123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984 |
- //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// This file implements a register stacking pass.
- ///
- /// This pass reorders instructions to put register uses and defs in an order
- /// such that they form single-use expression trees. Registers fitting this form
- /// are then marked as "stackified", meaning references to them are replaced by
- /// "push" and "pop" from the value stack.
- ///
- /// This is primarily a code size optimization, since temporary values on the
- /// value stack don't need to be named.
- ///
- //===----------------------------------------------------------------------===//
- #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
- #include "Utils/WebAssemblyUtilities.h"
- #include "WebAssembly.h"
- #include "WebAssemblyDebugValueManager.h"
- #include "WebAssemblyMachineFunctionInfo.h"
- #include "WebAssemblySubtarget.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/CodeGen/LiveIntervals.h"
- #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineModuleInfoImpls.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include <iterator>
- using namespace llvm;
- #define DEBUG_TYPE "wasm-reg-stackify"
- namespace {
- class WebAssemblyRegStackify final : public MachineFunctionPass {
- StringRef getPassName() const override {
- return "WebAssembly Register Stackify";
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<MachineDominatorTree>();
- AU.addRequired<LiveIntervals>();
- AU.addPreserved<MachineBlockFrequencyInfo>();
- AU.addPreserved<SlotIndexes>();
- AU.addPreserved<LiveIntervals>();
- AU.addPreservedID(LiveVariablesID);
- AU.addPreserved<MachineDominatorTree>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- bool runOnMachineFunction(MachineFunction &MF) override;
- public:
- static char ID; // Pass identification, replacement for typeid
- WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
- };
- } // end anonymous namespace
- char WebAssemblyRegStackify::ID = 0;
- INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
- "Reorder instructions to use the WebAssembly value stack",
- false, false)
- FunctionPass *llvm::createWebAssemblyRegStackify() {
- return new WebAssemblyRegStackify();
- }
- // Decorate the given instruction with implicit operands that enforce the
- // expression stack ordering constraints for an instruction which is on
- // the expression stack.
- static void imposeStackOrdering(MachineInstr *MI) {
- // Write the opaque VALUE_STACK register.
- if (!MI->definesRegister(WebAssembly::VALUE_STACK))
- MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
- /*isDef=*/true,
- /*isImp=*/true));
- // Also read the opaque VALUE_STACK register.
- if (!MI->readsRegister(WebAssembly::VALUE_STACK))
- MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
- /*isDef=*/false,
- /*isImp=*/true));
- }
- // Convert an IMPLICIT_DEF instruction into an instruction which defines
- // a constant zero value.
- static void convertImplicitDefToConstZero(MachineInstr *MI,
- MachineRegisterInfo &MRI,
- const TargetInstrInfo *TII,
- MachineFunction &MF,
- LiveIntervals &LIS) {
- assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
- const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
- if (RegClass == &WebAssembly::I32RegClass) {
- MI->setDesc(TII->get(WebAssembly::CONST_I32));
- MI->addOperand(MachineOperand::CreateImm(0));
- } else if (RegClass == &WebAssembly::I64RegClass) {
- MI->setDesc(TII->get(WebAssembly::CONST_I64));
- MI->addOperand(MachineOperand::CreateImm(0));
- } else if (RegClass == &WebAssembly::F32RegClass) {
- MI->setDesc(TII->get(WebAssembly::CONST_F32));
- auto *Val = cast<ConstantFP>(Constant::getNullValue(
- Type::getFloatTy(MF.getFunction().getContext())));
- MI->addOperand(MachineOperand::CreateFPImm(Val));
- } else if (RegClass == &WebAssembly::F64RegClass) {
- MI->setDesc(TII->get(WebAssembly::CONST_F64));
- auto *Val = cast<ConstantFP>(Constant::getNullValue(
- Type::getDoubleTy(MF.getFunction().getContext())));
- MI->addOperand(MachineOperand::CreateFPImm(Val));
- } else if (RegClass == &WebAssembly::V128RegClass) {
- MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2));
- MI->addOperand(MachineOperand::CreateImm(0));
- MI->addOperand(MachineOperand::CreateImm(0));
- } else {
- llvm_unreachable("Unexpected reg class");
- }
- }
- // Determine whether a call to the callee referenced by
- // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
- // effects.
