123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141 |
- //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// Implements semantic analysis for C++ expressions.
- ///
- //===----------------------------------------------------------------------===//
- #include "TreeTransform.h"
- #include "TypeLocBuilder.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/ASTLambda.h"
- #include "clang/AST/CXXInheritance.h"
- #include "clang/AST/CharUnits.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/AST/ExprCXX.h"
- #include "clang/AST/ExprObjC.h"
- #include "clang/AST/RecursiveASTVisitor.h"
- #include "clang/AST/Type.h"
- #include "clang/AST/TypeLoc.h"
- #include "clang/Basic/AlignedAllocation.h"
- #include "clang/Basic/DiagnosticSema.h"
- #include "clang/Basic/PartialDiagnostic.h"
- #include "clang/Basic/TargetInfo.h"
- #include "clang/Basic/TokenKinds.h"
- #include "clang/Basic/TypeTraits.h"
- #include "clang/Lex/Preprocessor.h"
- #include "clang/Sema/DeclSpec.h"
- #include "clang/Sema/Initialization.h"
- #include "clang/Sema/Lookup.h"
- #include "clang/Sema/ParsedTemplate.h"
- #include "clang/Sema/Scope.h"
- #include "clang/Sema/ScopeInfo.h"
- #include "clang/Sema/SemaInternal.h"
- #include "clang/Sema/SemaLambda.h"
- #include "clang/Sema/Template.h"
- #include "clang/Sema/TemplateDeduction.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/TypeSize.h"
- #include <optional>
- using namespace clang;
- using namespace sema;
- /// Handle the result of the special case name lookup for inheriting
- /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
- /// constructor names in member using declarations, even if 'X' is not the
- /// name of the corresponding type.
- ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
- SourceLocation NameLoc,
- IdentifierInfo &Name) {
- NestedNameSpecifier *NNS = SS.getScopeRep();
- // Convert the nested-name-specifier into a type.
- QualType Type;
- switch (NNS->getKind()) {
- case NestedNameSpecifier::TypeSpec:
- case NestedNameSpecifier::TypeSpecWithTemplate:
- Type = QualType(NNS->getAsType(), 0);
- break;
- case NestedNameSpecifier::Identifier:
- // Strip off the last layer of the nested-name-specifier and build a
- // typename type for it.
- assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
- Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
- NNS->getAsIdentifier());
- break;
- case NestedNameSpecifier::Global:
- case NestedNameSpecifier::Super:
- case NestedNameSpecifier::Namespace:
- case NestedNameSpecifier::NamespaceAlias:
- llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
- }
- // This reference to the type is located entirely at the location of the
- // final identifier in the qualified-id.
- return CreateParsedType(Type,
- Context.getTrivialTypeSourceInfo(Type, NameLoc));
- }
- ParsedType Sema::getConstructorName(IdentifierInfo &II,
- SourceLocation NameLoc,
- Scope *S, CXXScopeSpec &SS,
- bool EnteringContext) {
- CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
- assert(CurClass && &II == CurClass->getIdentifier() &&
- "not a constructor name");
- // When naming a constructor as a member of a dependent context (eg, in a
- // friend declaration or an inherited constructor declaration), form an
- // unresolved "typename" type.
- if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
- QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
- return ParsedType::make(T);
- }
- if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
- return ParsedType();
- // Find the injected-class-name declaration. Note that we make no attempt to
- // diagnose cases where the injected-class-name is shadowed: the only
- // declaration that can validly shadow the injected-class-name is a
- // non-static data member, and if the class contains both a non-static data
- // member and a constructor then it is ill-formed (we check that in
- // CheckCompletedCXXClass).
- CXXRecordDecl *InjectedClassName = nullptr;
- for (NamedDecl *ND : CurClass->lookup(&II)) {
- auto *RD = dyn_cast<CXXRecordDecl>(ND);
- if (RD && RD->isInjectedClassName()) {
- InjectedClassName = RD;
- break;
- }
- }
- if (!InjectedClassName) {
- if (!CurClass->isInvalidDecl()) {
- // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
- // properly. Work around it here for now.
- Diag(SS.getLastQualifierNameLoc(),
- diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
- }
- return ParsedType();
- }
- QualType T = Context.getTypeDeclType(InjectedClassName);
- DiagnoseUseOfDecl(InjectedClassName, NameLoc);
- MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
- return ParsedType::make(T);
- }
- ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
- IdentifierInfo &II,
- SourceLocation NameLoc,
- Scope *S, CXXScopeSpec &SS,
- ParsedType ObjectTypePtr,
- bool EnteringContext) {
- // Determine where to perform name lookup.
- // FIXME: This area of the standard is very messy, and the current
- // wording is rather unclear about which scopes we search for the
- // destructor name; see core issues 399 and 555. Issue 399 in
- // particular shows where the current description of destructor name
- // lookup is completely out of line with existing practice, e.g.,
- // this appears to be ill-formed:
- //
- // namespace N {
- // template <typename T> struct S {
- // ~S();
- // };
- // }
- //
- // void f(N::S<int>* s) {
- // s->N::S<int>::~S();
- // }
- //
- // See also PR6358 and PR6359.
- //
- // For now, we accept all the cases in which the name given could plausibly
- // be interpreted as a correct destructor name, issuing off-by-default
- // extension diagnostics on the cases that don't strictly conform to the
- // C++20 rules. This basically means we always consider looking in the
- // nested-name-specifier prefix, the complete nested-name-specifier, and
- // the scope, and accept if we find the expected type in any of the three
- // places.
- if (SS.isInvalid())
- return nullptr;
- // Whether we've failed with a diagnostic already.
- bool Failed = false;
- llvm::SmallVector<NamedDecl*, 8> FoundDecls;
- llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
- // If we have an object type, it's because we are in a
- // pseudo-destructor-expression or a member access expression, and
- // we know what type we're looking for.
- QualType SearchType =
- ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
- auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
- auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
- auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
- if (!Type)
- return false;
- if (SearchType.isNull() || SearchType->isDependentType())
- return true;
- QualType T = Context.getTypeDeclType(Type);
- return Context.hasSameUnqualifiedType(T, SearchType);
- };
- unsigned NumAcceptableResults = 0;
- for (NamedDecl *D : Found) {
- if (IsAcceptableResult(D))
- ++NumAcceptableResults;
- // Don't list a class twice in the lookup failure diagnostic if it's
- // found by both its injected-class-name and by the name in the enclosing
- // scope.
- if (auto *RD = dyn_cast<CXXRecordDecl>(D))
- if (RD->isInjectedClassName())
- D = cast<NamedDecl>(RD->getParent());
- if (FoundDeclSet.insert(D).second)
- FoundDecls.push_back(D);
- }
- // As an extension, attempt to "fix" an ambiguity by erasing all non-type
- // results, and all non-matching results if we have a search type. It's not
- // clear what the right behavior is if destructor lookup hits an ambiguity,
- // but other compilers do generally accept at least some kinds of
- // ambiguity.
- if (Found.isAmbiguous() && NumAcceptableResults == 1) {
- Diag(NameLoc, diag::ext_dtor_name_ambiguous);
- LookupResult::Filter F = Found.makeFilter();
- while (F.hasNext()) {
- NamedDecl *D = F.next();
- if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
- Diag(D->getLocation(), diag::note_destructor_type_here)
- << Context.getTypeDeclType(TD);
- else
- Diag(D->getLocation(), diag::note_destructor_nontype_here);
- if (!IsAcceptableResult(D))
- F.erase();
- }
- F.done();
- }
- if (Found.isAmbiguous())
- Failed = true;
- if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
- if (IsAcceptableResult(Type)) {
- QualType T = Context.getTypeDeclType(Type);
- MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
- return CreateParsedType(Context.getElaboratedType(ETK_None, nullptr, T),
- Context.getTrivialTypeSourceInfo(T, NameLoc));
- }
- }
- return nullptr;
- };
- bool IsDependent = false;
- auto LookupInObjectType = [&]() -> ParsedType {
- if (Failed || SearchType.isNull())
- return nullptr;
- IsDependent |= SearchType->isDependentType();
- LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
- DeclContext *LookupCtx = computeDeclContext(SearchType);
- if (!LookupCtx)
- return nullptr;
- LookupQualifiedName(Found, LookupCtx);
- return CheckLookupResult(Found);
- };
- auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
- if (Failed)
- return nullptr;
- IsDependent |= isDependentScopeSpecifier(LookupSS);
- DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
- if (!LookupCtx)
- return nullptr;
- LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
- if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
- Failed = true;
- return nullptr;
- }
- LookupQualifiedName(Found, LookupCtx);
- return CheckLookupResult(Found);
- };
- auto LookupInScope = [&]() -> ParsedType {
- if (Failed || !S)
- return nullptr;
- LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
- LookupName(Found, S);
- return CheckLookupResult(Found);
- };
- // C++2a [basic.lookup.qual]p6:
- // In a qualified-id of the form
- //
- // nested-name-specifier[opt] type-name :: ~ type-name
- //
- // the second type-name is looked up in the same scope as the first.
- //
- // We interpret this as meaning that if you do a dual-scope lookup for the
- // first name, you also do a dual-scope lookup for the second name, per
- // C++ [basic.lookup.classref]p4:
- //
- // If the id-expression in a class member access is a qualified-id of the
- // form
- //
- // class-name-or-namespace-name :: ...
- //
- // the class-name-or-namespace-name following the . or -> is first looked
- // up in the class of the object expression and the name, if found, is used.
- // Otherwise, it is looked up in the context of the entire
- // postfix-expression.
- //
- // This looks in the same scopes as for an unqualified destructor name:
- //
- // C++ [basic.lookup.classref]p3:
- // If the unqualified-id is ~ type-name, the type-name is looked up
- // in the context of the entire postfix-expression. If the type T
- // of the object expression is of a class type C, the type-name is
- // also looked up in the scope of class C. At least one of the
- // lookups shall find a name that refers to cv T.
- //
- // FIXME: The intent is unclear here. Should type-name::~type-name look in
- // the scope anyway if it finds a non-matching name declared in the class?
- // If both lookups succeed and find a dependent result, which result should
- // we retain? (Same question for p->~type-name().)
- if (NestedNameSpecifier *Prefix =
- SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
- // This is
- //
- // nested-name-specifier type-name :: ~ type-name
- //
- // Look for the second type-name in the nested-name-specifier.
- CXXScopeSpec PrefixSS;
- PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
- if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
- return T;
- } else {
- // This is one of
- //
- // type-name :: ~ type-name
- // ~ type-name
- //
- // Look in the scope and (if any) the object type.
- if (ParsedType T = LookupInScope())
- return T;
- if (ParsedType T = LookupInObjectType())
- return T;
- }
- if (Failed)
- return nullptr;
- if (IsDependent) {
- // We didn't find our type, but that's OK: it's dependent anyway.
- // FIXME: What if we have no nested-name-specifier?
- QualType T = CheckTypenameType(ETK_None, SourceLocation(),
- SS.getWithLocInContext(Context),
- II, NameLoc);
- return ParsedType::make(T);
- }
- // The remaining cases are all non-standard extensions imitating the behavior
- // of various other compilers.
- unsigned NumNonExtensionDecls = FoundDecls.size();
- if (SS.isSet()) {
- // For compatibility with older broken C++ rules and existing code,
- //
- // nested-name-specifier :: ~ type-name
- //
- // also looks for type-name within the nested-name-specifier.
- if (ParsedType T = LookupInNestedNameSpec(SS)) {
- Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
- << SS.getRange()
- << FixItHint::CreateInsertion(SS.getEndLoc(),
- ("::" + II.getName()).str());
- return T;
- }
- // For compatibility with other compilers and older versions of Clang,
- //
- // nested-name-specifier type-name :: ~ type-name
- //
- // also looks for type-name in the scope. Unfortunately, we can't
- // reasonably apply this fallback for dependent nested-name-specifiers.
- if (SS.getScopeRep()->getPrefix()) {
- if (ParsedType T = LookupInScope()) {
- Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
- << FixItHint::CreateRemoval(SS.getRange());
- Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
- << GetTypeFromParser(T);
- return T;
- }
- }
- }
- // We didn't find anything matching; tell the user what we did find (if
- // anything).
- // Don't tell the user about declarations we shouldn't have found.
- FoundDecls.resize(NumNonExtensionDecls);
- // List types before non-types.
- std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
- [](NamedDecl *A, NamedDecl *B) {
- return isa<TypeDecl>(A->getUnderlyingDecl()) >
- isa<TypeDecl>(B->getUnderlyingDecl());
- });
- // Suggest a fixit to properly name the destroyed type.
- auto MakeFixItHint = [&]{
- const CXXRecordDecl *Destroyed = nullptr;
- // FIXME: If we have a scope specifier, suggest its last component?
- if (!SearchType.isNull())
- Destroyed = SearchType->getAsCXXRecordDecl();
- else if (S)
- Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
- if (Destroyed)
- return FixItHint::CreateReplacement(SourceRange(NameLoc),
- Destroyed->getNameAsString());
- return FixItHint();
- };
- if (FoundDecls.empty()) {
- // FIXME: Attempt typo-correction?
- Diag(NameLoc, diag::err_undeclared_destructor_name)
- << &II << MakeFixItHint();
- } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
- if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
- assert(!SearchType.isNull() &&
- "should only reject a type result if we have a search type");
- QualType T = Context.getTypeDeclType(TD);
- Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
- << T << SearchType << MakeFixItHint();
- } else {
- Diag(NameLoc, diag::err_destructor_expr_nontype)
- << &II << MakeFixItHint();
- }
- } else {
- Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
- : diag::err_destructor_expr_mismatch)
- << &II << SearchType << MakeFixItHint();
- }
- for (NamedDecl *FoundD : FoundDecls) {
- if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
- Diag(FoundD->getLocation(), diag::note_destructor_type_here)
- << Context.getTypeDeclType(TD);
- else
- Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
- << FoundD;
- }
- return nullptr;
- }
- ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
- ParsedType ObjectType) {
- if (DS.getTypeSpecType() == DeclSpec::TST_error)
- return nullptr;
- if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
- Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
- return nullptr;
- }
- assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
- "unexpected type in getDestructorType");
- QualType T = BuildDecltypeType(DS.getRepAsExpr());
- // If we know the type of the object, check that the correct destructor
- // type was named now; we can give better diagnostics this way.
- QualType SearchType = GetTypeFromParser(ObjectType);
- if (!SearchType.isNull() && !SearchType->isDependentType() &&
- !Context.hasSameUnqualifiedType(T, SearchType)) {
- Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
- << T << SearchType;
- return nullptr;
- }
- return ParsedType::make(T);
- }
- bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
- const UnqualifiedId &Name, bool IsUDSuffix) {
- assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
- if (!IsUDSuffix) {
- // [over.literal] p8
- //
- // double operator""_Bq(long double); // OK: not a reserved identifier
- // double operator"" _Bq(long double); // ill-formed, no diagnostic required
- IdentifierInfo *II = Name.Identifier;
- ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
- SourceLocation Loc = Name.getEndLoc();
- if (isReservedInAllContexts(Status) &&
- !PP.getSourceManager().isInSystemHeader(Loc)) {
- Diag(Loc, diag::warn_reserved_extern_symbol)
- << II << static_cast<int>(Status)
- << FixItHint::CreateReplacement(
- Name.getSourceRange(),
- (StringRef("operator\"\"") + II->getName()).str());
- }
- }
- if (!SS.isValid())
- return false;
- switch (SS.getScopeRep()->getKind()) {
- case NestedNameSpecifier::Identifier:
- case NestedNameSpecifier::TypeSpec:
- case NestedNameSpecifier::TypeSpecWithTemplate:
- // Per C++11 [over.literal]p2, literal operators can only be declared at
- // namespace scope. Therefore, this unqualified-id cannot name anything.
- // Reject it early, because we have no AST representation for this in the
- // case where the scope is dependent.
- Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
- << SS.getScopeRep();
- return true;
- case NestedNameSpecifier::Global:
- case NestedNameSpecifier::Super:
- case NestedNameSpecifier::Namespace:
- case NestedNameSpecifier::NamespaceAlias:
- return false;
- }
- llvm_unreachable("unknown nested name specifier kind");
- }
- /// Build a C++ typeid expression with a type operand.
- ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
- SourceLocation TypeidLoc,
- TypeSourceInfo *Operand,
- SourceLocation RParenLoc) {
- // C++ [expr.typeid]p4:
- // The top-level cv-qualifiers of the lvalue expression or the type-id
- // that is the operand of typeid are always ignored.
- // If the type of the type-id is a class type or a reference to a class
- // type, the class shall be completely-defined.
- Qualifiers Quals;
- QualType T
- = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
- Quals);
- if (T->getAs<RecordType>() &&
- RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
- return ExprError();
- if (T->isVariablyModifiedType())
- return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
- if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
- return ExprError();
- return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
- SourceRange(TypeidLoc, RParenLoc));
- }
- /// Build a C++ typeid expression with an expression operand.
- ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
- SourceLocation TypeidLoc,
- Expr *E,
- SourceLocation RParenLoc) {
- bool WasEvaluated = false;
- if (E && !E->isTypeDependent()) {
- if (E->hasPlaceholderType()) {
- ExprResult result = CheckPlaceholderExpr(E);
- if (result.isInvalid()) return ExprError();
- E = result.get();
- }
- QualType T = E->getType();
- if (const RecordType *RecordT = T->getAs<RecordType>()) {
- CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
- // C++ [expr.typeid]p3:
- // [...] If the type of the expression is a class type, the class
- // shall be completely-defined.
- if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
- return ExprError();
- // C++ [expr.typeid]p3:
- // When typeid is applied to an expression other than an glvalue of a
- // polymorphic class type [...] [the] expression is an unevaluated
- // operand. [...]
- if (RecordD->isPolymorphic() && E->isGLValue()) {
- if (isUnevaluatedContext()) {
- // The operand was processed in unevaluated context, switch the
- // context and recheck the subexpression.
- ExprResult Result = TransformToPotentiallyEvaluated(E);
- if (Result.isInvalid())
- return ExprError();
- E = Result.get();
- }
- // We require a vtable to query the type at run time.
- MarkVTableUsed(TypeidLoc, RecordD);
- WasEvaluated = true;
- }
- }
- ExprResult Result = CheckUnevaluatedOperand(E);
- if (Result.isInvalid())
- return ExprError();
- E = Result.get();
- // C++ [expr.typeid]p4:
- // [...] If the type of the type-id is a reference to a possibly
- // cv-qualified type, the result of the typeid expression refers to a
- // std::type_info object representing the cv-unqualified referenced
- // type.
- Qualifiers Quals;
- QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
- if (!Context.hasSameType(T, UnqualT)) {
- T = UnqualT;
- E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
- }
- }
- if (E->getType()->isVariablyModifiedType())
- return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
- << E->getType());
- else if (!inTemplateInstantiation() &&
- E->HasSideEffects(Context, WasEvaluated)) {
- // The expression operand for typeid is in an unevaluated expression
- // context, so side effects could result in unintended consequences.
- Diag(E->getExprLoc(), WasEvaluated
- ? diag::warn_side_effects_typeid
- : diag::warn_side_effects_unevaluated_context);
- }
- return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
- SourceRange(TypeidLoc, RParenLoc));
- }
- /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
- ExprResult
- Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
- bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
- // typeid is not supported in OpenCL.
- if (getLangOpts().OpenCLCPlusPlus) {
- return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
- << "typeid");
- }
- // Find the std::type_info type.
- if (!getStdNamespace())
- return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
- if (!CXXTypeInfoDecl) {
- IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
- LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
- LookupQualifiedName(R, getStdNamespace());
- CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
- // Microsoft's typeinfo doesn't have type_info in std but in the global
- // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
- if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
- LookupQualifiedName(R, Context.getTranslationUnitDecl());
- CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
- }
- if (!CXXTypeInfoDecl)
- return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
- }
- if (!getLangOpts().RTTI) {
- return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
- }
- QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
- if (isType) {
- // The operand is a type; handle it as such.
- TypeSourceInfo *TInfo = nullptr;
- QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
- &TInfo);
- if (T.isNull())
- return ExprError();
- if (!TInfo)
- TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
- return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
- }
- // The operand is an expression.
- ExprResult Result =
- BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
- if (!getLangOpts().RTTIData && !Result.isInvalid())
- if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
- if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
- Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
- << (getDiagnostics().getDiagnosticOptions().getFormat() ==
- DiagnosticOptions::MSVC);
- return Result;
- }
- /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
- /// a single GUID.
- static void
- getUuidAttrOfType(Sema &SemaRef, QualType QT,
- llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
- // Optionally remove one level of pointer, reference or array indirection.
- const Type *Ty = QT.getTypePtr();
- if (QT->isPointerType() || QT->isReferenceType())
- Ty = QT->getPointeeType().getTypePtr();
- else if (QT->isArrayType())
- Ty = Ty->getBaseElementTypeUnsafe();
- const auto *TD = Ty->getAsTagDecl();
- if (!TD)
- return;
- if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
- UuidAttrs.insert(Uuid);
- return;
- }
- // __uuidof can grab UUIDs from template arguments.
- if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
- const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
- for (const TemplateArgument &TA : TAL.asArray()) {
- const UuidAttr *UuidForTA = nullptr;
- if (TA.getKind() == TemplateArgument::Type)
- getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
- else if (TA.getKind() == TemplateArgument::Declaration)
- getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
- if (UuidForTA)
- UuidAttrs.insert(UuidForTA);
- }
- }
- }
- /// Build a Microsoft __uuidof expression with a type operand.
