123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// This file defines the SparseMultiSet class, which adds multiset behavior to
- /// the SparseSet.
- ///
- /// A sparse multiset holds a small number of objects identified by integer keys
- /// from a moderately sized universe. The sparse multiset uses more memory than
- /// other containers in order to provide faster operations. Any key can map to
- /// multiple values. A SparseMultiSetNode class is provided, which serves as a
- /// convenient base class for the contents of a SparseMultiSet.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_SPARSEMULTISET_H
- #define LLVM_ADT_SPARSEMULTISET_H
- #include "llvm/ADT/identity.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/SparseSet.h"
- #include <cassert>
- #include <cstdint>
- #include <cstdlib>
- #include <iterator>
- #include <limits>
- #include <utility>
- namespace llvm {
- /// Fast multiset implementation for objects that can be identified by small
- /// unsigned keys.
- ///
- /// SparseMultiSet allocates memory proportional to the size of the key
- /// universe, so it is not recommended for building composite data structures.
- /// It is useful for algorithms that require a single set with fast operations.
- ///
- /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
- /// fast clear() as fast as a vector. The find(), insert(), and erase()
- /// operations are all constant time, and typically faster than a hash table.
- /// The iteration order doesn't depend on numerical key values, it only depends
- /// on the order of insert() and erase() operations. Iteration order is the
- /// insertion order. Iteration is only provided over elements of equivalent
- /// keys, but iterators are bidirectional.
- ///
- /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
- /// offers constant-time clear() and size() operations as well as fast iteration
- /// independent on the size of the universe.
- ///
- /// SparseMultiSet contains a dense vector holding all the objects and a sparse
- /// array holding indexes into the dense vector. Most of the memory is used by
- /// the sparse array which is the size of the key universe. The SparseT template
- /// parameter provides a space/speed tradeoff for sets holding many elements.
- ///
- /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
- /// sparse array uses 4 x Universe bytes.
- ///
- /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
- /// lines, but the sparse array is 4x smaller. N is the number of elements in
- /// the set.
- ///
- /// For sets that may grow to thousands of elements, SparseT should be set to
- /// uint16_t or uint32_t.
- ///
- /// Multiset behavior is provided by providing doubly linked lists for values
- /// that are inlined in the dense vector. SparseMultiSet is a good choice when
- /// one desires a growable number of entries per key, as it will retain the
- /// SparseSet algorithmic properties despite being growable. Thus, it is often a
- /// better choice than a SparseSet of growable containers or a vector of
- /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
- /// the iterators don't point to the element erased), allowing for more
- /// intuitive and fast removal.
- ///
- /// @tparam ValueT The type of objects in the set.
- /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
- /// @tparam SparseT An unsigned integer type. See above.
- ///
- template<typename ValueT,
- typename KeyFunctorT = identity<unsigned>,
- typename SparseT = uint8_t>
- class SparseMultiSet {
- static_assert(std::is_unsigned_v<SparseT>,
- "SparseT must be an unsigned integer type");
- /// The actual data that's stored, as a doubly-linked list implemented via
- /// indices into the DenseVector. The doubly linked list is implemented
- /// circular in Prev indices, and INVALID-terminated in Next indices. This
- /// provides efficient access to list tails. These nodes can also be
- /// tombstones, in which case they are actually nodes in a single-linked
- /// freelist of recyclable slots.
- struct SMSNode {
- static constexpr unsigned INVALID = ~0U;
- ValueT Data;
- unsigned Prev;
- unsigned Next;
- SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {}
- /// List tails have invalid Nexts.
- bool isTail() const {
- return Next == INVALID;
- }
- /// Whether this node is a tombstone node, and thus is in our freelist.
- bool isTombstone() const {
- return Prev == INVALID;
- }
- /// Since the list is circular in Prev, all non-tombstone nodes have a valid
- /// Prev.
