1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443 |
- //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "ARMTargetTransformInfo.h"
- #include "ARMSubtarget.h"
- #include "MCTargetDesc/ARMAddressingModes.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/CodeGen/CostTable.h"
- #include "llvm/CodeGen/ISDOpcodes.h"
- #include "llvm/CodeGen/ValueTypes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/IntrinsicsARM.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/MC/SubtargetFeature.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MachineValueType.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <optional>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "armtti"
- static cl::opt<bool> EnableMaskedLoadStores(
- "enable-arm-maskedldst", cl::Hidden, cl::init(true),
- cl::desc("Enable the generation of masked loads and stores"));
- static cl::opt<bool> DisableLowOverheadLoops(
- "disable-arm-loloops", cl::Hidden, cl::init(false),
- cl::desc("Disable the generation of low-overhead loops"));
- static cl::opt<bool>
- AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true),
- cl::desc("Enable the generation of WLS loops"));
- extern cl::opt<TailPredication::Mode> EnableTailPredication;
- extern cl::opt<bool> EnableMaskedGatherScatters;
- extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor;
- /// Convert a vector load intrinsic into a simple llvm load instruction.
- /// This is beneficial when the underlying object being addressed comes
- /// from a constant, since we get constant-folding for free.
- static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign,
- InstCombiner::BuilderTy &Builder) {
- auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
- if (!IntrAlign)
- return nullptr;
- unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign
- ? MemAlign
- : IntrAlign->getLimitedValue();
- if (!isPowerOf2_32(Alignment))
- return nullptr;
- auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
- PointerType::get(II.getType(), 0));
- return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment));
- }
- bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
- const Function *Callee) const {
- const TargetMachine &TM = getTLI()->getTargetMachine();
- const FeatureBitset &CallerBits =
- TM.getSubtargetImpl(*Caller)->getFeatureBits();
- const FeatureBitset &CalleeBits =
- TM.getSubtargetImpl(*Callee)->getFeatureBits();
- // To inline a callee, all features not in the allowed list must match exactly.
- bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) ==
- (CalleeBits & ~InlineFeaturesAllowed);
- // For features in the allowed list, the callee's features must be a subset of
- // the callers'.
- bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) ==
- (CalleeBits & InlineFeaturesAllowed);
- return MatchExact && MatchSubset;
- }
- TTI::AddressingModeKind
- ARMTTIImpl::getPreferredAddressingMode(const Loop *L,
- ScalarEvolution *SE) const {
- if (ST->hasMVEIntegerOps())
- return TTI::AMK_PostIndexed;
- if (L->getHeader()->getParent()->hasOptSize())
- return TTI::AMK_None;
- if (ST->isMClass() && ST->isThumb2() &&
- L->getNumBlocks() == 1)
- return TTI::AMK_PreIndexed;
- return TTI::AMK_None;
- }
- std::optional<Instruction *>
- ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
- using namespace PatternMatch;
- Intrinsic::ID IID = II.getIntrinsicID();
- switch (IID) {
- default:
- break;
- case Intrinsic::arm_neon_vld1: {
- Align MemAlign =
- getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
- &IC.getAssumptionCache(), &IC.getDominatorTree());
- if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) {
- return IC.replaceInstUsesWith(II, V);
- }
- break;
- }
- case Intrinsic::arm_neon_vld2:
- case Intrinsic::arm_neon_vld3:
- case Intrinsic::arm_neon_vld4:
- case Intrinsic::arm_neon_vld2lane:
- case Intrinsic::arm_neon_vld3lane:
- case Intrinsic::arm_neon_vld4lane:
- case Intrinsic::arm_neon_vst1:
- case Intrinsic::arm_neon_vst2:
- case Intrinsic::arm_neon_vst3:
- case Intrinsic::arm_neon_vst4:
- case Intrinsic::arm_neon_vst2lane:
- case Intrinsic::arm_neon_vst3lane:
- case Intrinsic::arm_neon_vst4lane: {
- Align MemAlign =
- getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
- &IC.getAssumptionCache(), &IC.getDominatorTree());
- unsigned AlignArg = II.arg_size() - 1;
- Value *AlignArgOp = II.getArgOperand(AlignArg);
- MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue();
- if (Align && *Align < MemAlign) {
- return IC.replaceOperand(
- II, AlignArg,
- ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(),
- false));
- }
- break;
- }
- case Intrinsic::arm_mve_pred_i2v: {
- Value *Arg = II.getArgOperand(0);
- Value *ArgArg;
- if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
- PatternMatch::m_Value(ArgArg))) &&
- II.getType() == ArgArg->getType()) {
- return IC.replaceInstUsesWith(II, ArgArg);
- }
- Constant *XorMask;
- if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
- PatternMatch::m_Value(ArgArg)),
- PatternMatch::m_Constant(XorMask))) &&
- II.getType() == ArgArg->getType()) {
- if (auto *CI = dyn_cast<ConstantInt>(XorMask)) {
- if (CI->getValue().trunc(16).isAllOnes()) {
- auto TrueVector = IC.Builder.CreateVectorSplat(
- cast<FixedVectorType>(II.getType())->getNumElements(),
- IC.Builder.getTrue());
- return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector);
- }
- }
- }
- KnownBits ScalarKnown(32);
- if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16),
- ScalarKnown, 0)) {
- return &II;
- }
- break;
- }
- case Intrinsic::arm_mve_pred_v2i: {
- Value *Arg = II.getArgOperand(0);
- Value *ArgArg;
- if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>(
- PatternMatch::m_Value(ArgArg)))) {
- return IC.replaceInstUsesWith(II, ArgArg);
- }
- if (!II.getMetadata(LLVMContext::MD_range)) {
- Type *IntTy32 = Type::getInt32Ty(II.getContext());
- Metadata *M[] = {
- ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)),
- ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))};
- II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M));
- return &II;
- }
- break;
- }
- case Intrinsic::arm_mve_vadc:
- case Intrinsic::arm_mve_vadc_predicated: {
- unsigned CarryOp =
- (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2;
- assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 &&
- "Bad type for intrinsic!");
- KnownBits CarryKnown(32);
- if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29),
- CarryKnown)) {
- return &II;
- }
- break;
- }
- case Intrinsic::arm_mve_vmldava: {
- Instruction *I = cast<Instruction>(&II);
- if (I->hasOneUse()) {
- auto *User = cast<Instruction>(*I->user_begin());
- Value *OpZ;
- if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) &&
- match(I->getOperand(3), m_Zero())) {
- Value *OpX = I->getOperand(4);
- Value *OpY = I->getOperand(5);
- Type *OpTy = OpX->getType();
- IC.Builder.SetInsertPoint(User);
- Value *V =
- IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy},
- {I->getOperand(0), I->getOperand(1),
- I->getOperand(2), OpZ, OpX, OpY});
- IC.replaceInstUsesWith(*User, V);
- return IC.eraseInstFromFunction(*User);
- }
- }
- return std::nullopt;
- }
- }
- return std::nullopt;
- }
- std::optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic(
- InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
- APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
- std::function<void(Instruction *, unsigned, APInt, APInt &)>
- SimplifyAndSetOp) const {
- // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the
- // opcode specifying a Top/Bottom instruction, which can change between
- // instructions.
- auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) {
- unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements();
- unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue();
- // The only odd/even lanes of operand 0 will only be demanded depending
- // on whether this is a top/bottom instruction.
- APInt DemandedElts =
- APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
- : APInt::getHighBitsSet(2, 1));
- SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts);
- // The other lanes will be defined from the inserted elements.
- UndefElts &= APInt::getSplat(NumElts, !IsTop ? APInt::getLowBitsSet(2, 1)
- : APInt::getHighBitsSet(2, 1));
- return std::nullopt;
- };
- switch (II.getIntrinsicID()) {
- default:
- break;
- case Intrinsic::arm_mve_vcvt_narrow:
- SimplifyNarrowInstrTopBottom(2);
- break;
- case Intrinsic::arm_mve_vqmovn:
- SimplifyNarrowInstrTopBottom(4);
- break;
- case Intrinsic::arm_mve_vshrn:
- SimplifyNarrowInstrTopBottom(7);
- break;
- }
- return std::nullopt;
- }
- InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
- TTI::TargetCostKind CostKind) {
- assert(Ty->isIntegerTy());
- unsigned Bits = Ty->getPrimitiveSizeInBits();
- if (Bits == 0 || Imm.getActiveBits() >= 64)
- return 4;
- int64_t SImmVal = Imm.getSExtValue();
- uint64_t ZImmVal = Imm.getZExtValue();
- if (!ST->isThumb()) {
- if ((SImmVal >= 0 && SImmVal < 65536) ||
- (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
- (ARM_AM::getSOImmVal(~ZImmVal) != -1))
- return 1;
- return ST->hasV6T2Ops() ? 2 : 3;
- }
- if (ST->isThumb2()) {
- if ((SImmVal >= 0 && SImmVal < 65536) ||
- (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
- (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
- return 1;
- return ST->hasV6T2Ops() ? 2 : 3;
- }
- // Thumb1, any i8 imm cost 1.
