operand (ForceMemOperand option). The latter CMOV
- // will risk a stall waiting for the load to complete that speculative
- // execution behind a branch is better suited to handle on modern x86 chips.
- if (ForceMemOperand || ForceAll) {
- CmovGroups AllCmovGroups;
- SmallVector<MachineBasicBlock *, 4> Blocks;
- for (auto &MBB : MF)
- Blocks.push_back(&MBB);
- if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) {
- for (auto &Group : AllCmovGroups) {
- // Skip any group that doesn't do at least one memory operand cmov.
- if (ForceMemOperand && !ForceAll &&
- llvm::none_of(Group, [&](MachineInstr *I) { return I->mayLoad(); }))
- continue;
- // For CMOV groups which we can rewrite and which contain a memory load,
- // always rewrite them. On x86, a CMOV will dramatically amplify any
- // memory latency by blocking speculative execution.
- Changed = true;
- convertCmovInstsToBranches(Group);
- }
- }
- // Early return as ForceAll converts all CmovGroups.
- if (ForceAll)
- return Changed;
- }
- //===--------------------------------------------------------------------===//
- // Register-operand Conversion Algorithm
- // ---------
- // For each innermost loop
- // collectCmovCandidates() {
- // Find all CMOV-group-candidates.
- // }
- //
- // checkForProfitableCmovCandidates() {
- // * Calculate both loop-depth and optimized-loop-depth.
- // * Use these depth to check for loop transformation profitability.
- // * Check for CMOV-group-candidate transformation profitability.
- // }
- //
- // For each profitable CMOV-group-candidate
- // convertCmovInstsToBranches() {
- // * Create FalseBB, SinkBB, Conditional branch to SinkBB.
- // * Replace each CMOV instruction with a PHI instruction in SinkBB.
- // }
- //
- // Note: For more details, see each function description.
- //===--------------------------------------------------------------------===//
- // Build up the loops in pre-order.
- SmallVector<MachineLoop *, 4> Loops(MLI->begin(), MLI->end());
- // Note that we need to check size on each iteration as we accumulate child
- // loops.
- for (int i = 0; i < (int)Loops.size(); ++i)
- for (MachineLoop *Child : Loops[i]->getSubLoops())
- Loops.push_back(Child);
- for (MachineLoop *CurrLoop : Loops) {
- // Optimize only innermost loops.
- if (!CurrLoop->getSubLoops().empty())
- continue;
- // List of consecutive CMOV instructions to be processed.
- CmovGroups CmovInstGroups;
- if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups))
- continue;
- if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(),
- CmovInstGroups))
- continue;
- Changed = true;
- for (auto &Group : CmovInstGroups)
- convertCmovInstsToBranches(Group);
- }
- return Changed;
- }
- bool X86CmovConverterPass::collectCmovCandidates(
- ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups,
- bool IncludeLoads) {
- //===--------------------------------------------------------------------===//
- // Collect all CMOV-group-candidates and add them into CmovInstGroups.
- //
- // CMOV-group:
- // CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
- //
- // CMOV-group-candidate:
- // CMOV-group where all the CMOV instructions are
- // 1. consecutive.
- // 2. have same condition code or opposite one.
- // 3. have only operand registers (X86::CMOVrr).
- //===--------------------------------------------------------------------===//
- // List of possible improvement (TODO's):
- // --------------------------------------
- // TODO: Add support for X86::CMOVrm instructions.
- // TODO: Add support for X86::SETcc instructions.
- // TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
- //===--------------------------------------------------------------------===//
- // Current processed CMOV-Group.
- CmovGroup Group;
- for (auto *MBB : Blocks) {
- Group.clear();
- // Condition code of first CMOV instruction current processed range and its
- // opposite condition code.
- X86::CondCode FirstCC = X86::COND_INVALID, FirstOppCC = X86::COND_INVALID,
- MemOpCC = X86::COND_INVALID;
- // Indicator of a non CMOVrr instruction in the current processed range.
- bool FoundNonCMOVInst = false;
- // Indicator for current processed CMOV-group if it should be skipped.
- bool SkipGroup = false;
- for (auto &I : *MBB) {
- // Skip debug instructions.
