123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 |
- SciPy is an open source library of routines for science and engineering
- using Python. It is a community project sponsored by Enthought, Inc.
- SciPy originated with code contributions by Travis Oliphant, Pearu
- Peterson, and Eric Jones. Travis Oliphant and Eric Jones each contributed
- about half the initial code. Pearu Peterson developed f2py, which is the
- integral to wrapping the many Fortran libraries used in SciPy.
- Since then many people have contributed to SciPy, both in code development,
- suggestions, and financial support. Below is a partial list. If you've
- been left off, please email the "SciPy Developers List" <scipy-dev@python.org>.
- Please add names as needed so that we can keep up with all the contributors.
- Kumar Appaiah for Dolph Chebyshev window.
- Nathan Bell for sparsetools, help with scipy.sparse and scipy.splinalg.
- Robert Cimrman for UMFpack wrapper for sparse matrix module.
- David M. Cooke for improvements to system_info, and LBFGSB wrapper.
- Aric Hagberg for ARPACK wrappers, help with splinalg.eigen.
- Chuck Harris for Zeros package in optimize (1d root-finding algorithms).
- Prabhu Ramachandran for improvements to gui_thread.
- Robert Kern for improvements to stats and bug-fixes.
- Jean-Sebastien Roy for fmin_tnc code which he adapted from Stephen Nash's
- original Fortran.
- Ed Schofield for Maximum entropy and Monte Carlo modules, help with
- sparse matrix module.
- Travis Vaught for numerous contributions to annual conference and community
- web-site and the initial work on stats module clean up.
- Jeff Whitaker for Mac OS X support.
- David Cournapeau for bug-fixes, refactoring of fftpack and cluster,
- implementing the numscons and Bento build support, building Windows
- binaries and adding single precision FFT.
- Damian Eads for hierarchical clustering, dendrogram plotting,
- distance functions in spatial package, vq documentation.
- Anne Archibald for kd-trees and nearest neighbor in scipy.spatial.
- Pauli Virtanen for Sphinx documentation generation, online documentation
- framework and interpolation bugfixes.
- Josef Perktold for major improvements to scipy.stats and its test suite and
- fixes and tests to optimize.curve_fit and leastsq.
- David Morrill for getting the scoreboard test system up and running.
- Louis Luangkesorn for providing multiple tests for the stats module.
- Jochen Kupper for the zoom feature in the now-deprecated plt plotting module.
- Tiffany Kamm for working on the community web-site.
- Mark Koudritsky for maintaining the web-site.
- Andrew Straw for help with the web-page, documentation, packaging,
- testing and work on the linalg module.
- Stefan van der Walt for numerous bug-fixes, testing and documentation.
- Jarrod Millman for release management, community coordination, and code
- clean up.
- Pierre Gerard-Marchant for statistical masked array functionality.
- Alan McIntyre for updating SciPy tests to use the new NumPy test framework.
- Matthew Brett for work on the Matlab file IO, bug-fixes, and improvements
- to the testing framework.
- Gary Strangman for the scipy.stats package.
- Tiziano Zito for generalized symmetric and hermitian eigenvalue problem
- solver.
- Chris Burns for bug-fixes.
- Per Brodtkorb for improvements to stats distributions.
- Neilen Marais for testing and bug-fixing in the ARPACK wrappers.
- Johannes Loehnert and Bart Vandereycken for fixes in the linalg
- module.
- David Huard for improvements to the interpolation interface.
- David Warde-Farley for converting the ndimage docs to ReST.
- Uwe Schmitt for wrapping non-negative least-squares.
- Ondrej Certik for Debian packaging.
- Paul Ivanov for porting Numeric-style C code to the new NumPy API.
- Ariel Rokem for contributions on percentileofscore fixes and tests.
- Yosef Meller for tests in the optimization module.
- Ralf Gommers for release management, code clean up and improvements
- to doc-string generation.
- Bruce Southey for bug-fixes and improvements to scipy.stats.
- Ernest Adrogué for the Skellam distribution.
- Enzo Michelangeli for a fast kendall tau test.
- David Simcha for a fisher exact test.