- static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write,
- bool &Effects, bool &StackPointer) {
- // All calls can use the stack pointer.
- StackPointer = true;
- const MachineOperand &MO = WebAssembly::getCalleeOp(MI);
- if (MO.isGlobal()) {
- const Constant *GV = MO.getGlobal();
- if (const auto *GA = dyn_cast<GlobalAlias>(GV))
- if (!GA->isInterposable())
- GV = GA->getAliasee();
- if (const auto *F = dyn_cast<Function>(GV)) {
- if (!F->doesNotThrow())
- Effects = true;
- if (F->doesNotAccessMemory())
- return;
- if (F->onlyReadsMemory()) {
- Read = true;
- return;
- }
- }
- }
- // Assume the worst.
- Write = true;
- Read = true;
- Effects = true;
- }
- // Determine whether MI reads memory, writes memory, has side effects,
- // and/or uses the stack pointer value.
- static void query(const MachineInstr &MI, bool &Read, bool &Write,
- bool &Effects, bool &StackPointer) {
- assert(!MI.isTerminator());
- if (MI.isDebugInstr() || MI.isPosition())
- return;
- // Check for loads.
- if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
- Read = true;
- // Check for stores.
- if (MI.mayStore()) {
- Write = true;
- } else if (MI.hasOrderedMemoryRef()) {
- switch (MI.getOpcode()) {
- case WebAssembly::DIV_S_I32:
- case WebAssembly::DIV_S_I64:
- case WebAssembly::REM_S_I32:
- case WebAssembly::REM_S_I64:
- case WebAssembly::DIV_U_I32:
- case WebAssembly::DIV_U_I64:
- case WebAssembly::REM_U_I32:
- case WebAssembly::REM_U_I64:
- case WebAssembly::I32_TRUNC_S_F32:
- case WebAssembly::I64_TRUNC_S_F32:
- case WebAssembly::I32_TRUNC_S_F64:
- case WebAssembly::I64_TRUNC_S_F64:
- case WebAssembly::I32_TRUNC_U_F32:
- case WebAssembly::I64_TRUNC_U_F32:
- case WebAssembly::I32_TRUNC_U_F64:
- case WebAssembly::I64_TRUNC_U_F64:
- // These instruction have hasUnmodeledSideEffects() returning true
- // because they trap on overflow and invalid so they can't be arbitrarily
- // moved, however hasOrderedMemoryRef() interprets this plus their lack
- // of memoperands as having a potential unknown memory reference.
- break;
- default:
- // Record volatile accesses, unless it's a call, as calls are handled
- // specially below.
- if (!MI.isCall()) {
- Write = true;
- Effects = true;
- }
- break;
- }
- }
- // Check for side effects.
- if (MI.hasUnmodeledSideEffects()) {
- switch (MI.getOpcode()) {
- case WebAssembly::DIV_S_I32:
- case WebAssembly::DIV_S_I64:
- case WebAssembly::REM_S_I32:
- case WebAssembly::REM_S_I64:
- case WebAssembly::DIV_U_I32:
- case WebAssembly::DIV_U_I64:
- case WebAssembly::REM_U_I32:
- case WebAssembly::REM_U_I64:
- case WebAssembly::I32_TRUNC_S_F32:
- case WebAssembly::I64_TRUNC_S_F32:
- case WebAssembly::I32_TRUNC_S_F64:
- case WebAssembly::I64_TRUNC_S_F64:
- case WebAssembly::I32_TRUNC_U_F32:
- case WebAssembly::I64_TRUNC_U_F32:
- case WebAssembly::I32_TRUNC_U_F64:
- case WebAssembly::I64_TRUNC_U_F64:
- // These instructions have hasUnmodeledSideEffects() returning true
- // because they trap on overflow and invalid so they can't be arbitrarily
- // moved, however in the specific case of register stackifying, it is safe
- // to move them because overflow and invalid are Undefined Behavior.