- ExprResult Sema::BuildCXXUuidof(QualType Type,
- SourceLocation TypeidLoc,
- TypeSourceInfo *Operand,
- SourceLocation RParenLoc) {
- MSGuidDecl *Guid = nullptr;
- if (!Operand->getType()->isDependentType()) {
- llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
- getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
- if (UuidAttrs.empty())
- return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
- if (UuidAttrs.size() > 1)
- return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
- Guid = UuidAttrs.back()->getGuidDecl();
- }
- return new (Context)
- CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
- }
- /// Build a Microsoft __uuidof expression with an expression operand.
- ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
- Expr *E, SourceLocation RParenLoc) {
- MSGuidDecl *Guid = nullptr;
- if (!E->getType()->isDependentType()) {
- if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
- // A null pointer results in {00000000-0000-0000-0000-000000000000}.
- Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
- } else {
- llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
- getUuidAttrOfType(*this, E->getType(), UuidAttrs);
- if (UuidAttrs.empty())
- return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
- if (UuidAttrs.size() > 1)
- return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
- Guid = UuidAttrs.back()->getGuidDecl();
- }
- }
- return new (Context)
- CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
- }
- /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
- ExprResult
- Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
- bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
- QualType GuidType = Context.getMSGuidType();
- GuidType.addConst();
- if (isType) {
- // The operand is a type; handle it as such.
- TypeSourceInfo *TInfo = nullptr;
- QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
- &TInfo);
- if (T.isNull())
- return ExprError();
- if (!TInfo)
- TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
- return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
- }
- // The operand is an expression.
- return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
- }
- /// ActOnCXXBoolLiteral - Parse {true,false} literals.
- ExprResult
- Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
- assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
- "Unknown C++ Boolean value!");
- return new (Context)
- CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
- }
- /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
- ExprResult
- Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
- return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
- }
- /// ActOnCXXThrow - Parse throw expressions.
- ExprResult
- Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
- bool IsThrownVarInScope = false;
- if (Ex) {
- // C++0x [class.copymove]p31:
- // When certain criteria are met, an implementation is allowed to omit the
- // copy/move construction of a class object [...]
- //
- // - in a throw-expression, when the operand is the name of a
- // non-volatile automatic object (other than a function or catch-
- // clause parameter) whose scope does not extend beyond the end of the
- // innermost enclosing try-block (if there is one), the copy/move
- // operation from the operand to the exception object (15.1) can be
- // omitted by constructing the automatic object directly into the
- // exception object
- if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
- if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
- if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
- for( ; S; S = S->getParent()) {
- if (S->isDeclScope(Var)) {
- IsThrownVarInScope = true;
- break;
- }
- // FIXME: Many of the scope checks here seem incorrect.
- if (S->getFlags() &
- (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
- Scope::ObjCMethodScope | Scope::TryScope))
- break;
- }
- }
- }
- }
- return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
- }
- ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
- bool IsThrownVarInScope) {
- // Don't report an error if 'throw' is used in system headers.
- if (!getLangOpts().CXXExceptions &&
- !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
- // Delay error emission for the OpenMP device code.
- targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
- }
- // Exceptions aren't allowed in CUDA device code.
- if (getLangOpts().CUDA)
- CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
- << "throw" << CurrentCUDATarget();
- if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
- Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
- if (Ex && !Ex->isTypeDependent()) {
- // Initialize the exception result. This implicitly weeds out
- // abstract types or types with inaccessible copy constructors.
- // C++0x [class.copymove]p31:
- // When certain criteria are met, an implementation is allowed to omit the
- // copy/move construction of a class object [...]
- //
- // - in a throw-expression, when the operand is the name of a
- // non-volatile automatic object (other than a function or
- // catch-clause
- // parameter) whose scope does not extend beyond the end of the
- // innermost enclosing try-block (if there is one), the copy/move
- // operation from the operand to the exception object (15.1) can be
- // omitted by constructing the automatic object directly into the
- // exception object
- NamedReturnInfo NRInfo =
- IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
- QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
- if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
- return ExprError();
- InitializedEntity Entity =
- InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
- ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
- if (Res.isInvalid())
- return ExprError();
- Ex = Res.get();
- }
- // PPC MMA non-pointer types are not allowed as throw expr types.
- if (Ex && Context.getTargetInfo().getTriple().isPPC64())
- CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
- return new (Context)
- CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
- }
- static void
- collectPublicBases(CXXRecordDecl *RD,
- llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
- llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
- llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
- bool ParentIsPublic) {
- for (const CXXBaseSpecifier &BS : RD->bases()) {
- CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
- bool NewSubobject;
- // Virtual bases constitute the same subobject. Non-virtual bases are
- // always distinct subobjects.
- if (BS.isVirtual())
- NewSubobject = VBases.insert(BaseDecl).second;
- else
- NewSubobject = true;
- if (NewSubobject)
- ++SubobjectsSeen[BaseDecl];
- // Only add subobjects which have public access throughout the entire chain.
- bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
- if (PublicPath)
- PublicSubobjectsSeen.insert(BaseDecl);
- // Recurse on to each base subobject.
- collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
- PublicPath);
- }
- }
- static void getUnambiguousPublicSubobjects(
- CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
- llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
- llvm::SmallSet<CXXRecordDecl *, 2> VBases;
- llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
- SubobjectsSeen[RD] = 1;
- PublicSubobjectsSeen.insert(RD);
- collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
- /*ParentIsPublic=*/true);
- for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
- // Skip ambiguous objects.
- if (SubobjectsSeen[PublicSubobject] > 1)
- continue;
- Objects.push_back(PublicSubobject);
- }
- }
- /// CheckCXXThrowOperand - Validate the operand of a throw.
- bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
- QualType ExceptionObjectTy, Expr *E) {
- // If the type of the exception would be an incomplete type or a pointer
- // to an incomplete type other than (cv) void the program is ill-formed.
- QualType Ty = ExceptionObjectTy;
- bool isPointer = false;
- if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
- Ty = Ptr->getPointeeType();
- isPointer = true;
- }
- if (!isPointer || !Ty->isVoidType()) {
- if (RequireCompleteType(ThrowLoc, Ty,
- isPointer ? diag::err_throw_incomplete_ptr
- : diag::err_throw_incomplete,
- E->getSourceRange()))
- return true;
- if (!isPointer && Ty->isSizelessType()) {
- Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
- return true;
- }
- if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
- diag::err_throw_abstract_type, E))
- return true;
- }
- // If the exception has class type, we need additional handling.
- CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
- if (!RD)
- return false;
- // If we are throwing a polymorphic class type or pointer thereof,
- // exception handling will make use of the vtable.
- MarkVTableUsed(ThrowLoc, RD);
- // If a pointer is thrown, the referenced object will not be destroyed.
- if (isPointer)
- return false;
- // If the class has a destructor, we must be able to call it.
- if (!RD->hasIrrelevantDestructor()) {
- if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
- MarkFunctionReferenced(E->getExprLoc(), Destructor);
- CheckDestructorAccess(E->getExprLoc(), Destructor,
- PDiag(diag::err_access_dtor_exception) << Ty);
- if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
- return true;
- }
- }
- // The MSVC ABI creates a list of all types which can catch the exception
- // object. This list also references the appropriate copy constructor to call
- // if the object is caught by value and has a non-trivial copy constructor.
- if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
- // We are only interested in the public, unambiguous bases contained within
- // the exception object. Bases which are ambiguous or otherwise
- // inaccessible are not catchable types.
- llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
- getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
- for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
- // Attempt to lookup the copy constructor. Various pieces of machinery
- // will spring into action, like template instantiation, which means this
- // cannot be a simple walk of the class's decls. Instead, we must perform
- // lookup and overload resolution.
- CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
- if (!CD || CD->isDeleted())
- continue;
- // Mark the constructor referenced as it is used by this throw expression.
- MarkFunctionReferenced(E->getExprLoc(), CD);
- // Skip this copy constructor if it is trivial, we don't need to record it
- // in the catchable type data.
- if (CD->isTrivial())
- continue;
- // The copy constructor is non-trivial, create a mapping from this class
- // type to this constructor.
- // N.B. The selection of copy constructor is not sensitive to this
- // particular throw-site. Lookup will be performed at the catch-site to
- // ensure that the copy constructor is, in fact, accessible (via
- // friendship or any other means).
- Context.addCopyConstructorForExceptionObject(Subobject, CD);
- // We don't keep the instantiated default argument expressions around so
- // we must rebuild them here.
- for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
- if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
- return true;
- }
- }
- }
- // Under the Itanium C++ ABI, memory for the exception object is allocated by
- // the runtime with no ability for the compiler to request additional
- // alignment. Warn if the exception type requires alignment beyond the minimum
- // guaranteed by the target C++ runtime.
- if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
- CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
- CharUnits ExnObjAlign = Context.getExnObjectAlignment();
- if (ExnObjAlign < TypeAlign) {
- Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
- Diag(ThrowLoc, diag::note_throw_underaligned_obj)
- << Ty << (unsigned)TypeAlign.getQuantity()
- << (unsigned)ExnObjAlign.getQuantity();
- }
- }
- return false;
- }
- static QualType adjustCVQualifiersForCXXThisWithinLambda(
- ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
- DeclContext *CurSemaContext, ASTContext &ASTCtx) {
- QualType ClassType = ThisTy->getPointeeType();
- LambdaScopeInfo *CurLSI = nullptr;
- DeclContext *CurDC = CurSemaContext;
- // Iterate through the stack of lambdas starting from the innermost lambda to
- // the outermost lambda, checking if '*this' is ever captured by copy - since
- // that could change the cv-qualifiers of the '*this' object.
- // The object referred to by '*this' starts out with the cv-qualifiers of its
- // member function. We then start with the innermost lambda and iterate
- // outward checking to see if any lambda performs a by-copy capture of '*this'
- // - and if so, any nested lambda must respect the 'constness' of that
- // capturing lamdbda's call operator.
- //
- // Since the FunctionScopeInfo stack is representative of the lexical
- // nesting of the lambda expressions during initial parsing (and is the best
- // place for querying information about captures about lambdas that are
- // partially processed) and perhaps during instantiation of function templates
- // that contain lambda expressions that need to be transformed BUT not
- // necessarily during instantiation of a nested generic lambda's function call
- // operator (which might even be instantiated at the end of the TU) - at which
- // time the DeclContext tree is mature enough to query capture information
- // reliably - we use a two pronged approach to walk through all the lexically
- // enclosing lambda expressions:
- //
- // 1) Climb down the FunctionScopeInfo stack as long as each item represents
- // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
- // enclosed by the call-operator of the LSI below it on the stack (while
- // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
- // the stack represents the innermost lambda.
- //
- // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
- // represents a lambda's call operator. If it does, we must be instantiating
- // a generic lambda's call operator (represented by the Current LSI, and
- // should be the only scenario where an inconsistency between the LSI and the
- // DeclContext should occur), so climb out the DeclContexts if they
- // represent lambdas, while querying the corresponding closure types
- // regarding capture information.
- // 1) Climb down the function scope info stack.
- for (int I = FunctionScopes.size();
- I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
- (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
- cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
- CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
- CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
- if (!CurLSI->isCXXThisCaptured())
- continue;
- auto C = CurLSI->getCXXThisCapture();
- if (C.isCopyCapture()) {
- ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
- if (CurLSI->CallOperator->isConst())
- ClassType.addConst();
- return ASTCtx.getPointerType(ClassType);
- }
- }
- // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
- // can happen during instantiation of its nested generic lambda call
- // operator); 2. if we're in a lambda scope (lambda body).
- if (CurLSI && isLambdaCallOperator(CurDC)) {
- assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
- "While computing 'this' capture-type for a generic lambda, when we "
- "run out of enclosing LSI's, yet the enclosing DC is a "
- "lambda-call-operator we must be (i.e. Current LSI) in a generic "
- "lambda call oeprator");
- assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
- auto IsThisCaptured =
- [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
- IsConst = false;
- IsByCopy = false;
- for (auto &&C : Closure->captures()) {
- if (C.capturesThis()) {
- if (C.getCaptureKind() == LCK_StarThis)
- IsByCopy = true;
- if (Closure->getLambdaCallOperator()->isConst())
- IsConst = true;
- return true;
- }
- }
- return false;
- };
- bool IsByCopyCapture = false;
- bool IsConstCapture = false;
- CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
- while (Closure &&
- IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
- if (IsByCopyCapture) {
- ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
- if (IsConstCapture)
- ClassType.addConst();
- return ASTCtx.getPointerType(ClassType);
- }
- Closure = isLambdaCallOperator(Closure->getParent())
- ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
- : nullptr;
- }
- }
- return ASTCtx.getPointerType(ClassType);
- }
- QualType Sema::getCurrentThisType() {
- DeclContext *DC = getFunctionLevelDeclContext();
- QualType ThisTy = CXXThisTypeOverride;
- if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
- if (method && method->isInstance())
- ThisTy = method->getThisType();
- }
- if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
- inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
- // This is a lambda call operator that is being instantiated as a default
- // initializer. DC must point to the enclosing class type, so we can recover
- // the 'this' type from it.
- QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
- // There are no cv-qualifiers for 'this' within default initializers,
- // per [expr.prim.general]p4.
- ThisTy = Context.getPointerType(ClassTy);
- }
- // If we are within a lambda's call operator, the cv-qualifiers of 'this'
- // might need to be adjusted if the lambda or any of its enclosing lambda's
- // captures '*this' by copy.
- if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
- return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
- CurContext, Context);
- return ThisTy;
- }
- Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
- Decl *ContextDecl,
- Qualifiers CXXThisTypeQuals,
- bool Enabled)
- : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
- {
- if (!Enabled || !ContextDecl)
- return;
- CXXRecordDecl *Record = nullptr;
- if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
- Record = Template->getTemplatedDecl();
- else
- Record = cast<CXXRecordDecl>(ContextDecl);
- QualType T = S.Context.getRecordType(Record);
- T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
- S.CXXThisTypeOverride = S.Context.getPointerType(T);
- this->Enabled = true;
- }
- Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
- if (Enabled) {
- S.CXXThisTypeOverride = OldCXXThisTypeOverride;
- }
- }
- static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
- SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
- assert(!LSI->isCXXThisCaptured());
- // [=, this] {}; // until C++20: Error: this when = is the default
- if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
- !Sema.getLangOpts().CPlusPlus20)
- return;
- Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
- << FixItHint::CreateInsertion(
- DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
- }
- bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
- bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
- const bool ByCopy) {
- // We don't need to capture this in an unevaluated context.
- if (isUnevaluatedContext() && !Explicit)
- return true;
- assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
- const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
- ? *FunctionScopeIndexToStopAt
- : FunctionScopes.size() - 1;
- // Check that we can capture the *enclosing object* (referred to by '*this')
- // by the capturing-entity/closure (lambda/block/etc) at
- // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
- // Note: The *enclosing object* can only be captured by-value by a
- // closure that is a lambda, using the explicit notation:
- // [*this] { ... }.
- // Every other capture of the *enclosing object* results in its by-reference
- // capture.
- // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
- // stack), we can capture the *enclosing object* only if:
- // - 'L' has an explicit byref or byval capture of the *enclosing object*
- // - or, 'L' has an implicit capture.
- // AND
- // -- there is no enclosing closure
- // -- or, there is some enclosing closure 'E' that has already captured the
- // *enclosing object*, and every intervening closure (if any) between 'E'
- // and 'L' can implicitly capture the *enclosing object*.
- // -- or, every enclosing closure can implicitly capture the
- // *enclosing object*
- unsigned NumCapturingClosures = 0;
- for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
- if (CapturingScopeInfo *CSI =
- dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
- if (CSI->CXXThisCaptureIndex != 0) {
- // 'this' is already being captured; there isn't anything more to do.
- CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
- break;
- }
- LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
- if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
- // This context can't implicitly capture 'this'; fail out.
- if (BuildAndDiagnose) {
- Diag(Loc, diag::err_this_capture)
- << (Explicit && idx == MaxFunctionScopesIndex);
- if (!Explicit)
- buildLambdaThisCaptureFixit(*this, LSI);
- }
- return true;
- }
- if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
- CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
- CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
- CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
- (Explicit && idx == MaxFunctionScopesIndex)) {
- // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
- // iteration through can be an explicit capture, all enclosing closures,
- // if any, must perform implicit captures.
- // This closure can capture 'this'; continue looking upwards.
- NumCapturingClosures++;
- continue;
- }
- // This context can't implicitly capture 'this'; fail out.
- if (BuildAndDiagnose)
- Diag(Loc, diag::err_this_capture)
- << (Explicit && idx == MaxFunctionScopesIndex);
- if (!Explicit)
- buildLambdaThisCaptureFixit(*this, LSI);
- return true;
- }
- break;
- }
- if (!BuildAndDiagnose) return false;
- // If we got here, then the closure at MaxFunctionScopesIndex on the
- // FunctionScopes stack, can capture the *enclosing object*, so capture it
- // (including implicit by-reference captures in any enclosing closures).
- // In the loop below, respect the ByCopy flag only for the closure requesting
- // the capture (i.e. first iteration through the loop below). Ignore it for
- // all enclosing closure's up to NumCapturingClosures (since they must be
- // implicitly capturing the *enclosing object* by reference (see loop
- // above)).
- assert((!ByCopy ||
- isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
- "Only a lambda can capture the enclosing object (referred to by "
- "*this) by copy");
- QualType ThisTy = getCurrentThisType();
- for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
- --idx, --NumCapturingClosures) {
- CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
- // The type of the corresponding data member (not a 'this' pointer if 'by
- // copy').
- QualType CaptureType = ThisTy;
- if (ByCopy) {
- // If we are capturing the object referred to by '*this' by copy, ignore
- // any cv qualifiers inherited from the type of the member function for
- // the type of the closure-type's corresponding data member and any use
- // of 'this'.
- CaptureType = ThisTy->getPointeeType();
- CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
- }
- bool isNested = NumCapturingClosures > 1;
- CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
- }
- return false;
- }
- ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
- /// C++ 9.3.2: In the body of a non-static member function, the keyword this
- /// is a non-lvalue expression whose value is the address of the object for
- /// which the function is called.
- QualType ThisTy = getCurrentThisType();
- if (ThisTy.isNull())
- return Diag(Loc, diag::err_invalid_this_use);
- return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
- }
- Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
- bool IsImplicit) {
- if (getLangOpts().HLSL && Type.getTypePtr()->isPointerType()) {
- auto *This = new (Context)
- CXXThisExpr(Loc, Type.getTypePtr()->getPointeeType(), IsImplicit);
- This->setValueKind(ExprValueKind::VK_LValue);
- MarkThisReferenced(This);
- return This;
- }
- auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
- MarkThisReferenced(This);
- return This;
- }
- void Sema::MarkThisReferenced(CXXThisExpr *This) {
- CheckCXXThisCapture(This->getExprLoc());
- }
- bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
- // If we're outside the body of a member function, then we'll have a specified
- // type for 'this'.
- if (CXXThisTypeOverride.isNull())
- return false;
- // Determine whether we're looking into a class that's currently being
- // defined.
- CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
- return Class && Class->isBeingDefined();
- }
- /// Parse construction of a specified type.
- /// Can be interpreted either as function-style casting ("int(x)")
- /// or class type construction ("ClassType(x,y,z)")
- /// or creation of a value-initialized type ("int()").
- ExprResult
- Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
- SourceLocation LParenOrBraceLoc,
- MultiExprArg exprs,
- SourceLocation RParenOrBraceLoc,
- bool ListInitialization) {
- if (!TypeRep)
- return ExprError();
- TypeSourceInfo *TInfo;
- QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
- if (!TInfo)
- TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
- auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
- RParenOrBraceLoc, ListInitialization);
- // Avoid creating a non-type-dependent expression that contains typos.
- // Non-type-dependent expressions are liable to be discarded without
- // checking for embedded typos.
- if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
- !Result.get()->isTypeDependent())
- Result = CorrectDelayedTyposInExpr(Result.get());
- else if (Result.isInvalid())
- Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
- RParenOrBraceLoc, exprs, Ty);
- return Result;
- }
- ExprResult
- Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
- SourceLocation LParenOrBraceLoc,
- MultiExprArg Exprs,
- SourceLocation RParenOrBraceLoc,
- bool ListInitialization) {
- QualType Ty = TInfo->getType();
- SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
- assert((!ListInitialization || Exprs.size() == 1) &&
- "List initialization must have exactly one expression.");
- SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
- InitializedEntity Entity =
- InitializedEntity::InitializeTemporary(Context, TInfo);
- InitializationKind Kind =
- Exprs.size()
- ? ListInitialization
- ? InitializationKind::CreateDirectList(
- TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
- : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
- RParenOrBraceLoc)
- : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
- RParenOrBraceLoc);
- // C++1z [expr.type.conv]p1:
- // If the type is a placeholder for a deduced class type, [...perform class
- // template argument deduction...]
- // C++2b:
- // Otherwise, if the type contains a placeholder type, it is replaced by the
- // type determined by placeholder type deduction.