- if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
- return 1;
- if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
- return 2;
- // Load from constantpool.
- return 3;
- }
- // Constants smaller than 256 fit in the immediate field of
- // Thumb1 instructions so we return a zero cost and 1 otherwise.
- InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
- const APInt &Imm, Type *Ty) {
- if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
- return 0;
- return 1;
- }
- // Checks whether Inst is part of a min(max()) or max(min()) pattern
- // that will match to an SSAT instruction. Returns the instruction being
- // saturated, or null if no saturation pattern was found.
- static Value *isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) {
- Value *LHS, *RHS;
- ConstantInt *C;
- SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor;
- if (InstSPF == SPF_SMAX &&
- PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) &&
- C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) {
- auto isSSatMin = [&](Value *MinInst) {
- if (isa<SelectInst>(MinInst)) {
- Value *MinLHS, *MinRHS;
- ConstantInt *MinC;
- SelectPatternFlavor MinSPF =
- matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor;
- if (MinSPF == SPF_SMIN &&
- PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) &&
- MinC->getValue() == ((-Imm) - 1))
- return true;
- }
- return false;
- };
- if (isSSatMin(Inst->getOperand(1)))
- return cast<Instruction>(Inst->getOperand(1))->getOperand(1);
- if (Inst->hasNUses(2) &&
- (isSSatMin(*Inst->user_begin()) || isSSatMin(*(++Inst->user_begin()))))
- return Inst->getOperand(1);
- }
- return nullptr;
- }
- // Look for a FP Saturation pattern, where the instruction can be simplified to
- // a fptosi.sat. max(min(fptosi)). The constant in this case is always free.
- static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm) {
- if (Imm.getBitWidth() != 64 ||
- Imm != APInt::getHighBitsSet(64, 33)) // -2147483648
- return false;
- Value *FP = isSSATMinMaxPattern(Inst, Imm);
- if (!FP && isa<ICmpInst>(Inst) && Inst->hasOneUse())
- FP = isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm);
- if (!FP)
- return false;
- return isa<FPToSIInst>(FP);
- }
- InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
- const APInt &Imm, Type *Ty,
- TTI::TargetCostKind CostKind,
- Instruction *Inst) {
- // Division by a constant can be turned into multiplication, but only if we
- // know it's constant. So it's not so much that the immediate is cheap (it's
- // not), but that the alternative is worse.
- // FIXME: this is probably unneeded with GlobalISel.
- if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
- Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
- Idx == 1)
- return 0;
- // Leave any gep offsets for the CodeGenPrepare, which will do a better job at
- // splitting any large offsets.
- if (Opcode == Instruction::GetElementPtr && Idx != 0)
- return 0;
- if (Opcode == Instruction::And) {
- // UXTB/UXTH
- if (Imm == 255 || Imm == 65535)
- return 0;
- // Conversion to BIC is free, and means we can use ~Imm instead.
- return std::min(getIntImmCost(Imm, Ty, CostKind),
- getIntImmCost(~Imm, Ty, CostKind));
- }
- if (Opcode == Instruction::Add)
- // Conversion to SUB is free, and means we can use -Imm instead.
- return std::min(getIntImmCost(Imm, Ty, CostKind),
- getIntImmCost(-Imm, Ty, CostKind));
- if (Opcode == Instruction::ICmp && Imm.isNegative() &&
- Ty->getIntegerBitWidth() == 32) {
- int64_t NegImm = -Imm.getSExtValue();
- if (ST->isThumb2() && NegImm < 1<<12)
- // icmp X, #-C -> cmn X, #C
- return 0;
- if (ST->isThumb() && NegImm < 1<<8)
- // icmp X, #-C -> adds X, #C
- return 0;
- }
- // xor a, -1 can always be folded to MVN
- if (Opcode == Instruction::Xor && Imm.isAllOnes())
- return 0;
- // Ensures negative constant of min(max()) or max(min()) patterns that
- // match to SSAT instructions don't get hoisted
- if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) &&
- Ty->getIntegerBitWidth() <= 32) {
- if (isSSATMinMaxPattern(Inst, Imm) ||
- (isa<ICmpInst>(Inst) && Inst->hasOneUse() &&
- isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm)))
- return 0;
- }
- if (Inst && ST->hasVFP2Base() && isFPSatMinMaxPattern(Inst, Imm))
- return 0;
- // We can convert <= -1 to < 0, which is generally quite cheap.
- if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnesValue()) {
- ICmpInst::Predicate Pred = cast<ICmpInst>(Inst)->getPredicate();
- if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE)
- return std::min(getIntImmCost(Imm, Ty, CostKind),
- getIntImmCost(Imm + 1, Ty, CostKind));
- }
- return getIntImmCost(Imm, Ty, CostKind);
- }
- InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- if (CostKind == TTI::TCK_RecipThroughput &&
- (ST->hasNEON() || ST->hasMVEIntegerOps())) {
- // FIXME: The vectorizer is highly sensistive to the cost of these
- // instructions, which suggests that it may be using the costs incorrectly.
- // But, for now, just make them free to avoid performance regressions for
- // vector targets.
- return 0;
- }
- return BaseT::getCFInstrCost(Opcode, CostKind, I);
- }
- InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
- Type *Src,
- TTI::CastContextHint CCH,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- // TODO: Allow non-throughput costs that aren't binary.
- auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
- if (CostKind != TTI::TCK_RecipThroughput)
- return Cost == 0 ? 0 : 1;
- return Cost;
- };
- auto IsLegalFPType = [this](EVT VT) {
- EVT EltVT = VT.getScalarType();
- return (EltVT == MVT::f32 && ST->hasVFP2Base()) ||
- (EltVT == MVT::f64 && ST->hasFP64()) ||
- (EltVT == MVT::f16 && ST->hasFullFP16());
- };
- EVT SrcTy = TLI->getValueType(DL, Src);
- EVT DstTy = TLI->getValueType(DL, Dst);
- if (!SrcTy.isSimple() || !DstTy.isSimple())
- return AdjustCost(
- BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
- // Extending masked load/Truncating masked stores is expensive because we
- // currently don't split them. This means that we'll likely end up
- // loading/storing each element individually (hence the high cost).
- if ((ST->hasMVEIntegerOps() &&
- (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt ||
- Opcode == Instruction::SExt)) ||
- (ST->hasMVEFloatOps() &&
- (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) &&
- IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)))
- if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128)
- return 2 * DstTy.getVectorNumElements() *
- ST->getMVEVectorCostFactor(CostKind);
- // The extend of other kinds of load is free
- if (CCH == TTI::CastContextHint::Normal ||
- CCH == TTI::CastContextHint::Masked) {
- static const TypeConversionCostTblEntry LoadConversionTbl[] = {
- {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
- {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
- {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
- {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
- {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
- {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
- {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
- {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
- {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
- {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
- {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
- {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
- };
- if (const auto *Entry = ConvertCostTableLookup(
- LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost);
- static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
- {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
- {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
- {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
- {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
- {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
- {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
- // The following extend from a legal type to an illegal type, so need to
- // split the load. This introduced an extra load operation, but the
- // extend is still "free".
- {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1},
- {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1},
- {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3},
- {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3},
- {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1},
- {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1},
- };
- if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
- if (const auto *Entry =
- ConvertCostTableLookup(MVELoadConversionTbl, ISD,
- DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
- return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
- }
- static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = {
- // FPExtends are similar but also require the VCVT instructions.
- {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1},
- {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3},
- };
- if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
- if (const auto *Entry =
- ConvertCostTableLookup(MVEFLoadConversionTbl, ISD,
- DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
- return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
- }
- // The truncate of a store is free. This is the mirror of extends above.
