1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231 |
- //===-- Value.cpp - Implement the Value class -----------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the Value, ValueHandle, and User classes.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/IR/Value.h"
- #include "LLVMContextImpl.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/DerivedUser.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/TypedPointerType.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/IR/ValueSymbolTable.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- using namespace llvm;
- static cl::opt<unsigned> UseDerefAtPointSemantics(
- "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false),
- cl::desc("Deref attributes and metadata infer facts at definition only"));
- //===----------------------------------------------------------------------===//
- // Value Class
- //===----------------------------------------------------------------------===//
- static inline Type *checkType(Type *Ty) {
- assert(Ty && "Value defined with a null type: Error!");
- assert(!isa<TypedPointerType>(Ty->getScalarType()) &&
- "Cannot have values with typed pointer types");
- return Ty;
- }
- Value::Value(Type *ty, unsigned scid)
- : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0),
- SubclassOptionalData(0), SubclassData(0), NumUserOperands(0),
- IsUsedByMD(false), HasName(false), HasMetadata(false) {
- static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
- // FIXME: Why isn't this in the subclass gunk??
- // Note, we cannot call isa<CallInst> before the CallInst has been
- // constructed.
- unsigned OpCode = 0;
- if (SubclassID >= InstructionVal)
- OpCode = SubclassID - InstructionVal;
- if (OpCode == Instruction::Call || OpCode == Instruction::Invoke ||
- OpCode == Instruction::CallBr)
- assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
- "invalid CallBase type!");
- else if (SubclassID != BasicBlockVal &&
- (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
- assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
- "Cannot create non-first-class values except for constants!");
- static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
- "Value too big");
- }
- Value::~Value() {
- // Notify all ValueHandles (if present) that this value is going away.
- if (HasValueHandle)
- ValueHandleBase::ValueIsDeleted(this);
- if (isUsedByMetadata())
- ValueAsMetadata::handleDeletion(this);
- // Remove associated metadata from context.
- if (HasMetadata)
- clearMetadata();
- #ifndef NDEBUG // Only in -g mode...
- // Check to make sure that there are no uses of this value that are still
- // around when the value is destroyed. If there are, then we have a dangling
- // reference and something is wrong. This code is here to print out where
- // the value is still being referenced.
- //
- // Note that use_empty() cannot be called here, as it eventually downcasts
- // 'this' to GlobalValue (derived class of Value), but GlobalValue has already
- // been destructed, so accessing it is UB.
- //
- if (!materialized_use_empty()) {
- dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
- for (auto *U : users())
- dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
- }
- #endif
- assert(materialized_use_empty() && "Uses remain when a value is destroyed!");
- // If this value is named, destroy the name. This should not be in a symtab
- // at this point.
- destroyValueName();
- }
- void Value::deleteValue() {
- switch (getValueID()) {
- #define HANDLE_VALUE(Name) \
- case Value::Name##Val: \
- delete static_cast<Name *>(this); \
- break;
- #define HANDLE_MEMORY_VALUE(Name) \
- case Value::Name##Val: \
- static_cast<DerivedUser *>(this)->DeleteValue( \
- static_cast<DerivedUser *>(this)); \
- break;
- #define HANDLE_CONSTANT(Name) \
- case Value::Name##Val: \
- llvm_unreachable("constants should be destroyed with destroyConstant"); \
- break;
- #define HANDLE_INSTRUCTION(Name) /* nothing */
- #include "llvm/IR/Value.def"
- #define HANDLE_INST(N, OPC, CLASS) \
- case Value::InstructionVal + Instruction::OPC: \
- delete static_cast<CLASS *>(this); \
- break;
- #define HANDLE_USER_INST(N, OPC, CLASS)
- #include "llvm/IR/Instruction.def"
- default:
- llvm_unreachable("attempting to delete unknown value kind");
- }
- }
- void Value::destroyValueName() {
- ValueName *Name = getValueName();
- if (Name) {
- MallocAllocator Allocator;
- Name->Destroy(Allocator);
- }
- setValueName(nullptr);
- }
- bool Value::hasNUses(unsigned N) const {
- return hasNItems(use_begin(), use_end(), N);
- }
- bool Value::hasNUsesOrMore(unsigned N) const {
- return hasNItemsOrMore(use_begin(), use_end(), N);
- }
- bool Value::hasOneUser() const {
- if (use_empty())
- return false;
- if (hasOneUse())
- return true;
- return std::equal(++user_begin(), user_end(), user_begin());
