123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- #include <contrib/libs/zstd06/renames.h>
- /* ******************************************************************
- FSE : Finite State Entropy codec
- Public Prototypes declaration
- Copyright (C) 2013-2016, Yann Collet.
- BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are
- met:
- * Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the following disclaimer
- in the documentation and/or other materials provided with the
- distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- You can contact the author at :
- - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- ****************************************************************** */
- #ifndef FSE_H
- #define FSE_H
- #if defined (__cplusplus)
- extern "C" {
- #endif
- /*-*****************************************
- * Dependencies
- ******************************************/
- #include <stddef.h> /* size_t, ptrdiff_t */
- /*-****************************************
- * FSE simple functions
- ******************************************/
- /*! FSE_compress() :
- Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
- 'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
- @return : size of compressed data (<= dstCapacity).
- Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
- if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
- if FSE_isError(return), compression failed (more details using FSE_getErrorName())
- */
- size_t FSE_compress(void* dst, size_t dstCapacity,
- const void* src, size_t srcSize);
- /*! FSE_decompress():
- Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
- into already allocated destination buffer 'dst', of size 'dstCapacity'.
- @return : size of regenerated data (<= maxDstSize),
- or an error code, which can be tested using FSE_isError() .
- ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
- Why ? : making this distinction requires a header.
- Header management is intentionally delegated to the user layer, which can better manage special cases.
- */
- size_t FSE_decompress(void* dst, size_t dstCapacity,
- const void* cSrc, size_t cSrcSize);
- /*-*****************************************
- * Tool functions
- ******************************************/
- size_t FSE_compressBound(size_t size); /* maximum compressed size */
- /* Error Management */
- unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
- const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */
- /*-*****************************************
- * FSE advanced functions
- ******************************************/
- /*! FSE_compress2() :
- Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
- Both parameters can be defined as '0' to mean : use default value
- @return : size of compressed data
- Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
- if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
- if FSE_isError(return), it's an error code.
- */
- size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
- /*-*****************************************
- * FSE detailed API
- ******************************************/
- /*!
- FSE_compress() does the following:
- 1. count symbol occurrence from source[] into table count[]
- 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
- 3. save normalized counters to memory buffer using writeNCount()
- 4. build encoding table 'CTable' from normalized counters
- 5. encode the data stream using encoding table 'CTable'
- FSE_decompress() does the following:
- 1. read normalized counters with readNCount()
- 2. build decoding table 'DTable' from normalized counters
- 3. decode the data stream using decoding table 'DTable'
- The following API allows targeting specific sub-functions for advanced tasks.
- For example, it's possible to compress several blocks using the same 'CTable',
- or to save and provide normalized distribution using external method.
- */
- /* *** COMPRESSION *** */
- /*! FSE_count():
- Provides the precise count of each byte within a table 'count'.
- 'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
- *maxSymbolValuePtr will be updated if detected smaller than initial value.
- @return : the count of the most frequent symbol (which is not identified).
- if return == srcSize, there is only one symbol.
- Can also return an error code, which can be tested with FSE_isError(). */
- size_t FSE_count(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
- /*! FSE_optimalTableLog():
- dynamically downsize 'tableLog' when conditions are met.
- It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
- @return : recommended tableLog (necessarily <= initial 'tableLog') */
- unsigned FSE_optimalTableLog(unsigned tableLog, size_t srcSize, unsigned maxSymbolValue);
- /*! FSE_normalizeCount():
- normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
- 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
- @return : tableLog,
- or an errorCode, which can be tested using FSE_isError() */
- size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, const unsigned* count, size_t srcSize, unsigned maxSymbolValue);
- /*! FSE_NCountWriteBound():
- Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
- Typically useful for allocation purpose. */
- size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
- /*! FSE_writeNCount():
- Compactly save 'normalizedCounter' into 'buffer'.
- @return : size of the compressed table,
- or an errorCode, which can be tested using FSE_isError(). */
- size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
- /*! Constructor and Destructor of FSE_CTable.
- Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
- typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
- FSE_CTable* FSE_createCTable (unsigned tableLog, unsigned maxSymbolValue);
- void FSE_freeCTable (FSE_CTable* ct);
- /*! FSE_buildCTable():
- Builds `ct`, which must be already allocated, using FSE_createCTable().
- @return : 0, or an errorCode, which can be tested using FSE_isError() */
- size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
- /*! FSE_compress_usingCTable():
- Compress `src` using `ct` into `dst` which must be already allocated.
- @return : size of compressed data (<= `dstCapacity`),
- or 0 if compressed data could not fit into `dst`,
- or an errorCode, which can be tested using FSE_isError() */
- size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
- /*!
- Tutorial :
- ----------
- The first step is to count all symbols. FSE_count() does this job very fast.
- Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
- 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
- maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
- FSE_count() will return the number of occurrence of the most frequent symbol.
- This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
- If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
- The next step is to normalize the frequencies.
- FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
- It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
- You can use 'tableLog'==0 to mean "use default tableLog value".
- If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
- which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
- The result of FSE_normalizeCount() will be saved into a table,
- called 'normalizedCounter', which is a table of signed short.
- 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
- The return value is tableLog if everything proceeded as expected.
- It is 0 if there is a single symbol within distribution.
- If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
- 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
- 'buffer' must be already allocated.
- For guaranteed success, buffer size must be at least FSE_headerBound().
- The result of the function is the number of bytes written into 'buffer'.
- If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
- 'normalizedCounter' can then be used to create the compression table 'CTable'.
- The space required by 'CTable' must be already allocated, using FSE_createCTable().
- You can then use FSE_buildCTable() to fill 'CTable'.
- If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
- 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
- Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
- The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
- If it returns '0', compressed data could not fit into 'dst'.
- If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
- */
- /* *** DECOMPRESSION *** */
- /*! FSE_readNCount():
- Read compactly saved 'normalizedCounter' from 'rBuffer'.
- @return : size read from 'rBuffer',
- or an errorCode, which can be tested using FSE_isError().
- maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
- size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
- /*! Constructor and Destructor of FSE_DTable.
- Note that its size depends on 'tableLog' */
- typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
- FSE_DTable* FSE_createDTable(unsigned tableLog);
- void FSE_freeDTable(FSE_DTable* dt);
- /*! FSE_buildDTable():
- Builds 'dt', which must be already allocated, using FSE_createDTable().
- return : 0, or an errorCode, which can be tested using FSE_isError() */
- size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
- /*! FSE_decompress_usingDTable():
- Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
- into `dst` which must be already allocated.
- @return : size of regenerated data (necessarily <= `dstCapacity`),
- or an errorCode, which can be tested using FSE_isError() */
- size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
- /*!
- Tutorial :
- ----------
- (Note : these functions only decompress FSE-compressed blocks.
- If block is uncompressed, use memcpy() instead
- If block is a single repeated byte, use memset() instead )
- The first step is to obtain the normalized frequencies of symbols.
- This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
- 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
- In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
- or size the table to handle worst case situations (typically 256).
- FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
- The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
- Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
- If there is an error, the function will return an error code, which can be tested using FSE_isError().
- The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
- This is performed by the function FSE_buildDTable().
- The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
- If there is an error, the function will return an error code, which can be tested using FSE_isError().
- `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
- `cSrcSize` must be strictly correct, otherwise decompression will fail.
- FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
- If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
- */
- #if defined (__cplusplus)
- }
- #endif
- #endif /* FSE_H */
|