- static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = {
- {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0},
- {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0},
- {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0},
- {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1},
- {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1},
- {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3},
- {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1},
- };
- if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
- if (const auto *Entry =
- ConvertCostTableLookup(MVEStoreConversionTbl, ISD,
- SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
- return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
- }
- static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = {
- {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1},
- {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3},
- };
- if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
- if (const auto *Entry =
- ConvertCostTableLookup(MVEFStoreConversionTbl, ISD,
- SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
- return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
- }
- }
- // NEON vector operations that can extend their inputs.
- if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) &&
- I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) {
- static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = {
- // vaddl
- { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 },
- { ISD::ADD, MVT::v8i16, MVT::v8i8, 0 },
- // vsubl
- { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 },
- { ISD::SUB, MVT::v8i16, MVT::v8i8, 0 },
- // vmull
- { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 },
- { ISD::MUL, MVT::v8i16, MVT::v8i8, 0 },
- // vshll
- { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 },
- { ISD::SHL, MVT::v8i16, MVT::v8i8, 0 },
- };
- auto *User = cast<Instruction>(*I->user_begin());
- int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode());
- if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD,
- DstTy.getSimpleVT(),
- SrcTy.getSimpleVT())) {
- return AdjustCost(Entry->Cost);
- }
- }
- // Single to/from double precision conversions.
- if (Src->isVectorTy() && ST->hasNEON() &&
- ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 &&
- DstTy.getScalarType() == MVT::f32) ||
- (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 &&
- DstTy.getScalarType() == MVT::f64))) {
- static const CostTblEntry NEONFltDblTbl[] = {
- // Vector fptrunc/fpext conversions.
- {ISD::FP_ROUND, MVT::v2f64, 2},
- {ISD::FP_EXTEND, MVT::v2f32, 2},
- {ISD::FP_EXTEND, MVT::v4f32, 4}};
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
- if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
- return AdjustCost(LT.first * Entry->Cost);
- }
- // Some arithmetic, load and store operations have specific instructions
- // to cast up/down their types automatically at no extra cost.
- // TODO: Get these tables to know at least what the related operations are.
- static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
- { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
- { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
- { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
- { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
- { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
- { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
- // The number of vmovl instructions for the extension.
- { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
- { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
- { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
- { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
- { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 },
- { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 },
- { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
- { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
- { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
- { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
- { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
- { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
- { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
- { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
- { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
- { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
- { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
- { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
- // Operations that we legalize using splitting.
- { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
- { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
- // Vector float <-> i32 conversions.
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
- { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
- { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
- { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
- { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
- { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
- { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
- { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
- { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
- { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
- { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
- { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
- { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
- { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
- { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
- { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
- { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
- { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
- { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
- { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
- { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
- // Vector double <-> i32 conversions.
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
- { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
- { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
- { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
- { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
- { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
- { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
- };
- if (SrcTy.isVector() && ST->hasNEON()) {
- if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
- DstTy.getSimpleVT(),
- SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost);
- }
- // Scalar float to integer conversions.
- static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
- { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
- { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
- { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
- { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
- { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
- { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
- { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
- { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
- { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
- { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
- { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
- { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
- { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
- { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
- { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
- { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
- { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
- { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
- { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
- { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
- };
- if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
- if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
- DstTy.getSimpleVT(),
- SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost);
- }
- // Scalar integer to float conversions.
- static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
- { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
- { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
- { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
- { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
- { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
- { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
- { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
- { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
- { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
- { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
- { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
- { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
- { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
- { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
- { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
- { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
- { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
- { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
- { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
- { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
- };
- if (SrcTy.isInteger() && ST->hasNEON()) {
- if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
- ISD, DstTy.getSimpleVT(),
- SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost);
- }
- // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
- // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
- // are linearised so take more.
- static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
- { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
- { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
- { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
- { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
- { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
- { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
- { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
- { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
- { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
- { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
- { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
- { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
- };
- if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
- if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
- ISD, DstTy.getSimpleVT(),
- SrcTy.getSimpleVT()))
- return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
- }
- if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) {
- // As general rule, fp converts that were not matched above are scalarized
- // and cost 1 vcvt for each lane, so long as the instruction is available.
- // If not it will become a series of function calls.
- const InstructionCost CallCost =
- getCallInstrCost(nullptr, Dst, {Src}, CostKind);
- int Lanes = 1;
- if (SrcTy.isFixedLengthVector())
- Lanes = SrcTy.getVectorNumElements();
- if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))
- return Lanes;
- else
- return Lanes * CallCost;
- }
- if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() &&
- SrcTy.isFixedLengthVector()) {
- // Treat a truncate with larger than legal source (128bits for MVE) as
- // expensive, 2 instructions per lane.
- if ((SrcTy.getScalarType() == MVT::i8 ||
- SrcTy.getScalarType() == MVT::i16 ||
- SrcTy.getScalarType() == MVT::i32) &&
- SrcTy.getSizeInBits() > 128 &&
- SrcTy.getSizeInBits() > DstTy.getSizeInBits())
- return SrcTy.getVectorNumElements() * 2;
- }
- // Scalar integer conversion costs.
- static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
- // i16 -> i64 requires two dependent operations.
- { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
- // Truncates on i64 are assumed to be free.
- { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
- { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
- { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
- { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
- };
- if (SrcTy.isInteger()) {
- if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
- DstTy.getSimpleVT(),
- SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost);
- }
- int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
- ? ST->getMVEVectorCostFactor(CostKind)
- : 1;
- return AdjustCost(
- BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
- }
- InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
- TTI::TargetCostKind CostKind,
- unsigned Index, Value *Op0,
- Value *Op1) {
- // Penalize inserting into an D-subregister. We end up with a three times
- // lower estimated throughput on swift.
- if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
- ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
- return 3;
- if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
- Opcode == Instruction::ExtractElement)) {
- // Cross-class copies are expensive on many microarchitectures,
- // so assume they are expensive by default.
- if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy())
- return 3;
- // Even if it's not a cross class copy, this likely leads to mixing
- // of NEON and VFP code and should be therefore penalized.
- if (ValTy->isVectorTy() &&
- ValTy->getScalarSizeInBits() <= 32)
- return std::max<InstructionCost>(
- BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1),
- 2U);
- }
- if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
- Opcode == Instruction::ExtractElement)) {
- // Integer cross-lane moves are more expensive than float, which can
- // sometimes just be vmovs. Integer involve being passes to GPR registers,
- // causing more of a delay.
- std::pair<InstructionCost, MVT> LT =
- getTypeLegalizationCost(ValTy->getScalarType());
- return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1);
- }
- return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1);
- }
- InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy,
- CmpInst::Predicate VecPred,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- // Thumb scalar code size cost for select.
- if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT &&
- ST->isThumb() && !ValTy->isVectorTy()) {
- // Assume expensive structs.
- if (TLI->getValueType(DL, ValTy, true) == MVT::Other)
- return TTI::TCC_Expensive;
- // Select costs can vary because they:
- // - may require one or more conditional mov (including an IT),
- // - can't operate directly on immediates,
- // - require live flags, which we can't copy around easily.
- InstructionCost Cost = getTypeLegalizationCost(ValTy).first;
- // Possible IT instruction for Thumb2, or more for Thumb1.
- ++Cost;
- // i1 values may need rematerialising by using mov immediates and/or
- // flag setting instructions.
- if (ValTy->isIntegerTy(1))
- ++Cost;
- return Cost;
- }
- // If this is a vector min/max/abs, use the cost of that intrinsic directly
- // instead. Hopefully when min/max intrinsics are more prevalent this code
- // will not be needed.
- const Instruction *Sel = I;
- if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel &&
- Sel->hasOneUse())
- Sel = cast<Instruction>(Sel->user_back());
- if (Sel && ValTy->isVectorTy() &&
- (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) {
- const Value *LHS, *RHS;
- SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor;
- unsigned IID = 0;
- switch (SPF) {
- case SPF_ABS:
- IID = Intrinsic::abs;
- break;
- case SPF_SMIN:
- IID = Intrinsic::smin;
- break;
- case SPF_SMAX:
- IID = Intrinsic::smax;
- break;
- case SPF_UMIN:
- IID = Intrinsic::umin;
- break;
- case SPF_UMAX:
- IID = Intrinsic::umax;
- break;
- case SPF_FMINNUM:
- IID = Intrinsic::minnum;
- break;
- case SPF_FMAXNUM:
- IID = Intrinsic::maxnum;
- break;
- default:
- break;
- }
- if (IID) {
- // The ICmp is free, the select gets the cost of the min/max/etc
- if (Sel != I)
- return 0;
- IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy});
- return getIntrinsicInstrCost(CostAttrs, CostKind);
- }
- }
- // On NEON a vector select gets lowered to vbsl.