- if (I.isDebugInstr())
- continue;
- X86::CondCode CC = X86::getCondFromCMov(I);
- // Check if we found a X86::CMOVrr instruction.
- if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) {
- if (Group.empty()) {
- // We found first CMOV in the range, reset flags.
- FirstCC = CC;
- FirstOppCC = X86::GetOppositeBranchCondition(CC);
- // Clear out the prior group's memory operand CC.
- MemOpCC = X86::COND_INVALID;
- FoundNonCMOVInst = false;
- SkipGroup = false;
- }
- Group.push_back(&I);
- // Check if it is a non-consecutive CMOV instruction or it has different
- // condition code than FirstCC or FirstOppCC.
- if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC))
- // Mark the SKipGroup indicator to skip current processed CMOV-Group.
- SkipGroup = true;
- if (I.mayLoad()) {
- if (MemOpCC == X86::COND_INVALID)
- // The first memory operand CMOV.
- MemOpCC = CC;
- else if (CC != MemOpCC)
- // Can't handle mixed conditions with memory operands.
- SkipGroup = true;
- }
- // Check if we were relying on zero-extending behavior of the CMOV.
- if (!SkipGroup &&
- llvm::any_of(
- MRI->use_nodbg_instructions(I.defs().begin()->getReg()),
- [&](MachineInstr &UseI) {
- return UseI.getOpcode() == X86::SUBREG_TO_REG;
- }))
- // FIXME: We should model the cost of using an explicit MOV to handle
- // the zero-extension rather than just refusing to handle this.
- SkipGroup = true;
- continue;
- }
- // If Group is empty, keep looking for first CMOV in the range.
- if (Group.empty())
- continue;
- // We found a non X86::CMOVrr instruction.
- FoundNonCMOVInst = true;
- // Check if this instruction define EFLAGS, to determine end of processed
- // range, as there would be no more instructions using current EFLAGS def.
- if (I.definesRegister(X86::EFLAGS)) {
- // Check if current processed CMOV-group should not be skipped and add
- // it as a CMOV-group-candidate.
- if (!SkipGroup)
- CmovInstGroups.push_back(Group);
- else
- ++NumOfSkippedCmovGroups;
- Group.clear();
- }
- }
- // End of basic block is considered end of range, check if current processed
- // CMOV-group should not be skipped and add it as a CMOV-group-candidate.
- if (Group.empty())
- continue;
- if (!SkipGroup)
- CmovInstGroups.push_back(Group);
- else
- ++NumOfSkippedCmovGroups;
- }
- NumOfCmovGroupCandidate += CmovInstGroups.size();
- return !CmovInstGroups.empty();
- }
- /// \returns Depth of CMOV instruction as if it was converted into branch.
- /// \param TrueOpDepth depth cost of CMOV true value operand.
- /// \param FalseOpDepth depth cost of CMOV false value operand.
- static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) {
- // The depth of the result after branch conversion is
- // TrueOpDepth * TrueOpProbability + FalseOpDepth * FalseOpProbability.
- // As we have no info about branch weight, we assume 75% for one and 25% for
- // the other, and pick the result with the largest resulting depth.
- return std::max(
- divideCeil(TrueOpDepth * 3 + FalseOpDepth, 4),
- divideCeil(FalseOpDepth * 3 + TrueOpDepth, 4));
- }
- bool X86CmovConverterPass::checkForProfitableCmovCandidates(
- ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) {
- struct DepthInfo {
- /// Depth of original loop.
- unsigned Depth;
- /// Depth of optimized loop.
- unsigned OptDepth;
- };
- /// Number of loop iterations to calculate depth for ?!
- static const unsigned LoopIterations = 2;
- DenseMap<MachineInstr *, DepthInfo> DepthMap;
- DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}};
- enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 };
- /// For each register type maps the register to its last def instruction.
- DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum];
- /// Maps register operand to its def instruction, which can be nullptr if it
- /// is unknown (e.g., operand is defined outside the loop).
- DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap;
- // Set depth of unknown instruction (i.e., nullptr) to zero.