- DeducedType *Deduced = Ty->getContainedDeducedType();
- if (Deduced && !Deduced->isDeduced() &&
- isa<DeducedTemplateSpecializationType>(Deduced)) {
- Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
- Kind, Exprs);
- if (Ty.isNull())
- return ExprError();
- Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
- } else if (Deduced && !Deduced->isDeduced()) {
- MultiExprArg Inits = Exprs;
- if (ListInitialization) {
- auto *ILE = cast<InitListExpr>(Exprs[0]);
- Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
- }
- if (Inits.empty())
- return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
- << Ty << FullRange);
- if (Inits.size() > 1) {
- Expr *FirstBad = Inits[1];
- return ExprError(Diag(FirstBad->getBeginLoc(),
- diag::err_auto_expr_init_multiple_expressions)
- << Ty << FullRange);
- }
- if (getLangOpts().CPlusPlus2b) {
- if (Ty->getAs<AutoType>())
- Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
- }
- Expr *Deduce = Inits[0];
- if (isa<InitListExpr>(Deduce))
- return ExprError(
- Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
- << ListInitialization << Ty << FullRange);
- QualType DeducedType;
- TemplateDeductionInfo Info(Deduce->getExprLoc());
- TemplateDeductionResult Result =
- DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info);
- if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
- return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
- << Ty << Deduce->getType() << FullRange
- << Deduce->getSourceRange());
- if (DeducedType.isNull()) {
- assert(Result == TDK_AlreadyDiagnosed);
- return ExprError();
- }
- Ty = DeducedType;
- Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
- }
- if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
- // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
- // directly. We work around this by dropping the locations of the braces.
- SourceRange Locs = ListInitialization
- ? SourceRange()
- : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
- return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
- TInfo, Locs.getBegin(), Exprs,
- Locs.getEnd());
- }
- // C++ [expr.type.conv]p1:
- // If the expression list is a parenthesized single expression, the type
- // conversion expression is equivalent (in definedness, and if defined in
- // meaning) to the corresponding cast expression.
- if (Exprs.size() == 1 && !ListInitialization &&
- !isa<InitListExpr>(Exprs[0])) {
- Expr *Arg = Exprs[0];
- return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
- RParenOrBraceLoc);
- }
- // For an expression of the form T(), T shall not be an array type.
- QualType ElemTy = Ty;
- if (Ty->isArrayType()) {
- if (!ListInitialization)
- return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
- << FullRange);
- ElemTy = Context.getBaseElementType(Ty);
- }
- // Only construct objects with object types.
- // The standard doesn't explicitly forbid function types here, but that's an
- // obvious oversight, as there's no way to dynamically construct a function
- // in general.
- if (Ty->isFunctionType())
- return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
- << Ty << FullRange);
- // C++17 [expr.type.conv]p2:
- // If the type is cv void and the initializer is (), the expression is a
- // prvalue of the specified type that performs no initialization.
- if (!Ty->isVoidType() &&
- RequireCompleteType(TyBeginLoc, ElemTy,
- diag::err_invalid_incomplete_type_use, FullRange))
- return ExprError();
- // Otherwise, the expression is a prvalue of the specified type whose
- // result object is direct-initialized (11.6) with the initializer.
- InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
- ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
- if (Result.isInvalid())
- return Result;
- Expr *Inner = Result.get();
- if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
- Inner = BTE->getSubExpr();
- if (!isa<CXXTemporaryObjectExpr>(Inner) &&
- !isa<CXXScalarValueInitExpr>(Inner)) {
- // If we created a CXXTemporaryObjectExpr, that node also represents the
- // functional cast. Otherwise, create an explicit cast to represent
- // the syntactic form of a functional-style cast that was used here.
- //
- // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
- // would give a more consistent AST representation than using a
- // CXXTemporaryObjectExpr. It's also weird that the functional cast
- // is sometimes handled by initialization and sometimes not.
- QualType ResultType = Result.get()->getType();
- SourceRange Locs = ListInitialization
- ? SourceRange()
- : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
- Result = CXXFunctionalCastExpr::Create(
- Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
- Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
- Locs.getBegin(), Locs.getEnd());
- }
- return Result;
- }
- bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
- // [CUDA] Ignore this function, if we can't call it.
- const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
- if (getLangOpts().CUDA) {
- auto CallPreference = IdentifyCUDAPreference(Caller, Method);
- // If it's not callable at all, it's not the right function.
- if (CallPreference < CFP_WrongSide)
- return false;
- if (CallPreference == CFP_WrongSide) {
- // Maybe. We have to check if there are better alternatives.
- DeclContext::lookup_result R =
- Method->getDeclContext()->lookup(Method->getDeclName());
- for (const auto *D : R) {
- if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
- if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
- return false;
- }
- }
- // We've found no better variants.
- }
- }
- SmallVector<const FunctionDecl*, 4> PreventedBy;
- bool Result = Method->isUsualDeallocationFunction(PreventedBy);
- if (Result || !getLangOpts().CUDA || PreventedBy.empty())
- return Result;
- // In case of CUDA, return true if none of the 1-argument deallocator
- // functions are actually callable.
- return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
- assert(FD->getNumParams() == 1 &&
- "Only single-operand functions should be in PreventedBy");
- return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
- });
- }
- /// Determine whether the given function is a non-placement
- /// deallocation function.
- static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
- if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
- return S.isUsualDeallocationFunction(Method);
- if (FD->getOverloadedOperator() != OO_Delete &&
- FD->getOverloadedOperator() != OO_Array_Delete)
- return false;
- unsigned UsualParams = 1;
- if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
- S.Context.hasSameUnqualifiedType(
- FD->getParamDecl(UsualParams)->getType(),
- S.Context.getSizeType()))
- ++UsualParams;
- if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
- S.Context.hasSameUnqualifiedType(
- FD->getParamDecl(UsualParams)->getType(),
- S.Context.getTypeDeclType(S.getStdAlignValT())))
- ++UsualParams;
- return UsualParams == FD->getNumParams();
- }
- namespace {
- struct UsualDeallocFnInfo {
- UsualDeallocFnInfo() : Found(), FD(nullptr) {}
- UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
- : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
- Destroying(false), HasSizeT(false), HasAlignValT(false),
- CUDAPref(Sema::CFP_Native) {
- // A function template declaration is never a usual deallocation function.
- if (!FD)
- return;
- unsigned NumBaseParams = 1;
- if (FD->isDestroyingOperatorDelete()) {
- Destroying = true;
- ++NumBaseParams;
- }
- if (NumBaseParams < FD->getNumParams() &&
- S.Context.hasSameUnqualifiedType(
- FD->getParamDecl(NumBaseParams)->getType(),
- S.Context.getSizeType())) {
- ++NumBaseParams;
- HasSizeT = true;
- }
- if (NumBaseParams < FD->getNumParams() &&
- FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
- ++NumBaseParams;
- HasAlignValT = true;
- }
- // In CUDA, determine how much we'd like / dislike to call this.
- if (S.getLangOpts().CUDA)
- if (auto *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true))
- CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
- }
- explicit operator bool() const { return FD; }
- bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
- bool WantAlign) const {
- // C++ P0722:
- // A destroying operator delete is preferred over a non-destroying
- // operator delete.
- if (Destroying != Other.Destroying)
- return Destroying;
- // C++17 [expr.delete]p10:
- // If the type has new-extended alignment, a function with a parameter
- // of type std::align_val_t is preferred; otherwise a function without
- // such a parameter is preferred
- if (HasAlignValT != Other.HasAlignValT)
- return HasAlignValT == WantAlign;
- if (HasSizeT != Other.HasSizeT)
- return HasSizeT == WantSize;
- // Use CUDA call preference as a tiebreaker.
- return CUDAPref > Other.CUDAPref;
- }
- DeclAccessPair Found;
- FunctionDecl *FD;
- bool Destroying, HasSizeT, HasAlignValT;
- Sema::CUDAFunctionPreference CUDAPref;
- };
- }
- /// Determine whether a type has new-extended alignment. This may be called when
- /// the type is incomplete (for a delete-expression with an incomplete pointee
- /// type), in which case it will conservatively return false if the alignment is
- /// not known.
- static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
- return S.getLangOpts().AlignedAllocation &&
- S.getASTContext().getTypeAlignIfKnown(AllocType) >
- S.getASTContext().getTargetInfo().getNewAlign();
- }
- /// Select the correct "usual" deallocation function to use from a selection of
- /// deallocation functions (either global or class-scope).
- static UsualDeallocFnInfo resolveDeallocationOverload(
- Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
- llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
- UsualDeallocFnInfo Best;
- for (auto I = R.begin(), E = R.end(); I != E; ++I) {
- UsualDeallocFnInfo Info(S, I.getPair());
- if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
- Info.CUDAPref == Sema::CFP_Never)
- continue;
- if (!Best) {
- Best = Info;
- if (BestFns)
- BestFns->push_back(Info);
- continue;
- }
- if (Best.isBetterThan(Info, WantSize, WantAlign))
- continue;
- // If more than one preferred function is found, all non-preferred
- // functions are eliminated from further consideration.
- if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
- BestFns->clear();
- Best = Info;
- if (BestFns)
- BestFns->push_back(Info);
- }
- return Best;
- }
- /// Determine whether a given type is a class for which 'delete[]' would call
- /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
- /// we need to store the array size (even if the type is
- /// trivially-destructible).
- static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
- QualType allocType) {
- const RecordType *record =
- allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
- if (!record) return false;
- // Try to find an operator delete[] in class scope.
- DeclarationName deleteName =
- S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
- LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
- S.LookupQualifiedName(ops, record->getDecl());
- // We're just doing this for information.
- ops.suppressDiagnostics();
- // Very likely: there's no operator delete[].
- if (ops.empty()) return false;
- // If it's ambiguous, it should be illegal to call operator delete[]
- // on this thing, so it doesn't matter if we allocate extra space or not.
- if (ops.isAmbiguous()) return false;
- // C++17 [expr.delete]p10:
- // If the deallocation functions have class scope, the one without a
- // parameter of type std::size_t is selected.
- auto Best = resolveDeallocationOverload(
- S, ops, /*WantSize*/false,
- /*WantAlign*/hasNewExtendedAlignment(S, allocType));
- return Best && Best.HasSizeT;
- }
- /// Parsed a C++ 'new' expression (C++ 5.3.4).
- ///
- /// E.g.:
- /// @code new (memory) int[size][4] @endcode
- /// or
- /// @code ::new Foo(23, "hello") @endcode
- ///
- /// \param StartLoc The first location of the expression.
- /// \param UseGlobal True if 'new' was prefixed with '::'.
- /// \param PlacementLParen Opening paren of the placement arguments.
- /// \param PlacementArgs Placement new arguments.
- /// \param PlacementRParen Closing paren of the placement arguments.
- /// \param TypeIdParens If the type is in parens, the source range.
- /// \param D The type to be allocated, as well as array dimensions.
- /// \param Initializer The initializing expression or initializer-list, or null
- /// if there is none.
- ExprResult
- Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
- SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
- SourceLocation PlacementRParen, SourceRange TypeIdParens,
- Declarator &D, Expr *Initializer) {
- std::optional<Expr *> ArraySize;
- // If the specified type is an array, unwrap it and save the expression.
- if (D.getNumTypeObjects() > 0 &&
- D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
- DeclaratorChunk &Chunk = D.getTypeObject(0);
- if (D.getDeclSpec().hasAutoTypeSpec())
- return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
- << D.getSourceRange());
- if (Chunk.Arr.hasStatic)
- return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
- << D.getSourceRange());
- if (!Chunk.Arr.NumElts && !Initializer)
- return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
- << D.getSourceRange());
- ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
- D.DropFirstTypeObject();
- }
- // Every dimension shall be of constant size.
- if (ArraySize) {
- for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
- if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
- break;
- DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
- if (Expr *NumElts = (Expr *)Array.NumElts) {
- if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
- // FIXME: GCC permits constant folding here. We should either do so consistently
- // or not do so at all, rather than changing behavior in C++14 onwards.
- if (getLangOpts().CPlusPlus14) {
- // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
- // shall be a converted constant expression (5.19) of type std::size_t
- // and shall evaluate to a strictly positive value.
- llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
- Array.NumElts
- = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
- CCEK_ArrayBound)
- .get();
- } else {
- Array.NumElts =
- VerifyIntegerConstantExpression(
- NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
- .get();
- }
- if (!Array.NumElts)
- return ExprError();
- }
- }
- }
- }
- TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
- QualType AllocType = TInfo->getType();
- if (D.isInvalidType())
- return ExprError();
- SourceRange DirectInitRange;
- if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
- DirectInitRange = List->getSourceRange();
- return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
- PlacementLParen, PlacementArgs, PlacementRParen,
- TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
- Initializer);
- }
- static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
- Expr *Init) {
- if (!Init)
- return true;
- if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
- return PLE->getNumExprs() == 0;
- if (isa<ImplicitValueInitExpr>(Init))
- return true;
- else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
- return !CCE->isListInitialization() &&
- CCE->getConstructor()->isDefaultConstructor();
- else if (Style == CXXNewExpr::ListInit) {
- assert(isa<InitListExpr>(Init) &&
- "Shouldn't create list CXXConstructExprs for arrays.");
- return true;
- }
- return false;
- }
- bool
- Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
- if (!getLangOpts().AlignedAllocationUnavailable)
- return false;
- if (FD.isDefined())
- return false;
- std::optional<unsigned> AlignmentParam;
- if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
- AlignmentParam)
- return true;
- return false;
- }
- // Emit a diagnostic if an aligned allocation/deallocation function that is not
- // implemented in the standard library is selected.
- void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
- SourceLocation Loc) {
- if (isUnavailableAlignedAllocationFunction(FD)) {
- const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
- StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
- getASTContext().getTargetInfo().getPlatformName());
- VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
- OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
- bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
- Diag(Loc, diag::err_aligned_allocation_unavailable)
- << IsDelete << FD.getType().getAsString() << OSName
- << OSVersion.getAsString() << OSVersion.empty();
- Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
- }
- }
- ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
- SourceLocation PlacementLParen,
- MultiExprArg PlacementArgs,
- SourceLocation PlacementRParen,
- SourceRange TypeIdParens, QualType AllocType,
- TypeSourceInfo *AllocTypeInfo,
- std::optional<Expr *> ArraySize,
- SourceRange DirectInitRange, Expr *Initializer) {
- SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
- SourceLocation StartLoc = Range.getBegin();
- CXXNewExpr::InitializationStyle initStyle;
- if (DirectInitRange.isValid()) {
- assert(Initializer && "Have parens but no initializer.");
- initStyle = CXXNewExpr::CallInit;
- } else if (Initializer && isa<InitListExpr>(Initializer))
- initStyle = CXXNewExpr::ListInit;
- else {
- assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
- isa<CXXConstructExpr>(Initializer)) &&
- "Initializer expression that cannot have been implicitly created.");
- initStyle = CXXNewExpr::NoInit;
- }
- MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
- if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
- assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
- Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
- }
- // C++11 [expr.new]p15:
- // A new-expression that creates an object of type T initializes that
- // object as follows:
- InitializationKind Kind
- // - If the new-initializer is omitted, the object is default-
- // initialized (8.5); if no initialization is performed,
- // the object has indeterminate value
- = initStyle == CXXNewExpr::NoInit
- ? InitializationKind::CreateDefault(TypeRange.getBegin())
- // - Otherwise, the new-initializer is interpreted according to
- // the
- // initialization rules of 8.5 for direct-initialization.
- : initStyle == CXXNewExpr::ListInit
- ? InitializationKind::CreateDirectList(
- TypeRange.getBegin(), Initializer->getBeginLoc(),
- Initializer->getEndLoc())
- : InitializationKind::CreateDirect(TypeRange.getBegin(),
- DirectInitRange.getBegin(),
- DirectInitRange.getEnd());
- // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
- auto *Deduced = AllocType->getContainedDeducedType();
- if (Deduced && !Deduced->isDeduced() &&
- isa<DeducedTemplateSpecializationType>(Deduced)) {
- if (ArraySize)
- return ExprError(
- Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
- diag::err_deduced_class_template_compound_type)
- << /*array*/ 2
- << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
- InitializedEntity Entity
- = InitializedEntity::InitializeNew(StartLoc, AllocType);
- AllocType = DeduceTemplateSpecializationFromInitializer(
- AllocTypeInfo, Entity, Kind, Exprs);
- if (AllocType.isNull())
- return ExprError();
- } else if (Deduced && !Deduced->isDeduced()) {
- MultiExprArg Inits = Exprs;
- bool Braced = (initStyle == CXXNewExpr::ListInit);
- if (Braced) {
- auto *ILE = cast<InitListExpr>(Exprs[0]);
- Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
- }
- if (initStyle == CXXNewExpr::NoInit || Inits.empty())
- return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
- << AllocType << TypeRange);
- if (Inits.size() > 1) {
- Expr *FirstBad = Inits[1];
- return ExprError(Diag(FirstBad->getBeginLoc(),
- diag::err_auto_new_ctor_multiple_expressions)
- << AllocType << TypeRange);
- }
- if (Braced && !getLangOpts().CPlusPlus17)
- Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
- << AllocType << TypeRange;
- Expr *Deduce = Inits[0];
- if (isa<InitListExpr>(Deduce))
- return ExprError(
- Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
- << Braced << AllocType << TypeRange);
- QualType DeducedType;
- TemplateDeductionInfo Info(Deduce->getExprLoc());
- TemplateDeductionResult Result =
- DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info);
- if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
- return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
- << AllocType << Deduce->getType() << TypeRange
- << Deduce->getSourceRange());
- if (DeducedType.isNull()) {
- assert(Result == TDK_AlreadyDiagnosed);
- return ExprError();
- }
- AllocType = DeducedType;
- }
- // Per C++0x [expr.new]p5, the type being constructed may be a
- // typedef of an array type.
- if (!ArraySize) {
- if (const ConstantArrayType *Array
- = Context.getAsConstantArrayType(AllocType)) {
- ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
- Context.getSizeType(),
- TypeRange.getEnd());
- AllocType = Array->getElementType();
- }
- }
- if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
- return ExprError();
- if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin()))
- return ExprError();
- // In ARC, infer 'retaining' for the allocated
- if (getLangOpts().ObjCAutoRefCount &&
- AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
- AllocType->isObjCLifetimeType()) {
- AllocType = Context.getLifetimeQualifiedType(AllocType,
- AllocType->getObjCARCImplicitLifetime());
- }
- QualType ResultType = Context.getPointerType(AllocType);
- if (ArraySize && *ArraySize &&
- (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
- ExprResult result = CheckPlaceholderExpr(*ArraySize);
- if (result.isInvalid()) return ExprError();
- ArraySize = result.get();
- }
- // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
- // integral or enumeration type with a non-negative value."
- // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
- // enumeration type, or a class type for which a single non-explicit
- // conversion function to integral or unscoped enumeration type exists.
- // C++1y [expr.new]p6: The expression [...] is implicitly converted to
- // std::size_t.
- std::optional<uint64_t> KnownArraySize;
- if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
- ExprResult ConvertedSize;
- if (getLangOpts().CPlusPlus14) {
- assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
- ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
- AA_Converting);
- if (!ConvertedSize.isInvalid() &&
- (*ArraySize)->getType()->getAs<RecordType>())
- // Diagnose the compatibility of this conversion.
- Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
- << (*ArraySize)->getType() << 0 << "'size_t'";
- } else {
- class SizeConvertDiagnoser : public ICEConvertDiagnoser {
- protected:
- Expr *ArraySize;
- public:
- SizeConvertDiagnoser(Expr *ArraySize)
- : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
- ArraySize(ArraySize) {}
- SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
- QualType T) override {
- return S.Diag(Loc, diag::err_array_size_not_integral)
- << S.getLangOpts().CPlusPlus11 << T;
- }
- SemaDiagnosticBuilder diagnoseIncomplete(
- Sema &S, SourceLocation Loc, QualType T) override {
- return S.Diag(Loc, diag::err_array_size_incomplete_type)
- << T << ArraySize->getSourceRange();
- }
- SemaDiagnosticBuilder diagnoseExplicitConv(
- Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
- return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
- }
- SemaDiagnosticBuilder noteExplicitConv(
- Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
- return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
- << ConvTy->isEnumeralType() << ConvTy;
- }
- SemaDiagnosticBuilder diagnoseAmbiguous(
- Sema &S, SourceLocation Loc, QualType T) override {
- return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
- }
- SemaDiagnosticBuilder noteAmbiguous(
- Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
- return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
- << ConvTy->isEnumeralType() << ConvTy;
- }
- SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
- QualType T,
- QualType ConvTy) override {
- return S.Diag(Loc,
- S.getLangOpts().CPlusPlus11
- ? diag::warn_cxx98_compat_array_size_conversion
- : diag::ext_array_size_conversion)
- << T << ConvTy->isEnumeralType() << ConvTy;
- }
- } SizeDiagnoser(*ArraySize);
- ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
- SizeDiagnoser);
- }
- if (ConvertedSize.isInvalid())
- return ExprError();
- ArraySize = ConvertedSize.get();
- QualType SizeType = (*ArraySize)->getType();
- if (!SizeType->isIntegralOrUnscopedEnumerationType())
- return ExprError();
- // C++98 [expr.new]p7:
- // The expression in a direct-new-declarator shall have integral type
- // with a non-negative value.
- //
- // Let's see if this is a constant < 0. If so, we reject it out of hand,
- // per CWG1464. Otherwise, if it's not a constant, we must have an
- // unparenthesized array type.
- // We've already performed any required implicit conversion to integer or
- // unscoped enumeration type.
- // FIXME: Per CWG1464, we are required to check the value prior to
- // converting to size_t. This will never find a negative array size in
- // C++14 onwards, because Value is always unsigned here!
- if (std::optional<llvm::APSInt> Value =
- (*ArraySize)->getIntegerConstantExpr(Context)) {
- if (Value->isSigned() && Value->isNegative()) {
- return ExprError(Diag((*ArraySize)->getBeginLoc(),
- diag::err_typecheck_negative_array_size)
- << (*ArraySize)->getSourceRange());
- }
- if (!AllocType->isDependentType()) {
- unsigned ActiveSizeBits =
- ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
- if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
- return ExprError(
- Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
- << toString(*Value, 10) << (*ArraySize)->getSourceRange());
- }
- KnownArraySize = Value->getZExtValue();
- } else if (TypeIdParens.isValid()) {
- // Can't have dynamic array size when the type-id is in parentheses.
- Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
- << (*ArraySize)->getSourceRange()
- << FixItHint::CreateRemoval(TypeIdParens.getBegin())
- << FixItHint::CreateRemoval(TypeIdParens.getEnd());
- TypeIdParens = SourceRange();
- }
- // Note that we do *not* convert the argument in any way. It can
- // be signed, larger than size_t, whatever.
- }
- FunctionDecl *OperatorNew = nullptr;
- FunctionDecl *OperatorDelete = nullptr;
- unsigned Alignment =
- AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
- unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
- bool PassAlignment = getLangOpts().AlignedAllocation &&
- Alignment > NewAlignment;
- AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
- if (!AllocType->isDependentType() &&
- !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
- FindAllocationFunctions(
- StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
- AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
- OperatorNew, OperatorDelete))
- return ExprError();
- // If this is an array allocation, compute whether the usual array
- // deallocation function for the type has a size_t parameter.
- bool UsualArrayDeleteWantsSize = false;
- if (ArraySize && !AllocType->isDependentType())
- UsualArrayDeleteWantsSize =
- doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
- SmallVector<Expr *, 8> AllPlaceArgs;
- if (OperatorNew) {
- auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
- VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
- : VariadicDoesNotApply;
- // We've already converted the placement args, just fill in any default
- // arguments. Skip the first parameter because we don't have a corresponding
- // argument. Skip the second parameter too if we're passing in the
- // alignment; we've already filled it in.
- unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
- if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
- NumImplicitArgs, PlacementArgs, AllPlaceArgs,
- CallType))
- return ExprError();
- if (!AllPlaceArgs.empty())
- PlacementArgs = AllPlaceArgs;
- // We would like to perform some checking on the given `operator new` call,
- // but the PlacementArgs does not contain the implicit arguments,
- // namely allocation size and maybe allocation alignment,
- // so we need to conjure them.
- QualType SizeTy = Context.getSizeType();
- unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
- llvm::APInt SingleEltSize(
- SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
- // How many bytes do we want to allocate here?
- std::optional<llvm::APInt> AllocationSize;
- if (!ArraySize && !AllocType->isDependentType()) {
- // For non-array operator new, we only want to allocate one element.
- AllocationSize = SingleEltSize;
- } else if (KnownArraySize && !AllocType->isDependentType()) {
- // For array operator new, only deal with static array size case.
- bool Overflow;
- AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
- .umul_ov(SingleEltSize, Overflow);
- (void)Overflow;
- assert(
- !Overflow &&
- "Expected that all the overflows would have been handled already.");
- }
- IntegerLiteral AllocationSizeLiteral(
- Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
- SizeTy, SourceLocation());
- // Otherwise, if we failed to constant-fold the allocation size, we'll
- // just give up and pass-in something opaque, that isn't a null pointer.
- OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
- OK_Ordinary, /*SourceExpr=*/nullptr);
- // Let's synthesize the alignment argument in case we will need it.
- // Since we *really* want to allocate these on stack, this is slightly ugly
- // because there might not be a `std::align_val_t` type.
- EnumDecl *StdAlignValT = getStdAlignValT();
- QualType AlignValT =
- StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
- IntegerLiteral AlignmentLiteral(
- Context,
- llvm::APInt(Context.getTypeSize(SizeTy),
- Alignment / Context.getCharWidth()),
- SizeTy, SourceLocation());
- ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
- CK_IntegralCast, &AlignmentLiteral,
- VK_PRValue, FPOptionsOverride());
- // Adjust placement args by prepending conjured size and alignment exprs.
- llvm::SmallVector<Expr *, 8> CallArgs;
- CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
- CallArgs.emplace_back(AllocationSize
- ? static_cast<Expr *>(&AllocationSizeLiteral)
- : &OpaqueAllocationSize);
- if (PassAlignment)
- CallArgs.emplace_back(&DesiredAlignment);
- CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
- DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
- checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
- /*IsMemberFunction=*/false, StartLoc, Range, CallType);
- // Warn if the type is over-aligned and is being allocated by (unaligned)
- // global operator new.
- if (PlacementArgs.empty() && !PassAlignment &&
- (OperatorNew->isImplicit() ||
- (OperatorNew->getBeginLoc().isValid() &&
- getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
- if (Alignment > NewAlignment)
- Diag(StartLoc, diag::warn_overaligned_type)
- << AllocType
- << unsigned(Alignment / Context.getCharWidth())
- << unsigned(NewAlignment / Context.getCharWidth());
- }
- }
- // Array 'new' can't have any initializers except empty parentheses.
- // Initializer lists are also allowed, in C++11. Rely on the parser for the
- // dialect distinction.
- if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
- SourceRange InitRange(Exprs.front()->getBeginLoc(),
- Exprs.back()->getEndLoc());
- Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
- return ExprError();
- }
- // If we can perform the initialization, and we've not already done so,
- // do it now.
- if (!AllocType->isDependentType() &&
- !Expr::hasAnyTypeDependentArguments(Exprs)) {
- // The type we initialize is the complete type, including the array bound.
- QualType InitType;
- if (KnownArraySize)
- InitType = Context.getConstantArrayType(
- AllocType,
- llvm::APInt(Context.getTypeSize(Context.getSizeType()),
- *KnownArraySize),
- *ArraySize, ArrayType::Normal, 0);
- else if (ArraySize)
- InitType =
- Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
- else
- InitType = AllocType;
- InitializedEntity Entity
- = InitializedEntity::InitializeNew(StartLoc, InitType);
- InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
- ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
- if (FullInit.isInvalid())
- return ExprError();
- // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
- // we don't want the initialized object to be destructed.
- // FIXME: We should not create these in the first place.
- if (CXXBindTemporaryExpr *Binder =
- dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
- FullInit = Binder->getSubExpr();
- Initializer = FullInit.get();
- // FIXME: If we have a KnownArraySize, check that the array bound of the
- // initializer is no greater than that constant value.
- if (ArraySize && !*ArraySize) {
- auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
- if (CAT) {
- // FIXME: Track that the array size was inferred rather than explicitly
- // specified.
- ArraySize = IntegerLiteral::Create(
- Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
- } else {
- Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
- << Initializer->getSourceRange();
- }
- }
- }
- // Mark the new and delete operators as referenced.
- if (OperatorNew) {
- if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
- return ExprError();
- MarkFunctionReferenced(StartLoc, OperatorNew);
- }
- if (OperatorDelete) {
- if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
- return ExprError();
- MarkFunctionReferenced(StartLoc, OperatorDelete);
- }
- return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
- PassAlignment, UsualArrayDeleteWantsSize,
- PlacementArgs, TypeIdParens, ArraySize, initStyle,
- Initializer, ResultType, AllocTypeInfo, Range,
- DirectInitRange);
- }
- /// Checks that a type is suitable as the allocated type
- /// in a new-expression.
- bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
- SourceRange R) {
- // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
- // abstract class type or array thereof.
- if (AllocType->isFunctionType())
- return Diag(Loc, diag::err_bad_new_type)
- << AllocType << 0 << R;
- else if (AllocType->isReferenceType())
- return Diag(Loc, diag::err_bad_new_type)
- << AllocType << 1 << R;
- else if (!AllocType->isDependentType() &&
- RequireCompleteSizedType(
- Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
- return true;
- else if (RequireNonAbstractType(Loc, AllocType,
- diag::err_allocation_of_abstract_type))
- return true;
- else if (AllocType->isVariablyModifiedType())
- return Diag(Loc, diag::err_variably_modified_new_type)
- << AllocType;
- else if (AllocType.getAddressSpace() != LangAS::Default &&
- !getLangOpts().OpenCLCPlusPlus)
- return Diag(Loc, diag::err_address_space_qualified_new)
- << AllocType.getUnqualifiedType()
- << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
- else if (getLangOpts().ObjCAutoRefCount) {
- if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
- QualType BaseAllocType = Context.getBaseElementType(AT);
- if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
- BaseAllocType->isObjCLifetimeType())
- return Diag(Loc, diag::err_arc_new_array_without_ownership)
- << BaseAllocType;
- }
- }
- return false;
- }
- static bool resolveAllocationOverload(
- Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
- bool &PassAlignment, FunctionDecl *&Operator,
- OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
- OverloadCandidateSet Candidates(R.getNameLoc(),
- OverloadCandidateSet::CSK_Normal);
- for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
- Alloc != AllocEnd; ++Alloc) {
- // Even member operator new/delete are implicitly treated as
- // static, so don't use AddMemberCandidate.
- NamedDecl *D = (*Alloc)->getUnderlyingDecl();
- if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
- S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
- /*ExplicitTemplateArgs=*/nullptr, Args,
- Candidates,
- /*SuppressUserConversions=*/false);
- continue;
- }
- FunctionDecl *Fn = cast<FunctionDecl>(D);
- S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
- /*SuppressUserConversions=*/false);
- }
- // Do the resolution.
- OverloadCandidateSet::iterator Best;
- switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
- case OR_Success: {
- // Got one!
- FunctionDecl *FnDecl = Best->Function;
- if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
- Best->FoundDecl) == Sema::AR_inaccessible)
- return true;
- Operator = FnDecl;
- return false;
- }
- case OR_No_Viable_Function:
- // C++17 [expr.new]p13:
- // If no matching function is found and the allocated object type has
- // new-extended alignment, the alignment argument is removed from the
- // argument list, and overload resolution is performed again.
- if (PassAlignment) {
- PassAlignment = false;
- AlignArg = Args[1];
- Args.erase(Args.begin() + 1);
- return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
- Operator, &Candidates, AlignArg,
- Diagnose);
- }
- // MSVC will fall back on trying to find a matching global operator new
- // if operator new[] cannot be found. Also, MSVC will leak by not
- // generating a call to operator delete or operator delete[], but we
- // will not replicate that bug.
- // FIXME: Find out how this interacts with the std::align_val_t fallback
- // once MSVC implements it.
- if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
- S.Context.getLangOpts().MSVCCompat) {
- R.clear();
- R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
- S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
- // FIXME: This will give bad diagnostics pointing at the wrong functions.
- return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
- Operator, /*Candidates=*/nullptr,
- /*AlignArg=*/nullptr, Diagnose);
- }
- if (Diagnose) {
- // If this is an allocation of the form 'new (p) X' for some object
- // pointer p (or an expression that will decay to such a pointer),
- // diagnose the missing inclusion of <new>.
- if (!R.isClassLookup() && Args.size() == 2 &&
- (Args[1]->getType()->isObjectPointerType() ||
- Args[1]->getType()->isArrayType())) {
- S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
- << R.getLookupName() << Range;
- // Listing the candidates is unlikely to be useful; skip it.
- return true;
- }
- // Finish checking all candidates before we note any. This checking can
- // produce additional diagnostics so can't be interleaved with our
- // emission of notes.
- //
- // For an aligned allocation, separately check the aligned and unaligned
- // candidates with their respective argument lists.
- SmallVector<OverloadCandidate*, 32> Cands;
- SmallVector<OverloadCandidate*, 32> AlignedCands;
- llvm::SmallVector<Expr*, 4> AlignedArgs;
- if (AlignedCandidates) {
- auto IsAligned = [](OverloadCandidate &C) {
- return C.Function->getNumParams() > 1 &&
- C.Function->getParamDecl(1)->getType()->isAlignValT();
- };
- auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
- AlignedArgs.reserve(Args.size() + 1);
- AlignedArgs.push_back(Args[0]);
- AlignedArgs.push_back(AlignArg);
- AlignedArgs.append(Args.begin() + 1, Args.end());
- AlignedCands = AlignedCandidates->CompleteCandidates(
- S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
- Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
- R.getNameLoc(), IsUnaligned);
- } else {
- Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
- R.getNameLoc());
- }
- S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
- << R.getLookupName() << Range;
- if (AlignedCandidates)
- AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
- R.getNameLoc());
- Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
- }
- return true;
- case OR_Ambiguous:
- if (Diagnose) {
- Candidates.NoteCandidates(
- PartialDiagnosticAt(R.getNameLoc(),
- S.PDiag(diag::err_ovl_ambiguous_call)
- << R.getLookupName() << Range),
- S, OCD_AmbiguousCandidates, Args);
- }
- return true;
- case OR_Deleted: {
- if (Diagnose) {
- Candidates.NoteCandidates(
- PartialDiagnosticAt(R.getNameLoc(),
- S.PDiag(diag::err_ovl_deleted_call)
- << R.getLookupName() << Range),
- S, OCD_AllCandidates, Args);
- }
- return true;
- }
- }
- llvm_unreachable("Unreachable, bad result from BestViableFunction");
- }
- bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
- AllocationFunctionScope NewScope,
- AllocationFunctionScope DeleteScope,
- QualType AllocType, bool IsArray,
- bool &PassAlignment, MultiExprArg PlaceArgs,
- FunctionDecl *&OperatorNew,
- FunctionDecl *&OperatorDelete,
- bool Diagnose) {
- // --- Choosing an allocation function ---
- // C++ 5.3.4p8 - 14 & 18
- // 1) If looking in AFS_Global scope for allocation functions, only look in
- // the global scope. Else, if AFS_Class, only look in the scope of the
- // allocated class. If AFS_Both, look in both.
- // 2) If an array size is given, look for operator new[], else look for
- // operator new.
- // 3) The first argument is always size_t. Append the arguments from the
- // placement form.
- SmallVector<Expr*, 8> AllocArgs;
- AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
- // We don't care about the actual value of these arguments.
- // FIXME: Should the Sema create the expression and embed it in the syntax
- // tree? Or should the consumer just recalculate the value?
- // FIXME: Using a dummy value will interact poorly with attribute enable_if.
- IntegerLiteral Size(
- Context,
- llvm::APInt::getZero(
- Context.getTargetInfo().getPointerWidth(LangAS::Default)),
- Context.getSizeType(), SourceLocation());
- AllocArgs.push_back(&Size);
- QualType AlignValT = Context.VoidTy;
- if (PassAlignment) {
- DeclareGlobalNewDelete();
- AlignValT = Context.getTypeDeclType(getStdAlignValT());
- }
- CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
- if (PassAlignment)
- AllocArgs.push_back(&Align);
- AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
- // C++ [expr.new]p8:
- // If the allocated type is a non-array type, the allocation
- // function's name is operator new and the deallocation function's
- // name is operator delete. If the allocated type is an array
- // type, the allocation function's name is operator new[] and the
- // deallocation function's name is operator delete[].
- DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
- IsArray ? OO_Array_New : OO_New);
- QualType AllocElemType = Context.getBaseElementType(AllocType);
- // Find the allocation function.
- {
- LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
- // C++1z [expr.new]p9:
- // If the new-expression begins with a unary :: operator, the allocation
- // function's name is looked up in the global scope. Otherwise, if the
- // allocated type is a class type T or array thereof, the allocation
- // function's name is looked up in the scope of T.
- if (AllocElemType->isRecordType() && NewScope != AFS_Global)
- LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
- // We can see ambiguity here if the allocation function is found in
- // multiple base classes.
- if (R.isAmbiguous())
- return true;
- // If this lookup fails to find the name, or if the allocated type is not
- // a class type, the allocation function's name is looked up in the
- // global scope.
- if (R.empty()) {
- if (NewScope == AFS_Class)
- return true;
- LookupQualifiedName(R, Context.getTranslationUnitDecl());
- }
- if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
- if (PlaceArgs.empty()) {
- Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
- } else {
- Diag(StartLoc, diag::err_openclcxx_placement_new);
- }
- return true;
- }
- assert(!R.empty() && "implicitly declared allocation functions not found");
- assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
- // We do our own custom access checks below.
- R.suppressDiagnostics();
- if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
- OperatorNew, /*Candidates=*/nullptr,
- /*AlignArg=*/nullptr, Diagnose))
- return true;
- }
- // We don't need an operator delete if we're running under -fno-exceptions.
- if (!getLangOpts().Exceptions) {
- OperatorDelete = nullptr;
- return false;
- }
- // Note, the name of OperatorNew might have been changed from array to
- // non-array by resolveAllocationOverload.
- DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
- OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
- ? OO_Array_Delete
- : OO_Delete);
- // C++ [expr.new]p19:
- //
- // If the new-expression begins with a unary :: operator, the
- // deallocation function's name is looked up in the global
- // scope. Otherwise, if the allocated type is a class type T or an
- // array thereof, the deallocation function's name is looked up in
- // the scope of T. If this lookup fails to find the name, or if
- // the allocated type is not a class type or array thereof, the
- // deallocation function's name is looked up in the global scope.
- LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
- if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
- auto *RD =
- cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
- LookupQualifiedName(FoundDelete, RD);
- }
- if (FoundDelete.isAmbiguous())
- return true; // FIXME: clean up expressions?
- // Filter out any destroying operator deletes. We can't possibly call such a
- // function in this context, because we're handling the case where the object
- // was not successfully constructed.
- // FIXME: This is not covered by the language rules yet.
- {
- LookupResult::Filter Filter = FoundDelete.makeFilter();
- while (Filter.hasNext()) {
- auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
- if (FD && FD->isDestroyingOperatorDelete())
- Filter.erase();
- }
- Filter.done();
- }
- bool FoundGlobalDelete = FoundDelete.empty();
- if (FoundDelete.empty()) {
- FoundDelete.clear(LookupOrdinaryName);
- if (DeleteScope == AFS_Class)
- return true;
- DeclareGlobalNewDelete();
- LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
- }
- FoundDelete.suppressDiagnostics();
- SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
- // Whether we're looking for a placement operator delete is dictated
- // by whether we selected a placement operator new, not by whether
- // we had explicit placement arguments. This matters for things like
- // struct A { void *operator new(size_t, int = 0); ... };
- // A *a = new A()
- //
- // We don't have any definition for what a "placement allocation function"
- // is, but we assume it's any allocation function whose
- // parameter-declaration-clause is anything other than (size_t).
- //
- // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
- // This affects whether an exception from the constructor of an overaligned
- // type uses the sized or non-sized form of aligned operator delete.
- bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
- OperatorNew->isVariadic();
- if (isPlacementNew) {
- // C++ [expr.new]p20:
- // A declaration of a placement deallocation function matches the
- // declaration of a placement allocation function if it has the
- // same number of parameters and, after parameter transformations
- // (8.3.5), all parameter types except the first are
- // identical. [...]
- //
- // To perform this comparison, we compute the function type that
- // the deallocation function should have, and use that type both
- // for template argument deduction and for comparison purposes.
- QualType ExpectedFunctionType;
- {
- auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
- SmallVector<QualType, 4> ArgTypes;
- ArgTypes.push_back(Context.VoidPtrTy);
- for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
- ArgTypes.push_back(Proto->getParamType(I));
- FunctionProtoType::ExtProtoInfo EPI;
- // FIXME: This is not part of the standard's rule.
- EPI.Variadic = Proto->isVariadic();
- ExpectedFunctionType
- = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
- }
- for (LookupResult::iterator D = FoundDelete.begin(),
- DEnd = FoundDelete.end();
- D != DEnd; ++D) {
- FunctionDecl *Fn = nullptr;
- if (FunctionTemplateDecl *FnTmpl =
- dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
- // Perform template argument deduction to try to match the
- // expected function type.
- TemplateDeductionInfo Info(StartLoc);
- if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
- Info))
- continue;
- } else
- Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
- if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
- ExpectedFunctionType,
- /*AdjustExcpetionSpec*/true),
- ExpectedFunctionType))
- Matches.push_back(std::make_pair(D.getPair(), Fn));
- }
- if (getLangOpts().CUDA)
- EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true),
- Matches);
- } else {
- // C++1y [expr.new]p22:
- // For a non-placement allocation function, the normal deallocation
- // function lookup is used
- //
- // Per [expr.delete]p10, this lookup prefers a member operator delete
- // without a size_t argument, but prefers a non-member operator delete
- // with a size_t where possible (which it always is in this case).
- llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
- UsualDeallocFnInfo Selected = resolveDeallocationOverload(
- *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
- /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
- &BestDeallocFns);
- if (Selected)
- Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
- else {
- // If we failed to select an operator, all remaining functions are viable
- // but ambiguous.
- for (auto Fn : BestDeallocFns)
- Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
- }
- }
- // C++ [expr.new]p20:
- // [...] If the lookup finds a single matching deallocation
- // function, that function will be called; otherwise, no
- // deallocation function will be called.
- if (Matches.size() == 1) {
- OperatorDelete = Matches[0].second;
- // C++1z [expr.new]p23:
- // If the lookup finds a usual deallocation function (3.7.4.2)
- // with a parameter of type std::size_t and that function, considered
- // as a placement deallocation function, would have been
- // selected as a match for the allocation function, the program
- // is ill-formed.
- if (getLangOpts().CPlusPlus11 && isPlacementNew &&
- isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
- UsualDeallocFnInfo Info(*this,
- DeclAccessPair::make(OperatorDelete, AS_public));
- // Core issue, per mail to core reflector, 2016-10-09:
- // If this is a member operator delete, and there is a corresponding
- // non-sized member operator delete, this isn't /really/ a sized
- // deallocation function, it just happens to have a size_t parameter.
- bool IsSizedDelete = Info.HasSizeT;
- if (IsSizedDelete && !FoundGlobalDelete) {
- auto NonSizedDelete =
- resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
- /*WantAlign*/Info.HasAlignValT);
- if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
- NonSizedDelete.HasAlignValT == Info.HasAlignValT)
- IsSizedDelete = false;
- }
- if (IsSizedDelete) {
- SourceRange R = PlaceArgs.empty()
- ? SourceRange()
- : SourceRange(PlaceArgs.front()->getBeginLoc(),
- PlaceArgs.back()->getEndLoc());
- Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
- if (!OperatorDelete->isImplicit())
- Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
- << DeleteName;
- }
- }
- CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
- Matches[0].first);
- } else if (!Matches.empty()) {
- // We found multiple suitable operators. Per [expr.new]p20, that means we
- // call no 'operator delete' function, but we should at least warn the user.