- if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) {
- // Lowering of some vector selects is currently far from perfect.
- static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
- { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
- { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
- { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
- };
- EVT SelCondTy = TLI->getValueType(DL, CondTy);
- EVT SelValTy = TLI->getValueType(DL, ValTy);
- if (SelCondTy.isSimple() && SelValTy.isSimple()) {
- if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
- SelCondTy.getSimpleVT(),
- SelValTy.getSimpleVT()))
- return Entry->Cost;
- }
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
- return LT.first;
- }
- if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() &&
- (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
- cast<FixedVectorType>(ValTy)->getNumElements() > 1) {
- FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy);
- FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy);
- if (!VecCondTy)
- VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy));
- // If we don't have mve.fp any fp operations will need to be scalarized.
- if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) {
- // One scalaization insert, one scalarization extract and the cost of the
- // fcmps.
- return BaseT::getScalarizationOverhead(VecValTy, /*Insert*/ false,
- /*Extract*/ true, CostKind) +
- BaseT::getScalarizationOverhead(VecCondTy, /*Insert*/ true,
- /*Extract*/ false, CostKind) +
- VecValTy->getNumElements() *
- getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
- VecCondTy->getScalarType(), VecPred,
- CostKind, I);
- }
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
- int BaseCost = ST->getMVEVectorCostFactor(CostKind);
- // There are two types - the input that specifies the type of the compare
- // and the output vXi1 type. Because we don't know how the output will be
- // split, we may need an expensive shuffle to get two in sync. This has the
- // effect of making larger than legal compares (v8i32 for example)
- // expensive.
- if (LT.second.isVector() && LT.second.getVectorNumElements() > 2) {
- if (LT.first > 1)
- return LT.first * BaseCost +
- BaseT::getScalarizationOverhead(VecCondTy, /*Insert*/ true,
- /*Extract*/ false, CostKind);
- return BaseCost;
- }
- }
- // Default to cheap (throughput/size of 1 instruction) but adjust throughput
- // for "multiple beats" potentially needed by MVE instructions.
- int BaseCost = 1;
- if (ST->hasMVEIntegerOps() && ValTy->isVectorTy())
- BaseCost = ST->getMVEVectorCostFactor(CostKind);
- return BaseCost *
- BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
- }
- InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty,
- ScalarEvolution *SE,
- const SCEV *Ptr) {
- // Address computations in vectorized code with non-consecutive addresses will
- // likely result in more instructions compared to scalar code where the
- // computation can more often be merged into the index mode. The resulting
- // extra micro-ops can significantly decrease throughput.
- unsigned NumVectorInstToHideOverhead = 10;
- int MaxMergeDistance = 64;
- if (ST->hasNEON()) {
- if (Ty->isVectorTy() && SE &&
- !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
- return NumVectorInstToHideOverhead;
- // In many cases the address computation is not merged into the instruction
- // addressing mode.
- return 1;
- }
- return BaseT::getAddressComputationCost(Ty, SE, Ptr);
- }
- bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- // If a VCTP is part of a chain, it's already profitable and shouldn't be
- // optimized, else LSR may block tail-predication.
- switch (II->getIntrinsicID()) {
- case Intrinsic::arm_mve_vctp8:
- case Intrinsic::arm_mve_vctp16:
- case Intrinsic::arm_mve_vctp32:
- case Intrinsic::arm_mve_vctp64:
- return true;
- default:
- break;
- }
- }
- return false;
- }
- bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
- if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
- return false;
- if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) {
- // Don't support v2i1 yet.
- if (VecTy->getNumElements() == 2)
- return false;
- // We don't support extending fp types.
- unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
- if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
- return false;
- }
- unsigned EltWidth = DataTy->getScalarSizeInBits();
- return (EltWidth == 32 && Alignment >= 4) ||
- (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8);
- }
- bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) {
- if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
- return false;
- unsigned EltWidth = Ty->getScalarSizeInBits();
- return ((EltWidth == 32 && Alignment >= 4) ||
- (EltWidth == 16 && Alignment >= 2) || EltWidth == 8);
- }
- /// Given a memcpy/memset/memmove instruction, return the number of memory
- /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a
- /// call is used.
- int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const {
- MemOp MOp;
- unsigned DstAddrSpace = ~0u;
- unsigned SrcAddrSpace = ~0u;
- const Function *F = I->getParent()->getParent();
- if (const auto *MC = dyn_cast<MemTransferInst>(I)) {
- ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength());
- // If 'size' is not a constant, a library call will be generated.
- if (!C)
- return -1;
- const unsigned Size = C->getValue().getZExtValue();
- const Align DstAlign = *MC->getDestAlign();
- const Align SrcAlign = *MC->getSourceAlign();
- MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign,
- /*IsVolatile*/ false);
- DstAddrSpace = MC->getDestAddressSpace();
- SrcAddrSpace = MC->getSourceAddressSpace();
- }
- else if (const auto *MS = dyn_cast<MemSetInst>(I)) {
- ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength());
- // If 'size' is not a constant, a library call will be generated.
- if (!C)
- return -1;
- const unsigned Size = C->getValue().getZExtValue();
- const Align DstAlign = *MS->getDestAlign();
- MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign,
- /*IsZeroMemset*/ false, /*IsVolatile*/ false);
- DstAddrSpace = MS->getDestAddressSpace();
- }
- else
- llvm_unreachable("Expected a memcpy/move or memset!");
- unsigned Limit, Factor = 2;
- switch(I->getIntrinsicID()) {
- case Intrinsic::memcpy:
- Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize());
- break;
- case Intrinsic::memmove:
- Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
- break;
- case Intrinsic::memset:
- Limit = TLI->getMaxStoresPerMemset(F->hasMinSize());
- Factor = 1;
- break;
- default:
- llvm_unreachable("Expected a memcpy/move or memset!");
- }
- // MemOps will be poplulated with a list of data types that needs to be
- // loaded and stored. That's why we multiply the number of elements by 2 to
- // get the cost for this memcpy.
- std::vector<EVT> MemOps;
- if (getTLI()->findOptimalMemOpLowering(
- MemOps, Limit, MOp, DstAddrSpace,
- SrcAddrSpace, F->getAttributes()))
- return MemOps.size() * Factor;
- // If we can't find an optimal memop lowering, return the default cost
- return -1;
- }
- InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) {
- int NumOps = getNumMemOps(cast<IntrinsicInst>(I));
- // To model the cost of a library call, we assume 1 for the call, and
- // 3 for the argument setup.
- if (NumOps == -1)
- return 4;
- return NumOps;
- }
- InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
- VectorType *Tp, ArrayRef<int> Mask,
- TTI::TargetCostKind CostKind,
- int Index, VectorType *SubTp,
- ArrayRef<const Value *> Args) {
- Kind = improveShuffleKindFromMask(Kind, Mask);
- if (ST->hasNEON()) {
- if (Kind == TTI::SK_Broadcast) {
- static const CostTblEntry NEONDupTbl[] = {
- // VDUP handles these cases.
- {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
- if (const auto *Entry =
- CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
- return LT.first * Entry->Cost;
- }
- if (Kind == TTI::SK_Reverse) {
- static const CostTblEntry NEONShuffleTbl[] = {
- // Reverse shuffle cost one instruction if we are shuffling within a
- // double word (vrev) or two if we shuffle a quad word (vrev, vext).
- {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
- {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
- {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
- {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
- if (const auto *Entry =
- CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
- return LT.first * Entry->Cost;
- }
- if (Kind == TTI::SK_Select) {
- static const CostTblEntry NEONSelShuffleTbl[] = {
- // Select shuffle cost table for ARM. Cost is the number of
- // instructions
- // required to create the shuffled vector.
- {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
- {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
- {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
- {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
- {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
- if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
- ISD::VECTOR_SHUFFLE, LT.second))
- return LT.first * Entry->Cost;
- }
- }
- if (ST->hasMVEIntegerOps()) {
- if (Kind == TTI::SK_Broadcast) {
- static const CostTblEntry MVEDupTbl[] = {
- // VDUP handles these cases.