- break;
- default:
- Effects = true;
- break;
- }
- }
- // Check for writes to __stack_pointer global.
- if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 ||
- MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) &&
- strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
- StackPointer = true;
- // Analyze calls.
- if (MI.isCall()) {
- queryCallee(MI, Read, Write, Effects, StackPointer);
- }
- }
- // Test whether Def is safe and profitable to rematerialize.
- static bool shouldRematerialize(const MachineInstr &Def,
- const WebAssemblyInstrInfo *TII) {
- return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def);
- }
- // Identify the definition for this register at this point. This is a
- // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
- // LiveIntervals to handle complex cases.
- static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
- const MachineRegisterInfo &MRI,
- const LiveIntervals &LIS) {
- // Most registers are in SSA form here so we try a quick MRI query first.
- if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
- return Def;
- // MRI doesn't know what the Def is. Try asking LIS.
- if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
- LIS.getInstructionIndex(*Insert)))
- return LIS.getInstructionFromIndex(ValNo->def);
- return nullptr;
- }
- // Test whether Reg, as defined at Def, has exactly one use. This is a
- // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
- // to handle complex cases.
- static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI,
- MachineDominatorTree &MDT, LiveIntervals &LIS) {
- // Most registers are in SSA form here so we try a quick MRI query first.
- if (MRI.hasOneUse(Reg))
- return true;
- bool HasOne = false;
- const LiveInterval &LI = LIS.getInterval(Reg);
- const VNInfo *DefVNI =
- LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
- assert(DefVNI);
- for (auto &I : MRI.use_nodbg_operands(Reg)) {
- const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
- if (Result.valueIn() == DefVNI) {
- if (!Result.isKill())
- return false;
- if (HasOne)
- return false;
- HasOne = true;
- }
- }
- return HasOne;
- }
- // Test whether it's safe to move Def to just before Insert.
- // TODO: Compute memory dependencies in a way that doesn't require always
- // walking the block.
- // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
- // more precise.
- static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use,
- const MachineInstr *Insert,
- const WebAssemblyFunctionInfo &MFI,
- const MachineRegisterInfo &MRI) {
- const MachineInstr *DefI = Def->getParent();
- const MachineInstr *UseI = Use->getParent();
- assert(DefI->getParent() == Insert->getParent());
- assert(UseI->getParent() == Insert->getParent());
- // The first def of a multivalue instruction can be stackified by moving,
- // since the later defs can always be placed into locals if necessary. Later
- // defs can only be stackified if all previous defs are already stackified
- // since ExplicitLocals will not know how to place a def in a local if a
- // subsequent def is stackified. But only one def can be stackified by moving
- // the instruction, so it must be the first one.
- //
- // TODO: This could be loosened to be the first *live* def, but care would
- // have to be taken to ensure the drops of the initial dead defs can be
- // placed. This would require checking that no previous defs are used in the
- // same instruction as subsequent defs.
- if (Def != DefI->defs().begin())
- return false;
- // If any subsequent def is used prior to the current value by the same
- // instruction in which the current value is used, we cannot
- // stackify. Stackifying in this case would require that def moving below the
- // current def in the stack, which cannot be achieved, even with locals.
- // Also ensure we don't sink the def past any other prior uses.
- for (const auto &SubsequentDef : drop_begin(DefI->defs())) {
- auto I = std::next(MachineBasicBlock::const_iterator(DefI));
- auto E = std::next(MachineBasicBlock::const_iterator(UseI));
- for (; I != E; ++I) {
- for (const auto &PriorUse : I->uses()) {
- if (&PriorUse == Use)
- break;
- if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg())
- return false;
- }
- }
- }
- // If moving is a semantic nop, it is always allowed
- const MachineBasicBlock *MBB = DefI->getParent();
- auto NextI = std::next(MachineBasicBlock::const_iterator(DefI));
- for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
- ;
- if (NextI == Insert)
- return true;
- // 'catch' and 'catch_all' should be the first instruction of a BB and cannot
- // move.
- if (WebAssembly::isCatch(DefI->getOpcode()))
- return false;
- // Check for register dependencies.