- }
- static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); }
- Use *Value::getSingleUndroppableUse() {
- Use *Result = nullptr;
- for (Use &U : uses()) {
- if (!U.getUser()->isDroppable()) {
- if (Result)
- return nullptr;
- Result = &U;
- }
- }
- return Result;
- }
- User *Value::getUniqueUndroppableUser() {
- User *Result = nullptr;
- for (auto *U : users()) {
- if (!U->isDroppable()) {
- if (Result && Result != U)
- return nullptr;
- Result = U;
- }
- }
- return Result;
- }
- bool Value::hasNUndroppableUses(unsigned int N) const {
- return hasNItems(user_begin(), user_end(), N, isUnDroppableUser);
- }
- bool Value::hasNUndroppableUsesOrMore(unsigned int N) const {
- return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser);
- }
- void Value::dropDroppableUses(
- llvm::function_ref<bool(const Use *)> ShouldDrop) {
- SmallVector<Use *, 8> ToBeEdited;
- for (Use &U : uses())
- if (U.getUser()->isDroppable() && ShouldDrop(&U))
- ToBeEdited.push_back(&U);
- for (Use *U : ToBeEdited)
- dropDroppableUse(*U);
- }
- void Value::dropDroppableUsesIn(User &Usr) {
- assert(Usr.isDroppable() && "Expected a droppable user!");
- for (Use &UsrOp : Usr.operands()) {
- if (UsrOp.get() == this)
- dropDroppableUse(UsrOp);
- }
- }
- void Value::dropDroppableUse(Use &U) {
- U.removeFromList();
- if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) {
- unsigned OpNo = U.getOperandNo();
- if (OpNo == 0)
- U.set(ConstantInt::getTrue(Assume->getContext()));
- else {
- U.set(UndefValue::get(U.get()->getType()));
- CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo);
- BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore");
- }
- return;
- }
- llvm_unreachable("unkown droppable use");
- }
- bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
- // This can be computed either by scanning the instructions in BB, or by
- // scanning the use list of this Value. Both lists can be very long, but
- // usually one is quite short.
- //
- // Scan both lists simultaneously until one is exhausted. This limits the
- // search to the shorter list.
- BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
- const_user_iterator UI = user_begin(), UE = user_end();
- for (; BI != BE && UI != UE; ++BI, ++UI) {
- // Scan basic block: Check if this Value is used by the instruction at BI.
- if (is_contained(BI->operands(), this))
- return true;
- // Scan use list: Check if the use at UI is in BB.
- const auto *User = dyn_cast<Instruction>(*UI);
- if (User && User->getParent() == BB)
- return true;
- }
- return false;
- }
- unsigned Value::getNumUses() const {
- return (unsigned)std::distance(use_begin(), use_end());
- }
- static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
- ST = nullptr;
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- if (BasicBlock *P = I->getParent())
- if (Function *PP = P->getParent())
- ST = PP->getValueSymbolTable();
- } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
- if (Function *P = BB->getParent())
- ST = P->getValueSymbolTable();
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- if (Module *P = GV->getParent())
- ST = &P->getValueSymbolTable();
- } else if (Argument *A = dyn_cast<Argument>(V)) {
- if (Function *P = A->getParent())
- ST = P->getValueSymbolTable();
- } else {
- assert(isa<Constant>(V) && "Unknown value type!");
- return true; // no name is setable for this.
- }
- return false;
- }
- ValueName *Value::getValueName() const {
- if (!HasName) return nullptr;
- LLVMContext &Ctx = getContext();
- auto I = Ctx.pImpl->ValueNames.find(this);
- assert(I != Ctx.pImpl->ValueNames.end() &&
- "No name entry found!");
- return I->second;
- }
- void Value::setValueName(ValueName *VN) {
- LLVMContext &Ctx = getContext();
- assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
- "HasName bit out of sync!");
- if (!VN) {
- if (HasName)
- Ctx.pImpl->ValueNames.erase(this);
- HasName = false;
- return;
- }
- HasName = true;
- Ctx.pImpl->ValueNames[this] = VN;
- }
- StringRef Value::getName() const {
- // Make sure the empty string is still a C string. For historical reasons,
- // some clients want to call .data() on the result and expect it to be null
- // terminated.
- if (!hasName())
- return StringRef("", 0);
- return getValueName()->getKey();
- }
- void Value::setNameImpl(const Twine &NewName) {
- // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
- if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
- return;
- // Fast path for common IRBuilder case of setName("") when there is no name.
- if (NewName.isTriviallyEmpty() && !hasName())
- return;
- SmallString<256> NameData;
- StringRef NameRef = NewName.toStringRef(NameData);
- assert(NameRef.find_first_of(0) == StringRef::npos &&
- "Null bytes are not allowed in names");
- // Name isn't changing?