- {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
- if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
- LT.second))
- return LT.first * Entry->Cost *
- ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput);
- }
- if (!Mask.empty()) {
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
- if (LT.second.isVector() &&
- Mask.size() <= LT.second.getVectorNumElements() &&
- (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) ||
- isVREVMask(Mask, LT.second, 64)))
- return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first;
- }
- }
- int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
- ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput)
- : 1;
- return BaseCost *
- BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
- }
- InstructionCost ARMTTIImpl::getArithmeticInstrCost(
- unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
- TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
- ArrayRef<const Value *> Args,
- const Instruction *CxtI) {
- int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
- if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) {
- // Make operations on i1 relatively expensive as this often involves
- // combining predicates. AND and XOR should be easier to handle with IT
- // blocks.
- switch (ISDOpcode) {
- default:
- break;
- case ISD::AND:
- case ISD::XOR:
- return 2;
- case ISD::OR:
- return 3;
- }
- }
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
- if (ST->hasNEON()) {
- const unsigned FunctionCallDivCost = 20;
- const unsigned ReciprocalDivCost = 10;
- static const CostTblEntry CostTbl[] = {
- // Division.
- // These costs are somewhat random. Choose a cost of 20 to indicate that
- // vectorizing devision (added function call) is going to be very expensive.
- // Double registers types.
- { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
- { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
- { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
- { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
- { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
- { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
- { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
- { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
- { ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
- { ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
- { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
- { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
- { ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
- { ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
- { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
- { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
- // Quad register types.
- { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
- { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
- { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
- { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
- { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
- { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
- { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
- { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
- { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
- { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
- { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
- { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
- { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
- { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
- { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
- { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
- // Multiplication.
- };
- if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
- return LT.first * Entry->Cost;
- InstructionCost Cost = BaseT::getArithmeticInstrCost(
- Opcode, Ty, CostKind, Op1Info, Op2Info);
- // This is somewhat of a hack. The problem that we are facing is that SROA
- // creates a sequence of shift, and, or instructions to construct values.
- // These sequences are recognized by the ISel and have zero-cost. Not so for
- // the vectorized code. Because we have support for v2i64 but not i64 those
- // sequences look particularly beneficial to vectorize.
- // To work around this we increase the cost of v2i64 operations to make them
- // seem less beneficial.
- if (LT.second == MVT::v2i64 && Op2Info.isUniform() && Op2Info.isConstant())
- Cost += 4;
- return Cost;
- }
- // If this operation is a shift on arm/thumb2, it might well be folded into
- // the following instruction, hence having a cost of 0.
- auto LooksLikeAFreeShift = [&]() {
- if (ST->isThumb1Only() || Ty->isVectorTy())
- return false;
- if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
- return false;
- if (!Op2Info.isUniform() || !Op2Info.isConstant())
- return false;
- // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
- switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::And:
- case Instruction::Xor:
- case Instruction::Or:
- case Instruction::ICmp:
- return true;
- default:
- return false;
- }
- };
- if (LooksLikeAFreeShift())
- return 0;
- // Default to cheap (throughput/size of 1 instruction) but adjust throughput
- // for "multiple beats" potentially needed by MVE instructions.
- int BaseCost = 1;
- if (ST->hasMVEIntegerOps() && Ty->isVectorTy())
- BaseCost = ST->getMVEVectorCostFactor(CostKind);
- // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
- // without treating floats as more expensive that scalars or increasing the
- // costs for custom operations. The results is also multiplied by the
- // MVEVectorCostFactor where appropriate.
- if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
- return LT.first * BaseCost;
- // Else this is expand, assume that we need to scalarize this op.
- if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
- unsigned Num = VTy->getNumElements();
- InstructionCost Cost =
- getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
- // Return the cost of multiple scalar invocation plus the cost of
- // inserting and extracting the values.
- SmallVector<Type *> Tys(Args.size(), Ty);
- return BaseT::getScalarizationOverhead(VTy, Args, Tys, CostKind) +
- Num * Cost;
- }
- return BaseCost;
- }
- InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
- MaybeAlign Alignment,
- unsigned AddressSpace,
- TTI::TargetCostKind CostKind,
- TTI::OperandValueInfo OpInfo,
- const Instruction *I) {
- // TODO: Handle other cost kinds.
- if (CostKind != TTI::TCK_RecipThroughput)
- return 1;
- // Type legalization can't handle structs
- if (TLI->getValueType(DL, Src, true) == MVT::Other)
- return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
- CostKind);
- if (ST->hasNEON() && Src->isVectorTy() &&
- (Alignment && *Alignment != Align(16)) &&
- cast<VectorType>(Src)->getElementType()->isDoubleTy()) {
- // Unaligned loads/stores are extremely inefficient.
- // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
- return LT.first * 4;
- }
- // MVE can optimize a fpext(load(4xhalf)) using an extending integer load.
- // Same for stores.
- if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I &&
- ((Opcode == Instruction::Load && I->hasOneUse() &&
- isa<FPExtInst>(*I->user_begin())) ||
- (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) {
- FixedVectorType *SrcVTy = cast<FixedVectorType>(Src);
- Type *DstTy =
- Opcode == Instruction::Load
- ? (*I->user_begin())->getType()
- : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType();
- if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() &&
- DstTy->getScalarType()->isFloatTy())
- return ST->getMVEVectorCostFactor(CostKind);
- }
- int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
- ? ST->getMVEVectorCostFactor(CostKind)
- : 1;
- return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
- CostKind, OpInfo, I);
- }
- InstructionCost
- ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
- unsigned AddressSpace,
- TTI::TargetCostKind CostKind) {
- if (ST->hasMVEIntegerOps()) {
- if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment))
- return ST->getMVEVectorCostFactor(CostKind);
- if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment))
- return ST->getMVEVectorCostFactor(CostKind);
- }
- if (!isa<FixedVectorType>(Src))
- return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
- CostKind);
- // Scalar cost, which is currently very high due to the efficiency of the
- // generated code.
- return cast<FixedVectorType>(Src)->getNumElements() * 8;
- }
- InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost(
- unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
- Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
- bool UseMaskForCond, bool UseMaskForGaps) {
- assert(Factor >= 2 && "Invalid interleave factor");
- assert(isa<VectorType>(VecTy) && "Expect a vector type");
- // vldN/vstN doesn't support vector types of i64/f64 element.
- bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
- if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
- !UseMaskForCond && !UseMaskForGaps) {
- unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
- auto *SubVecTy =
- FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
- // vldN/vstN only support legal vector types of size 64 or 128 in bits.
- // Accesses having vector types that are a multiple of 128 bits can be
- // matched to more than one vldN/vstN instruction.
- int BaseCost =
- ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1;
- if (NumElts % Factor == 0 &&
- TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
- return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);
- // Some smaller than legal interleaved patterns are cheap as we can make
- // use of the vmovn or vrev patterns to interleave a standard load. This is
- // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
- // promoted differently). The cost of 2 here is then a load and vrev or
- // vmovn.
- if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
- VecTy->isIntOrIntVectorTy() &&
- DL.getTypeSizeInBits(SubVecTy).getFixedValue() <= 64)
- return 2 * BaseCost;
- }
- return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
- Alignment, AddressSpace, CostKind,
- UseMaskForCond, UseMaskForGaps);
- }
- InstructionCost ARMTTIImpl::getGatherScatterOpCost(
- unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
- Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
- using namespace PatternMatch;
- if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters)
- return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
- Alignment, CostKind, I);
- assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!");
- auto *VTy = cast<FixedVectorType>(DataTy);
- // TODO: Splitting, once we do that.
- unsigned NumElems = VTy->getNumElements();
- unsigned EltSize = VTy->getScalarSizeInBits();
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(DataTy);
- // For now, it is assumed that for the MVE gather instructions the loads are
- // all effectively serialised. This means the cost is the scalar cost
- // multiplied by the number of elements being loaded. This is possibly very
- // conservative, but even so we still end up vectorising loops because the
- // cost per iteration for many loops is lower than for scalar loops.
- InstructionCost VectorCost =
- NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind);
- // The scalarization cost should be a lot higher. We use the number of vector
- // elements plus the scalarization overhead.