- DepthMap[nullptr] = {0, 0};
- SmallPtrSet<MachineInstr *, 4> CmovInstructions;
- for (auto &Group : CmovInstGroups)
- CmovInstructions.insert(Group.begin(), Group.end());
- //===--------------------------------------------------------------------===//
- // Step 1: Calculate instruction depth and loop depth.
- // Optimized-Loop:
- // loop with CMOV-group-candidates converted into branches.
- //
- // Instruction-Depth:
- // instruction latency + max operand depth.
- // * For CMOV instruction in optimized loop the depth is calculated as:
- // CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
- // TODO: Find a better way to estimate the latency of the branch instruction
- // rather than using the CMOV latency.
- //
- // Loop-Depth:
- // max instruction depth of all instructions in the loop.
- // Note: instruction with max depth represents the critical-path in the loop.
- //
- // Loop-Depth[i]:
- // Loop-Depth calculated for first `i` iterations.
- // Note: it is enough to calculate depth for up to two iterations.
- //
- // Depth-Diff[i]:
- // Number of cycles saved in first 'i` iterations by optimizing the loop.
- //===--------------------------------------------------------------------===//
- for (DepthInfo &MaxDepth : LoopDepth) {
- for (auto *MBB : Blocks) {
- // Clear physical registers Def map.
- RegDefMaps[PhyRegType].clear();
- for (MachineInstr &MI : *MBB) {
- // Skip debug instructions.
- if (MI.isDebugInstr())
- continue;
- unsigned MIDepth = 0;
- unsigned MIDepthOpt = 0;
- bool IsCMOV = CmovInstructions.count(&MI);
- for (auto &MO : MI.uses()) {
- // Checks for "isUse()" as "uses()" returns also implicit definitions.
- if (!MO.isReg() || !MO.isUse())
- continue;
- Register Reg = MO.getReg();
- auto &RDM = RegDefMaps[Reg.isVirtual()];
- if (MachineInstr *DefMI = RDM.lookup(Reg)) {
- OperandToDefMap[&MO] = DefMI;
- DepthInfo Info = DepthMap.lookup(DefMI);
- MIDepth = std::max(MIDepth, Info.Depth);
- if (!IsCMOV)
- MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth);
- }
- }
- if (IsCMOV)
- MIDepthOpt = getDepthOfOptCmov(
- DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth,
- DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth);
- // Iterates over all operands to handle implicit definitions as well.
- for (auto &MO : MI.operands()) {
- if (!MO.isReg() || !MO.isDef())
- continue;
- Register Reg = MO.getReg();
- RegDefMaps[Reg.isVirtual()][Reg] = &MI;
- }
- unsigned Latency = TSchedModel.computeInstrLatency(&MI);
- DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency};
- MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth);
- MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt);
- }
- }
- }
- unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth,
- LoopDepth[1].Depth - LoopDepth[1].OptDepth};
- //===--------------------------------------------------------------------===//
- // Step 2: Check if Loop worth to be optimized.
- // Worth-Optimize-Loop:
- // case 1: Diff[1] == Diff[0]
- // Critical-path is iteration independent - there is no dependency
- // of critical-path instructions on critical-path instructions of
- // previous iteration.
- // Thus, it is enough to check gain percent of 1st iteration -
- // To be conservative, the optimized loop need to have a depth of
- // 12.5% cycles less than original loop, per iteration.
- //
- // case 2: Diff[1] > Diff[0]
- // Critical-path is iteration dependent - there is dependency of
- // critical-path instructions on critical-path instructions of
- // previous iteration.
- // Thus, check the gain percent of the 2nd iteration (similar to the
- // previous case), but it is also required to check the gradient of
- // the gain - the change in Depth-Diff compared to the change in
- // Loop-Depth between 1st and 2nd iterations.
- // To be conservative, the gradient need to be at least 50%.
- //
- // In addition, In order not to optimize loops with very small gain, the
- // gain (in cycles) after 2nd iteration should not be less than a given
- // threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
- //
- // If loop is not worth optimizing, remove all CMOV-group-candidates.