- if (getName() == NameRef)
- return;
- assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
- // Get the symbol table to update for this object.
- ValueSymbolTable *ST;
- if (getSymTab(this, ST))
- return; // Cannot set a name on this value (e.g. constant).
- if (!ST) { // No symbol table to update? Just do the change.
- if (NameRef.empty()) {
- // Free the name for this value.
- destroyValueName();
- return;
- }
- // NOTE: Could optimize for the case the name is shrinking to not deallocate
- // then reallocated.
- destroyValueName();
- // Create the new name.
- MallocAllocator Allocator;
- setValueName(ValueName::create(NameRef, Allocator));
- getValueName()->setValue(this);
- return;
- }
- // NOTE: Could optimize for the case the name is shrinking to not deallocate
- // then reallocated.
- if (hasName()) {
- // Remove old name.
- ST->removeValueName(getValueName());
- destroyValueName();
- if (NameRef.empty())
- return;
- }
- // Name is changing to something new.
- setValueName(ST->createValueName(NameRef, this));
- }
- void Value::setName(const Twine &NewName) {
- setNameImpl(NewName);
- if (Function *F = dyn_cast<Function>(this))
- F->recalculateIntrinsicID();
- }
- void Value::takeName(Value *V) {
- assert(V != this && "Illegal call to this->takeName(this)!");
- ValueSymbolTable *ST = nullptr;
- // If this value has a name, drop it.
- if (hasName()) {
- // Get the symtab this is in.
- if (getSymTab(this, ST)) {
- // We can't set a name on this value, but we need to clear V's name if
- // it has one.
- if (V->hasName()) V->setName("");
- return; // Cannot set a name on this value (e.g. constant).
- }
- // Remove old name.
- if (ST)
- ST->removeValueName(getValueName());
- destroyValueName();
- }
- // Now we know that this has no name.
- // If V has no name either, we're done.
- if (!V->hasName()) return;
- // Get this's symtab if we didn't before.
- if (!ST) {
- if (getSymTab(this, ST)) {
- // Clear V's name.
- V->setName("");
- return; // Cannot set a name on this value (e.g. constant).
- }
- }
- // Get V's ST, this should always succeed, because V has a name.
- ValueSymbolTable *VST;
- bool Failure = getSymTab(V, VST);
- assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
- // If these values are both in the same symtab, we can do this very fast.
- // This works even if both values have no symtab yet.
- if (ST == VST) {
- // Take the name!
- setValueName(V->getValueName());
- V->setValueName(nullptr);
- getValueName()->setValue(this);
- return;
- }
- // Otherwise, things are slightly more complex. Remove V's name from VST and
- // then reinsert it into ST.
- if (VST)
- VST->removeValueName(V->getValueName());
- setValueName(V->getValueName());
- V->setValueName(nullptr);
- getValueName()->setValue(this);
- if (ST)
- ST->reinsertValue(this);
- }
- #ifndef NDEBUG
- std::string Value::getNameOrAsOperand() const {
- if (!getName().empty())
- return std::string(getName());
- std::string BBName;
- raw_string_ostream OS(BBName);
- printAsOperand(OS, false);
- return OS.str();
- }
- #endif
- void Value::assertModuleIsMaterializedImpl() const {
- #ifndef NDEBUG
- const GlobalValue *GV = dyn_cast<GlobalValue>(this);
- if (!GV)
- return;
- const Module *M = GV->getParent();
- if (!M)
- return;
- assert(M->isMaterialized());
- #endif
- }
- #ifndef NDEBUG
- static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
- Constant *C) {
- if (!Cache.insert(Expr).second)
- return false;
- for (auto &O : Expr->operands()) {
- if (O == C)
- return true;
- auto *CE = dyn_cast<ConstantExpr>(O);
- if (!CE)
- continue;
- if (contains(Cache, CE, C))
- return true;
- }
- return false;
- }
- static bool contains(Value *Expr, Value *V) {
- if (Expr == V)
- return true;
- auto *C = dyn_cast<Constant>(V);
- if (!C)
- return false;
- auto *CE = dyn_cast<ConstantExpr>(Expr);
- if (!CE)
- return false;
- SmallPtrSet<ConstantExpr *, 4> Cache;
- return contains(Cache, CE, C);
- }
- #endif // NDEBUG
- void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
- assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
- assert(!contains(New, this) &&
- "this->replaceAllUsesWith(expr(this)) is NOT valid!");
- assert(New->getType() == getType() &&
- "replaceAllUses of value with new value of different type!");
- // Notify all ValueHandles (if present) that this value is going away.
