123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857 |
- //===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains the AArch64 addressing mode implementation stuff.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
- #define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
- #include "AArch64ExpandImm.h"
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/bit.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include <cassert>
- namespace llvm {
- /// AArch64_AM - AArch64 Addressing Mode Stuff
- namespace AArch64_AM {
- //===----------------------------------------------------------------------===//
- // Shifts
- //
- enum ShiftExtendType {
- InvalidShiftExtend = -1,
- LSL = 0,
- LSR,
- ASR,
- ROR,
- MSL,
- UXTB,
- UXTH,
- UXTW,
- UXTX,
- SXTB,
- SXTH,
- SXTW,
- SXTX,
- };
- /// getShiftName - Get the string encoding for the shift type.
- static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
- switch (ST) {
- default: llvm_unreachable("unhandled shift type!");
- case AArch64_AM::LSL: return "lsl";
- case AArch64_AM::LSR: return "lsr";
- case AArch64_AM::ASR: return "asr";
- case AArch64_AM::ROR: return "ror";
- case AArch64_AM::MSL: return "msl";
- case AArch64_AM::UXTB: return "uxtb";
- case AArch64_AM::UXTH: return "uxth";
- case AArch64_AM::UXTW: return "uxtw";
- case AArch64_AM::UXTX: return "uxtx";
- case AArch64_AM::SXTB: return "sxtb";
- case AArch64_AM::SXTH: return "sxth";
- case AArch64_AM::SXTW: return "sxtw";
- case AArch64_AM::SXTX: return "sxtx";
- }
- return nullptr;
- }
- /// getShiftType - Extract the shift type.
- static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
- switch ((Imm >> 6) & 0x7) {
- default: return AArch64_AM::InvalidShiftExtend;
- case 0: return AArch64_AM::LSL;
- case 1: return AArch64_AM::LSR;
- case 2: return AArch64_AM::ASR;
- case 3: return AArch64_AM::ROR;
- case 4: return AArch64_AM::MSL;
- }
- }
- /// getShiftValue - Extract the shift value.
- static inline unsigned getShiftValue(unsigned Imm) {
- return Imm & 0x3f;
- }
- /// getShifterImm - Encode the shift type and amount:
- /// imm: 6-bit shift amount
- /// shifter: 000 ==> lsl
- /// 001 ==> lsr
- /// 010 ==> asr
- /// 011 ==> ror
- /// 100 ==> msl
- /// {8-6} = shifter
- /// {5-0} = imm
- static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
- unsigned Imm) {
- assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
- unsigned STEnc = 0;
- switch (ST) {
- default: llvm_unreachable("Invalid shift requested");
- case AArch64_AM::LSL: STEnc = 0; break;
- case AArch64_AM::LSR: STEnc = 1; break;
- case AArch64_AM::ASR: STEnc = 2; break;
- case AArch64_AM::ROR: STEnc = 3; break;
- case AArch64_AM::MSL: STEnc = 4; break;
- }
- return (STEnc << 6) | (Imm & 0x3f);
- }
- //===----------------------------------------------------------------------===//
- // Extends
- //
- /// getArithShiftValue - get the arithmetic shift value.
- static inline unsigned getArithShiftValue(unsigned Imm) {
- return Imm & 0x7;
- }
- /// getExtendType - Extract the extend type for operands of arithmetic ops.