- //===--------------------------------------------------------------------===//
- if (Diff[1] < GainCycleThreshold)
- return false;
- bool WorthOptLoop = false;
- if (Diff[1] == Diff[0])
- WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth;
- else if (Diff[1] > Diff[0])
- WorthOptLoop =
- (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) &&
- (Diff[1] * 8 >= LoopDepth[1].Depth);
- if (!WorthOptLoop)
- return false;
- ++NumOfLoopCandidate;
- //===--------------------------------------------------------------------===//
- // Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
- // Worth-Optimize-Group:
- // Iff it is worth to optimize all CMOV instructions in the group.
- //
- // Worth-Optimize-CMOV:
- // Predicted branch is faster than CMOV by the difference between depth of
- // condition operand and depth of taken (predicted) value operand.
- // To be conservative, the gain of such CMOV transformation should cover at
- // at least 25% of branch-misprediction-penalty.
- //===--------------------------------------------------------------------===//
- unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
- CmovGroups TempGroups;
- std::swap(TempGroups, CmovInstGroups);
- for (auto &Group : TempGroups) {
- bool WorthOpGroup = true;
- for (auto *MI : Group) {
- // Avoid CMOV instruction which value is used as a pointer to load from.
- // This is another conservative check to avoid converting CMOV instruction
- // used with tree-search like algorithm, where the branch is unpredicted.
- auto UIs = MRI->use_instructions(MI->defs().begin()->getReg());
- if (!UIs.empty() && ++UIs.begin() == UIs.end()) {
- unsigned Op = UIs.begin()->getOpcode();
- if (Op == X86::MOV64rm || Op == X86::MOV32rm) {
- WorthOpGroup = false;
- break;
- }
- }
- unsigned CondCost =
- DepthMap[OperandToDefMap.lookup(&MI->getOperand(4))].Depth;
- unsigned ValCost = getDepthOfOptCmov(
- DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth,
- DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth);
- if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) {
- WorthOpGroup = false;
- break;
- }
- }
- if (WorthOpGroup)
- CmovInstGroups.push_back(Group);
- }
- return !CmovInstGroups.empty();
- }
- static bool checkEFLAGSLive(MachineInstr *MI) {
- if (MI->killsRegister(X86::EFLAGS))
- return false;
- // The EFLAGS operand of MI might be missing a kill marker.
- // Figure out whether EFLAGS operand should LIVE after MI instruction.
- MachineBasicBlock *BB = MI->getParent();
- MachineBasicBlock::iterator ItrMI = MI;
- // Scan forward through BB for a use/def of EFLAGS.
- for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) {
- if (I->readsRegister(X86::EFLAGS))
- return true;
- if (I->definesRegister(X86::EFLAGS))
- return false;
- }
- // We hit the end of the block, check whether EFLAGS is live into a successor.
- for (MachineBasicBlock *Succ : BB->successors())
- if (Succ->isLiveIn(X86::EFLAGS))
- return true;
- return false;
- }
- /// Given /p First CMOV instruction and /p Last CMOV instruction representing a
- /// group of CMOV instructions, which may contain debug instructions in between,
- /// move all debug instructions to after the last CMOV instruction, making the
- /// CMOV group consecutive.
- static void packCmovGroup(MachineInstr *First, MachineInstr *Last) {
- assert(X86::getCondFromCMov(*Last) != X86::COND_INVALID &&
- "Last instruction in a CMOV group must be a CMOV instruction");
- SmallVector<MachineInstr *, 2> DBGInstructions;
- for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) {
- if (I->isDebugInstr())
- DBGInstructions.push_back(&*I);
- }
- // Splice the debug instruction after the cmov group.
- MachineBasicBlock *MBB = First->getParent();
- for (auto *MI : DBGInstructions)
- MBB->insertAfter(Last, MI->removeFromParent());
- }
- void X86CmovConverterPass::convertCmovInstsToBranches(
- SmallVectorImpl<MachineInstr *> &Group) const {
- assert(!Group.empty() && "No CMOV instructions to convert");
- ++NumOfOptimizedCmovGroups;
- // If the CMOV group is not packed, e.g., there are debug instructions between
- // first CMOV and last CMOV, then pack the group and make the CMOV instruction
- // consecutive by moving the debug instructions to after the last CMOV.
- packCmovGroup(Group.front(), Group.back());
- // To convert a CMOVcc instruction, we actually have to insert the diamond
- // control-flow pattern. The incoming instruction knows the destination vreg
- // to set, the condition code register to branch on, the true/false values to
- // select between, and a branch opcode to use.