- if (HasValueHandle)
- ValueHandleBase::ValueIsRAUWd(this, New);
- if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
- ValueAsMetadata::handleRAUW(this, New);
- while (!materialized_use_empty()) {
- Use &U = *UseList;
- // Must handle Constants specially, we cannot call replaceUsesOfWith on a
- // constant because they are uniqued.
- if (auto *C = dyn_cast<Constant>(U.getUser())) {
- if (!isa<GlobalValue>(C)) {
- C->handleOperandChange(this, New);
- continue;
- }
- }
- U.set(New);
- }
- if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
- BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
- }
- void Value::replaceAllUsesWith(Value *New) {
- doRAUW(New, ReplaceMetadataUses::Yes);
- }
- void Value::replaceNonMetadataUsesWith(Value *New) {
- doRAUW(New, ReplaceMetadataUses::No);
- }
- void Value::replaceUsesWithIf(Value *New,
- llvm::function_ref<bool(Use &U)> ShouldReplace) {
- assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
- assert(New->getType() == getType() &&
- "replaceUses of value with new value of different type!");
- SmallVector<TrackingVH<Constant>, 8> Consts;
- SmallPtrSet<Constant *, 8> Visited;
- for (Use &U : llvm::make_early_inc_range(uses())) {
- if (!ShouldReplace(U))
- continue;
- // Must handle Constants specially, we cannot call replaceUsesOfWith on a
- // constant because they are uniqued.
- if (auto *C = dyn_cast<Constant>(U.getUser())) {
- if (!isa<GlobalValue>(C)) {
- if (Visited.insert(C).second)
- Consts.push_back(TrackingVH<Constant>(C));
- continue;
- }
- }
- U.set(New);
- }
- while (!Consts.empty()) {
- // FIXME: handleOperandChange() updates all the uses in a given Constant,
- // not just the one passed to ShouldReplace
- Consts.pop_back_val()->handleOperandChange(this, New);
- }
- }
- /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB
- /// with New.
- static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) {
- SmallVector<DbgVariableIntrinsic *> DbgUsers;
- findDbgUsers(DbgUsers, V);
- for (auto *DVI : DbgUsers) {
- if (DVI->getParent() != BB)
- DVI->replaceVariableLocationOp(V, New);
- }
- }
- // Like replaceAllUsesWith except it does not handle constants or basic blocks.
- // This routine leaves uses within BB.
- void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
- assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
- assert(!contains(New, this) &&
- "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
- assert(New->getType() == getType() &&
- "replaceUses of value with new value of different type!");
- assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
- replaceDbgUsesOutsideBlock(this, New, BB);
- replaceUsesWithIf(New, [BB](Use &U) {
- auto *I = dyn_cast<Instruction>(U.getUser());
- // Don't replace if it's an instruction in the BB basic block.
- return !I || I->getParent() != BB;
- });
- }
- namespace {
- // Various metrics for how much to strip off of pointers.
- enum PointerStripKind {
- PSK_ZeroIndices,
- PSK_ZeroIndicesAndAliases,
- PSK_ZeroIndicesSameRepresentation,
- PSK_ForAliasAnalysis,
- PSK_InBoundsConstantIndices,
- PSK_InBounds
- };
- template <PointerStripKind StripKind> static void NoopCallback(const Value *) {}
- template <PointerStripKind StripKind>
- static const Value *stripPointerCastsAndOffsets(
- const Value *V,
- function_ref<void(const Value *)> Func = NoopCallback<StripKind>) {
- if (!V->getType()->isPointerTy())
- return V;
- // Even though we don't look through PHI nodes, we could be called on an
- // instruction in an unreachable block, which may be on a cycle.
- SmallPtrSet<const Value *, 4> Visited;
- Visited.insert(V);
- do {
- Func(V);
- if (auto *GEP = dyn_cast<GEPOperator>(V)) {
- switch (StripKind) {
- case PSK_ZeroIndices:
- case PSK_ZeroIndicesAndAliases:
- case PSK_ZeroIndicesSameRepresentation:
- case PSK_ForAliasAnalysis:
- if (!GEP->hasAllZeroIndices())
- return V;
- break;
- case PSK_InBoundsConstantIndices:
- if (!GEP->hasAllConstantIndices())
- return V;
- [[fallthrough]];
- case PSK_InBounds:
- if (!GEP->isInBounds())
- return V;
- break;
- }
- V = GEP->getPointerOperand();
- } else if (Operator::getOpcode(V) == Instruction::BitCast) {
- V = cast<Operator>(V)->getOperand(0);
- if (!V->getType()->isPointerTy())
- return V;
- } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
- Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
- // TODO: If we know an address space cast will not change the
- // representation we could look through it here as well.