- // FIXME: Suppress this warning if the construction cannot throw.
- Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
- << DeleteName << AllocElemType;
- for (auto &Match : Matches)
- Diag(Match.second->getLocation(),
- diag::note_member_declared_here) << DeleteName;
- }
- return false;
- }
- /// DeclareGlobalNewDelete - Declare the global forms of operator new and
- /// delete. These are:
- /// @code
- /// // C++03:
- /// void* operator new(std::size_t) throw(std::bad_alloc);
- /// void* operator new[](std::size_t) throw(std::bad_alloc);
- /// void operator delete(void *) throw();
- /// void operator delete[](void *) throw();
- /// // C++11:
- /// void* operator new(std::size_t);
- /// void* operator new[](std::size_t);
- /// void operator delete(void *) noexcept;
- /// void operator delete[](void *) noexcept;
- /// // C++1y:
- /// void* operator new(std::size_t);
- /// void* operator new[](std::size_t);
- /// void operator delete(void *) noexcept;
- /// void operator delete[](void *) noexcept;
- /// void operator delete(void *, std::size_t) noexcept;
- /// void operator delete[](void *, std::size_t) noexcept;
- /// @endcode
- /// Note that the placement and nothrow forms of new are *not* implicitly
- /// declared. Their use requires including \<new\>.
- void Sema::DeclareGlobalNewDelete() {
- if (GlobalNewDeleteDeclared)
- return;
- // The implicitly declared new and delete operators
- // are not supported in OpenCL.
- if (getLangOpts().OpenCLCPlusPlus)
- return;
- // C++ [basic.stc.dynamic.general]p2:
- // The library provides default definitions for the global allocation
- // and deallocation functions. Some global allocation and deallocation
- // functions are replaceable ([new.delete]); these are attached to the
- // global module ([module.unit]).
- if (getLangOpts().CPlusPlusModules && getCurrentModule())
- PushGlobalModuleFragment(SourceLocation(), /*IsImplicit=*/true);
- // C++ [basic.std.dynamic]p2:
- // [...] The following allocation and deallocation functions (18.4) are
- // implicitly declared in global scope in each translation unit of a
- // program
- //
- // C++03:
- // void* operator new(std::size_t) throw(std::bad_alloc);
- // void* operator new[](std::size_t) throw(std::bad_alloc);
- // void operator delete(void*) throw();
- // void operator delete[](void*) throw();
- // C++11:
- // void* operator new(std::size_t);
- // void* operator new[](std::size_t);
- // void operator delete(void*) noexcept;
- // void operator delete[](void*) noexcept;
- // C++1y:
- // void* operator new(std::size_t);
- // void* operator new[](std::size_t);
- // void operator delete(void*) noexcept;
- // void operator delete[](void*) noexcept;
- // void operator delete(void*, std::size_t) noexcept;
- // void operator delete[](void*, std::size_t) noexcept;
- //
- // These implicit declarations introduce only the function names operator
- // new, operator new[], operator delete, operator delete[].
- //
- // Here, we need to refer to std::bad_alloc, so we will implicitly declare
- // "std" or "bad_alloc" as necessary to form the exception specification.
- // However, we do not make these implicit declarations visible to name
- // lookup.
- if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
- // The "std::bad_alloc" class has not yet been declared, so build it
- // implicitly.
- StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
- getOrCreateStdNamespace(),
- SourceLocation(), SourceLocation(),
- &PP.getIdentifierTable().get("bad_alloc"),
- nullptr);
- getStdBadAlloc()->setImplicit(true);
- // The implicitly declared "std::bad_alloc" should live in global module
- // fragment.
- if (GlobalModuleFragment) {
- getStdBadAlloc()->setModuleOwnershipKind(
- Decl::ModuleOwnershipKind::ReachableWhenImported);
- getStdBadAlloc()->setLocalOwningModule(GlobalModuleFragment);
- }
- }
- if (!StdAlignValT && getLangOpts().AlignedAllocation) {
- // The "std::align_val_t" enum class has not yet been declared, so build it
- // implicitly.
- auto *AlignValT = EnumDecl::Create(
- Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
- &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
- // The implicitly declared "std::align_val_t" should live in global module
- // fragment.
- if (GlobalModuleFragment) {
- AlignValT->setModuleOwnershipKind(
- Decl::ModuleOwnershipKind::ReachableWhenImported);
- AlignValT->setLocalOwningModule(GlobalModuleFragment);
- }
- AlignValT->setIntegerType(Context.getSizeType());
- AlignValT->setPromotionType(Context.getSizeType());
- AlignValT->setImplicit(true);
- StdAlignValT = AlignValT;
- }
- GlobalNewDeleteDeclared = true;
- QualType VoidPtr = Context.getPointerType(Context.VoidTy);
- QualType SizeT = Context.getSizeType();
- auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
- QualType Return, QualType Param) {
- llvm::SmallVector<QualType, 3> Params;
- Params.push_back(Param);
- // Create up to four variants of the function (sized/aligned).
- bool HasSizedVariant = getLangOpts().SizedDeallocation &&
- (Kind == OO_Delete || Kind == OO_Array_Delete);
- bool HasAlignedVariant = getLangOpts().AlignedAllocation;
- int NumSizeVariants = (HasSizedVariant ? 2 : 1);
- int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
- for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
- if (Sized)
- Params.push_back(SizeT);
- for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
- if (Aligned)
- Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
- DeclareGlobalAllocationFunction(
- Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
- if (Aligned)
- Params.pop_back();
- }
- }
- };
- DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
- DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
- DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
- DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
- if (getLangOpts().CPlusPlusModules && getCurrentModule())
- PopGlobalModuleFragment();
- }
- /// DeclareGlobalAllocationFunction - Declares a single implicit global
- /// allocation function if it doesn't already exist.
- void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
- QualType Return,
- ArrayRef<QualType> Params) {
- DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
- // Check if this function is already declared.
- DeclContext::lookup_result R = GlobalCtx->lookup(Name);
- for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
- Alloc != AllocEnd; ++Alloc) {
- // Only look at non-template functions, as it is the predefined,
- // non-templated allocation function we are trying to declare here.
- if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
- if (Func->getNumParams() == Params.size()) {
- llvm::SmallVector<QualType, 3> FuncParams;
- for (auto *P : Func->parameters())
- FuncParams.push_back(
- Context.getCanonicalType(P->getType().getUnqualifiedType()));
- if (llvm::ArrayRef(FuncParams) == Params) {
- // Make the function visible to name lookup, even if we found it in
- // an unimported module. It either is an implicitly-declared global
- // allocation function, or is suppressing that function.
- Func->setVisibleDespiteOwningModule();
- return;
- }
- }
- }
- }
- FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
- /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
- QualType BadAllocType;
- bool HasBadAllocExceptionSpec
- = (Name.getCXXOverloadedOperator() == OO_New ||
- Name.getCXXOverloadedOperator() == OO_Array_New);
- if (HasBadAllocExceptionSpec) {
- if (!getLangOpts().CPlusPlus11) {
- BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
- assert(StdBadAlloc && "Must have std::bad_alloc declared");
- EPI.ExceptionSpec.Type = EST_Dynamic;
- EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType);
- }
- if (getLangOpts().NewInfallible) {
- EPI.ExceptionSpec.Type = EST_DynamicNone;
- }
- } else {
- EPI.ExceptionSpec =
- getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
- }
- auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
- QualType FnType = Context.getFunctionType(Return, Params, EPI);
- FunctionDecl *Alloc = FunctionDecl::Create(
- Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
- /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
- true);
- Alloc->setImplicit();
- // Global allocation functions should always be visible.
- Alloc->setVisibleDespiteOwningModule();
- if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible)
- Alloc->addAttr(
- ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
- // C++ [basic.stc.dynamic.general]p2:
- // The library provides default definitions for the global allocation
- // and deallocation functions. Some global allocation and deallocation
- // functions are replaceable ([new.delete]); these are attached to the
- // global module ([module.unit]).
- //
- // In the language wording, these functions are attched to the global
- // module all the time. But in the implementation, the global module
- // is only meaningful when we're in a module unit. So here we attach
- // these allocation functions to global module conditionally.
- if (GlobalModuleFragment) {
- Alloc->setModuleOwnershipKind(
- Decl::ModuleOwnershipKind::ReachableWhenImported);
- Alloc->setLocalOwningModule(GlobalModuleFragment);
- }
- Alloc->addAttr(VisibilityAttr::CreateImplicit(
- Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
- ? VisibilityAttr::Hidden
- : VisibilityAttr::Default));
- llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
- for (QualType T : Params) {
- ParamDecls.push_back(ParmVarDecl::Create(
- Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
- /*TInfo=*/nullptr, SC_None, nullptr));
- ParamDecls.back()->setImplicit();
- }
- Alloc->setParams(ParamDecls);
- if (ExtraAttr)
- Alloc->addAttr(ExtraAttr);
- AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
- Context.getTranslationUnitDecl()->addDecl(Alloc);
- IdResolver.tryAddTopLevelDecl(Alloc, Name);
- };
- if (!LangOpts.CUDA)
- CreateAllocationFunctionDecl(nullptr);
- else {
- // Host and device get their own declaration so each can be
- // defined or re-declared independently.
- CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
- CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
- }
- }
- FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
- bool CanProvideSize,
- bool Overaligned,
- DeclarationName Name) {
- DeclareGlobalNewDelete();
- LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
- LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
- // FIXME: It's possible for this to result in ambiguity, through a
- // user-declared variadic operator delete or the enable_if attribute. We
- // should probably not consider those cases to be usual deallocation
- // functions. But for now we just make an arbitrary choice in that case.
- auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
- Overaligned);
- assert(Result.FD && "operator delete missing from global scope?");
- return Result.FD;
- }
- FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
- CXXRecordDecl *RD) {
- DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
- FunctionDecl *OperatorDelete = nullptr;
- if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
- return nullptr;
- if (OperatorDelete)
- return OperatorDelete;
- // If there's no class-specific operator delete, look up the global
- // non-array delete.
- return FindUsualDeallocationFunction(
- Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
- Name);
- }
- bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
- DeclarationName Name,
- FunctionDecl *&Operator, bool Diagnose,
- bool WantSize, bool WantAligned) {
- LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
- // Try to find operator delete/operator delete[] in class scope.
- LookupQualifiedName(Found, RD);
- if (Found.isAmbiguous())
- return true;
- Found.suppressDiagnostics();
- bool Overaligned =
- WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD));
- // C++17 [expr.delete]p10:
- // If the deallocation functions have class scope, the one without a
- // parameter of type std::size_t is selected.
- llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
- resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize,
- /*WantAlign*/ Overaligned, &Matches);
- // If we could find an overload, use it.
- if (Matches.size() == 1) {
- Operator = cast<CXXMethodDecl>(Matches[0].FD);
- // FIXME: DiagnoseUseOfDecl?
- if (Operator->isDeleted()) {
- if (Diagnose) {
- Diag(StartLoc, diag::err_deleted_function_use);
- NoteDeletedFunction(Operator);
- }
- return true;
- }
- if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
- Matches[0].Found, Diagnose) == AR_inaccessible)
- return true;
- return false;
- }
- // We found multiple suitable operators; complain about the ambiguity.
- // FIXME: The standard doesn't say to do this; it appears that the intent
- // is that this should never happen.
- if (!Matches.empty()) {
- if (Diagnose) {
- Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
- << Name << RD;
- for (auto &Match : Matches)
- Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
- }
- return true;
- }
- // We did find operator delete/operator delete[] declarations, but
- // none of them were suitable.
- if (!Found.empty()) {
- if (Diagnose) {
- Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
- << Name << RD;
- for (NamedDecl *D : Found)
- Diag(D->getUnderlyingDecl()->getLocation(),
- diag::note_member_declared_here) << Name;
- }
- return true;
- }
- Operator = nullptr;
- return false;
- }
- namespace {
- /// Checks whether delete-expression, and new-expression used for
- /// initializing deletee have the same array form.
- class MismatchingNewDeleteDetector {
- public:
- enum MismatchResult {
- /// Indicates that there is no mismatch or a mismatch cannot be proven.
- NoMismatch,
- /// Indicates that variable is initialized with mismatching form of \a new.
- VarInitMismatches,
- /// Indicates that member is initialized with mismatching form of \a new.
- MemberInitMismatches,
- /// Indicates that 1 or more constructors' definitions could not been
- /// analyzed, and they will be checked again at the end of translation unit.
- AnalyzeLater
- };
- /// \param EndOfTU True, if this is the final analysis at the end of
- /// translation unit. False, if this is the initial analysis at the point
- /// delete-expression was encountered.
- explicit MismatchingNewDeleteDetector(bool EndOfTU)
- : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
- HasUndefinedConstructors(false) {}
- /// Checks whether pointee of a delete-expression is initialized with
- /// matching form of new-expression.
- ///
- /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
- /// point where delete-expression is encountered, then a warning will be
- /// issued immediately. If return value is \c AnalyzeLater at the point where
- /// delete-expression is seen, then member will be analyzed at the end of
- /// translation unit. \c AnalyzeLater is returned iff at least one constructor
- /// couldn't be analyzed. If at least one constructor initializes the member
- /// with matching type of new, the return value is \c NoMismatch.
- MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
- /// Analyzes a class member.
- /// \param Field Class member to analyze.
- /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
- /// for deleting the \p Field.
- MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
- FieldDecl *Field;
- /// List of mismatching new-expressions used for initialization of the pointee
- llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
- /// Indicates whether delete-expression was in array form.
- bool IsArrayForm;
- private:
- const bool EndOfTU;
- /// Indicates that there is at least one constructor without body.
- bool HasUndefinedConstructors;
- /// Returns \c CXXNewExpr from given initialization expression.
- /// \param E Expression used for initializing pointee in delete-expression.
- /// E can be a single-element \c InitListExpr consisting of new-expression.
- const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
- /// Returns whether member is initialized with mismatching form of
- /// \c new either by the member initializer or in-class initialization.
- ///
- /// If bodies of all constructors are not visible at the end of translation
- /// unit or at least one constructor initializes member with the matching
- /// form of \c new, mismatch cannot be proven, and this function will return
- /// \c NoMismatch.
- MismatchResult analyzeMemberExpr(const MemberExpr *ME);
- /// Returns whether variable is initialized with mismatching form of
- /// \c new.
- ///
- /// If variable is initialized with matching form of \c new or variable is not
- /// initialized with a \c new expression, this function will return true.
- /// If variable is initialized with mismatching form of \c new, returns false.
- /// \param D Variable to analyze.
- bool hasMatchingVarInit(const DeclRefExpr *D);
- /// Checks whether the constructor initializes pointee with mismatching
- /// form of \c new.
- ///
- /// Returns true, if member is initialized with matching form of \c new in
- /// member initializer list. Returns false, if member is initialized with the
- /// matching form of \c new in this constructor's initializer or given
- /// constructor isn't defined at the point where delete-expression is seen, or
- /// member isn't initialized by the constructor.
- bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
- /// Checks whether member is initialized with matching form of
- /// \c new in member initializer list.
- bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
- /// Checks whether member is initialized with mismatching form of \c new by
- /// in-class initializer.
- MismatchResult analyzeInClassInitializer();
- };
- }
- MismatchingNewDeleteDetector::MismatchResult
- MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
- NewExprs.clear();
- assert(DE && "Expected delete-expression");
- IsArrayForm = DE->isArrayForm();
- const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
- if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
- return analyzeMemberExpr(ME);
- } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
- if (!hasMatchingVarInit(D))
- return VarInitMismatches;
- }
- return NoMismatch;
- }
- const CXXNewExpr *
- MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
- assert(E != nullptr && "Expected a valid initializer expression");
- E = E->IgnoreParenImpCasts();
- if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
- if (ILE->getNumInits() == 1)
- E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
- }
- return dyn_cast_or_null<const CXXNewExpr>(E);
- }
- bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
- const CXXCtorInitializer *CI) {
- const CXXNewExpr *NE = nullptr;
- if (Field == CI->getMember() &&
- (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
- if (NE->isArray() == IsArrayForm)
- return true;
- else
- NewExprs.push_back(NE);
- }
- return false;
- }
- bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
- const CXXConstructorDecl *CD) {
- if (CD->isImplicit())
- return false;
- const FunctionDecl *Definition = CD;
- if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
- HasUndefinedConstructors = true;
- return EndOfTU;
- }
- for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
- if (hasMatchingNewInCtorInit(CI))
- return true;
- }
- return false;
- }
- MismatchingNewDeleteDetector::MismatchResult
- MismatchingNewDeleteDetector::analyzeInClassInitializer() {
- assert(Field != nullptr && "This should be called only for members");
- const Expr *InitExpr = Field->getInClassInitializer();
- if (!InitExpr)
- return EndOfTU ? NoMismatch : AnalyzeLater;
- if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
- if (NE->isArray() != IsArrayForm) {
- NewExprs.push_back(NE);
- return MemberInitMismatches;
- }
- }
- return NoMismatch;
- }
- MismatchingNewDeleteDetector::MismatchResult
- MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
- bool DeleteWasArrayForm) {
- assert(Field != nullptr && "Analysis requires a valid class member.");
- this->Field = Field;
- IsArrayForm = DeleteWasArrayForm;
- const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
- for (const auto *CD : RD->ctors()) {
- if (hasMatchingNewInCtor(CD))
- return NoMismatch;
- }
- if (HasUndefinedConstructors)
- return EndOfTU ? NoMismatch : AnalyzeLater;
- if (!NewExprs.empty())
- return MemberInitMismatches;
- return Field->hasInClassInitializer() ? analyzeInClassInitializer()
- : NoMismatch;
- }
- MismatchingNewDeleteDetector::MismatchResult
- MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
- assert(ME != nullptr && "Expected a member expression");
- if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
- return analyzeField(F, IsArrayForm);
- return NoMismatch;
- }
- bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
- const CXXNewExpr *NE = nullptr;
- if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
- if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
- NE->isArray() != IsArrayForm) {
- NewExprs.push_back(NE);
- }
- }
- return NewExprs.empty();
- }
- static void
- DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
- const MismatchingNewDeleteDetector &Detector) {
- SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
- FixItHint H;
- if (!Detector.IsArrayForm)
- H = FixItHint::CreateInsertion(EndOfDelete, "[]");
- else {
- SourceLocation RSquare = Lexer::findLocationAfterToken(
- DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
- SemaRef.getLangOpts(), true);
- if (RSquare.isValid())
- H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
- }
- SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
- << Detector.IsArrayForm << H;
- for (const auto *NE : Detector.NewExprs)
- SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
- << Detector.IsArrayForm;
- }
- void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
- if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
- return;
- MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
- switch (Detector.analyzeDeleteExpr(DE)) {
- case MismatchingNewDeleteDetector::VarInitMismatches:
- case MismatchingNewDeleteDetector::MemberInitMismatches: {
- DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
- break;
- }
- case MismatchingNewDeleteDetector::AnalyzeLater: {
- DeleteExprs[Detector.Field].push_back(
- std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
- break;
- }
- case MismatchingNewDeleteDetector::NoMismatch:
- break;
- }
- }
- void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
- bool DeleteWasArrayForm) {
- MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
- switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
- case MismatchingNewDeleteDetector::VarInitMismatches:
- llvm_unreachable("This analysis should have been done for class members.");
- case MismatchingNewDeleteDetector::AnalyzeLater:
- llvm_unreachable("Analysis cannot be postponed any point beyond end of "
- "translation unit.");
- case MismatchingNewDeleteDetector::MemberInitMismatches:
- DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
- break;
- case MismatchingNewDeleteDetector::NoMismatch:
- break;
- }
- }
- /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
- /// @code ::delete ptr; @endcode
- /// or
- /// @code delete [] ptr; @endcode
- ExprResult
- Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
- bool ArrayForm, Expr *ExE) {
- // C++ [expr.delete]p1:
- // The operand shall have a pointer type, or a class type having a single
- // non-explicit conversion function to a pointer type. The result has type
- // void.
- //
- // DR599 amends "pointer type" to "pointer to object type" in both cases.
- ExprResult Ex = ExE;
- FunctionDecl *OperatorDelete = nullptr;
- bool ArrayFormAsWritten = ArrayForm;
- bool UsualArrayDeleteWantsSize = false;
- if (!Ex.get()->isTypeDependent()) {
- // Perform lvalue-to-rvalue cast, if needed.
- Ex = DefaultLvalueConversion(Ex.get());
- if (Ex.isInvalid())
- return ExprError();
- QualType Type = Ex.get()->getType();
- class DeleteConverter : public ContextualImplicitConverter {
- public:
- DeleteConverter() : ContextualImplicitConverter(false, true) {}
- bool match(QualType ConvType) override {
- // FIXME: If we have an operator T* and an operator void*, we must pick
- // the operator T*.
- if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
- if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
- return true;
- return false;
- }
- SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
- QualType T) override {
- return S.Diag(Loc, diag::err_delete_operand) << T;
- }
- SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
- QualType T) override {
- return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
- }
- SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
- QualType T,
- QualType ConvTy) override {
- return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
- }
- SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
- QualType ConvTy) override {
- return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
- << ConvTy;
- }
- SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
- QualType T) override {
- return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
- }
- SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
- QualType ConvTy) override {
- return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
- << ConvTy;
- }
- SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
- QualType T,
- QualType ConvTy) override {
- llvm_unreachable("conversion functions are permitted");
- }
- } Converter;
- Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
- if (Ex.isInvalid())
- return ExprError();
- Type = Ex.get()->getType();
- if (!Converter.match(Type))
- // FIXME: PerformContextualImplicitConversion should return ExprError
- // itself in this case.