- InstructionCost ScalarCost =
- NumElems * LT.first +
- BaseT::getScalarizationOverhead(VTy, /*Insert*/ true, /*Extract*/ false,
- CostKind) +
- BaseT::getScalarizationOverhead(VTy, /*Insert*/ false, /*Extract*/ true,
- CostKind);
- if (EltSize < 8 || Alignment < EltSize / 8)
- return ScalarCost;
- unsigned ExtSize = EltSize;
- // Check whether there's a single user that asks for an extended type
- if (I != nullptr) {
- // Dependent of the caller of this function, a gather instruction will
- // either have opcode Instruction::Load or be a call to the masked_gather
- // intrinsic
- if ((I->getOpcode() == Instruction::Load ||
- match(I, m_Intrinsic<Intrinsic::masked_gather>())) &&
- I->hasOneUse()) {
- const User *Us = *I->users().begin();
- if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) {
- // only allow valid type combinations
- unsigned TypeSize =
- cast<Instruction>(Us)->getType()->getScalarSizeInBits();
- if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) ||
- (TypeSize == 16 && EltSize == 8)) &&
- TypeSize * NumElems == 128) {
- ExtSize = TypeSize;
- }
- }
- }
- // Check whether the input data needs to be truncated
- TruncInst *T;
- if ((I->getOpcode() == Instruction::Store ||
- match(I, m_Intrinsic<Intrinsic::masked_scatter>())) &&
- (T = dyn_cast<TruncInst>(I->getOperand(0)))) {
- // Only allow valid type combinations
- unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits();
- if (((EltSize == 16 && TypeSize == 32) ||
- (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) &&
- TypeSize * NumElems == 128)
- ExtSize = TypeSize;
- }
- }
- if (ExtSize * NumElems != 128 || NumElems < 4)
- return ScalarCost;
- // Any (aligned) i32 gather will not need to be scalarised.
- if (ExtSize == 32)
- return VectorCost;
- // For smaller types, we need to ensure that the gep's inputs are correctly
- // extended from a small enough value. Other sizes (including i64) are
- // scalarized for now.
- if (ExtSize != 8 && ExtSize != 16)
- return ScalarCost;
- if (const auto *BC = dyn_cast<BitCastInst>(Ptr))
- Ptr = BC->getOperand(0);
- if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
- if (GEP->getNumOperands() != 2)
- return ScalarCost;
- unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType());
- // Scale needs to be correct (which is only relevant for i16s).
- if (Scale != 1 && Scale * 8 != ExtSize)
- return ScalarCost;
- // And we need to zext (not sext) the indexes from a small enough type.
- if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) {
- if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize)
- return VectorCost;
- }
- return ScalarCost;
- }
- return ScalarCost;
- }
- InstructionCost
- ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
- std::optional<FastMathFlags> FMF,
- TTI::TargetCostKind CostKind) {
- if (TTI::requiresOrderedReduction(FMF))
- return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
- EVT ValVT = TLI->getValueType(DL, ValTy);
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD)
- return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
- static const CostTblEntry CostTblAdd[]{
- {ISD::ADD, MVT::v16i8, 1},
- {ISD::ADD, MVT::v8i16, 1},
- {ISD::ADD, MVT::v4i32, 1},
- };
- if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second))
- return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first;
- return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
- }
- InstructionCost ARMTTIImpl::getExtendedReductionCost(
- unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy,
- std::optional<FastMathFlags> FMF, TTI::TargetCostKind CostKind) {
- EVT ValVT = TLI->getValueType(DL, ValTy);
- EVT ResVT = TLI->getValueType(DL, ResTy);
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- switch (ISD) {
- case ISD::ADD:
- if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
- // The legal cases are:
- // VADDV u/s 8/16/32
- // VADDLV u/s 32
- // Codegen currently cannot always handle larger than legal vectors very
- // well, especially for predicated reductions where the mask needs to be
- // split, so restrict to 128bit or smaller input types.
- unsigned RevVTSize = ResVT.getSizeInBits();
- if (ValVT.getSizeInBits() <= 128 &&
- ((LT.second == MVT::v16i8 && RevVTSize <= 32) ||
- (LT.second == MVT::v8i16 && RevVTSize <= 32) ||
- (LT.second == MVT::v4i32 && RevVTSize <= 64)))
- return ST->getMVEVectorCostFactor(CostKind) * LT.first;
- }
- break;
- default:
- break;
- }
- return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy, FMF,
- CostKind);
- }
- InstructionCost
- ARMTTIImpl::getMulAccReductionCost(bool IsUnsigned, Type *ResTy,
- VectorType *ValTy,
- TTI::TargetCostKind CostKind) {
- EVT ValVT = TLI->getValueType(DL, ValTy);
- EVT ResVT = TLI->getValueType(DL, ResTy);
- if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
- // The legal cases are:
- // VMLAV u/s 8/16/32
- // VMLALV u/s 16/32
- // Codegen currently cannot always handle larger than legal vectors very
- // well, especially for predicated reductions where the mask needs to be
- // split, so restrict to 128bit or smaller input types.
- unsigned RevVTSize = ResVT.getSizeInBits();
- if (ValVT.getSizeInBits() <= 128 &&
- ((LT.second == MVT::v16i8 && RevVTSize <= 32) ||
- (LT.second == MVT::v8i16 && RevVTSize <= 64) ||
- (LT.second == MVT::v4i32 && RevVTSize <= 64)))
- return ST->getMVEVectorCostFactor(CostKind) * LT.first;
- }
- return BaseT::getMulAccReductionCost(IsUnsigned, ResTy, ValTy, CostKind);
- }
- InstructionCost
- ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
- TTI::TargetCostKind CostKind) {
- switch (ICA.getID()) {
- case Intrinsic::get_active_lane_mask:
- // Currently we make a somewhat optimistic assumption that
- // active_lane_mask's are always free. In reality it may be freely folded
- // into a tail predicated loop, expanded into a VCPT or expanded into a lot
- // of add/icmp code. We may need to improve this in the future, but being
- // able to detect if it is free or not involves looking at a lot of other
- // code. We currently assume that the vectorizer inserted these, and knew
- // what it was doing in adding one.
- if (ST->hasMVEIntegerOps())
- return 0;
- break;
- case Intrinsic::sadd_sat:
- case Intrinsic::ssub_sat:
- case Intrinsic::uadd_sat:
- case Intrinsic::usub_sat: {
- if (!ST->hasMVEIntegerOps())
- break;
- Type *VT = ICA.getReturnType();
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT);
- if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
- LT.second == MVT::v16i8) {
- // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we
- // need to extend the type, as it uses shr(qadd(shl, shl)).
- unsigned Instrs =
- LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4;
- return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs;
- }
- break;
- }
- case Intrinsic::abs:
- case Intrinsic::smin:
- case Intrinsic::smax:
- case Intrinsic::umin:
- case Intrinsic::umax: {
- if (!ST->hasMVEIntegerOps())
- break;
- Type *VT = ICA.getReturnType();
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT);
- if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
- LT.second == MVT::v16i8)
- return LT.first * ST->getMVEVectorCostFactor(CostKind);
- break;
- }
- case Intrinsic::minnum:
- case Intrinsic::maxnum: {
- if (!ST->hasMVEFloatOps())
- break;
- Type *VT = ICA.getReturnType();
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT);
- if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16)
- return LT.first * ST->getMVEVectorCostFactor(CostKind);
- break;
- }
- case Intrinsic::fptosi_sat:
- case Intrinsic::fptoui_sat: {
- if (ICA.getArgTypes().empty())
- break;
- bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
- auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]);
- EVT MTy = TLI->getValueType(DL, ICA.getReturnType());
- // Check for the legal types, with the corect subtarget features.
- if ((ST->hasVFP2Base() && LT.second == MVT::f32 && MTy == MVT::i32) ||
- (ST->hasFP64() && LT.second == MVT::f64 && MTy == MVT::i32) ||
- (ST->hasFullFP16() && LT.second == MVT::f16 && MTy == MVT::i32))
- return LT.first;
- // Equally for MVE vector types
- if (ST->hasMVEFloatOps() &&
- (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) &&
- LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits())
- return LT.first * ST->getMVEVectorCostFactor(CostKind);
- // Otherwise we use a legal convert followed by a min+max
- if (((ST->hasVFP2Base() && LT.second == MVT::f32) ||
- (ST->hasFP64() && LT.second == MVT::f64) ||
- (ST->hasFullFP16() && LT.second == MVT::f16) ||
- (ST->hasMVEFloatOps() &&
- (LT.second == MVT::v4f32 || LT.second == MVT::v8f16))) &&
- LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) {
- Type *LegalTy = Type::getIntNTy(ICA.getReturnType()->getContext(),
- LT.second.getScalarSizeInBits());
- InstructionCost Cost =
- LT.second.isVector() ? ST->getMVEVectorCostFactor(CostKind) : 1;
- IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin
- : Intrinsic::umin,
- LegalTy, {LegalTy, LegalTy});
- Cost += getIntrinsicInstrCost(Attrs1, CostKind);
- IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax
- : Intrinsic::umax,
- LegalTy, {LegalTy, LegalTy});
- Cost += getIntrinsicInstrCost(Attrs2, CostKind);
- return LT.first * Cost;
- }
- break;
- }
- }
- return BaseT::getIntrinsicInstrCost(ICA, CostKind);
- }
- bool ARMTTIImpl::isLoweredToCall(const Function *F) {
- if (!F->isIntrinsic())
- return BaseT::isLoweredToCall(F);
- // Assume all Arm-specific intrinsics map to an instruction.