- Warren Weckesser for bug-fixes, cleanups, and several new features.
- Fabian Pedregosa for linear algebra bug-fixes, new features and refactoring.
- Jake Vanderplas for wrapping ARPACK's generalized and shift-invert modes
- and improving its tests.
- Collin RM Stocks for wrapping pivoted QR decomposition.
- Martin Teichmann for improving scipy.special.ellipk & agm accuracy,
- and for linalg.qr_multiply.
- Jeff Armstrong for discrete state-space and linear time-invariant functionality
- in scipy.signal, and sylvester/riccati/lyapunov solvers in scipy.linalg.
- Mark Wiebe for fixing type casting after changes in Numpy.
- Andrey Smirnov for improvements to FIR filter design.
- Anthony Scopatz for help with code review and merging.
- Lars Buitinck for improvements to scipy.sparse and various other modules.
- Scott Sinclair for documentation improvements and some bug fixes.
- Gael Varoquaux for cleanups in scipy.sparse.
- Skipper Seabold for a fix to special.gammainc.
- Wes McKinney for a fix to special.gamma.
- Thouis (Ray) Jones for bug fixes in ndimage.
- Yaroslav Halchenko for a bug fix in ndimage.
- Thomas Robitaille for the IDL 'save' reader.
- Fazlul Shahriar for fixes to the NetCDF3 I/O.
- Chris Jordan-Squire for bug fixes, documentation improvements and
- scipy.special.logit & expit.
- Christoph Gohlke for many bug fixes and help with Windows specific issues.
- Jacob Silterra for cwt-based peak finding in scipy.signal.
- Denis Laxalde for the unified interface to minimizers in scipy.optimize.
- David Fong for the sparse LSMR solver.
- Andreas Hilboll for adding several new interpolation methods.
- Andrew Schein for improving the numerical precision of norm.logcdf().
- Robert Gantner for improving expm() implementation.
- Sebastian Werk for Halley's method in newton().
- Bjorn Forsman for contributing signal.bode().
- Tony S. Yu for ndimage improvements.
- Jonathan J. Helmus for work on ndimage.
- Alex Reinhart for documentation improvements.
- Patrick Varilly for cKDTree improvements.
- Sturla Molden for cKDTree improvements.
- Nathan Crock for bug fixes.
- Steven G. Johnson for Faddeeva W and erf* implementations.
- Lorenzo Luengo for whosmat() in scipy.io.
- Eric Moore for orthogonal polynomial recurrences in scipy.special.
- Jacob Stevenson for the basinhopping optimization algorithm
- Daniel Smith for sparse matrix functionality improvements
- Gustav Larsson for a bug fix in convolve2d.
- Alex Griffing for expm 2009, expm_multiply, expm_frechet,
- trust region optimization methods, and sparse matrix onenormest
- implementations, plus bugfixes.
- Nils Werner for signal windowing and wavfile-writing improvements.
- Kenneth L. Ho for the wrapper around the Interpolative Decomposition code.
- Juan Luis Cano for refactorings in lti, sparse docs improvements and some
- trivial fixes.
- Pawel Chojnacki for simple documentation fixes.
- Gert-Ludwig Ingold for contributions to special functions.
- Joris Vankerschaver for multivariate Gaussian functionality.
- Rob Falck for the SLSQP interface and linprog.
- Jörg Dietrich for the k-sample Anderson Darling test.
- Blake Griffith for improvements to scipy.sparse.
- Andrew Nelson for scipy.optimize.differential_evolution.
- Brian Newsom for work on ctypes multivariate integration.
- Nathan Woods for work on multivariate integration.
- Brianna Laugher for bug fixes.
- Johannes Kulick for the Dirichlet distribution and the softmax function.
- Bastian Venthur for bug fixes.
- Alex Rothberg for stats.combine_pvalues.
- Brandon Liu for stats.combine_pvalues.
- Clark Fitzgerald for namedtuple outputs in scipy.stats.
- Florian Wilhelm for usage of RandomState in scipy.stats distributions.
- Robert T. McGibbon for Levinson-Durbin Toeplitz solver, Hessian information
- from L-BFGS-B.