- // Before
- // -----
- // MBB:
- // cond = cmp ...
- // v1 = CMOVge t1, f1, cond
- // v2 = CMOVlt t2, f2, cond
- // v3 = CMOVge v1, f3, cond
- //
- // After
- // -----
- // MBB:
- // cond = cmp ...
- // jge %SinkMBB
- //
- // FalseMBB:
- // jmp %SinkMBB
- //
- // SinkMBB:
- // %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
- // %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
- // ; true-value with false-value
- // %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
- // ; previous Phi instruction result
- MachineInstr &MI = *Group.front();
- MachineInstr *LastCMOV = Group.back();
- DebugLoc DL = MI.getDebugLoc();
- X86::CondCode CC = X86::CondCode(X86::getCondFromCMov(MI));
- X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
- // Potentially swap the condition codes so that any memory operand to a CMOV
- // is in the *false* position instead of the *true* position. We can invert
- // any non-memory operand CMOV instructions to cope with this and we ensure
- // memory operand CMOVs are only included with a single condition code.
- if (llvm::any_of(Group, [&](MachineInstr *I) {
- return I->mayLoad() && X86::getCondFromCMov(*I) == CC;
- }))
- std::swap(CC, OppCC);
- MachineBasicBlock *MBB = MI.getParent();
- MachineFunction::iterator It = ++MBB->getIterator();
- MachineFunction *F = MBB->getParent();
- const BasicBlock *BB = MBB->getBasicBlock();
- MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB);
- MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
- F->insert(It, FalseMBB);
- F->insert(It, SinkMBB);
- // If the EFLAGS register isn't dead in the terminator, then claim that it's
- // live into the sink and copy blocks.
- if (checkEFLAGSLive(LastCMOV)) {
- FalseMBB->addLiveIn(X86::EFLAGS);
- SinkMBB->addLiveIn(X86::EFLAGS);
- }
- // Transfer the remainder of BB and its successor edges to SinkMBB.
- SinkMBB->splice(SinkMBB->begin(), MBB,
- std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
- SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
- // Add the false and sink blocks as its successors.
- MBB->addSuccessor(FalseMBB);
- MBB->addSuccessor(SinkMBB);
- // Create the conditional branch instruction.
- BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC);
- // Add the sink block to the false block successors.
- FalseMBB->addSuccessor(SinkMBB);
- MachineInstrBuilder MIB;
- MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
- MachineBasicBlock::iterator MIItEnd =
- std::next(MachineBasicBlock::iterator(LastCMOV));
- MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin();
- MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
- // First we need to insert an explicit load on the false path for any memory
- // operand. We also need to potentially do register rewriting here, but it is
- // simpler as the memory operands are always on the false path so we can
- // simply take that input, whatever it is.
- DenseMap<unsigned, unsigned> FalseBBRegRewriteTable;
- for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) {
- auto &MI = *MIIt++;
- // Skip any CMOVs in this group which don't load from memory.
- if (!MI.mayLoad()) {
- // Remember the false-side register input.
- Register FalseReg =
- MI.getOperand(X86::getCondFromCMov(MI) == CC ? 1 : 2).getReg();
- // Walk back through any intermediate cmovs referenced.
- while (true) {
- auto FRIt = FalseBBRegRewriteTable.find(FalseReg);
- if (FRIt == FalseBBRegRewriteTable.end())
- break;
- FalseReg = FRIt->second;
- }
- FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg;
- continue;
- }
- // The condition must be the *opposite* of the one we've decided to branch
- // on as the branch will go *around* the load and the load should happen
- // when the CMOV condition is false.
- assert(X86::getCondFromCMov(MI) == OppCC &&
- "Can only handle memory-operand cmov instructions with a condition "
- "opposite to the selected branch direction.");
- // The goal is to rewrite the cmov from:
- //
- // MBB:
- // %A = CMOVcc %B (tied), (mem)
- //
- // to
- //
- // MBB:
- // %A = CMOVcc %B (tied), %C
- // FalseMBB:
- // %C = MOV (mem)
- //
- // Which will allow the next loop to rewrite the CMOV in terms of a PHI:
- //
- // MBB:
- // JMP!cc SinkMBB
- // FalseMBB:
- // %C = MOV (mem)
- // SinkMBB:
- // %A = PHI [ %C, FalseMBB ], [ %B, MBB]
- // Get a fresh register to use as the destination of the MOV.