- bool isValid() const { return Prev != INVALID; }
- };
- using KeyT = typename KeyFunctorT::argument_type;
- using DenseT = SmallVector<SMSNode, 8>;
- DenseT Dense;
- SparseT *Sparse = nullptr;
- unsigned Universe = 0;
- KeyFunctorT KeyIndexOf;
- SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
- /// We have a built-in recycler for reusing tombstone slots. This recycler
- /// puts a singly-linked free list into tombstone slots, allowing us quick
- /// erasure, iterator preservation, and dense size.
- unsigned FreelistIdx = SMSNode::INVALID;
- unsigned NumFree = 0;
- unsigned sparseIndex(const ValueT &Val) const {
- assert(ValIndexOf(Val) < Universe &&
- "Invalid key in set. Did object mutate?");
- return ValIndexOf(Val);
- }
- unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
- /// Whether the given entry is the head of the list. List heads's previous
- /// pointers are to the tail of the list, allowing for efficient access to the
- /// list tail. D must be a valid entry node.
- bool isHead(const SMSNode &D) const {
- assert(D.isValid() && "Invalid node for head");
- return Dense[D.Prev].isTail();
- }
- /// Whether the given entry is a singleton entry, i.e. the only entry with
- /// that key.
- bool isSingleton(const SMSNode &N) const {
- assert(N.isValid() && "Invalid node for singleton");
- // Is N its own predecessor?
- return &Dense[N.Prev] == &N;
- }
- /// Add in the given SMSNode. Uses a free entry in our freelist if
- /// available. Returns the index of the added node.
- unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
- if (NumFree == 0) {
- Dense.push_back(SMSNode(V, Prev, Next));
- return Dense.size() - 1;
- }
- // Peel off a free slot
- unsigned Idx = FreelistIdx;
- unsigned NextFree = Dense[Idx].Next;
- assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
- Dense[Idx] = SMSNode(V, Prev, Next);
- FreelistIdx = NextFree;
- --NumFree;
- return Idx;
- }
- /// Make the current index a new tombstone. Pushes it onto the freelist.
- void makeTombstone(unsigned Idx) {
- Dense[Idx].Prev = SMSNode::INVALID;
- Dense[Idx].Next = FreelistIdx;
- FreelistIdx = Idx;
- ++NumFree;
- }
- public:
- using value_type = ValueT;
- using reference = ValueT &;
- using const_reference = const ValueT &;
- using pointer = ValueT *;
- using const_pointer = const ValueT *;
- using size_type = unsigned;
- SparseMultiSet() = default;
- SparseMultiSet(const SparseMultiSet &) = delete;
- SparseMultiSet &operator=(const SparseMultiSet &) = delete;
- ~SparseMultiSet() { free(Sparse); }
- /// Set the universe size which determines the largest key the set can hold.
- /// The universe must be sized before any elements can be added.
- ///
- /// @param U Universe size. All object keys must be less than U.
- ///
- void setUniverse(unsigned U) {
- // It's not hard to resize the universe on a non-empty set, but it doesn't
- // seem like a likely use case, so we can add that code when we need it.
- assert(empty() && "Can only resize universe on an empty map");
- // Hysteresis prevents needless reallocations.
- if (U >= Universe/4 && U <= Universe)
- return;
- free(Sparse);
- // The Sparse array doesn't actually need to be initialized, so malloc
- // would be enough here, but that will cause tools like valgrind to
- // complain about branching on uninitialized data.
- Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT)));
- Universe = U;
- }
- /// Our iterators are iterators over the collection of objects that share a
- /// key.
- template <typename SMSPtrTy> class iterator_base {
- friend class SparseMultiSet;
- public:
- using iterator_category = std::bidirectional_iterator_tag;
- using value_type = ValueT;
- using difference_type = std::ptrdiff_t;
- using pointer = value_type *;
- using reference = value_type &;
- private:
- SMSPtrTy SMS;
- unsigned Idx;
- unsigned SparseIdx;
- iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
- : SMS(P), Idx(I), SparseIdx(SI) {}
- /// Whether our iterator has fallen outside our dense vector.