- V = cast<Operator>(V)->getOperand(0);
- } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
- V = cast<GlobalAlias>(V)->getAliasee();
- } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) &&
- cast<PHINode>(V)->getNumIncomingValues() == 1) {
- V = cast<PHINode>(V)->getIncomingValue(0);
- } else {
- if (const auto *Call = dyn_cast<CallBase>(V)) {
- if (const Value *RV = Call->getReturnedArgOperand()) {
- V = RV;
- continue;
- }
- // The result of launder.invariant.group must alias it's argument,
- // but it can't be marked with returned attribute, that's why it needs
- // special case.
- if (StripKind == PSK_ForAliasAnalysis &&
- (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
- Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
- V = Call->getArgOperand(0);
- continue;
- }
- }
- return V;
- }
- assert(V->getType()->isPointerTy() && "Unexpected operand type!");
- } while (Visited.insert(V).second);
- return V;
- }
- } // end anonymous namespace
- const Value *Value::stripPointerCasts() const {
- return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
- }
- const Value *Value::stripPointerCastsAndAliases() const {
- return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
- }
- const Value *Value::stripPointerCastsSameRepresentation() const {
- return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
- }
- const Value *Value::stripInBoundsConstantOffsets() const {
- return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
- }
- const Value *Value::stripPointerCastsForAliasAnalysis() const {
- return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this);
- }
- const Value *Value::stripAndAccumulateConstantOffsets(
- const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
- bool AllowInvariantGroup,
- function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
- if (!getType()->isPtrOrPtrVectorTy())
- return this;
- unsigned BitWidth = Offset.getBitWidth();
- assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
- "The offset bit width does not match the DL specification.");
- // Even though we don't look through PHI nodes, we could be called on an
- // instruction in an unreachable block, which may be on a cycle.
- SmallPtrSet<const Value *, 4> Visited;
- Visited.insert(this);
- const Value *V = this;
- do {
- if (auto *GEP = dyn_cast<GEPOperator>(V)) {
- // If in-bounds was requested, we do not strip non-in-bounds GEPs.
- if (!AllowNonInbounds && !GEP->isInBounds())
- return V;
- // If one of the values we have visited is an addrspacecast, then
- // the pointer type of this GEP may be different from the type
- // of the Ptr parameter which was passed to this function. This
- // means when we construct GEPOffset, we need to use the size
- // of GEP's pointer type rather than the size of the original
- // pointer type.
- APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
- if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis))
- return V;
- // Stop traversal if the pointer offset wouldn't fit in the bit-width
- // provided by the Offset argument. This can happen due to AddrSpaceCast
- // stripping.
- if (GEPOffset.getMinSignedBits() > BitWidth)
- return V;
- // External Analysis can return a result higher/lower than the value
- // represents. We need to detect overflow/underflow.
- APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth);
- if (!ExternalAnalysis) {
- Offset += GEPOffsetST;
- } else {
- bool Overflow = false;
- APInt OldOffset = Offset;
- Offset = Offset.sadd_ov(GEPOffsetST, Overflow);
- if (Overflow) {
- Offset = OldOffset;
- return V;
- }
- }
- V = GEP->getPointerOperand();
- } else if (Operator::getOpcode(V) == Instruction::BitCast ||
- Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
- V = cast<Operator>(V)->getOperand(0);
- } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
- if (!GA->isInterposable())
- V = GA->getAliasee();
- } else if (const auto *Call = dyn_cast<CallBase>(V)) {
- if (const Value *RV = Call->getReturnedArgOperand())
- V = RV;
- if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup())
- V = Call->getArgOperand(0);
- }
- assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
- } while (Visited.insert(V).second);
- return V;
- }
- const Value *
- Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const {
- return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func);
- }
- bool Value::canBeFreed() const {
- assert(getType()->isPointerTy());
- // Cases that can simply never be deallocated
- // *) Constants aren't allocated per se, thus not deallocated either.
- if (isa<Constant>(this))
- return false;
- // Handle byval/byref/sret/inalloca/preallocated arguments. The storage
- // lifetime is guaranteed to be longer than the callee's lifetime.
- if (auto *A = dyn_cast<Argument>(this)) {
- if (A->hasPointeeInMemoryValueAttr())
- return false;
- // A pointer to an object in a function which neither frees, nor can arrange
- // for another thread to free on its behalf, can not be freed in the scope
- // of the function. Note that this logic is restricted to memory
- // allocations in existance before the call; a nofree function *is* allowed
- // to free memory it allocated.