- if (F->getName().startswith("llvm.arm"))
- return false;
- switch (F->getIntrinsicID()) {
- default: break;
- case Intrinsic::powi:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::pow:
- case Intrinsic::log:
- case Intrinsic::log10:
- case Intrinsic::log2:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- return true;
- case Intrinsic::sqrt:
- case Intrinsic::fabs:
- case Intrinsic::copysign:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- case Intrinsic::canonicalize:
- case Intrinsic::lround:
- case Intrinsic::llround:
- case Intrinsic::lrint:
- case Intrinsic::llrint:
- if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
- return true;
- if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
- return true;
- // Some operations can be handled by vector instructions and assume
- // unsupported vectors will be expanded into supported scalar ones.
- // TODO Handle scalar operations properly.
- return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
- case Intrinsic::masked_store:
- case Intrinsic::masked_load:
- case Intrinsic::masked_gather:
- case Intrinsic::masked_scatter:
- return !ST->hasMVEIntegerOps();
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::sadd_sat:
- case Intrinsic::uadd_sat:
- case Intrinsic::ssub_sat:
- case Intrinsic::usub_sat:
- return false;
- }
- return BaseT::isLoweredToCall(F);
- }
- bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) {
- unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
- EVT VT = TLI->getValueType(DL, I.getType(), true);
- if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
- return true;
- // Check if an intrinsic will be lowered to a call and assume that any
- // other CallInst will generate a bl.
- if (auto *Call = dyn_cast<CallInst>(&I)) {
- if (auto *II = dyn_cast<IntrinsicInst>(Call)) {
- switch(II->getIntrinsicID()) {
- case Intrinsic::memcpy:
- case Intrinsic::memset:
- case Intrinsic::memmove:
- return getNumMemOps(II) == -1;
- default:
- if (const Function *F = Call->getCalledFunction())
- return isLoweredToCall(F);
- }
- }
- return true;
- }
- // FPv5 provides conversions between integer, double-precision,
- // single-precision, and half-precision formats.
- switch (I.getOpcode()) {
- default:
- break;
- case Instruction::FPToSI:
- case Instruction::FPToUI:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- return !ST->hasFPARMv8Base();
- }
- // FIXME: Unfortunately the approach of checking the Operation Action does
- // not catch all cases of Legalization that use library calls. Our
- // Legalization step categorizes some transformations into library calls as
- // Custom, Expand or even Legal when doing type legalization. So for now
- // we have to special case for instance the SDIV of 64bit integers and the
- // use of floating point emulation.
- if (VT.isInteger() && VT.getSizeInBits() >= 64) {
- switch (ISD) {
- default:
- break;
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM:
- case ISD::SDIVREM:
- case ISD::UDIVREM:
- return true;
- }
- }
- // Assume all other non-float operations are supported.
- if (!VT.isFloatingPoint())
- return false;
- // We'll need a library call to handle most floats when using soft.
- if (TLI->useSoftFloat()) {
- switch (I.getOpcode()) {
- default:
- return true;
- case Instruction::Alloca:
- case Instruction::Load:
- case Instruction::Store:
- case Instruction::Select:
- case Instruction::PHI:
- return false;
- }
- }
- // We'll need a libcall to perform double precision operations on a single
- // precision only FPU.
- if (I.getType()->isDoubleTy() && !ST->hasFP64())
- return true;
- // Likewise for half precision arithmetic.
- if (I.getType()->isHalfTy() && !ST->hasFullFP16())
- return true;
- return false;
- }
- bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
- AssumptionCache &AC,
- TargetLibraryInfo *LibInfo,
- HardwareLoopInfo &HWLoopInfo) {
- // Low-overhead branches are only supported in the 'low-overhead branch'
- // extension of v8.1-m.
- if (!ST->hasLOB() || DisableLowOverheadLoops) {
- LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n");
- return false;
- }
- if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
- LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n");
- return false;
- }
- const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
- if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
- LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n");
- return false;
- }
- const SCEV *TripCountSCEV =
- SE.getAddExpr(BackedgeTakenCount,
- SE.getOne(BackedgeTakenCount->getType()));
- // We need to store the trip count in LR, a 32-bit register.
- if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) {
- LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n");
- return false;
- }
- // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
- // point in generating a hardware loop if that's going to happen.
- auto IsHardwareLoopIntrinsic = [](Instruction &I) {
- if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
- switch (Call->getIntrinsicID()) {
- default:
- break;
- case Intrinsic::start_loop_iterations:
- case Intrinsic::test_start_loop_iterations:
- case Intrinsic::loop_decrement:
- case Intrinsic::loop_decrement_reg:
- return true;
- }
- }
- return false;
- };
- // Scan the instructions to see if there's any that we know will turn into a
- // call or if this loop is already a low-overhead loop or will become a tail
- // predicated loop.
- bool IsTailPredLoop = false;
- auto ScanLoop = [&](Loop *L) {
- for (auto *BB : L->getBlocks()) {
- for (auto &I : *BB) {
- if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) ||
- isa<InlineAsm>(I)) {
- LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n");
- return false;
- }
- if (auto *II = dyn_cast<IntrinsicInst>(&I))
- IsTailPredLoop |=
- II->getIntrinsicID() == Intrinsic::get_active_lane_mask ||
- II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 ||
- II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 ||
- II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 ||
- II->getIntrinsicID() == Intrinsic::arm_mve_vctp64;
- }
- }
- return true;
- };
- // Visit inner loops.
- for (auto *Inner : *L)
- if (!ScanLoop(Inner))
- return false;
- if (!ScanLoop(L))
- return false;
- // TODO: Check whether the trip count calculation is expensive. If L is the
- // inner loop but we know it has a low trip count, calculating that trip
- // count (in the parent loop) may be detrimental.
- LLVMContext &C = L->getHeader()->getContext();
- HWLoopInfo.CounterInReg = true;
- HWLoopInfo.IsNestingLegal = false;
- HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop;
- HWLoopInfo.CountType = Type::getInt32Ty(C);
- HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
- return true;
- }
- static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
- // We don't allow icmp's, and because we only look at single block loops,
- // we simply count the icmps, i.e. there should only be 1 for the backedge.
- if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
- return false;
- // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are
- // not currently canonical, but soon will be. Code without them uses icmp, and
- // so is not tail predicated as per the condition above. In order to get the
- // same performance we treat min and max the same as an icmp for tailpred
- // purposes for the moment (we often rely on non-tailpred and higher VF's to
- // pick more optimial instructions like VQDMULH. They need to be recognized
- // directly by the vectorizer).
- if (auto *II = dyn_cast<IntrinsicInst>(&I))
- if ((II->getIntrinsicID() == Intrinsic::smin ||
- II->getIntrinsicID() == Intrinsic::smax ||
- II->getIntrinsicID() == Intrinsic::umin ||
- II->getIntrinsicID() == Intrinsic::umax) &&
- ++ICmpCount > 1)
- return false;
- if (isa<FCmpInst>(&I))
- return false;
- // We could allow extending/narrowing FP loads/stores, but codegen is
- // too inefficient so reject this for now.
- if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
- return false;
- // Extends have to be extending-loads
- if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
- if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
- return false;
- // Truncs have to be narrowing-stores
- if (isa<TruncInst>(&I) )
- if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
- return false;
- return true;
- }
- // To set up a tail-predicated loop, we need to know the total number of
- // elements processed by that loop. Thus, we need to determine the element
- // size and:
- // 1) it should be uniform for all operations in the vector loop, so we
- // e.g. don't want any widening/narrowing operations.
- // 2) it should be smaller than i64s because we don't have vector operations
- // that work on i64s.
- // 3) we don't want elements to be reversed or shuffled, to make sure the
- // tail-predication masks/predicates the right lanes.