- static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
- assert((Imm & 0x7) == Imm && "invalid immediate!");
- switch (Imm) {
- default: llvm_unreachable("Compiler bug!");
- case 0: return AArch64_AM::UXTB;
- case 1: return AArch64_AM::UXTH;
- case 2: return AArch64_AM::UXTW;
- case 3: return AArch64_AM::UXTX;
- case 4: return AArch64_AM::SXTB;
- case 5: return AArch64_AM::SXTH;
- case 6: return AArch64_AM::SXTW;
- case 7: return AArch64_AM::SXTX;
- }
- }
- static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
- return getExtendType((Imm >> 3) & 0x7);
- }
- /// Mapping from extend bits to required operation:
- /// shifter: 000 ==> uxtb
- /// 001 ==> uxth
- /// 010 ==> uxtw
- /// 011 ==> uxtx
- /// 100 ==> sxtb
- /// 101 ==> sxth
- /// 110 ==> sxtw
- /// 111 ==> sxtx
- inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
- switch (ET) {
- default: llvm_unreachable("Invalid extend type requested");
- case AArch64_AM::UXTB: return 0; break;
- case AArch64_AM::UXTH: return 1; break;
- case AArch64_AM::UXTW: return 2; break;
- case AArch64_AM::UXTX: return 3; break;
- case AArch64_AM::SXTB: return 4; break;
- case AArch64_AM::SXTH: return 5; break;
- case AArch64_AM::SXTW: return 6; break;
- case AArch64_AM::SXTX: return 7; break;
- }
- }
- /// getArithExtendImm - Encode the extend type and shift amount for an
- /// arithmetic instruction:
- /// imm: 3-bit extend amount
- /// {5-3} = shifter
- /// {2-0} = imm3
- static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
- unsigned Imm) {
- assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
- return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
- }
- /// getMemDoShift - Extract the "do shift" flag value for load/store
- /// instructions.
- static inline bool getMemDoShift(unsigned Imm) {
- return (Imm & 0x1) != 0;
- }
- /// getExtendType - Extract the extend type for the offset operand of
- /// loads/stores.
- static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
- return getExtendType((Imm >> 1) & 0x7);
- }
- /// getExtendImm - Encode the extend type and amount for a load/store inst:
- /// doshift: should the offset be scaled by the access size
- /// shifter: 000 ==> uxtb
- /// 001 ==> uxth
- /// 010 ==> uxtw
- /// 011 ==> uxtx
- /// 100 ==> sxtb
- /// 101 ==> sxth
- /// 110 ==> sxtw
- /// 111 ==> sxtx
- /// {3-1} = shifter
- /// {0} = doshift
- static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
- bool DoShift) {
- return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
- }
- static inline uint64_t ror(uint64_t elt, unsigned size) {
- return ((elt & 1) << (size-1)) | (elt >> 1);
- }
- /// processLogicalImmediate - Determine if an immediate value can be encoded
- /// as the immediate operand of a logical instruction for the given register
- /// size. If so, return true with "encoding" set to the encoded value in
- /// the form N:immr:imms.
- static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
- uint64_t &Encoding) {
- if (Imm == 0ULL || Imm == ~0ULL ||
- (RegSize != 64 &&
- (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize)))))
- return false;
- // First, determine the element size.
- unsigned Size = RegSize;
- do {
- Size /= 2;
- uint64_t Mask = (1ULL << Size) - 1;
- if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
- Size *= 2;
- break;
- }
- } while (Size > 2);
- // Second, determine the rotation to make the element be: 0^m 1^n.
- uint32_t CTO, I;
- uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
- Imm &= Mask;
- if (isShiftedMask_64(Imm)) {
- I = countTrailingZeros(Imm);
- assert(I < 64 && "undefined behavior");
- CTO = countTrailingOnes(Imm >> I);
- } else {
- Imm |= ~Mask;
- if (!isShiftedMask_64(~Imm))
- return false;
- unsigned CLO = countLeadingOnes(Imm);
- I = 64 - CLO;
- CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
- }
- // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
- // to our target value, where I is the number of RORs to go the opposite
- // direction.
- assert(Size > I && "I should be smaller than element size");
- unsigned Immr = (Size - I) & (Size - 1);
- // If size has a 1 in the n'th bit, create a value that has zeroes in
- // bits [0, n] and ones above that.
- uint64_t NImms = ~(Size-1) << 1;
- // Or the CTO value into the low bits, which must be below the Nth bit
- // bit mentioned above.