- const Function *F = A->getParent();
- if (F->doesNotFreeMemory() && F->hasNoSync())
- return false;
- }
- const Function *F = nullptr;
- if (auto *I = dyn_cast<Instruction>(this))
- F = I->getFunction();
- if (auto *A = dyn_cast<Argument>(this))
- F = A->getParent();
- if (!F)
- return true;
- // With garbage collection, deallocation typically occurs solely at or after
- // safepoints. If we're compiling for a collector which uses the
- // gc.statepoint infrastructure, safepoints aren't explicitly present
- // in the IR until after lowering from abstract to physical machine model.
- // The collector could chose to mix explicit deallocation and gc'd objects
- // which is why we need the explicit opt in on a per collector basis.
- if (!F->hasGC())
- return true;
-
- const auto &GCName = F->getGC();
- if (GCName == "statepoint-example") {
- auto *PT = cast<PointerType>(this->getType());
- if (PT->getAddressSpace() != 1)
- // For the sake of this example GC, we arbitrarily pick addrspace(1) as
- // our GC managed heap. This must match the same check in
- // RewriteStatepointsForGC (and probably needs better factored.)
- return true;
- // It is cheaper to scan for a declaration than to scan for a use in this
- // function. Note that gc.statepoint is a type overloaded function so the
- // usual trick of requesting declaration of the intrinsic from the module
- // doesn't work.
- for (auto &Fn : *F->getParent())
- if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint)
- return true;
- return false;
- }
- return true;
- }
- uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
- bool &CanBeNull,
- bool &CanBeFreed) const {
- assert(getType()->isPointerTy() && "must be pointer");
- uint64_t DerefBytes = 0;
- CanBeNull = false;
- CanBeFreed = UseDerefAtPointSemantics && canBeFreed();
- if (const Argument *A = dyn_cast<Argument>(this)) {
- DerefBytes = A->getDereferenceableBytes();
- if (DerefBytes == 0) {
- // Handle byval/byref/inalloca/preallocated arguments
- if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) {
- if (ArgMemTy->isSized()) {
- // FIXME: Why isn't this the type alloc size?
- DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinValue();
- }
- }
- }
- if (DerefBytes == 0) {
- DerefBytes = A->getDereferenceableOrNullBytes();
- CanBeNull = true;
- }
- } else if (const auto *Call = dyn_cast<CallBase>(this)) {
- DerefBytes = Call->getRetDereferenceableBytes();
- if (DerefBytes == 0) {
- DerefBytes = Call->getRetDereferenceableOrNullBytes();
- CanBeNull = true;
- }
- } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
- if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
- ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
- DerefBytes = CI->getLimitedValue();
- }
- if (DerefBytes == 0) {
- if (MDNode *MD =
- LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
- ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
- DerefBytes = CI->getLimitedValue();
- }
- CanBeNull = true;
- }
- } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
- if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
- ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
- DerefBytes = CI->getLimitedValue();
- }
- if (DerefBytes == 0) {
- if (MDNode *MD =
- IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
- ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
- DerefBytes = CI->getLimitedValue();
- }
- CanBeNull = true;
- }
- } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
- if (!AI->isArrayAllocation()) {
- DerefBytes =
- DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinValue();
- CanBeNull = false;
- CanBeFreed = false;
- }
- } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
- if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
- // TODO: Don't outright reject hasExternalWeakLinkage but set the
- // CanBeNull flag.
- DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedValue();
- CanBeNull = false;
- CanBeFreed = false;
- }
- }
- return DerefBytes;
- }
- Align Value::getPointerAlignment(const DataLayout &DL) const {
- assert(getType()->isPointerTy() && "must be pointer");
- if (auto *GO = dyn_cast<GlobalObject>(this)) {
- if (isa<Function>(GO)) {
- Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne();
- switch (DL.getFunctionPtrAlignType()) {
- case DataLayout::FunctionPtrAlignType::Independent:
- return FunctionPtrAlign;
- case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
- return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne());
- }
- llvm_unreachable("Unhandled FunctionPtrAlignType");
- }
- const MaybeAlign Alignment(GO->getAlign());
- if (!Alignment) {
- if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
- Type *ObjectType = GVar->getValueType();
- if (ObjectType->isSized()) {
- // If the object is defined in the current Module, we'll be giving
- // it the preferred alignment. Otherwise, we have to assume that it
- // may only have the minimum ABI alignment.