- SmallVector<unsigned, 4> MutableRegisters;
- for (const MachineOperand &MO : DefI->operands()) {
- if (!MO.isReg() || MO.isUndef())
- continue;
- Register Reg = MO.getReg();
- // If the register is dead here and at Insert, ignore it.
- if (MO.isDead() && Insert->definesRegister(Reg) &&
- !Insert->readsRegister(Reg))
- continue;
- if (Reg.isPhysical()) {
- // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
- // from moving down, and we've already checked for that.
- if (Reg == WebAssembly::ARGUMENTS)
- continue;
- // If the physical register is never modified, ignore it.
- if (!MRI.isPhysRegModified(Reg))
- continue;
- // Otherwise, it's a physical register with unknown liveness.
- return false;
- }
- // If one of the operands isn't in SSA form, it has different values at
- // different times, and we need to make sure we don't move our use across
- // a different def.
- if (!MO.isDef() && !MRI.hasOneDef(Reg))
- MutableRegisters.push_back(Reg);
- }
- bool Read = false, Write = false, Effects = false, StackPointer = false;
- query(*DefI, Read, Write, Effects, StackPointer);
- // If the instruction does not access memory and has no side effects, it has
- // no additional dependencies.
- bool HasMutableRegisters = !MutableRegisters.empty();
- if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
- return true;
- // Scan through the intervening instructions between DefI and Insert.
- MachineBasicBlock::const_iterator D(DefI), I(Insert);
- for (--I; I != D; --I) {
- bool InterveningRead = false;
- bool InterveningWrite = false;
- bool InterveningEffects = false;
- bool InterveningStackPointer = false;
- query(*I, InterveningRead, InterveningWrite, InterveningEffects,
- InterveningStackPointer);
- if (Effects && InterveningEffects)
- return false;
- if (Read && InterveningWrite)
- return false;
- if (Write && (InterveningRead || InterveningWrite))
- return false;
- if (StackPointer && InterveningStackPointer)
- return false;
- for (unsigned Reg : MutableRegisters)
- for (const MachineOperand &MO : I->operands())
- if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
- return false;
- }
- return true;
- }
- /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
- static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
- const MachineBasicBlock &MBB,
- const MachineRegisterInfo &MRI,
- const MachineDominatorTree &MDT,
- LiveIntervals &LIS,
- WebAssemblyFunctionInfo &MFI) {
- const LiveInterval &LI = LIS.getInterval(Reg);
- const MachineInstr *OneUseInst = OneUse.getParent();
- VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
- for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
- if (&Use == &OneUse)
- continue;
- const MachineInstr *UseInst = Use.getParent();
- VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
- if (UseVNI != OneUseVNI)
- continue;
- if (UseInst == OneUseInst) {
- // Another use in the same instruction. We need to ensure that the one
- // selected use happens "before" it.
- if (&OneUse > &Use)
- return false;
- } else {
- // Test that the use is dominated by the one selected use.
- while (!MDT.dominates(OneUseInst, UseInst)) {
- // Actually, dominating is over-conservative. Test that the use would
- // happen after the one selected use in the stack evaluation order.
- //
- // This is needed as a consequence of using implicit local.gets for
- // uses and implicit local.sets for defs.
- if (UseInst->getDesc().getNumDefs() == 0)
- return false;
- const MachineOperand &MO = UseInst->getOperand(0);
- if (!MO.isReg())
- return false;
- Register DefReg = MO.getReg();
- if (!DefReg.isVirtual() || !MFI.isVRegStackified(DefReg))
- return false;
- assert(MRI.hasOneNonDBGUse(DefReg));
- const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
- const MachineInstr *NewUseInst = NewUse.getParent();
- if (NewUseInst == OneUseInst) {
- if (&OneUse > &NewUse)
- return false;
- break;
- }
- UseInst = NewUseInst;
- }
- }
- }
- return true;
- }
- /// Get the appropriate tee opcode for the given register class.