- NImms |= (CTO-1);
- // Extract the seventh bit and toggle it to create the N field.
- unsigned N = ((NImms >> 6) & 1) ^ 1;
- Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
- return true;
- }
- /// isLogicalImmediate - Return true if the immediate is valid for a logical
- /// immediate instruction of the given register size. Return false otherwise.
- static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
- uint64_t encoding;
- return processLogicalImmediate(imm, regSize, encoding);
- }
- /// encodeLogicalImmediate - Return the encoded immediate value for a logical
- /// immediate instruction of the given register size.
- static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
- uint64_t encoding = 0;
- bool res = processLogicalImmediate(imm, regSize, encoding);
- assert(res && "invalid logical immediate");
- (void)res;
- return encoding;
- }
- /// decodeLogicalImmediate - Decode a logical immediate value in the form
- /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
- /// integer value it represents with regSize bits.
- static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
- // Extract the N, imms, and immr fields.
- unsigned N = (val >> 12) & 1;
- unsigned immr = (val >> 6) & 0x3f;
- unsigned imms = val & 0x3f;
- assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
- int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
- assert(len >= 0 && "undefined logical immediate encoding");
- unsigned size = (1 << len);
- unsigned R = immr & (size - 1);
- unsigned S = imms & (size - 1);
- assert(S != size - 1 && "undefined logical immediate encoding");
- uint64_t pattern = (1ULL << (S + 1)) - 1;
- for (unsigned i = 0; i < R; ++i)
- pattern = ror(pattern, size);
- // Replicate the pattern to fill the regSize.
- while (size != regSize) {
- pattern |= (pattern << size);
- size *= 2;
- }
- return pattern;
- }
- /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
- /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
- /// is a valid encoding for an integer value with regSize bits.
- static inline bool isValidDecodeLogicalImmediate(uint64_t val,
- unsigned regSize) {
- // Extract the N and imms fields needed for checking.
- unsigned N = (val >> 12) & 1;
- unsigned imms = val & 0x3f;
- if (regSize == 32 && N != 0) // undefined logical immediate encoding
- return false;
- int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
- if (len < 0) // undefined logical immediate encoding
- return false;
- unsigned size = (1 << len);
- unsigned S = imms & (size - 1);
- if (S == size - 1) // undefined logical immediate encoding
- return false;
- return true;
- }
- //===----------------------------------------------------------------------===//
- // Floating-point Immediates
- //
- static inline float getFPImmFloat(unsigned Imm) {
- // We expect an 8-bit binary encoding of a floating-point number here.
- uint8_t Sign = (Imm >> 7) & 0x1;
- uint8_t Exp = (Imm >> 4) & 0x7;
- uint8_t Mantissa = Imm & 0xf;
- // 8-bit FP IEEE Float Encoding
- // abcd efgh aBbbbbbc defgh000 00000000 00000000
- //
- // where B = NOT(b);
- uint32_t I = 0;
- I |= Sign << 31;
- I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
- I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
- I |= (Exp & 0x3) << 23;
- I |= Mantissa << 19;
- return bit_cast<float>(I);
- }
- /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
- /// floating-point value. If the value cannot be represented as an 8-bit
- /// floating-point value, then return -1.
- static inline int getFP16Imm(const APInt &Imm) {
- uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
- int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15
- int32_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits
- // We can handle 4 bits of mantissa.
- // mantissa = (16+UInt(e:f:g:h))/16.
- if (Mantissa & 0x3f)
- return -1;
- Mantissa >>= 6;
- // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
- if (Exp < -3 || Exp > 4)
- return -1;
- Exp = ((Exp+3) & 0x7) ^ 4;
- return ((int)Sign << 7) | (Exp << 4) | Mantissa;
- }
- static inline int getFP16Imm(const APFloat &FPImm) {
- return getFP16Imm(FPImm.bitcastToAPInt());
- }
- /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
- /// floating-point value. If the value cannot be represented as an 8-bit
- /// floating-point value, then return -1.