- Alex Conley for the Exponentially Modified Normal distribution.
- Abraham Escalante for contributions to scipy.stats
- Johannes Ballé for the generalized normal distribution.
- Irvin Probst (ENSTA Bretagne) for pole placement.
- Ian Henriksen for Cython wrappers for BLAS and LAPACK
- Fukumu Tsutsumi for bug fixes.
- J.J. Green for interpolation bug fixes.
- François Magimel for documentation improvements.
- Josh Levy-Kramer for the log survival function of the hypergeometric distribution
- Will Monroe for bug fixes.
- Bernardo Sulzbach for bug fixes.
- Alexander Grigorevskiy for adding extra LAPACK least-square solvers and
- modifying linalg.lstsq function accordingly.
- Sam Lewis for enhancements to the basinhopping module.
- Tadeusz Pudlik for documentation and vectorizing spherical Bessel functions.
- Philip DeBoer for wrapping random SO(N) and adding random O(N) and
- correlation matrices in scipy.stats.
- Tyler Reddy and Nikolai Nowaczyk for scipy.spatial.SphericalVoronoi
- Bill Sacks for fixes to netcdf i/o.
- Kolja Glogowski for a bug fix in scipy.special.
- Surhud More for enhancing scipy.optimize.curve_fit to accept covariant errors
- on data.
- Antonio H. Ribeiro for implementing iirnotch, iirpeak functions and
- trust-exact and trust-constr optimization methods.
- Matt Haberland for the interior point linear programming method and
- SciPy development videos.
- Ilhan Polat for bug fixes on Riccati solvers.
- Sebastiano Vigna for code in the stats package related to Kendall's tau.
- John Draper for bug fixes.
- Alvaro Sanchez-Gonzalez for axis-dependent modes in multidimensional filters.
- Alessandro Pietro Bardelli for improvements to pdist/cdist and to related tests.
- Jonathan T. Siebert for bug fixes.
- Thomas Keck for adding new scipy.stats distributions used in HEP
- David Nicholson for bug fixes in spectral functions.
- Roman Feldbauer for improvements in scipy.sparse
- Dominic Antonacci for statistics documentation.
- David Hagen for the object-oriented ODE solver interface.
- Arno Onken for contributions to scipy.stats.
- Cathy Douglass for bug fixes in ndimage.
- Adam Cox for contributions to scipy.constants.
- Charles Masson for the Wasserstein and the Cramér-von Mises statistical
- distances.
- Felix Lenders for implementing trust-trlib method.
- Dezmond Goff for adding optional out parameter to pdist/cdist
- Nick R. Papior for allowing a wider choice of solvers
- Sean Quinn for the Moyal distribution
- Lars Grüter for contributions to peak finding in scipy.signal
- Jordan Heemskerk for exposing additional windowing functions in scipy.signal.
- Michael Tartre (Two Sigma Investments) for contributions to weighted distance functions.
- Shinya Suzuki for scipy.stats.brunnermunzel
- Graham Clenaghan for bug fixes and optimizations in scipy.stats.
- Konrad Griessinger for the small sample Kendall test
- Tony Xiang for improvements in scipy.sparse
- Roy Zywina for contributions to scipy.fftpack.
- Christian H. Meyer for bug fixes in subspace_angles.
- Kai Striega for improvements to the scipy.optimize.linprog simplex method.
- Josua Sassen for improvements to scipy.interpolate.Rbf
- Stiaan Gerber for a bug fix in scipy.optimize.
- Nicolas Hug for the Yeo-Johnson transformation.
- Institutions
- ------------
- Enthought for providing resources and finances for development of SciPy.
- Brigham Young University for providing resources for students to work on SciPy.
- Agilent which gave a genereous donation for support of SciPy.
- UC Berkeley for providing travel money and hosting numerous sprints.
- The University of Stellenbosch for funding the development of
- the SciKits portal.
- Google Inc. for updating documentation of hypergeometric distribution.
- Datadog Inc. for contributions to scipy.stats.
- Urthecast Inc. for exposing additional windowing functions in scipy.signal.
|