- static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
- if (RC == &WebAssembly::I32RegClass)
- return WebAssembly::TEE_I32;
- if (RC == &WebAssembly::I64RegClass)
- return WebAssembly::TEE_I64;
- if (RC == &WebAssembly::F32RegClass)
- return WebAssembly::TEE_F32;
- if (RC == &WebAssembly::F64RegClass)
- return WebAssembly::TEE_F64;
- if (RC == &WebAssembly::V128RegClass)
- return WebAssembly::TEE_V128;
- if (RC == &WebAssembly::EXTERNREFRegClass)
- return WebAssembly::TEE_EXTERNREF;
- if (RC == &WebAssembly::FUNCREFRegClass)
- return WebAssembly::TEE_FUNCREF;
- llvm_unreachable("Unexpected register class");
- }
- // Shrink LI to its uses, cleaning up LI.
- static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
- if (LIS.shrinkToUses(&LI)) {
- SmallVector<LiveInterval *, 4> SplitLIs;
- LIS.splitSeparateComponents(LI, SplitLIs);
- }
- }
- /// A single-use def in the same block with no intervening memory or register
- /// dependencies; move the def down and nest it with the current instruction.
- static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
- MachineInstr *Def, MachineBasicBlock &MBB,
- MachineInstr *Insert, LiveIntervals &LIS,
- WebAssemblyFunctionInfo &MFI,
- MachineRegisterInfo &MRI) {
- LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
- WebAssemblyDebugValueManager DefDIs(Def);
- MBB.splice(Insert, &MBB, Def);
- DefDIs.move(Insert);
- LIS.handleMove(*Def);
- if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
- // No one else is using this register for anything so we can just stackify
- // it in place.
- MFI.stackifyVReg(MRI, Reg);
- } else {
- // The register may have unrelated uses or defs; create a new register for
- // just our one def and use so that we can stackify it.
- Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
- Def->getOperand(0).setReg(NewReg);
- Op.setReg(NewReg);
- // Tell LiveIntervals about the new register.
- LIS.createAndComputeVirtRegInterval(NewReg);
- // Tell LiveIntervals about the changes to the old register.
- LiveInterval &LI = LIS.getInterval(Reg);
- LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
- LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
- /*RemoveDeadValNo=*/true);
- MFI.stackifyVReg(MRI, NewReg);
- DefDIs.updateReg(NewReg);
- LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
- }
- imposeStackOrdering(Def);
- return Def;
- }
- /// A trivially cloneable instruction; clone it and nest the new copy with the
- /// current instruction.
- static MachineInstr *rematerializeCheapDef(
- unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
- MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
- WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
- const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
- LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
- LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
- WebAssemblyDebugValueManager DefDIs(&Def);
- Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
- TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
- Op.setReg(NewReg);
- MachineInstr *Clone = &*std::prev(Insert);
- LIS.InsertMachineInstrInMaps(*Clone);
- LIS.createAndComputeVirtRegInterval(NewReg);
- MFI.stackifyVReg(MRI, NewReg);
- imposeStackOrdering(Clone);
- LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
- // Shrink the interval.
- bool IsDead = MRI.use_empty(Reg);
- if (!IsDead) {
- LiveInterval &LI = LIS.getInterval(Reg);
- shrinkToUses(LI, LIS);
- IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
- }
- // If that was the last use of the original, delete the original.
- // Move or clone corresponding DBG_VALUEs to the 'Insert' location.
- if (IsDead) {
- LLVM_DEBUG(dbgs() << " - Deleting original\n");
- SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
- LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx);
- LIS.removeInterval(Reg);
- LIS.RemoveMachineInstrFromMaps(Def);
- Def.eraseFromParent();
- DefDIs.move(&*Insert);
- DefDIs.updateReg(NewReg);
- } else {
- DefDIs.clone(&*Insert, NewReg);
- }
- return Clone;
- }
- /// A multiple-use def in the same block with no intervening memory or register
- /// dependencies; move the def down, nest it with the current instruction, and
- /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
- /// this:
- ///
- /// Reg = INST ... // Def
- /// INST ..., Reg, ... // Insert
- /// INST ..., Reg, ...
- /// INST ..., Reg, ...