- static inline int getFP32Imm(const APInt &Imm) {
- uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
- int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
- int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
- // We can handle 4 bits of mantissa.
- // mantissa = (16+UInt(e:f:g:h))/16.
- if (Mantissa & 0x7ffff)
- return -1;
- Mantissa >>= 19;
- if ((Mantissa & 0xf) != Mantissa)
- return -1;
- // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
- if (Exp < -3 || Exp > 4)
- return -1;
- Exp = ((Exp+3) & 0x7) ^ 4;
- return ((int)Sign << 7) | (Exp << 4) | Mantissa;
- }
- static inline int getFP32Imm(const APFloat &FPImm) {
- return getFP32Imm(FPImm.bitcastToAPInt());
- }
- /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
- /// floating-point value. If the value cannot be represented as an 8-bit
- /// floating-point value, then return -1.
- static inline int getFP64Imm(const APInt &Imm) {
- uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
- int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
- uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
- // We can handle 4 bits of mantissa.
- // mantissa = (16+UInt(e:f:g:h))/16.
- if (Mantissa & 0xffffffffffffULL)
- return -1;
- Mantissa >>= 48;
- if ((Mantissa & 0xf) != Mantissa)
- return -1;
- // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
- if (Exp < -3 || Exp > 4)
- return -1;
- Exp = ((Exp+3) & 0x7) ^ 4;
- return ((int)Sign << 7) | (Exp << 4) | Mantissa;
- }
- static inline int getFP64Imm(const APFloat &FPImm) {
- return getFP64Imm(FPImm.bitcastToAPInt());
- }
- //===--------------------------------------------------------------------===//
- // AdvSIMD Modified Immediates
- //===--------------------------------------------------------------------===//
- // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
- static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm & 0xffffff00ffffff00ULL) == 0);
- }
- static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
- return (Imm & 0xffULL);
- }
- static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 32) | EncVal;
- }
- // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
- static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm & 0xffff00ffffff00ffULL) == 0);
- }
- static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
- return (Imm & 0xff00ULL) >> 8;
- }
- static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 40) | (EncVal << 8);
- }
- // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
- static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm & 0xff00ffffff00ffffULL) == 0);
- }
- static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
- return (Imm & 0xff0000ULL) >> 16;
- }
- static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 48) | (EncVal << 16);
- }
- // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
- static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm & 0x00ffffff00ffffffULL) == 0);
- }
- static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
- return (Imm & 0xff000000ULL) >> 24;
- }
- static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 56) | (EncVal << 24);
- }
- // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
- static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
- ((Imm & 0xff00ff00ff00ff00ULL) == 0);
- }
- static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
- return (Imm & 0xffULL);
- }
- static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
- }
- // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
- static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
- ((Imm & 0x00ff00ff00ff00ffULL) == 0);
- }
- static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
- return (Imm & 0xff00ULL) >> 8;
- }
- static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
- }
- // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
- static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
- }
- static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
- return (Imm & 0xff00ULL) >> 8;
- }
- static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
- }
- // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
- static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
- }
- static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
- uint64_t EncVal = Imm;
- return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
- }
- static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
- return (Imm & 0x00ff0000ULL) >> 16;
- }
- // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
- static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
- ((Imm >> 56) == (Imm & 0x000000ffULL));
- }
- static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
- return (Imm & 0xffULL);
- }
- static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
- uint64_t EncVal = Imm;
- EncVal |= (EncVal << 8);
- EncVal |= (EncVal << 16);
- EncVal |= (EncVal << 32);
- return EncVal;
- }
- // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
- // cmode: 1110, op: 1
- static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
- uint64_t ByteA = Imm & 0xff00000000000000ULL;
- uint64_t ByteB = Imm & 0x00ff000000000000ULL;
- uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
- uint64_t ByteD = Imm & 0x000000ff00000000ULL;
- uint64_t ByteE = Imm & 0x00000000ff000000ULL;
- uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
- uint64_t ByteG = Imm & 0x000000000000ff00ULL;
- uint64_t ByteH = Imm & 0x00000000000000ffULL;
- return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
- (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
- (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
- (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
- (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
- (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
- (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
- (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
- }
- static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
- uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
- uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
- uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
- uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
- uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
- uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
- uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
- uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
- uint8_t EncVal = BitA;
- EncVal <<= 1;
- EncVal |= BitB;
- EncVal <<= 1;
- EncVal |= BitC;
- EncVal <<= 1;
- EncVal |= BitD;
- EncVal <<= 1;
- EncVal |= BitE;
- EncVal <<= 1;
- EncVal |= BitF;
- EncVal <<= 1;
- EncVal |= BitG;
- EncVal <<= 1;
- EncVal |= BitH;
- return EncVal;
- }
- static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
- uint64_t EncVal = 0;
- if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
- if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
- if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
- if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
- if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
- if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
- if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
- if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
- return EncVal;
- }
- // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
- static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
- uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
- return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
- (BString == 0x1f || BString == 0x20) &&
- ((Imm & 0x0007ffff0007ffffULL) == 0);
- }
- static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
- uint8_t BitA = (Imm & 0x80000000ULL) != 0;
- uint8_t BitB = (Imm & 0x20000000ULL) != 0;
- uint8_t BitC = (Imm & 0x01000000ULL) != 0;
- uint8_t BitD = (Imm & 0x00800000ULL) != 0;
- uint8_t BitE = (Imm & 0x00400000ULL) != 0;
- uint8_t BitF = (Imm & 0x00200000ULL) != 0;
- uint8_t BitG = (Imm & 0x00100000ULL) != 0;
- uint8_t BitH = (Imm & 0x00080000ULL) != 0;
- uint8_t EncVal = BitA;
- EncVal <<= 1;
- EncVal |= BitB;
- EncVal <<= 1;
- EncVal |= BitC;
- EncVal <<= 1;
- EncVal |= BitD;
- EncVal <<= 1;
- EncVal |= BitE;
- EncVal <<= 1;
- EncVal |= BitF;
- EncVal <<= 1;
- EncVal |= BitG;
- EncVal <<= 1;
- EncVal |= BitH;
- return EncVal;
- }
- static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
- uint64_t EncVal = 0;
- if (Imm & 0x80) EncVal |= 0x80000000ULL;
- if (Imm & 0x40) EncVal |= 0x3e000000ULL;
- else EncVal |= 0x40000000ULL;
- if (Imm & 0x20) EncVal |= 0x01000000ULL;
- if (Imm & 0x10) EncVal |= 0x00800000ULL;
- if (Imm & 0x08) EncVal |= 0x00400000ULL;
- if (Imm & 0x04) EncVal |= 0x00200000ULL;
- if (Imm & 0x02) EncVal |= 0x00100000ULL;
- if (Imm & 0x01) EncVal |= 0x00080000ULL;
- return (EncVal << 32) | EncVal;
- }
- // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
- static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
- uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
- return ((BString == 0xff || BString == 0x100) &&
- ((Imm & 0x0000ffffffffffffULL) == 0));
- }
- static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
- uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
- uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
- uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
- uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
- uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
- uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
- uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
- uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
- uint8_t EncVal = BitA;
- EncVal <<= 1;
- EncVal |= BitB;
- EncVal <<= 1;
- EncVal |= BitC;
- EncVal <<= 1;
- EncVal |= BitD;
- EncVal <<= 1;
- EncVal |= BitE;
- EncVal <<= 1;
- EncVal |= BitF;
- EncVal <<= 1;
- EncVal |= BitG;
- EncVal <<= 1;
- EncVal |= BitH;
- return EncVal;
- }
- static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
- uint64_t EncVal = 0;
- if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
- if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
- else EncVal |= 0x4000000000000000ULL;
- if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
- if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
- if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
- if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
- if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
- if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
- return (EncVal << 32) | EncVal;
- }
- /// Returns true if Imm is the concatenation of a repeating pattern of type T.