- return ExprError();
- QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
- QualType PointeeElem = Context.getBaseElementType(Pointee);
- if (Pointee.getAddressSpace() != LangAS::Default &&
- !getLangOpts().OpenCLCPlusPlus)
- return Diag(Ex.get()->getBeginLoc(),
- diag::err_address_space_qualified_delete)
- << Pointee.getUnqualifiedType()
- << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
- CXXRecordDecl *PointeeRD = nullptr;
- if (Pointee->isVoidType() && !isSFINAEContext()) {
- // The C++ standard bans deleting a pointer to a non-object type, which
- // effectively bans deletion of "void*". However, most compilers support
- // this, so we treat it as a warning unless we're in a SFINAE context.
- Diag(StartLoc, diag::ext_delete_void_ptr_operand)
- << Type << Ex.get()->getSourceRange();
- } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
- Pointee->isSizelessType()) {
- return ExprError(Diag(StartLoc, diag::err_delete_operand)
- << Type << Ex.get()->getSourceRange());
- } else if (!Pointee->isDependentType()) {
- // FIXME: This can result in errors if the definition was imported from a
- // module but is hidden.
- if (!RequireCompleteType(StartLoc, Pointee,
- diag::warn_delete_incomplete, Ex.get())) {
- if (const RecordType *RT = PointeeElem->getAs<RecordType>())
- PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
- }
- }
- if (Pointee->isArrayType() && !ArrayForm) {
- Diag(StartLoc, diag::warn_delete_array_type)
- << Type << Ex.get()->getSourceRange()
- << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
- ArrayForm = true;
- }
- DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
- ArrayForm ? OO_Array_Delete : OO_Delete);
- if (PointeeRD) {
- if (!UseGlobal &&
- FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
- OperatorDelete))
- return ExprError();
- // If we're allocating an array of records, check whether the
- // usual operator delete[] has a size_t parameter.
- if (ArrayForm) {
- // If the user specifically asked to use the global allocator,
- // we'll need to do the lookup into the class.
- if (UseGlobal)
- UsualArrayDeleteWantsSize =
- doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
- // Otherwise, the usual operator delete[] should be the
- // function we just found.
- else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
- UsualArrayDeleteWantsSize =
- UsualDeallocFnInfo(*this,
- DeclAccessPair::make(OperatorDelete, AS_public))
- .HasSizeT;
- }
- if (!PointeeRD->hasIrrelevantDestructor())
- if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
- MarkFunctionReferenced(StartLoc,
- const_cast<CXXDestructorDecl*>(Dtor));
- if (DiagnoseUseOfDecl(Dtor, StartLoc))
- return ExprError();
- }
- CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
- /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
- /*WarnOnNonAbstractTypes=*/!ArrayForm,
- SourceLocation());
- }
- if (!OperatorDelete) {
- if (getLangOpts().OpenCLCPlusPlus) {
- Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
- return ExprError();
- }
- bool IsComplete = isCompleteType(StartLoc, Pointee);
- bool CanProvideSize =
- IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
- Pointee.isDestructedType());
- bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
- // Look for a global declaration.
- OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
- Overaligned, DeleteName);
- }
- MarkFunctionReferenced(StartLoc, OperatorDelete);
- // Check access and ambiguity of destructor if we're going to call it.
- // Note that this is required even for a virtual delete.
- bool IsVirtualDelete = false;
- if (PointeeRD) {
- if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
- CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
- PDiag(diag::err_access_dtor) << PointeeElem);
- IsVirtualDelete = Dtor->isVirtual();
- }
- }
- DiagnoseUseOfDecl(OperatorDelete, StartLoc);
- // Convert the operand to the type of the first parameter of operator
- // delete. This is only necessary if we selected a destroying operator
- // delete that we are going to call (non-virtually); converting to void*
- // is trivial and left to AST consumers to handle.
- QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
- if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
- Qualifiers Qs = Pointee.getQualifiers();
- if (Qs.hasCVRQualifiers()) {
- // Qualifiers are irrelevant to this conversion; we're only looking
- // for access and ambiguity.
- Qs.removeCVRQualifiers();
- QualType Unqual = Context.getPointerType(
- Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
- Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
- }
- Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
- if (Ex.isInvalid())
- return ExprError();
- }
- }
- CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
- Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
- UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
- AnalyzeDeleteExprMismatch(Result);
- return Result;
- }
- static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
- bool IsDelete,
- FunctionDecl *&Operator) {
- DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
- IsDelete ? OO_Delete : OO_New);
- LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
- S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
- assert(!R.empty() && "implicitly declared allocation functions not found");
- assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
- // We do our own custom access checks below.
- R.suppressDiagnostics();
- SmallVector<Expr *, 8> Args(TheCall->arguments());
- OverloadCandidateSet Candidates(R.getNameLoc(),
- OverloadCandidateSet::CSK_Normal);
- for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
- FnOvl != FnOvlEnd; ++FnOvl) {
- // Even member operator new/delete are implicitly treated as
- // static, so don't use AddMemberCandidate.
- NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
- if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
- S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
- /*ExplicitTemplateArgs=*/nullptr, Args,
- Candidates,
- /*SuppressUserConversions=*/false);
- continue;
- }
- FunctionDecl *Fn = cast<FunctionDecl>(D);
- S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
- /*SuppressUserConversions=*/false);
- }
- SourceRange Range = TheCall->getSourceRange();
- // Do the resolution.
- OverloadCandidateSet::iterator Best;
- switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
- case OR_Success: {
- // Got one!
- FunctionDecl *FnDecl = Best->Function;
- assert(R.getNamingClass() == nullptr &&
- "class members should not be considered");
- if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
- S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
- << (IsDelete ? 1 : 0) << Range;
- S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
- << R.getLookupName() << FnDecl->getSourceRange();
- return true;
- }
- Operator = FnDecl;
- return false;
- }
- case OR_No_Viable_Function:
- Candidates.NoteCandidates(
- PartialDiagnosticAt(R.getNameLoc(),
- S.PDiag(diag::err_ovl_no_viable_function_in_call)
- << R.getLookupName() << Range),
- S, OCD_AllCandidates, Args);
- return true;
- case OR_Ambiguous:
- Candidates.NoteCandidates(
- PartialDiagnosticAt(R.getNameLoc(),
- S.PDiag(diag::err_ovl_ambiguous_call)
- << R.getLookupName() << Range),
- S, OCD_AmbiguousCandidates, Args);
- return true;
- case OR_Deleted: {
- Candidates.NoteCandidates(
- PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
- << R.getLookupName() << Range),
- S, OCD_AllCandidates, Args);
- return true;
- }
- }
- llvm_unreachable("Unreachable, bad result from BestViableFunction");
- }
- ExprResult
- Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
- bool IsDelete) {
- CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
- if (!getLangOpts().CPlusPlus) {
- Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
- << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
- << "C++";
- return ExprError();
- }
- // CodeGen assumes it can find the global new and delete to call,
- // so ensure that they are declared.
- DeclareGlobalNewDelete();
- FunctionDecl *OperatorNewOrDelete = nullptr;
- if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
- OperatorNewOrDelete))
- return ExprError();
- assert(OperatorNewOrDelete && "should be found");
- DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
- MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
- TheCall->setType(OperatorNewOrDelete->getReturnType());
- for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
- QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
- InitializedEntity Entity =
- InitializedEntity::InitializeParameter(Context, ParamTy, false);
- ExprResult Arg = PerformCopyInitialization(
- Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
- if (Arg.isInvalid())
- return ExprError();
- TheCall->setArg(i, Arg.get());
- }
- auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
- assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
- "Callee expected to be implicit cast to a builtin function pointer");
- Callee->setType(OperatorNewOrDelete->getType());
- return TheCallResult;
- }
- void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
- bool IsDelete, bool CallCanBeVirtual,
- bool WarnOnNonAbstractTypes,
- SourceLocation DtorLoc) {
- if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
- return;
- // C++ [expr.delete]p3:
- // In the first alternative (delete object), if the static type of the
- // object to be deleted is different from its dynamic type, the static
- // type shall be a base class of the dynamic type of the object to be
- // deleted and the static type shall have a virtual destructor or the
- // behavior is undefined.
- //
- const CXXRecordDecl *PointeeRD = dtor->getParent();
- // Note: a final class cannot be derived from, no issue there
- if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
- return;
- // If the superclass is in a system header, there's nothing that can be done.
- // The `delete` (where we emit the warning) can be in a system header,
- // what matters for this warning is where the deleted type is defined.
- if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
- return;
- QualType ClassType = dtor->getThisType()->getPointeeType();
- if (PointeeRD->isAbstract()) {
- // If the class is abstract, we warn by default, because we're
- // sure the code has undefined behavior.
- Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
- << ClassType;
- } else if (WarnOnNonAbstractTypes) {
- // Otherwise, if this is not an array delete, it's a bit suspect,
- // but not necessarily wrong.
- Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
- << ClassType;
- }
- if (!IsDelete) {
- std::string TypeStr;
- ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
- Diag(DtorLoc, diag::note_delete_non_virtual)
- << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
- }
- }
- Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
- SourceLocation StmtLoc,
- ConditionKind CK) {
- ExprResult E =
- CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
- if (E.isInvalid())
- return ConditionError();
- return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
- CK == ConditionKind::ConstexprIf);
- }
- /// Check the use of the given variable as a C++ condition in an if,
- /// while, do-while, or switch statement.
- ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
- SourceLocation StmtLoc,
- ConditionKind CK) {
- if (ConditionVar->isInvalidDecl())
- return ExprError();
- QualType T = ConditionVar->getType();
- // C++ [stmt.select]p2:
- // The declarator shall not specify a function or an array.
- if (T->isFunctionType())
- return ExprError(Diag(ConditionVar->getLocation(),
- diag::err_invalid_use_of_function_type)
- << ConditionVar->getSourceRange());
- else if (T->isArrayType())
- return ExprError(Diag(ConditionVar->getLocation(),
- diag::err_invalid_use_of_array_type)
- << ConditionVar->getSourceRange());
- ExprResult Condition = BuildDeclRefExpr(
- ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
- ConditionVar->getLocation());
- switch (CK) {
- case ConditionKind::Boolean:
- return CheckBooleanCondition(StmtLoc, Condition.get());
- case ConditionKind::ConstexprIf:
- return CheckBooleanCondition(StmtLoc, Condition.get(), true);
- case ConditionKind::Switch:
- return CheckSwitchCondition(StmtLoc, Condition.get());
- }
- llvm_unreachable("unexpected condition kind");
- }
- /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
- ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
- // C++11 6.4p4:
- // The value of a condition that is an initialized declaration in a statement
- // other than a switch statement is the value of the declared variable
- // implicitly converted to type bool. If that conversion is ill-formed, the
- // program is ill-formed.
- // The value of a condition that is an expression is the value of the
- // expression, implicitly converted to bool.
- //
- // C++2b 8.5.2p2
- // If the if statement is of the form if constexpr, the value of the condition
- // is contextually converted to bool and the converted expression shall be
- // a constant expression.
- //
- ExprResult E = PerformContextuallyConvertToBool(CondExpr);
- if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
- return E;
- // FIXME: Return this value to the caller so they don't need to recompute it.
- llvm::APSInt Cond;
- E = VerifyIntegerConstantExpression(
- E.get(), &Cond,
- diag::err_constexpr_if_condition_expression_is_not_constant);
- return E;
- }
- /// Helper function to determine whether this is the (deprecated) C++
- /// conversion from a string literal to a pointer to non-const char or
- /// non-const wchar_t (for narrow and wide string literals,
- /// respectively).
- bool
- Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
- // Look inside the implicit cast, if it exists.
- if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
- From = Cast->getSubExpr();
- // A string literal (2.13.4) that is not a wide string literal can
- // be converted to an rvalue of type "pointer to char"; a wide
- // string literal can be converted to an rvalue of type "pointer
- // to wchar_t" (C++ 4.2p2).
- if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
- if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
- if (const BuiltinType *ToPointeeType
- = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
- // This conversion is considered only when there is an
- // explicit appropriate pointer target type (C++ 4.2p2).
- if (!ToPtrType->getPointeeType().hasQualifiers()) {
- switch (StrLit->getKind()) {
- case StringLiteral::UTF8:
- case StringLiteral::UTF16:
- case StringLiteral::UTF32:
- // We don't allow UTF literals to be implicitly converted
- break;
- case StringLiteral::Ordinary:
- return (ToPointeeType->getKind() == BuiltinType::Char_U ||
- ToPointeeType->getKind() == BuiltinType::Char_S);
- case StringLiteral::Wide:
- return Context.typesAreCompatible(Context.getWideCharType(),
- QualType(ToPointeeType, 0));
- }
- }
- }
- return false;
- }
- static ExprResult BuildCXXCastArgument(Sema &S,
- SourceLocation CastLoc,
- QualType Ty,
- CastKind Kind,
- CXXMethodDecl *Method,
- DeclAccessPair FoundDecl,
- bool HadMultipleCandidates,
- Expr *From) {
- switch (Kind) {
- default: llvm_unreachable("Unhandled cast kind!");
- case CK_ConstructorConversion: {
- CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
- SmallVector<Expr*, 8> ConstructorArgs;
- if (S.RequireNonAbstractType(CastLoc, Ty,
- diag::err_allocation_of_abstract_type))
- return ExprError();
- if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
- ConstructorArgs))
- return ExprError();
- S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
- InitializedEntity::InitializeTemporary(Ty));
- if (S.DiagnoseUseOfDecl(Method, CastLoc))
- return ExprError();
- ExprResult Result = S.BuildCXXConstructExpr(
- CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
- ConstructorArgs, HadMultipleCandidates,
- /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
- CXXConstructExpr::CK_Complete, SourceRange());
- if (Result.isInvalid())
- return ExprError();
- return S.MaybeBindToTemporary(Result.getAs<Expr>());
- }
- case CK_UserDefinedConversion: {
- assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
- S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
- if (S.DiagnoseUseOfDecl(Method, CastLoc))
- return ExprError();
- // Create an implicit call expr that calls it.
- CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
- ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
- HadMultipleCandidates);
- if (Result.isInvalid())
- return ExprError();
- // Record usage of conversion in an implicit cast.
- Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
- CK_UserDefinedConversion, Result.get(),
- nullptr, Result.get()->getValueKind(),
- S.CurFPFeatureOverrides());
- return S.MaybeBindToTemporary(Result.get());
- }
- }
- }
- /// PerformImplicitConversion - Perform an implicit conversion of the
- /// expression From to the type ToType using the pre-computed implicit
- /// conversion sequence ICS. Returns the converted
- /// expression. Action is the kind of conversion we're performing,
- /// used in the error message.
- ExprResult
- Sema::PerformImplicitConversion(Expr *From, QualType ToType,
- const ImplicitConversionSequence &ICS,
- AssignmentAction Action,
- CheckedConversionKind CCK) {
- // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
- if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
- return From;
- switch (ICS.getKind()) {
- case ImplicitConversionSequence::StandardConversion: {
- ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
- Action, CCK);
- if (Res.isInvalid())
- return ExprError();
- From = Res.get();
- break;
- }
- case ImplicitConversionSequence::UserDefinedConversion: {
- FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
- CastKind CastKind;
- QualType BeforeToType;
- assert(FD && "no conversion function for user-defined conversion seq");
- if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
- CastKind = CK_UserDefinedConversion;
- // If the user-defined conversion is specified by a conversion function,
- // the initial standard conversion sequence converts the source type to
- // the implicit object parameter of the conversion function.
- BeforeToType = Context.getTagDeclType(Conv->getParent());
- } else {
- const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
- CastKind = CK_ConstructorConversion;
- // Do no conversion if dealing with ... for the first conversion.
- if (!ICS.UserDefined.EllipsisConversion) {
- // If the user-defined conversion is specified by a constructor, the
- // initial standard conversion sequence converts the source type to
- // the type required by the argument of the constructor
- BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
- }
- }
- // Watch out for ellipsis conversion.
- if (!ICS.UserDefined.EllipsisConversion) {
- ExprResult Res =
- PerformImplicitConversion(From, BeforeToType,
- ICS.UserDefined.Before, AA_Converting,
- CCK);
- if (Res.isInvalid())
- return ExprError();
- From = Res.get();
- }
- ExprResult CastArg = BuildCXXCastArgument(
- *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
- cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
- ICS.UserDefined.HadMultipleCandidates, From);
- if (CastArg.isInvalid())
- return ExprError();
- From = CastArg.get();
- // C++ [over.match.oper]p7:
- // [...] the second standard conversion sequence of a user-defined
- // conversion sequence is not applied.
- if (CCK == CCK_ForBuiltinOverloadedOp)
- return From;
- return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
- AA_Converting, CCK);
- }
- case ImplicitConversionSequence::AmbiguousConversion:
- ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
- PDiag(diag::err_typecheck_ambiguous_condition)
- << From->getSourceRange());
- return ExprError();
- case ImplicitConversionSequence::EllipsisConversion:
- case ImplicitConversionSequence::StaticObjectArgumentConversion:
- llvm_unreachable("bad conversion");
- case ImplicitConversionSequence::BadConversion:
- Sema::AssignConvertType ConvTy =
- CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
- bool Diagnosed = DiagnoseAssignmentResult(
- ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
- ToType, From->getType(), From, Action);
- assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
- return ExprError();
- }
- // Everything went well.
- return From;
- }
- /// PerformImplicitConversion - Perform an implicit conversion of the
- /// expression From to the type ToType by following the standard
- /// conversion sequence SCS. Returns the converted
- /// expression. Flavor is the context in which we're performing this
- /// conversion, for use in error messages.
- ExprResult
- Sema::PerformImplicitConversion(Expr *From, QualType ToType,
- const StandardConversionSequence& SCS,
- AssignmentAction Action,
- CheckedConversionKind CCK) {
- bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
- // Overall FIXME: we are recomputing too many types here and doing far too
- // much extra work. What this means is that we need to keep track of more
- // information that is computed when we try the implicit conversion initially,
- // so that we don't need to recompute anything here.
- QualType FromType = From->getType();
- if (SCS.CopyConstructor) {
- // FIXME: When can ToType be a reference type?
- assert(!ToType->isReferenceType());
- if (SCS.Second == ICK_Derived_To_Base) {
- SmallVector<Expr*, 8> ConstructorArgs;
- if (CompleteConstructorCall(
- cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
- /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
- return ExprError();
- return BuildCXXConstructExpr(
- /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
- SCS.FoundCopyConstructor, SCS.CopyConstructor,
- ConstructorArgs, /*HadMultipleCandidates*/ false,
- /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
- CXXConstructExpr::CK_Complete, SourceRange());
- }
- return BuildCXXConstructExpr(
- /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
- SCS.FoundCopyConstructor, SCS.CopyConstructor,
- From, /*HadMultipleCandidates*/ false,
- /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
- CXXConstructExpr::CK_Complete, SourceRange());
- }
- // Resolve overloaded function references.
- if (Context.hasSameType(FromType, Context.OverloadTy)) {
- DeclAccessPair Found;
- FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
- true, Found);
- if (!Fn)
- return ExprError();
- if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
- return ExprError();
- From = FixOverloadedFunctionReference(From, Found, Fn);
- // We might get back another placeholder expression if we resolved to a
- // builtin.
- ExprResult Checked = CheckPlaceholderExpr(From);
- if (Checked.isInvalid())
- return ExprError();
- From = Checked.get();
- FromType = From->getType();
- }
- // If we're converting to an atomic type, first convert to the corresponding
- // non-atomic type.
- QualType ToAtomicType;
- if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
- ToAtomicType = ToType;
- ToType = ToAtomic->getValueType();
- }
- QualType InitialFromType = FromType;
- // Perform the first implicit conversion.
- switch (SCS.First) {
- case ICK_Identity:
- if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
- FromType = FromAtomic->getValueType().getUnqualifiedType();
- From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
- From, /*BasePath=*/nullptr, VK_PRValue,
- FPOptionsOverride());
- }
- break;
- case ICK_Lvalue_To_Rvalue: {
- assert(From->getObjectKind() != OK_ObjCProperty);
- ExprResult FromRes = DefaultLvalueConversion(From);
- if (FromRes.isInvalid())
- return ExprError();
- From = FromRes.get();
- FromType = From->getType();
- break;
- }
- case ICK_Array_To_Pointer:
- FromType = Context.getArrayDecayedType(FromType);
- From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
- /*BasePath=*/nullptr, CCK)
- .get();
- break;
- case ICK_Function_To_Pointer:
- FromType = Context.getPointerType(FromType);
- From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
- VK_PRValue, /*BasePath=*/nullptr, CCK)
- .get();
- break;
- default:
- llvm_unreachable("Improper first standard conversion");
- }
- // Perform the second implicit conversion
- switch (SCS.Second) {
- case ICK_Identity:
- // C++ [except.spec]p5:
- // [For] assignment to and initialization of pointers to functions,
- // pointers to member functions, and references to functions: the
- // target entity shall allow at least the exceptions allowed by the
- // source value in the assignment or initialization.
- switch (Action) {
- case AA_Assigning:
- case AA_Initializing:
- // Note, function argument passing and returning are initialization.
- case AA_Passing:
- case AA_Returning:
- case AA_Sending:
- case AA_Passing_CFAudited:
- if (CheckExceptionSpecCompatibility(From, ToType))
- return ExprError();
- break;
- case AA_Casting:
- case AA_Converting:
- // Casts and implicit conversions are not initialization, so are not
- // checked for exception specification mismatches.