- //
- static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
- const DataLayout &DL,
- const LoopAccessInfo *LAI) {
- LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n");
- // If there are live-out values, it is probably a reduction. We can predicate
- // most reduction operations freely under MVE using a combination of
- // prefer-predicated-reduction-select and inloop reductions. We limit this to
- // floating point and integer reductions, but don't check for operators
- // specifically here. If the value ends up not being a reduction (and so the
- // vectorizer cannot tailfold the loop), we should fall back to standard
- // vectorization automatically.
- SmallVector< Instruction *, 8 > LiveOuts;
- LiveOuts = llvm::findDefsUsedOutsideOfLoop(L);
- bool ReductionsDisabled =
- EnableTailPredication == TailPredication::EnabledNoReductions ||
- EnableTailPredication == TailPredication::ForceEnabledNoReductions;
- for (auto *I : LiveOuts) {
- if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() &&
- !I->getType()->isHalfTy()) {
- LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float "
- "live-out value\n");
- return false;
- }
- if (ReductionsDisabled) {
- LLVM_DEBUG(dbgs() << "Reductions not enabled\n");
- return false;
- }
- }
- // Next, check that all instructions can be tail-predicated.
- PredicatedScalarEvolution PSE = LAI->getPSE();
- SmallVector<Instruction *, 16> LoadStores;
- int ICmpCount = 0;
- for (BasicBlock *BB : L->blocks()) {
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- if (isa<PHINode>(&I))
- continue;
- if (!canTailPredicateInstruction(I, ICmpCount)) {
- LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
- return false;
- }
- Type *T = I.getType();
- if (T->getScalarSizeInBits() > 32) {
- LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
- return false;
- }
- if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
- Value *Ptr = getLoadStorePointerOperand(&I);
- Type *AccessTy = getLoadStoreType(&I);
- int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L).value_or(0);
- if (NextStride == 1) {
- // TODO: for now only allow consecutive strides of 1. We could support
- // other strides as long as it is uniform, but let's keep it simple
- // for now.
- continue;
- } else if (NextStride == -1 ||
- (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) ||
- (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) {
- LLVM_DEBUG(dbgs()
- << "Consecutive strides of 2 found, vld2/vstr2 can't "
- "be tail-predicated\n.");
- return false;
- // TODO: don't tail predicate if there is a reversed load?
- } else if (EnableMaskedGatherScatters) {
- // Gather/scatters do allow loading from arbitrary strides, at
- // least if they are loop invariant.
- // TODO: Loop variant strides should in theory work, too, but
- // this requires further testing.
- const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr);
- if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) {
- const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
- if (PSE.getSE()->isLoopInvariant(Step, L))
- continue;
- }
- }
- LLVM_DEBUG(dbgs() << "Bad stride found, can't "
- "tail-predicate\n.");
- return false;
- }
- }
- }
- LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
- return true;
- }
- bool ARMTTIImpl::preferPredicateOverEpilogue(
- Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
- TargetLibraryInfo *TLI, DominatorTree *DT, LoopVectorizationLegality *LVL,
- InterleavedAccessInfo *IAI) {
- if (!EnableTailPredication) {
- LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n");
- return false;
- }
- // Creating a predicated vector loop is the first step for generating a
- // tail-predicated hardware loop, for which we need the MVE masked
- // load/stores instructions:
- if (!ST->hasMVEIntegerOps())
- return false;
- // For now, restrict this to single block loops.
- if (L->getNumBlocks() > 1) {
- LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
- "loop.\n");
- return false;
- }
- assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected");
- HardwareLoopInfo HWLoopInfo(L);
- if (!HWLoopInfo.canAnalyze(*LI)) {
- LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
- "analyzable.\n");
- return false;
- }
- // This checks if we have the low-overhead branch architecture
- // extension, and if we will create a hardware-loop:
- if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) {
- LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
- "profitable.\n");
- return false;
- }
- if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) {
- LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
- "a candidate.\n");
- return false;
- }
- return canTailPredicateLoop(L, LI, SE, DL, LVL->getLAI());
- }
- PredicationStyle ARMTTIImpl::emitGetActiveLaneMask() const {
- if (!ST->hasMVEIntegerOps() || !EnableTailPredication)
- return PredicationStyle::None;
- // Intrinsic @llvm.get.active.lane.mask is supported.
- // It is used in the MVETailPredication pass, which requires the number of
- // elements processed by this vector loop to setup the tail-predicated
- // loop.
- return PredicationStyle::Data;
- }
- void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
- TTI::UnrollingPreferences &UP,
- OptimizationRemarkEmitter *ORE) {
- // Enable Upper bound unrolling universally, not dependant upon the conditions
- // below.
- UP.UpperBound = true;
- // Only currently enable these preferences for M-Class cores.
- if (!ST->isMClass())
- return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
- // Disable loop unrolling for Oz and Os.
- UP.OptSizeThreshold = 0;
- UP.PartialOptSizeThreshold = 0;
- if (L->getHeader()->getParent()->hasOptSize())
- return;
- SmallVector<BasicBlock*, 4> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- LLVM_DEBUG(dbgs() << "Loop has:\n"
- << "Blocks: " << L->getNumBlocks() << "\n"
- << "Exit blocks: " << ExitingBlocks.size() << "\n");
- // Only allow another exit other than the latch. This acts as an early exit
- // as it mirrors the profitability calculation of the runtime unroller.
- if (ExitingBlocks.size() > 2)
- return;
- // Limit the CFG of the loop body for targets with a branch predictor.
- // Allowing 4 blocks permits if-then-else diamonds in the body.
- if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
- return;
- // Don't unroll vectorized loops, including the remainder loop
- if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
- return;
- // Scan the loop: don't unroll loops with calls as this could prevent
- // inlining.
- InstructionCost Cost = 0;
- for (auto *BB : L->getBlocks()) {
- for (auto &I : *BB) {
- // Don't unroll vectorised loop. MVE does not benefit from it as much as
- // scalar code.
- if (I.getType()->isVectorTy())
- return;
- if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
- if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
- if (!isLoweredToCall(F))
- continue;
- }
- return;
- }
- SmallVector<const Value*, 4> Operands(I.operand_values());
- Cost += getInstructionCost(&I, Operands,
- TargetTransformInfo::TCK_SizeAndLatency);
- }
- }
- // On v6m cores, there are very few registers available. We can easily end up
- // spilling and reloading more registers in an unrolled loop. Look at the
- // number of LCSSA phis as a rough measure of how many registers will need to
- // be live out of the loop, reducing the default unroll count if more than 1
- // value is needed. In the long run, all of this should be being learnt by a
- // machine.
- unsigned UnrollCount = 4;
- if (ST->isThumb1Only()) {
- unsigned ExitingValues = 0;
- SmallVector<BasicBlock *, 4> ExitBlocks;
- L->getExitBlocks(ExitBlocks);
- for (auto *Exit : ExitBlocks) {
- // Count the number of LCSSA phis. Exclude values coming from GEP's as
- // only the last is expected to be needed for address operands.
- unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) {
- return PH.getNumOperands() != 1 ||
- !isa<GetElementPtrInst>(PH.getOperand(0));
- });
- ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues;
- }
- if (ExitingValues)
- UnrollCount /= ExitingValues;
- if (UnrollCount <= 1)
- return;
- }
- LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
- LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n");
- UP.Partial = true;
- UP.Runtime = true;
- UP.UnrollRemainder = true;
- UP.DefaultUnrollRuntimeCount = UnrollCount;
- UP.UnrollAndJam = true;
- UP.UnrollAndJamInnerLoopThreshold = 60;
- // Force unrolling small loops can be very useful because of the branch
- // taken cost of the backedge.
- if (Cost < 12)
- UP.Force = true;
- }
- void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
- TTI::PeelingPreferences &PP) {
- BaseT::getPeelingPreferences(L, SE, PP);
- }
- bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty,
- TTI::ReductionFlags Flags) const {
- if (!ST->hasMVEIntegerOps())
- return false;
- unsigned ScalarBits = Ty->getScalarSizeInBits();
- switch (Opcode) {
- case Instruction::Add:
- return ScalarBits <= 64;
- default:
- return false;
- }
- }
- bool ARMTTIImpl::preferPredicatedReductionSelect(
- unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const {
- if (!ST->hasMVEIntegerOps())
- return false;
- return true;
- }
- InstructionCost ARMTTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale,
- unsigned AddrSpace) const {
- TargetLoweringBase::AddrMode AM;
- AM.BaseGV = BaseGV;
- AM.BaseOffs = BaseOffset;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Scale;
- if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace)) {
- if (ST->hasFPAO())
- return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
- return 0;
- }
- return -1;
- }
|