- if (GVar->isStrongDefinitionForLinker())
- return DL.getPreferredAlign(GVar);
- else
- return DL.getABITypeAlign(ObjectType);
- }
- }
- }
- return Alignment.valueOrOne();
- } else if (const Argument *A = dyn_cast<Argument>(this)) {
- const MaybeAlign Alignment = A->getParamAlign();
- if (!Alignment && A->hasStructRetAttr()) {
- // An sret parameter has at least the ABI alignment of the return type.
- Type *EltTy = A->getParamStructRetType();
- if (EltTy->isSized())
- return DL.getABITypeAlign(EltTy);
- }
- return Alignment.valueOrOne();
- } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
- return AI->getAlign();
- } else if (const auto *Call = dyn_cast<CallBase>(this)) {
- MaybeAlign Alignment = Call->getRetAlign();
- if (!Alignment && Call->getCalledFunction())
- Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment();
- return Alignment.valueOrOne();
- } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
- if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
- ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
- return Align(CI->getLimitedValue());
- }
- } else if (auto *CstPtr = dyn_cast<Constant>(this)) {
- // Strip pointer casts to avoid creating unnecessary ptrtoint expression
- // if the only "reduction" is combining a bitcast + ptrtoint.
- CstPtr = CstPtr->stripPointerCasts();
- if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt(
- const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()),
- /*OnlyIfReduced=*/true))) {
- size_t TrailingZeros = CstInt->getValue().countTrailingZeros();
- // While the actual alignment may be large, elsewhere we have
- // an arbitrary upper alignmet limit, so let's clamp to it.
- return Align(TrailingZeros < Value::MaxAlignmentExponent
- ? uint64_t(1) << TrailingZeros
- : Value::MaximumAlignment);
- }
- }
- return Align(1);
- }
- const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
- const BasicBlock *PredBB) const {
- auto *PN = dyn_cast<PHINode>(this);
- if (PN && PN->getParent() == CurBB)
- return PN->getIncomingValueForBlock(PredBB);
- return this;
- }
- LLVMContext &Value::getContext() const { return VTy->getContext(); }
- void Value::reverseUseList() {
- if (!UseList || !UseList->Next)
- // No need to reverse 0 or 1 uses.
- return;
- Use *Head = UseList;
- Use *Current = UseList->Next;
- Head->Next = nullptr;
- while (Current) {
- Use *Next = Current->Next;
- Current->Next = Head;
- Head->Prev = &Current->Next;
- Head = Current;
- Current = Next;
- }
- UseList = Head;
- Head->Prev = &UseList;
- }
- bool Value::isSwiftError() const {
- auto *Arg = dyn_cast<Argument>(this);
- if (Arg)
- return Arg->hasSwiftErrorAttr();
- auto *Alloca = dyn_cast<AllocaInst>(this);
- if (!Alloca)
- return false;
- return Alloca->isSwiftError();
- }
- //===----------------------------------------------------------------------===//
- // ValueHandleBase Class
- //===----------------------------------------------------------------------===//
- void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
- assert(List && "Handle list is null?");
- // Splice ourselves into the list.
- Next = *List;
- *List = this;
- setPrevPtr(List);
- if (Next) {
- Next->setPrevPtr(&Next);
- assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
- }
- }
- void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
- assert(List && "Must insert after existing node");
- Next = List->Next;
- setPrevPtr(&List->Next);
- List->Next = this;
- if (Next)
- Next->setPrevPtr(&Next);
- }
- void ValueHandleBase::AddToUseList() {
- assert(getValPtr() && "Null pointer doesn't have a use list!");
- LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
- if (getValPtr()->HasValueHandle) {
- // If this value already has a ValueHandle, then it must be in the
- // ValueHandles map already.
- ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
- assert(Entry && "Value doesn't have any handles?");
- AddToExistingUseList(&Entry);
- return;
- }
- // Ok, it doesn't have any handles yet, so we must insert it into the
- // DenseMap. However, doing this insertion could cause the DenseMap to
- // reallocate itself, which would invalidate all of the PrevP pointers that
- // point into the old table. Handle this by checking for reallocation and
- // updating the stale pointers only if needed.
- DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
- const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
- ValueHandleBase *&Entry = Handles[getValPtr()];
- assert(!Entry && "Value really did already have handles?");
- AddToExistingUseList(&Entry);
- getValPtr()->HasValueHandle = true;
- // If reallocation didn't happen or if this was the first insertion, don't
- // walk the table.
- if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
- Handles.size() == 1) {
- return;
- }
- // Okay, reallocation did happen. Fix the Prev Pointers.