- bool isEnd() const {
- if (Idx == SMSNode::INVALID)
- return true;
- assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
- return false;
- }
- /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
- bool isKeyed() const { return SparseIdx < SMS->Universe; }
- unsigned Prev() const { return SMS->Dense[Idx].Prev; }
- unsigned Next() const { return SMS->Dense[Idx].Next; }
- void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
- void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
- public:
- reference operator*() const {
- assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
- "Dereferencing iterator of invalid key or index");
- return SMS->Dense[Idx].Data;
- }
- pointer operator->() const { return &operator*(); }
- /// Comparison operators
- bool operator==(const iterator_base &RHS) const {
- // end compares equal
- if (SMS == RHS.SMS && Idx == RHS.Idx) {
- assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
- "Same dense entry, but different keys?");
- return true;
- }
- return false;
- }
- bool operator!=(const iterator_base &RHS) const {
- return !operator==(RHS);
- }
- /// Increment and decrement operators
- iterator_base &operator--() { // predecrement - Back up
- assert(isKeyed() && "Decrementing an invalid iterator");
- assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
- "Decrementing head of list");
- // If we're at the end, then issue a new find()
- if (isEnd())
- Idx = SMS->findIndex(SparseIdx).Prev();
- else
- Idx = Prev();
- return *this;
- }
- iterator_base &operator++() { // preincrement - Advance
- assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
- Idx = Next();
- return *this;
- }
- iterator_base operator--(int) { // postdecrement
- iterator_base I(*this);
- --*this;
- return I;
- }
- iterator_base operator++(int) { // postincrement
- iterator_base I(*this);
- ++*this;
- return I;
- }
- };
- using iterator = iterator_base<SparseMultiSet *>;
- using const_iterator = iterator_base<const SparseMultiSet *>;
- // Convenience types
- using RangePair = std::pair<iterator, iterator>;
- /// Returns an iterator past this container. Note that such an iterator cannot
- /// be decremented, but will compare equal to other end iterators.
- iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
- const_iterator end() const {
- return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
- }
- /// Returns true if the set is empty.
- ///
- /// This is not the same as BitVector::empty().
- ///
- bool empty() const { return size() == 0; }
- /// Returns the number of elements in the set.
- ///
- /// This is not the same as BitVector::size() which returns the size of the
- /// universe.
- ///
- size_type size() const {
- assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
- return Dense.size() - NumFree;
- }
- /// Clears the set. This is a very fast constant time operation.
- ///
- void clear() {
- // Sparse does not need to be cleared, see find().
- Dense.clear();
- NumFree = 0;
- FreelistIdx = SMSNode::INVALID;
- }
- /// Find an element by its index.
- ///
- /// @param Idx A valid index to find.
- /// @returns An iterator to the element identified by key, or end().
- ///
- iterator findIndex(unsigned Idx) {
- assert(Idx < Universe && "Key out of range");
- const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
- for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
- const unsigned FoundIdx = sparseIndex(Dense[i]);
- // Check that we're pointing at the correct entry and that it is the head
- // of a valid list.
- if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
- return iterator(this, i, Idx);
- // Stride is 0 when SparseT >= unsigned. We don't need to loop.
- if (!Stride)
- break;
- }
- return end();
- }
- /// Find an element by its key.
- ///
- /// @param Key A valid key to find.
- /// @returns An iterator to the element identified by key, or end().
- ///
- iterator find(const KeyT &Key) {
- return findIndex(KeyIndexOf(Key));
- }
- const_iterator find(const KeyT &Key) const {
- iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
- return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
- }
- /// Returns the number of elements identified by Key. This will be linear in
- /// the number of elements of that key.
- size_type count(const KeyT &Key) const {
- unsigned Ret = 0;
- for (const_iterator It = find(Key); It != end(); ++It)
- ++Ret;
- return Ret;
- }
- /// Returns true if this set contains an element identified by Key.
- bool contains(const KeyT &Key) const {
- return find(Key) != end();
- }
- /// Return the head and tail of the subset's list, otherwise returns end().