- break;
- }
- // Nothing else to do.
- break;
- case ICK_Integral_Promotion:
- case ICK_Integral_Conversion:
- if (ToType->isBooleanType()) {
- assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
- SCS.Second == ICK_Integral_Promotion &&
- "only enums with fixed underlying type can promote to bool");
- From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
- /*BasePath=*/nullptr, CCK)
- .get();
- } else {
- From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
- /*BasePath=*/nullptr, CCK)
- .get();
- }
- break;
- case ICK_Floating_Promotion:
- case ICK_Floating_Conversion:
- From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
- /*BasePath=*/nullptr, CCK)
- .get();
- break;
- case ICK_Complex_Promotion:
- case ICK_Complex_Conversion: {
- QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
- QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
- CastKind CK;
- if (FromEl->isRealFloatingType()) {
- if (ToEl->isRealFloatingType())
- CK = CK_FloatingComplexCast;
- else
- CK = CK_FloatingComplexToIntegralComplex;
- } else if (ToEl->isRealFloatingType()) {
- CK = CK_IntegralComplexToFloatingComplex;
- } else {
- CK = CK_IntegralComplexCast;
- }
- From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
- CCK)
- .get();
- break;
- }
- case ICK_Floating_Integral:
- if (ToType->isRealFloatingType())
- From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
- /*BasePath=*/nullptr, CCK)
- .get();
- else
- From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
- /*BasePath=*/nullptr, CCK)
- .get();
- break;
- case ICK_Compatible_Conversion:
- From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
- /*BasePath=*/nullptr, CCK).get();
- break;
- case ICK_Writeback_Conversion:
- case ICK_Pointer_Conversion: {
- if (SCS.IncompatibleObjC && Action != AA_Casting) {
- // Diagnose incompatible Objective-C conversions
- if (Action == AA_Initializing || Action == AA_Assigning)
- Diag(From->getBeginLoc(),
- diag::ext_typecheck_convert_incompatible_pointer)
- << ToType << From->getType() << Action << From->getSourceRange()
- << 0;
- else
- Diag(From->getBeginLoc(),
- diag::ext_typecheck_convert_incompatible_pointer)
- << From->getType() << ToType << Action << From->getSourceRange()
- << 0;
- if (From->getType()->isObjCObjectPointerType() &&
- ToType->isObjCObjectPointerType())
- EmitRelatedResultTypeNote(From);
- } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
- !CheckObjCARCUnavailableWeakConversion(ToType,
- From->getType())) {
- if (Action == AA_Initializing)
- Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
- else
- Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
- << (Action == AA_Casting) << From->getType() << ToType
- << From->getSourceRange();
- }
- // Defer address space conversion to the third conversion.
- QualType FromPteeType = From->getType()->getPointeeType();
- QualType ToPteeType = ToType->getPointeeType();
- QualType NewToType = ToType;
- if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
- FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
- NewToType = Context.removeAddrSpaceQualType(ToPteeType);
- NewToType = Context.getAddrSpaceQualType(NewToType,
- FromPteeType.getAddressSpace());
- if (ToType->isObjCObjectPointerType())
- NewToType = Context.getObjCObjectPointerType(NewToType);
- else if (ToType->isBlockPointerType())
- NewToType = Context.getBlockPointerType(NewToType);
- else
- NewToType = Context.getPointerType(NewToType);
- }
- CastKind Kind;
- CXXCastPath BasePath;
- if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
- return ExprError();
- // Make sure we extend blocks if necessary.
- // FIXME: doing this here is really ugly.
- if (Kind == CK_BlockPointerToObjCPointerCast) {
- ExprResult E = From;
- (void) PrepareCastToObjCObjectPointer(E);
- From = E.get();
- }
- if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
- CheckObjCConversion(SourceRange(), NewToType, From, CCK);
- From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
- .get();
- break;
- }
- case ICK_Pointer_Member: {
- CastKind Kind;
- CXXCastPath BasePath;
- if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
- return ExprError();
- if (CheckExceptionSpecCompatibility(From, ToType))
- return ExprError();
- // We may not have been able to figure out what this member pointer resolved
- // to up until this exact point. Attempt to lock-in it's inheritance model.
- if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
- (void)isCompleteType(From->getExprLoc(), From->getType());
- (void)isCompleteType(From->getExprLoc(), ToType);
- }
- From =
- ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
- break;
- }
- case ICK_Boolean_Conversion:
- // Perform half-to-boolean conversion via float.
- if (From->getType()->isHalfType()) {
- From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
- FromType = Context.FloatTy;
- }
- From = ImpCastExprToType(From, Context.BoolTy,
- ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
- /*BasePath=*/nullptr, CCK)
- .get();
- break;
- case ICK_Derived_To_Base: {
- CXXCastPath BasePath;
- if (CheckDerivedToBaseConversion(
- From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
- From->getSourceRange(), &BasePath, CStyle))
- return ExprError();
- From = ImpCastExprToType(From, ToType.getNonReferenceType(),
- CK_DerivedToBase, From->getValueKind(),
- &BasePath, CCK).get();
- break;
- }
- case ICK_Vector_Conversion:
- From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
- /*BasePath=*/nullptr, CCK)
- .get();
- break;
- case ICK_SVE_Vector_Conversion:
- From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
- /*BasePath=*/nullptr, CCK)
- .get();
- break;
- case ICK_Vector_Splat: {
- // Vector splat from any arithmetic type to a vector.
- Expr *Elem = prepareVectorSplat(ToType, From).get();
- From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
- /*BasePath=*/nullptr, CCK)
- .get();
- break;
- }
- case ICK_Complex_Real:
- // Case 1. x -> _Complex y
- if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
- QualType ElType = ToComplex->getElementType();
- bool isFloatingComplex = ElType->isRealFloatingType();
- // x -> y
- if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
- // do nothing
- } else if (From->getType()->isRealFloatingType()) {
- From = ImpCastExprToType(From, ElType,
- isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
- } else {
- assert(From->getType()->isIntegerType());
- From = ImpCastExprToType(From, ElType,
- isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
- }
- // y -> _Complex y
- From = ImpCastExprToType(From, ToType,
- isFloatingComplex ? CK_FloatingRealToComplex
- : CK_IntegralRealToComplex).get();
- // Case 2. _Complex x -> y
- } else {
- auto *FromComplex = From->getType()->castAs<ComplexType>();
- QualType ElType = FromComplex->getElementType();
- bool isFloatingComplex = ElType->isRealFloatingType();
- // _Complex x -> x
- From = ImpCastExprToType(From, ElType,
- isFloatingComplex ? CK_FloatingComplexToReal
- : CK_IntegralComplexToReal,
- VK_PRValue, /*BasePath=*/nullptr, CCK)
- .get();
- // x -> y
- if (Context.hasSameUnqualifiedType(ElType, ToType)) {
- // do nothing
- } else if (ToType->isRealFloatingType()) {
- From = ImpCastExprToType(From, ToType,
- isFloatingComplex ? CK_FloatingCast
- : CK_IntegralToFloating,
- VK_PRValue, /*BasePath=*/nullptr, CCK)
- .get();
- } else {
- assert(ToType->isIntegerType());
- From = ImpCastExprToType(From, ToType,
- isFloatingComplex ? CK_FloatingToIntegral
- : CK_IntegralCast,
- VK_PRValue, /*BasePath=*/nullptr, CCK)
- .get();
- }
- }
- break;
- case ICK_Block_Pointer_Conversion: {
- LangAS AddrSpaceL =
- ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
- LangAS AddrSpaceR =
- FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
- assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
- "Invalid cast");
- CastKind Kind =
- AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
- From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
- VK_PRValue, /*BasePath=*/nullptr, CCK)
- .get();
- break;
- }
- case ICK_TransparentUnionConversion: {
- ExprResult FromRes = From;
- Sema::AssignConvertType ConvTy =
- CheckTransparentUnionArgumentConstraints(ToType, FromRes);
- if (FromRes.isInvalid())
- return ExprError();
- From = FromRes.get();
- assert ((ConvTy == Sema::Compatible) &&
- "Improper transparent union conversion");
- (void)ConvTy;
- break;
- }
- case ICK_Zero_Event_Conversion:
- case ICK_Zero_Queue_Conversion:
- From = ImpCastExprToType(From, ToType,
- CK_ZeroToOCLOpaqueType,
- From->getValueKind()).get();
- break;
- case ICK_Lvalue_To_Rvalue:
- case ICK_Array_To_Pointer:
- case ICK_Function_To_Pointer:
- case ICK_Function_Conversion:
- case ICK_Qualification:
- case ICK_Num_Conversion_Kinds:
- case ICK_C_Only_Conversion:
- case ICK_Incompatible_Pointer_Conversion:
- llvm_unreachable("Improper second standard conversion");
- }
- switch (SCS.Third) {
- case ICK_Identity:
- // Nothing to do.
- break;
- case ICK_Function_Conversion:
- // If both sides are functions (or pointers/references to them), there could
- // be incompatible exception declarations.
- if (CheckExceptionSpecCompatibility(From, ToType))
- return ExprError();
- From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
- /*BasePath=*/nullptr, CCK)
- .get();
- break;
- case ICK_Qualification: {
- ExprValueKind VK = From->getValueKind();
- CastKind CK = CK_NoOp;
- if (ToType->isReferenceType() &&
- ToType->getPointeeType().getAddressSpace() !=
- From->getType().getAddressSpace())
- CK = CK_AddressSpaceConversion;
- if (ToType->isPointerType() &&
- ToType->getPointeeType().getAddressSpace() !=
- From->getType()->getPointeeType().getAddressSpace())
- CK = CK_AddressSpaceConversion;
- if (!isCast(CCK) &&
- !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
- From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
- Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
- << InitialFromType << ToType;
- }
- From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
- /*BasePath=*/nullptr, CCK)
- .get();
- if (SCS.DeprecatedStringLiteralToCharPtr &&
- !getLangOpts().WritableStrings) {
- Diag(From->getBeginLoc(),
- getLangOpts().CPlusPlus11
- ? diag::ext_deprecated_string_literal_conversion
- : diag::warn_deprecated_string_literal_conversion)
- << ToType.getNonReferenceType();
- }
- break;
- }
- default:
- llvm_unreachable("Improper third standard conversion");
- }
- // If this conversion sequence involved a scalar -> atomic conversion, perform
- // that conversion now.
- if (!ToAtomicType.isNull()) {
- assert(Context.hasSameType(
- ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
- From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
- VK_PRValue, nullptr, CCK)
- .get();
- }
- // Materialize a temporary if we're implicitly converting to a reference
- // type. This is not required by the C++ rules but is necessary to maintain
- // AST invariants.
- if (ToType->isReferenceType() && From->isPRValue()) {
- ExprResult Res = TemporaryMaterializationConversion(From);
- if (Res.isInvalid())
- return ExprError();
- From = Res.get();
- }
- // If this conversion sequence succeeded and involved implicitly converting a
- // _Nullable type to a _Nonnull one, complain.
- if (!isCast(CCK))
- diagnoseNullableToNonnullConversion(ToType, InitialFromType,
- From->getBeginLoc());
- return From;
- }
- /// Check the completeness of a type in a unary type trait.
- ///
- /// If the particular type trait requires a complete type, tries to complete
- /// it. If completing the type fails, a diagnostic is emitted and false
- /// returned. If completing the type succeeds or no completion was required,
- /// returns true.
- static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
- SourceLocation Loc,
- QualType ArgTy) {
- // C++0x [meta.unary.prop]p3:
- // For all of the class templates X declared in this Clause, instantiating
- // that template with a template argument that is a class template
- // specialization may result in the implicit instantiation of the template
- // argument if and only if the semantics of X require that the argument
- // must be a complete type.
- // We apply this rule to all the type trait expressions used to implement
- // these class templates. We also try to follow any GCC documented behavior
- // in these expressions to ensure portability of standard libraries.
- switch (UTT) {
- default: llvm_unreachable("not a UTT");
- // is_complete_type somewhat obviously cannot require a complete type.
- case UTT_IsCompleteType:
- // Fall-through
- // These traits are modeled on the type predicates in C++0x
- // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
- // requiring a complete type, as whether or not they return true cannot be
- // impacted by the completeness of the type.
- case UTT_IsVoid:
- case UTT_IsIntegral:
- case UTT_IsFloatingPoint:
- case UTT_IsArray:
- case UTT_IsBoundedArray:
- case UTT_IsPointer:
- case UTT_IsNullPointer:
- case UTT_IsReferenceable:
- case UTT_IsLvalueReference:
- case UTT_IsRvalueReference:
- case UTT_IsMemberFunctionPointer:
- case UTT_IsMemberObjectPointer:
- case UTT_IsEnum:
- case UTT_IsScopedEnum:
- case UTT_IsUnion:
- case UTT_IsClass:
- case UTT_IsFunction:
- case UTT_IsReference:
- case UTT_IsArithmetic:
- case UTT_IsFundamental:
- case UTT_IsObject:
- case UTT_IsScalar:
- case UTT_IsCompound:
- case UTT_IsMemberPointer:
- // Fall-through
- // These traits are modeled on type predicates in C++0x [meta.unary.prop]
- // which requires some of its traits to have the complete type. However,
- // the completeness of the type cannot impact these traits' semantics, and
- // so they don't require it. This matches the comments on these traits in
- // Table 49.
- case UTT_IsConst:
- case UTT_IsVolatile:
- case UTT_IsSigned:
- case UTT_IsUnboundedArray:
- case UTT_IsUnsigned:
- // This type trait always returns false, checking the type is moot.
- case UTT_IsInterfaceClass:
- return true;
- // C++14 [meta.unary.prop]:
- // If T is a non-union class type, T shall be a complete type.
- case UTT_IsEmpty:
- case UTT_IsPolymorphic:
- case UTT_IsAbstract:
- if (const auto *RD = ArgTy->getAsCXXRecordDecl())
- if (!RD->isUnion())
- return !S.RequireCompleteType(
- Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
- return true;
- // C++14 [meta.unary.prop]:
- // If T is a class type, T shall be a complete type.
- case UTT_IsFinal:
- case UTT_IsSealed:
- if (ArgTy->getAsCXXRecordDecl())
- return !S.RequireCompleteType(
- Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
- return true;
- // LWG3823: T shall be an array type, a complete type, or cv void.
- case UTT_IsAggregate:
- if (ArgTy->isArrayType() || ArgTy->isVoidType())
- return true;
- return !S.RequireCompleteType(
- Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
- // C++1z [meta.unary.prop]:
- // remove_all_extents_t<T> shall be a complete type or cv void.
- case UTT_IsTrivial:
- case UTT_IsTriviallyCopyable:
- case UTT_IsStandardLayout:
- case UTT_IsPOD:
- case UTT_IsLiteral:
- // By analogy, is_trivially_relocatable imposes the same constraints.
- case UTT_IsTriviallyRelocatable:
- // Per the GCC type traits documentation, T shall be a complete type, cv void,
- // or an array of unknown bound. But GCC actually imposes the same constraints
- // as above.
- case UTT_HasNothrowAssign:
- case UTT_HasNothrowMoveAssign:
- case UTT_HasNothrowConstructor:
- case UTT_HasNothrowCopy:
- case UTT_HasTrivialAssign:
- case UTT_HasTrivialMoveAssign:
- case UTT_HasTrivialDefaultConstructor:
- case UTT_HasTrivialMoveConstructor:
- case UTT_HasTrivialCopy:
- case UTT_HasTrivialDestructor:
- case UTT_HasVirtualDestructor:
- ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
- [[fallthrough]];
- // C++1z [meta.unary.prop]:
- // T shall be a complete type, cv void, or an array of unknown bound.
- case UTT_IsDestructible:
- case UTT_IsNothrowDestructible:
- case UTT_IsTriviallyDestructible:
- case UTT_HasUniqueObjectRepresentations:
- if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
- return true;
- return !S.RequireCompleteType(
- Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
- }
- }
- static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
- Sema &Self, SourceLocation KeyLoc, ASTContext &C,
- bool (CXXRecordDecl::*HasTrivial)() const,
- bool (CXXRecordDecl::*HasNonTrivial)() const,
- bool (CXXMethodDecl::*IsDesiredOp)() const)
- {
- CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
- if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
- return true;
- DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
- DeclarationNameInfo NameInfo(Name, KeyLoc);
- LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
- if (Self.LookupQualifiedName(Res, RD)) {
- bool FoundOperator = false;
- Res.suppressDiagnostics();
- for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
- Op != OpEnd; ++Op) {
- if (isa<FunctionTemplateDecl>(*Op))
- continue;
- CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
- if((Operator->*IsDesiredOp)()) {
- FoundOperator = true;
- auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
- CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
- if (!CPT || !CPT->isNothrow())
- return false;
- }
- }
- return FoundOperator;
- }
- return false;
- }
- static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
- SourceLocation KeyLoc, QualType T) {
- assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
- ASTContext &C = Self.Context;
- switch(UTT) {
- default: llvm_unreachable("not a UTT");
- // Type trait expressions corresponding to the primary type category
- // predicates in C++0x [meta.unary.cat].
- case UTT_IsVoid:
- return T->isVoidType();
- case UTT_IsIntegral:
- return T->isIntegralType(C);
- case UTT_IsFloatingPoint:
- return T->isFloatingType();
- case UTT_IsArray:
- return T->isArrayType();
- case UTT_IsBoundedArray:
- if (!T->isVariableArrayType()) {
- return T->isArrayType() && !T->isIncompleteArrayType();
- }
- Self.Diag(KeyLoc, diag::err_vla_unsupported)
- << 1 << tok::kw___is_bounded_array;
- return false;
- case UTT_IsUnboundedArray:
- if (!T->isVariableArrayType()) {
- return T->isIncompleteArrayType();
- }
- Self.Diag(KeyLoc, diag::err_vla_unsupported)
- << 1 << tok::kw___is_unbounded_array;
- return false;
- case UTT_IsPointer:
- return T->isAnyPointerType();
- case UTT_IsNullPointer:
- return T->isNullPtrType();
- case UTT_IsLvalueReference:
- return T->isLValueReferenceType();
- case UTT_IsRvalueReference:
- return T->isRValueReferenceType();
- case UTT_IsMemberFunctionPointer:
- return T->isMemberFunctionPointerType();
- case UTT_IsMemberObjectPointer:
- return T->isMemberDataPointerType();
- case UTT_IsEnum:
- return T->isEnumeralType();
- case UTT_IsScopedEnum:
- return T->isScopedEnumeralType();
- case UTT_IsUnion:
- return T->isUnionType();
- case UTT_IsClass:
- return T->isClassType() || T->isStructureType() || T->isInterfaceType();
- case UTT_IsFunction:
- return T->isFunctionType();
- // Type trait expressions which correspond to the convenient composition
- // predicates in C++0x [meta.unary.comp].
- case UTT_IsReference:
- return T->isReferenceType();
- case UTT_IsArithmetic:
- return T->isArithmeticType() && !T->isEnumeralType();
- case UTT_IsFundamental:
- return T->isFundamentalType();
- case UTT_IsObject:
- return T->isObjectType();
- case UTT_IsScalar:
- // Note: semantic analysis depends on Objective-C lifetime types to be
- // considered scalar types. However, such types do not actually behave
- // like scalar types at run time (since they may require retain/release
- // operations), so we report them as non-scalar.
- if (T->isObjCLifetimeType()) {
- switch (T.getObjCLifetime()) {
- case Qualifiers::OCL_None:
- case Qualifiers::OCL_ExplicitNone:
- return true;
- case Qualifiers::OCL_Strong:
- case Qualifiers::OCL_Weak:
- case Qualifiers::OCL_Autoreleasing:
- return false;
- }
- }
- return T->isScalarType();
- case UTT_IsCompound:
- return T->isCompoundType();
- case UTT_IsMemberPointer:
- return T->isMemberPointerType();
- // Type trait expressions which correspond to the type property predicates
- // in C++0x [meta.unary.prop].
- case UTT_IsConst:
- return T.isConstQualified();
- case UTT_IsVolatile:
- return T.isVolatileQualified();
- case UTT_IsTrivial:
- return T.isTrivialType(C);
- case UTT_IsTriviallyCopyable:
- return T.isTriviallyCopyableType(C);
- case UTT_IsStandardLayout:
- return T->isStandardLayoutType();
- case UTT_IsPOD:
- return T.isPODType(C);
- case UTT_IsLiteral:
- return T->isLiteralType(C);
- case UTT_IsEmpty:
- if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
- return !RD->isUnion() && RD->isEmpty();
- return false;
- case UTT_IsPolymorphic:
- if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
- return !RD->isUnion() && RD->isPolymorphic();
- return false;
- case UTT_IsAbstract:
- if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
- return !RD->isUnion() && RD->isAbstract();
- return false;
- case UTT_IsAggregate:
- // Report vector extensions and complex types as aggregates because they
- // support aggregate initialization. GCC mirrors this behavior for vectors
- // but not _Complex.
- return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
- T->isAnyComplexType();
- // __is_interface_class only returns true when CL is invoked in /CLR mode and
- // even then only when it is used with the 'interface struct ...' syntax
- // Clang doesn't support /CLR which makes this type trait moot.
- case UTT_IsInterfaceClass:
- return false;
- case UTT_IsFinal:
- case UTT_IsSealed:
- if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
- return RD->hasAttr<FinalAttr>();
- return false;
- case UTT_IsSigned:
- // Enum types should always return false.
- // Floating points should always return true.
- return T->isFloatingType() ||
- (T->isSignedIntegerType() && !T->isEnumeralType());
- case UTT_IsUnsigned:
- // Enum types should always return false.