- for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
- E = Handles.end(); I != E; ++I) {
- assert(I->second && I->first == I->second->getValPtr() &&
- "List invariant broken!");
- I->second->setPrevPtr(&I->second);
- }
- }
- void ValueHandleBase::RemoveFromUseList() {
- assert(getValPtr() && getValPtr()->HasValueHandle &&
- "Pointer doesn't have a use list!");
- // Unlink this from its use list.
- ValueHandleBase **PrevPtr = getPrevPtr();
- assert(*PrevPtr == this && "List invariant broken");
- *PrevPtr = Next;
- if (Next) {
- assert(Next->getPrevPtr() == &Next && "List invariant broken");
- Next->setPrevPtr(PrevPtr);
- return;
- }
- // If the Next pointer was null, then it is possible that this was the last
- // ValueHandle watching VP. If so, delete its entry from the ValueHandles
- // map.
- LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
- DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
- if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
- Handles.erase(getValPtr());
- getValPtr()->HasValueHandle = false;
- }
- }
- void ValueHandleBase::ValueIsDeleted(Value *V) {
- assert(V->HasValueHandle && "Should only be called if ValueHandles present");
- // Get the linked list base, which is guaranteed to exist since the
- // HasValueHandle flag is set.
- LLVMContextImpl *pImpl = V->getContext().pImpl;
- ValueHandleBase *Entry = pImpl->ValueHandles[V];
- assert(Entry && "Value bit set but no entries exist");
- // We use a local ValueHandleBase as an iterator so that ValueHandles can add
- // and remove themselves from the list without breaking our iteration. This
- // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
- // Note that we deliberately do not the support the case when dropping a value
- // handle results in a new value handle being permanently added to the list
- // (as might occur in theory for CallbackVH's): the new value handle will not
- // be processed and the checking code will mete out righteous punishment if
- // the handle is still present once we have finished processing all the other
- // value handles (it is fine to momentarily add then remove a value handle).
- for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
- Iterator.RemoveFromUseList();
- Iterator.AddToExistingUseListAfter(Entry);
- assert(Entry->Next == &Iterator && "Loop invariant broken.");
- switch (Entry->getKind()) {
- case Assert:
- break;
- case Weak:
- case WeakTracking:
- // WeakTracking and Weak just go to null, which unlinks them
- // from the list.
- Entry->operator=(nullptr);
- break;
- case Callback:
- // Forward to the subclass's implementation.
- static_cast<CallbackVH*>(Entry)->deleted();
- break;
- }
- }
- // All callbacks, weak references, and assertingVHs should be dropped by now.
- if (V->HasValueHandle) {
- #ifndef NDEBUG // Only in +Asserts mode...
- dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
- << "\n";
- if (pImpl->ValueHandles[V]->getKind() == Assert)
- llvm_unreachable("An asserting value handle still pointed to this"
- " value!");
- #endif
- llvm_unreachable("All references to V were not removed?");
- }
- }
- void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
- assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
- assert(Old != New && "Changing value into itself!");
- assert(Old->getType() == New->getType() &&
- "replaceAllUses of value with new value of different type!");
- // Get the linked list base, which is guaranteed to exist since the
- // HasValueHandle flag is set.
- LLVMContextImpl *pImpl = Old->getContext().pImpl;
- ValueHandleBase *Entry = pImpl->ValueHandles[Old];
- assert(Entry && "Value bit set but no entries exist");
- // We use a local ValueHandleBase as an iterator so that
- // ValueHandles can add and remove themselves from the list without
- // breaking our iteration. This is not really an AssertingVH; we
- // just have to give ValueHandleBase some kind.
- for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
- Iterator.RemoveFromUseList();
- Iterator.AddToExistingUseListAfter(Entry);
- assert(Entry->Next == &Iterator && "Loop invariant broken.");
- switch (Entry->getKind()) {
- case Assert:
- case Weak:
- // Asserting and Weak handles do not follow RAUW implicitly.
- break;
- case WeakTracking:
- // Weak goes to the new value, which will unlink it from Old's list.
- Entry->operator=(New);
- break;
- case Callback:
- // Forward to the subclass's implementation.
- static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
- break;
- }
- }
- #ifndef NDEBUG
- // If any new weak value handles were added while processing the
- // list, then complain about it now.
- if (Old->HasValueHandle)
- for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
- switch (Entry->getKind()) {
- case WeakTracking:
- dbgs() << "After RAUW from " << *Old->getType() << " %"
- << Old->getName() << " to " << *New->getType() << " %"
- << New->getName() << "\n";
- llvm_unreachable(
- "A weak tracking value handle still pointed to the old value!\n");
- default:
- break;
- }
- #endif
- }
- // Pin the vtable to this file.
- void CallbackVH::anchor() {}
|