- iterator getHead(const KeyT &Key) { return find(Key); }
- iterator getTail(const KeyT &Key) {
- iterator I = find(Key);
- if (I != end())
- I = iterator(this, I.Prev(), KeyIndexOf(Key));
- return I;
- }
- /// The bounds of the range of items sharing Key K. First member is the head
- /// of the list, and the second member is a decrementable end iterator for
- /// that key.
- RangePair equal_range(const KeyT &K) {
- iterator B = find(K);
- iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
- return std::make_pair(B, E);
- }
- /// Insert a new element at the tail of the subset list. Returns an iterator
- /// to the newly added entry.
- iterator insert(const ValueT &Val) {
- unsigned Idx = sparseIndex(Val);
- iterator I = findIndex(Idx);
- unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
- if (I == end()) {
- // Make a singleton list
- Sparse[Idx] = NodeIdx;
- Dense[NodeIdx].Prev = NodeIdx;
- return iterator(this, NodeIdx, Idx);
- }
- // Stick it at the end.
- unsigned HeadIdx = I.Idx;
- unsigned TailIdx = I.Prev();
- Dense[TailIdx].Next = NodeIdx;
- Dense[HeadIdx].Prev = NodeIdx;
- Dense[NodeIdx].Prev = TailIdx;
- return iterator(this, NodeIdx, Idx);
- }
- /// Erases an existing element identified by a valid iterator.
- ///
- /// This invalidates iterators pointing at the same entry, but erase() returns
- /// an iterator pointing to the next element in the subset's list. This makes
- /// it possible to erase selected elements while iterating over the subset:
- ///
- /// tie(I, E) = Set.equal_range(Key);
- /// while (I != E)
- /// if (test(*I))
- /// I = Set.erase(I);
- /// else
- /// ++I;
- ///
- /// Note that if the last element in the subset list is erased, this will
- /// return an end iterator which can be decremented to get the new tail (if it
- /// exists):
- ///
- /// tie(B, I) = Set.equal_range(Key);
- /// for (bool isBegin = B == I; !isBegin; /* empty */) {
- /// isBegin = (--I) == B;
- /// if (test(I))
- /// break;
- /// I = erase(I);
- /// }
- iterator erase(iterator I) {
- assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
- "erasing invalid/end/tombstone iterator");
- // First, unlink the node from its list. Then swap the node out with the
- // dense vector's last entry
- iterator NextI = unlink(Dense[I.Idx]);
- // Put in a tombstone.
- makeTombstone(I.Idx);
- return NextI;
- }
- /// Erase all elements with the given key. This invalidates all
- /// iterators of that key.
- void eraseAll(const KeyT &K) {
- for (iterator I = find(K); I != end(); /* empty */)
- I = erase(I);
- }
- private:
- /// Unlink the node from its list. Returns the next node in the list.
- iterator unlink(const SMSNode &N) {
- if (isSingleton(N)) {
- // Singleton is already unlinked
- assert(N.Next == SMSNode::INVALID && "Singleton has next?");
- return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
- }
- if (isHead(N)) {
- // If we're the head, then update the sparse array and our next.
- Sparse[sparseIndex(N)] = N.Next;
- Dense[N.Next].Prev = N.Prev;
- return iterator(this, N.Next, ValIndexOf(N.Data));
- }
- if (N.isTail()) {
- // If we're the tail, then update our head and our previous.
- findIndex(sparseIndex(N)).setPrev(N.Prev);
- Dense[N.Prev].Next = N.Next;
- // Give back an end iterator that can be decremented
- iterator I(this, N.Prev, ValIndexOf(N.Data));
- return ++I;
- }
- // Otherwise, just drop us
- Dense[N.Next].Prev = N.Prev;
- Dense[N.Prev].Next = N.Next;
- return iterator(this, N.Next, ValIndexOf(N.Data));
- }
- };
- } // end namespace llvm
- #endif // LLVM_ADT_SPARSEMULTISET_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|