- template <typename T>
- static inline bool isSVEMaskOfIdenticalElements(int64_t Imm) {
- auto Parts = bit_cast<std::array<T, sizeof(int64_t) / sizeof(T)>>(Imm);
- return llvm::all_equal(Parts);
- }
- /// Returns true if Imm is valid for CPY/DUP.
- template <typename T>
- static inline bool isSVECpyImm(int64_t Imm) {
- // Imm is interpreted as a signed value, which means top bits must be all ones
- // (sign bits if the immediate value is negative and passed in a larger
- // container), or all zeroes.
- int64_t Mask = ~int64_t(std::numeric_limits<std::make_unsigned_t<T>>::max());
- if ((Imm & Mask) != 0 && (Imm & Mask) != Mask)
- return false;
- // Imm is a signed 8-bit value.
- // Top bits must be zeroes or sign bits.
- if (Imm & 0xff)
- return int8_t(Imm) == T(Imm);
- // Imm is a signed 16-bit value and multiple of 256.
- // Top bits must be zeroes or sign bits.
- if (Imm & 0xff00)
- return int16_t(Imm) == T(Imm);
- return Imm == 0;
- }
- /// Returns true if Imm is valid for ADD/SUB.
- template <typename T>
- static inline bool isSVEAddSubImm(int64_t Imm) {
- bool IsInt8t = std::is_same<int8_t, std::make_signed_t<T>>::value ||
- std::is_same<int8_t, T>::value;
- return uint8_t(Imm) == Imm || (!IsInt8t && uint16_t(Imm & ~0xff) == Imm);
- }
- /// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
- static inline bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm) {
- if (isSVECpyImm<int64_t>(Imm))
- return false;
- auto S = bit_cast<std::array<int32_t, 2>>(Imm);
- auto H = bit_cast<std::array<int16_t, 4>>(Imm);
- auto B = bit_cast<std::array<int8_t, 8>>(Imm);
- if (isSVEMaskOfIdenticalElements<int32_t>(Imm) && isSVECpyImm<int32_t>(S[0]))
- return false;
- if (isSVEMaskOfIdenticalElements<int16_t>(Imm) && isSVECpyImm<int16_t>(H[0]))
- return false;
- if (isSVEMaskOfIdenticalElements<int8_t>(Imm) && isSVECpyImm<int8_t>(B[0]))
- return false;
- return isLogicalImmediate(Imm, 64);
- }
- inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) {
- for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16)
- if ((Value & ~(0xffffULL << Shift)) == 0)
- return true;
- return false;
- }
- inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) {
- if (RegWidth == 32)
- Value &= 0xffffffffULL;
- // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
- if (Value == 0 && Shift != 0)
- return false;
- return (Value & ~(0xffffULL << Shift)) == 0;
- }
- inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) {
- // MOVZ takes precedence over MOVN.
- if (isAnyMOVZMovAlias(Value, RegWidth))
- return false;
- Value = ~Value;
- if (RegWidth == 32)
- Value &= 0xffffffffULL;
- return isMOVZMovAlias(Value, Shift, RegWidth);
- }
- inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) {
- if (isAnyMOVZMovAlias(Value, RegWidth))
- return true;
- // It's not a MOVZ, but it might be a MOVN.
- Value = ~Value;
- if (RegWidth == 32)
- Value &= 0xffffffffULL;
- return isAnyMOVZMovAlias(Value, RegWidth);
- }
- } // end namespace AArch64_AM
- } // end namespace llvm
- #endif
|