- ///
- /// to this:
- ///
- /// DefReg = INST ... // Def (to become the new Insert)
- /// TeeReg, Reg = TEE_... DefReg
- /// INST ..., TeeReg, ... // Insert
- /// INST ..., Reg, ...
- /// INST ..., Reg, ...
- ///
- /// with DefReg and TeeReg stackified. This eliminates a local.get from the
- /// resulting code.
- static MachineInstr *moveAndTeeForMultiUse(
- unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
- MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
- MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
- LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
- WebAssemblyDebugValueManager DefDIs(Def);
- // Move Def into place.
- MBB.splice(Insert, &MBB, Def);
- LIS.handleMove(*Def);
- // Create the Tee and attach the registers.
- const auto *RegClass = MRI.getRegClass(Reg);
- Register TeeReg = MRI.createVirtualRegister(RegClass);
- Register DefReg = MRI.createVirtualRegister(RegClass);
- MachineOperand &DefMO = Def->getOperand(0);
- MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
- TII->get(getTeeOpcode(RegClass)), TeeReg)
- .addReg(Reg, RegState::Define)
- .addReg(DefReg, getUndefRegState(DefMO.isDead()));
- Op.setReg(TeeReg);
- DefMO.setReg(DefReg);
- SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
- SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
- DefDIs.move(Insert);
- // Tell LiveIntervals we moved the original vreg def from Def to Tee.
- LiveInterval &LI = LIS.getInterval(Reg);
- LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
- VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
- I->start = TeeIdx;
- ValNo->def = TeeIdx;
- shrinkToUses(LI, LIS);
- // Finish stackifying the new regs.
- LIS.createAndComputeVirtRegInterval(TeeReg);
- LIS.createAndComputeVirtRegInterval(DefReg);
- MFI.stackifyVReg(MRI, DefReg);
- MFI.stackifyVReg(MRI, TeeReg);
- imposeStackOrdering(Def);
- imposeStackOrdering(Tee);
- DefDIs.clone(Tee, DefReg);
- DefDIs.clone(Insert, TeeReg);
- LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
- LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
- return Def;
- }
- namespace {
- /// A stack for walking the tree of instructions being built, visiting the
- /// MachineOperands in DFS order.
- class TreeWalkerState {
- using mop_iterator = MachineInstr::mop_iterator;
- using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
- using RangeTy = iterator_range<mop_reverse_iterator>;
- SmallVector<RangeTy, 4> Worklist;
- public:
- explicit TreeWalkerState(MachineInstr *Insert) {
- const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
- if (!Range.empty())
- Worklist.push_back(reverse(Range));
- }
- bool done() const { return Worklist.empty(); }
- MachineOperand &pop() {
- RangeTy &Range = Worklist.back();
- MachineOperand &Op = *Range.begin();
- Range = drop_begin(Range);
- if (Range.empty())
- Worklist.pop_back();
- assert((Worklist.empty() || !Worklist.back().empty()) &&
- "Empty ranges shouldn't remain in the worklist");
- return Op;
- }
- /// Push Instr's operands onto the stack to be visited.
- void pushOperands(MachineInstr *Instr) {
- const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
- if (!Range.empty())
- Worklist.push_back(reverse(Range));
- }
- /// Some of Instr's operands are on the top of the stack; remove them and
- /// re-insert them starting from the beginning (because we've commuted them).
- void resetTopOperands(MachineInstr *Instr) {
- assert(hasRemainingOperands(Instr) &&
- "Reseting operands should only be done when the instruction has "
- "an operand still on the stack");
- Worklist.back() = reverse(Instr->explicit_uses());
- }
- /// Test whether Instr has operands remaining to be visited at the top of
- /// the stack.
- bool hasRemainingOperands(const MachineInstr *Instr) const {
- if (Worklist.empty())
- return false;
- const RangeTy &Range = Worklist.back();
- return !Range.empty() && Range.begin()->getParent() == Instr;
- }
- /// Test whether the given register is present on the stack, indicating an
- /// operand in the tree that we haven't visited yet. Moving a definition of
- /// Reg to a point in the tree after that would change its value.