- const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg());
- Register TmpReg = MRI->createVirtualRegister(RC);
- SmallVector<MachineInstr *, 4> NewMIs;
- bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg,
- /*UnfoldLoad*/ true,
- /*UnfoldStore*/ false, NewMIs);
- (void)Unfolded;
- assert(Unfolded && "Should never fail to unfold a loading cmov!");
- // Move the new CMOV to just before the old one and reset any impacted
- // iterator.
- auto *NewCMOV = NewMIs.pop_back_val();
- assert(X86::getCondFromCMov(*NewCMOV) == OppCC &&
- "Last new instruction isn't the expected CMOV!");
- LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump());
- MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV);
- if (&*MIItBegin == &MI)
- MIItBegin = MachineBasicBlock::iterator(NewCMOV);
- // Sink whatever instructions were needed to produce the unfolded operand
- // into the false block.
- for (auto *NewMI : NewMIs) {
- LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump());
- FalseMBB->insert(FalseInsertionPoint, NewMI);
- // Re-map any operands that are from other cmovs to the inputs for this block.
- for (auto &MOp : NewMI->uses()) {
- if (!MOp.isReg())
- continue;
- auto It = FalseBBRegRewriteTable.find(MOp.getReg());
- if (It == FalseBBRegRewriteTable.end())
- continue;
- MOp.setReg(It->second);
- // This might have been a kill when it referenced the cmov result, but
- // it won't necessarily be once rewritten.
- // FIXME: We could potentially improve this by tracking whether the
- // operand to the cmov was also a kill, and then skipping the PHI node
- // construction below.
- MOp.setIsKill(false);
- }
- }
- MBB->erase(&MI);
- // Add this PHI to the rewrite table.
- FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg;
- }
- // As we are creating the PHIs, we have to be careful if there is more than
- // one. Later CMOVs may reference the results of earlier CMOVs, but later
- // PHIs have to reference the individual true/false inputs from earlier PHIs.
- // That also means that PHI construction must work forward from earlier to
- // later, and that the code must maintain a mapping from earlier PHI's
- // destination registers, and the registers that went into the PHI.
- DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
- for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
- Register DestReg = MIIt->getOperand(0).getReg();
- Register Op1Reg = MIIt->getOperand(1).getReg();
- Register Op2Reg = MIIt->getOperand(2).getReg();
- // If this CMOV we are processing is the opposite condition from the jump we
- // generated, then we have to swap the operands for the PHI that is going to
- // be generated.
- if (X86::getCondFromCMov(*MIIt) == OppCC)
- std::swap(Op1Reg, Op2Reg);
- auto Op1Itr = RegRewriteTable.find(Op1Reg);
- if (Op1Itr != RegRewriteTable.end())
- Op1Reg = Op1Itr->second.first;
- auto Op2Itr = RegRewriteTable.find(Op2Reg);
- if (Op2Itr != RegRewriteTable.end())
- Op2Reg = Op2Itr->second.second;
- // SinkMBB:
- // %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
- // ...
- MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
- .addReg(Op1Reg)
- .addMBB(FalseMBB)
- .addReg(Op2Reg)
- .addMBB(MBB);
- (void)MIB;
- LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump());
- LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump());
- // Add this PHI to the rewrite table.
- RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
- }
- // Now remove the CMOV(s).
- MBB->erase(MIItBegin, MIItEnd);
- // Add new basic blocks to MachineLoopInfo.
- if (MachineLoop *L = MLI->getLoopFor(MBB)) {
- L->addBasicBlockToLoop(FalseMBB, MLI->getBase());
- L->addBasicBlockToLoop(SinkMBB, MLI->getBase());
- }
- }
- INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
- INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
- false, false)
- FunctionPass *llvm::createX86CmovConverterPass() {
- return new X86CmovConverterPass();
- }
|