- ///
- /// This is needed as a consequence of using implicit local.gets for
- /// uses and implicit local.sets for defs.
- bool isOnStack(unsigned Reg) const {
- for (const RangeTy &Range : Worklist)
- for (const MachineOperand &MO : Range)
- if (MO.isReg() && MO.getReg() == Reg)
- return true;
- return false;
- }
- };
- /// State to keep track of whether commuting is in flight or whether it's been
- /// tried for the current instruction and didn't work.
- class CommutingState {
- /// There are effectively three states: the initial state where we haven't
- /// started commuting anything and we don't know anything yet, the tentative
- /// state where we've commuted the operands of the current instruction and are
- /// revisiting it, and the declined state where we've reverted the operands
- /// back to their original order and will no longer commute it further.
- bool TentativelyCommuting = false;
- bool Declined = false;
- /// During the tentative state, these hold the operand indices of the commuted
- /// operands.
- unsigned Operand0, Operand1;
- public:
- /// Stackification for an operand was not successful due to ordering
- /// constraints. If possible, and if we haven't already tried it and declined
- /// it, commute Insert's operands and prepare to revisit it.
- void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
- const WebAssemblyInstrInfo *TII) {
- if (TentativelyCommuting) {
- assert(!Declined &&
- "Don't decline commuting until you've finished trying it");
- // Commuting didn't help. Revert it.
- TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
- TentativelyCommuting = false;
- Declined = true;
- } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
- Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
- Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
- if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
- // Tentatively commute the operands and try again.
- TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
- TreeWalker.resetTopOperands(Insert);
- TentativelyCommuting = true;
- Declined = false;
- }
- }
- }
- /// Stackification for some operand was successful. Reset to the default
- /// state.
- void reset() {
- TentativelyCommuting = false;
- Declined = false;
- }
- };
- } // end anonymous namespace
- bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
- LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
- "********** Function: "
- << MF.getName() << '\n');
- bool Changed = false;
- MachineRegisterInfo &MRI = MF.getRegInfo();
- WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
- const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
- const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
- auto &MDT = getAnalysis<MachineDominatorTree>();
- auto &LIS = getAnalysis<LiveIntervals>();
- // Walk the instructions from the bottom up. Currently we don't look past
- // block boundaries, and the blocks aren't ordered so the block visitation
- // order isn't significant, but we may want to change this in the future.
- for (MachineBasicBlock &MBB : MF) {
- // Don't use a range-based for loop, because we modify the list as we're
- // iterating over it and the end iterator may change.
- for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
- MachineInstr *Insert = &*MII;
- // Don't nest anything inside an inline asm, because we don't have
- // constraints for $push inputs.
- if (Insert->isInlineAsm())
- continue;
- // Ignore debugging intrinsics.
- if (Insert->isDebugValue())
- continue;
- // Iterate through the inputs in reverse order, since we'll be pulling
- // operands off the stack in LIFO order.
- CommutingState Commuting;
- TreeWalkerState TreeWalker(Insert);
- while (!TreeWalker.done()) {
- MachineOperand &Use = TreeWalker.pop();
- // We're only interested in explicit virtual register operands.
- if (!Use.isReg())
- continue;
- Register Reg = Use.getReg();
- assert(Use.isUse() && "explicit_uses() should only iterate over uses");
- assert(!Use.isImplicit() &&
- "explicit_uses() should only iterate over explicit operands");
- if (Reg.isPhysical())
- continue;
- // Identify the definition for this register at this point.
- MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS);
- if (!DefI)
- continue;
- // Don't nest an INLINE_ASM def into anything, because we don't have
- // constraints for $pop outputs.
- if (DefI->isInlineAsm())
- continue;
- // Argument instructions represent live-in registers and not real
- // instructions.
- if (WebAssembly::isArgument(DefI->getOpcode()))
- continue;
- MachineOperand *Def = DefI->findRegisterDefOperand(Reg);
- assert(Def != nullptr);
- // Decide which strategy to take. Prefer to move a single-use value
- // over cloning it, and prefer cloning over introducing a tee.
- // For moving, we require the def to be in the same block as the use;
- // this makes things simpler (LiveIntervals' handleMove function only
- // supports intra-block moves) and it's MachineSink's job to catch all
- // the sinking opportunities anyway.
- bool SameBlock = DefI->getParent() == &MBB;
- bool CanMove = SameBlock && isSafeToMove(Def, &Use, Insert, MFI, MRI) &&
- !TreeWalker.isOnStack(Reg);
- if (CanMove && hasOneUse(Reg, DefI, MRI, MDT, LIS)) {
- Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI);
- // If we are removing the frame base reg completely, remove the debug
- // info as well.
- // TODO: Encode this properly as a stackified value.
- if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg)
- MFI.clearFrameBaseVreg();
- } else if (shouldRematerialize(*DefI, TII)) {
- Insert =
- rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(),
- LIS, MFI, MRI, TII, TRI);
- } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT,
- LIS, MFI)) {
- Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI,
- MRI, TII);
- } else {
- // We failed to stackify the operand. If the problem was ordering
- // constraints, Commuting may be able to help.
- if (!CanMove && SameBlock)
- Commuting.maybeCommute(Insert, TreeWalker, TII);
- // Proceed to the next operand.
- continue;
- }
- // Stackifying a multivalue def may unlock in-place stackification of
- // subsequent defs. TODO: Handle the case where the consecutive uses are
- // not all in the same instruction.
- auto *SubsequentDef = Insert->defs().begin();
- auto *SubsequentUse = &Use;
- while (SubsequentDef != Insert->defs().end() &&
- SubsequentUse != Use.getParent()->uses().end()) {
- if (!SubsequentDef->isReg() || !SubsequentUse->isReg())
- break;
- Register DefReg = SubsequentDef->getReg();
- Register UseReg = SubsequentUse->getReg();
- // TODO: This single-use restriction could be relaxed by using tees
- if (DefReg != UseReg || !MRI.hasOneUse(DefReg))
- break;
- MFI.stackifyVReg(MRI, DefReg);
- ++SubsequentDef;
- ++SubsequentUse;
- }
- // If the instruction we just stackified is an IMPLICIT_DEF, convert it
- // to a constant 0 so that the def is explicit, and the push/pop
- // correspondence is maintained.
- if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
- convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
- // We stackified an operand. Add the defining instruction's operands to
- // the worklist stack now to continue to build an ever deeper tree.
- Commuting.reset();
- TreeWalker.pushOperands(Insert);
- }
- // If we stackified any operands, skip over the tree to start looking for
- // the next instruction we can build a tree on.
- if (Insert != &*MII) {
- imposeStackOrdering(&*MII);
- MII = MachineBasicBlock::iterator(Insert).getReverse();
- Changed = true;
- }
- }
- }
- // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
- // that it never looks like a use-before-def.
- if (Changed) {
- MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
- for (MachineBasicBlock &MBB : MF)
- MBB.addLiveIn(WebAssembly::VALUE_STACK);
- }
- #ifndef NDEBUG
- // Verify that pushes and pops are performed in LIFO order.
- SmallVector<unsigned, 0> Stack;
- for (MachineBasicBlock &MBB : MF) {
- for (MachineInstr &MI : MBB) {
- if (MI.isDebugInstr())
- continue;
- for (MachineOperand &MO : reverse(MI.explicit_uses())) {
- if (!MO.isReg())
- continue;
- Register Reg = MO.getReg();
- if (MFI.isVRegStackified(Reg))
- assert(Stack.pop_back_val() == Reg &&
- "Register stack pop should be paired with a push");
- }
- for (MachineOperand &MO : MI.defs()) {
- if (!MO.isReg())
- continue;
- Register Reg = MO.getReg();
- if (MFI.isVRegStackified(Reg))
- Stack.push_back(MO.getReg());
- }
- }
- // TODO: Generalize this code to support keeping values on the stack across
- // basic block boundaries.
- assert(Stack.empty() &&
- "Register stack pushes and pops should be balanced");
- }
- #endif
- return Changed;
- }
|