- return T->isUnsignedIntegerType() && !T->isEnumeralType();
- // Type trait expressions which query classes regarding their construction,
- // destruction, and copying. Rather than being based directly on the
- // related type predicates in the standard, they are specified by both
- // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
- // specifications.
- //
- // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
- // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
- //
- // Note that these builtins do not behave as documented in g++: if a class
- // has both a trivial and a non-trivial special member of a particular kind,
- // they return false! For now, we emulate this behavior.
- // FIXME: This appears to be a g++ bug: more complex cases reveal that it
- // does not correctly compute triviality in the presence of multiple special
- // members of the same kind. Revisit this once the g++ bug is fixed.
- case UTT_HasTrivialDefaultConstructor:
- // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
- // If __is_pod (type) is true then the trait is true, else if type is
- // a cv class or union type (or array thereof) with a trivial default
- // constructor ([class.ctor]) then the trait is true, else it is false.
- if (T.isPODType(C))
- return true;
- if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
- return RD->hasTrivialDefaultConstructor() &&
- !RD->hasNonTrivialDefaultConstructor();
- return false;
- case UTT_HasTrivialMoveConstructor:
- // This trait is implemented by MSVC 2012 and needed to parse the
- // standard library headers. Specifically this is used as the logic
- // behind std::is_trivially_move_constructible (20.9.4.3).
- if (T.isPODType(C))
- return true;
- if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
- return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
- return false;
- case UTT_HasTrivialCopy:
- // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
- // If __is_pod (type) is true or type is a reference type then
- // the trait is true, else if type is a cv class or union type
- // with a trivial copy constructor ([class.copy]) then the trait
- // is true, else it is false.
- if (T.isPODType(C) || T->isReferenceType())
- return true;
- if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
- return RD->hasTrivialCopyConstructor() &&
- !RD->hasNonTrivialCopyConstructor();
- return false;
- case UTT_HasTrivialMoveAssign:
- // This trait is implemented by MSVC 2012 and needed to parse the
- // standard library headers. Specifically it is used as the logic
- // behind std::is_trivially_move_assignable (20.9.4.3)
- if (T.isPODType(C))
- return true;
- if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
- return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
- return false;
- case UTT_HasTrivialAssign:
- // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
- // If type is const qualified or is a reference type then the
- // trait is false. Otherwise if __is_pod (type) is true then the
- // trait is true, else if type is a cv class or union type with
- // a trivial copy assignment ([class.copy]) then the trait is
- // true, else it is false.
- // Note: the const and reference restrictions are interesting,
- // given that const and reference members don't prevent a class
- // from having a trivial copy assignment operator (but do cause
- // errors if the copy assignment operator is actually used, q.v.
- // [class.copy]p12).
- if (T.isConstQualified())
- return false;
- if (T.isPODType(C))
- return true;
- if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
- return RD->hasTrivialCopyAssignment() &&
- !RD->hasNonTrivialCopyAssignment();
- return false;
- case UTT_IsDestructible:
- case UTT_IsTriviallyDestructible:
- case UTT_IsNothrowDestructible:
- // C++14 [meta.unary.prop]:
- // For reference types, is_destructible<T>::value is true.
- if (T->isReferenceType())
- return true;
- // Objective-C++ ARC: autorelease types don't require destruction.
- if (T->isObjCLifetimeType() &&
- T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
- return true;
- // C++14 [meta.unary.prop]:
- // For incomplete types and function types, is_destructible<T>::value is
- // false.
- if (T->isIncompleteType() || T->isFunctionType())
- return false;
- // A type that requires destruction (via a non-trivial destructor or ARC
- // lifetime semantics) is not trivially-destructible.
- if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
- return false;
- // C++14 [meta.unary.prop]:
- // For object types and given U equal to remove_all_extents_t<T>, if the
- // expression std::declval<U&>().~U() is well-formed when treated as an
- // unevaluated operand (Clause 5), then is_destructible<T>::value is true
- if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
- CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
- if (!Destructor)
- return false;
- // C++14 [dcl.fct.def.delete]p2:
- // A program that refers to a deleted function implicitly or
- // explicitly, other than to declare it, is ill-formed.
- if (Destructor->isDeleted())
- return false;
- if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
- return false;
- if (UTT == UTT_IsNothrowDestructible) {
- auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
- CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
- if (!CPT || !CPT->isNothrow())
- return false;
- }
- }
- return true;
- case UTT_HasTrivialDestructor:
- // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
- // If __is_pod (type) is true or type is a reference type
- // then the trait is true, else if type is a cv class or union
- // type (or array thereof) with a trivial destructor
- // ([class.dtor]) then the trait is true, else it is
- // false.
- if (T.isPODType(C) || T->isReferenceType())
- return true;
- // Objective-C++ ARC: autorelease types don't require destruction.
- if (T->isObjCLifetimeType() &&
- T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
- return true;
- if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
- return RD->hasTrivialDestructor();
- return false;
- // TODO: Propagate nothrowness for implicitly declared special members.
- case UTT_HasNothrowAssign:
- // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
- // If type is const qualified or is a reference type then the
- // trait is false. Otherwise if __has_trivial_assign (type)
- // is true then the trait is true, else if type is a cv class
- // or union type with copy assignment operators that are known
- // not to throw an exception then the trait is true, else it is
- // false.
- if (C.getBaseElementType(T).isConstQualified())
- return false;
- if (T->isReferenceType())
- return false;
- if (T.isPODType(C) || T->isObjCLifetimeType())
- return true;
- if (const RecordType *RT = T->getAs<RecordType>())
- return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
- &CXXRecordDecl::hasTrivialCopyAssignment,
- &CXXRecordDecl::hasNonTrivialCopyAssignment,
- &CXXMethodDecl::isCopyAssignmentOperator);
- return false;
- case UTT_HasNothrowMoveAssign:
- // This trait is implemented by MSVC 2012 and needed to parse the
- // standard library headers. Specifically this is used as the logic
- // behind std::is_nothrow_move_assignable (20.9.4.3).
- if (T.isPODType(C))
- return true;
- if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
- return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
- &CXXRecordDecl::hasTrivialMoveAssignment,
- &CXXRecordDecl::hasNonTrivialMoveAssignment,
- &CXXMethodDecl::isMoveAssignmentOperator);
- return false;
- case UTT_HasNothrowCopy:
- // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
- // If __has_trivial_copy (type) is true then the trait is true, else
- // if type is a cv class or union type with copy constructors that are
- // known not to throw an exception then the trait is true, else it is
- // false.
- if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
- return true;
- if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
- if (RD->hasTrivialCopyConstructor() &&
- !RD->hasNonTrivialCopyConstructor())
- return true;
- bool FoundConstructor = false;
- unsigned FoundTQs;
- for (const auto *ND : Self.LookupConstructors(RD)) {
- // A template constructor is never a copy constructor.
- // FIXME: However, it may actually be selected at the actual overload
- // resolution point.
- if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
- continue;
- // UsingDecl itself is not a constructor
- if (isa<UsingDecl>(ND))
- continue;
- auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
- if (Constructor->isCopyConstructor(FoundTQs)) {
- FoundConstructor = true;
- auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
- CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
- if (!CPT)
- return false;
- // TODO: check whether evaluating default arguments can throw.
- // For now, we'll be conservative and assume that they can throw.
- if (!CPT->isNothrow() || CPT->getNumParams() > 1)
- return false;
- }
- }
- return FoundConstructor;
- }
- return false;
- case UTT_HasNothrowConstructor:
- // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
- // If __has_trivial_constructor (type) is true then the trait is
- // true, else if type is a cv class or union type (or array
- // thereof) with a default constructor that is known not to
- // throw an exception then the trait is true, else it is false.
- if (T.isPODType(C) || T->isObjCLifetimeType())
- return true;
- if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
- if (RD->hasTrivialDefaultConstructor() &&
- !RD->hasNonTrivialDefaultConstructor())
- return true;
- bool FoundConstructor = false;
- for (const auto *ND : Self.LookupConstructors(RD)) {
- // FIXME: In C++0x, a constructor template can be a default constructor.
- if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
- continue;
- // UsingDecl itself is not a constructor
- if (isa<UsingDecl>(ND))
- continue;
- auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
- if (Constructor->isDefaultConstructor()) {
- FoundConstructor = true;
- auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
- CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
- if (!CPT)
- return false;
- // FIXME: check whether evaluating default arguments can throw.
- // For now, we'll be conservative and assume that they can throw.
- if (!CPT->isNothrow() || CPT->getNumParams() > 0)
- return false;
- }
- }
- return FoundConstructor;
- }
- return false;
- case UTT_HasVirtualDestructor:
- // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
- // If type is a class type with a virtual destructor ([class.dtor])
- // then the trait is true, else it is false.
- if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
- if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
- return Destructor->isVirtual();
- return false;
- // These type trait expressions are modeled on the specifications for the
- // Embarcadero C++0x type trait functions:
- // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
- case UTT_IsCompleteType:
- // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
- // Returns True if and only if T is a complete type at the point of the
- // function call.
- return !T->isIncompleteType();
- case UTT_HasUniqueObjectRepresentations:
- return C.hasUniqueObjectRepresentations(T);
- case UTT_IsTriviallyRelocatable:
- return T.isTriviallyRelocatableType(C);
- case UTT_IsReferenceable:
- return T.isReferenceable();
- }
- }
- static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
- QualType RhsT, SourceLocation KeyLoc);
- static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
- ArrayRef<TypeSourceInfo *> Args,
- SourceLocation RParenLoc) {
- if (Kind <= UTT_Last)
- return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
- // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
- // traits to avoid duplication.
- if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
- return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
- Args[1]->getType(), RParenLoc);
- switch (Kind) {
- case clang::BTT_ReferenceBindsToTemporary:
- case clang::TT_IsConstructible:
- case clang::TT_IsNothrowConstructible:
- case clang::TT_IsTriviallyConstructible: {
- // C++11 [meta.unary.prop]:
- // is_trivially_constructible is defined as:
- //
- // is_constructible<T, Args...>::value is true and the variable
- // definition for is_constructible, as defined below, is known to call
- // no operation that is not trivial.
- //
- // The predicate condition for a template specialization
- // is_constructible<T, Args...> shall be satisfied if and only if the
- // following variable definition would be well-formed for some invented
- // variable t:
- //
- // T t(create<Args>()...);
- assert(!Args.empty());
- // Precondition: T and all types in the parameter pack Args shall be
- // complete types, (possibly cv-qualified) void, or arrays of
- // unknown bound.
- for (const auto *TSI : Args) {
- QualType ArgTy = TSI->getType();
- if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
- continue;
- if (S.RequireCompleteType(KWLoc, ArgTy,
- diag::err_incomplete_type_used_in_type_trait_expr))
- return false;
- }
- // Make sure the first argument is not incomplete nor a function type.
- QualType T = Args[0]->getType();
- if (T->isIncompleteType() || T->isFunctionType())
- return false;
- // Make sure the first argument is not an abstract type.
- CXXRecordDecl *RD = T->getAsCXXRecordDecl();
- if (RD && RD->isAbstract())
- return false;
- llvm::BumpPtrAllocator OpaqueExprAllocator;
- SmallVector<Expr *, 2> ArgExprs;
- ArgExprs.reserve(Args.size() - 1);
- for (unsigned I = 1, N = Args.size(); I != N; ++I) {
- QualType ArgTy = Args[I]->getType();
- if (ArgTy->isObjectType() || ArgTy->isFunctionType())
- ArgTy = S.Context.getRValueReferenceType(ArgTy);
- ArgExprs.push_back(
- new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
- OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
- ArgTy.getNonLValueExprType(S.Context),
- Expr::getValueKindForType(ArgTy)));
- }
- // Perform the initialization in an unevaluated context within a SFINAE
- // trap at translation unit scope.
- EnterExpressionEvaluationContext Unevaluated(
- S, Sema::ExpressionEvaluationContext::Unevaluated);
- Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
- Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
- InitializedEntity To(
- InitializedEntity::InitializeTemporary(S.Context, Args[0]));
- InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
- RParenLoc));
- InitializationSequence Init(S, To, InitKind, ArgExprs);
- if (Init.Failed())
- return false;
- ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
- if (Result.isInvalid() || SFINAE.hasErrorOccurred())
- return false;
- if (Kind == clang::TT_IsConstructible)
- return true;
- if (Kind == clang::BTT_ReferenceBindsToTemporary) {
- if (!T->isReferenceType())
- return false;
- return !Init.isDirectReferenceBinding();
- }
- if (Kind == clang::TT_IsNothrowConstructible)
- return S.canThrow(Result.get()) == CT_Cannot;
- if (Kind == clang::TT_IsTriviallyConstructible) {
- // Under Objective-C ARC and Weak, if the destination has non-trivial
- // Objective-C lifetime, this is a non-trivial construction.
- if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
- return false;
- // The initialization succeeded; now make sure there are no non-trivial
- // calls.
- return !Result.get()->hasNonTrivialCall(S.Context);
- }
- llvm_unreachable("unhandled type trait");
- return false;
- }
- default: llvm_unreachable("not a TT");
- }
- return false;
- }
- namespace {
- void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
- SourceLocation KWLoc) {
- TypeTrait Replacement;
- switch (Kind) {
- case UTT_HasNothrowAssign:
- case UTT_HasNothrowMoveAssign:
- Replacement = BTT_IsNothrowAssignable;
- break;
- case UTT_HasNothrowCopy:
- case UTT_HasNothrowConstructor:
- Replacement = TT_IsNothrowConstructible;
- break;
- case UTT_HasTrivialAssign:
- case UTT_HasTrivialMoveAssign:
- Replacement = BTT_IsTriviallyAssignable;
- break;
- case UTT_HasTrivialCopy:
- Replacement = UTT_IsTriviallyCopyable;
- break;
- case UTT_HasTrivialDefaultConstructor:
- case UTT_HasTrivialMoveConstructor:
- Replacement = TT_IsTriviallyConstructible;
- break;
- case UTT_HasTrivialDestructor:
- Replacement = UTT_IsTriviallyDestructible;
- break;
- default:
- return;
- }
- S.Diag(KWLoc, diag::warn_deprecated_builtin)
- << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
- }
- }
- bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
- if (Arity && N != Arity) {
- Diag(Loc, diag::err_type_trait_arity)
- << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
- return false;
- }
- if (!Arity && N == 0) {
- Diag(Loc, diag::err_type_trait_arity)
- << 1 << 1 << 1 << (int)N << SourceRange(Loc);
- return false;
- }
- return true;
- }
- ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
- ArrayRef<TypeSourceInfo *> Args,
- SourceLocation RParenLoc) {
- if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size()))
- return ExprError();
- QualType ResultType = Context.getLogicalOperationType();
- if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
- *this, Kind, KWLoc, Args[0]->getType()))
- return ExprError();
- DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
- bool Dependent = false;
- for (unsigned I = 0, N = Args.size(); I != N; ++I) {
- if (Args[I]->getType()->isDependentType()) {
- Dependent = true;
- break;
- }
- }
- bool Result = false;
- if (!Dependent)
- Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
- return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
- RParenLoc, Result);
- }
- ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
- ArrayRef<ParsedType> Args,
- SourceLocation RParenLoc) {
- SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
- ConvertedArgs.reserve(Args.size());
- for (unsigned I = 0, N = Args.size(); I != N; ++I) {
- TypeSourceInfo *TInfo;
- QualType T = GetTypeFromParser(Args[I], &TInfo);
- if (!TInfo)
- TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
- ConvertedArgs.push_back(TInfo);
- }
- return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
- }
- static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
- QualType RhsT, SourceLocation KeyLoc) {
- assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
- "Cannot evaluate traits of dependent types");
- switch(BTT) {
- case BTT_IsBaseOf: {
- // C++0x [meta.rel]p2
- // Base is a base class of Derived without regard to cv-qualifiers or
- // Base and Derived are not unions and name the same class type without
- // regard to cv-qualifiers.
- const RecordType *lhsRecord = LhsT->getAs<RecordType>();
- const RecordType *rhsRecord = RhsT->getAs<RecordType>();
- if (!rhsRecord || !lhsRecord) {
- const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
- const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
- if (!LHSObjTy || !RHSObjTy)
- return false;
- ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
- ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
- if (!BaseInterface || !DerivedInterface)
- return false;
- if (Self.RequireCompleteType(
- KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
- return false;
- return BaseInterface->isSuperClassOf(DerivedInterface);
- }
- assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
- == (lhsRecord == rhsRecord));
- // Unions are never base classes, and never have base classes.
- // It doesn't matter if they are complete or not. See PR#41843
- if (lhsRecord && lhsRecord->getDecl()->isUnion())
- return false;
- if (rhsRecord && rhsRecord->getDecl()->isUnion())
- return false;
- if (lhsRecord == rhsRecord)
- return true;
- // C++0x [meta.rel]p2:
- // If Base and Derived are class types and are different types
- // (ignoring possible cv-qualifiers) then Derived shall be a
- // complete type.
- if (Self.RequireCompleteType(KeyLoc, RhsT,
- diag::err_incomplete_type_used_in_type_trait_expr))
- return false;
- return cast<CXXRecordDecl>(rhsRecord->getDecl())
- ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
- }
- case BTT_IsSame:
- return Self.Context.hasSameType(LhsT, RhsT);
- case BTT_TypeCompatible: {
- // GCC ignores cv-qualifiers on arrays for this builtin.
- Qualifiers LhsQuals, RhsQuals;
- QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
- QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
- return Self.Context.typesAreCompatible(Lhs, Rhs);
- }
- case BTT_IsConvertible:
- case BTT_IsConvertibleTo: {
- // C++0x [meta.rel]p4:
- // Given the following function prototype:
- //
- // template <class T>
- // typename add_rvalue_reference<T>::type create();
- //
- // the predicate condition for a template specialization
- // is_convertible<From, To> shall be satisfied if and only if
- // the return expression in the following code would be
- // well-formed, including any implicit conversions to the return
- // type of the function:
- //
- // To test() {
- // return create<From>();
- // }
- //
- // Access checking is performed as if in a context unrelated to To and
- // From. Only the validity of the immediate context of the expression
- // of the return-statement (including conversions to the return type)
- // is considered.
- //
- // We model the initialization as a copy-initialization of a temporary
- // of the appropriate type, which for this expression is identical to the
- // return statement (since NRVO doesn't apply).
- // Functions aren't allowed to return function or array types.
- if (RhsT->isFunctionType() || RhsT->isArrayType())
- return false;
- // A return statement in a void function must have void type.
- if (RhsT->isVoidType())
- return LhsT->isVoidType();
- // A function definition requires a complete, non-abstract return type.
- if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
- return false;
- // Compute the result of add_rvalue_reference.
- if (LhsT->isObjectType() || LhsT->isFunctionType())
- LhsT = Self.Context.getRValueReferenceType(LhsT);
- // Build a fake source and destination for initialization.
- InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
- OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
- Expr::getValueKindForType(LhsT));
- Expr *FromPtr = &From;
- InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
- SourceLocation()));
- // Perform the initialization in an unevaluated context within a SFINAE
- // trap at translation unit scope.
- EnterExpressionEvaluationContext Unevaluated(
- Self, Sema::ExpressionEvaluationContext::Unevaluated);
- Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
- Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
- InitializationSequence Init(Self, To, Kind, FromPtr);
- if (Init.Failed())
- return false;
- ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
- return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
- }
- case BTT_IsAssignable:
- case BTT_IsNothrowAssignable:
- case BTT_IsTriviallyAssignable: {
- // C++11 [meta.unary.prop]p3:
- // is_trivially_assignable is defined as:
- // is_assignable<T, U>::value is true and the assignment, as defined by
- // is_assignable, is known to call no operation that is not trivial
- //
- // is_assignable is defined as:
- // The expression declval<T>() = declval<U>() is well-formed when
- // treated as an unevaluated operand (Clause 5).
- //
- // For both, T and U shall be complete types, (possibly cv-qualified)
- // void, or arrays of unknown bound.
- if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
- Self.RequireCompleteType(KeyLoc, LhsT,
- diag::err_incomplete_type_used_in_type_trait_expr))
- return false;
- if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
- Self.RequireCompleteType(KeyLoc, RhsT,
- diag::err_incomplete_type_used_in_type_trait_expr))
- return false;
- // cv void is never assignable.
- if (LhsT->isVoidType() || RhsT->isVoidType())
- return false;
- // Build expressions that emulate the effect of declval<T>() and
- // declval<U>().
- if (LhsT->isObjectType() || LhsT->isFunctionType())
- LhsT = Self.Context.getRValueReferenceType(LhsT);
- if (RhsT->isObjectType() || RhsT->isFunctionType())
- RhsT = Self.Context.getRValueReferenceType(RhsT);
- OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
- Expr::getValueKindForType(LhsT));
- OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
- Expr::getValueKindForType(RhsT));
- // Attempt the assignment in an unevaluated context within a SFINAE
- // trap at translation unit scope.
- EnterExpressionEvaluationContext Unevaluated(
- Self, Sema::ExpressionEvaluationContext::Unevaluated);
- Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
- Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
- ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
- &Rhs);
- if (Result.isInvalid())
- return false;
- // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
- Self.CheckUnusedVolatileAssignment(Result.get());
- if (SFINAE.hasErrorOccurred())
- return false;
- if (BTT == BTT_IsAssignable)
- return true;
- if (BTT == BTT_IsNothrowAssignable)
- return Self.canThrow(Result.get()) == CT_Cannot;
- if (BTT == BTT_IsTriviallyAssignable) {
- // Under Objective-C ARC and Weak, if the destination has non-trivial
- // Objective-C lifetime, this is a non-trivial assignment.
- if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
- return false;
- return !Result.get()->hasNonTrivialCall(Self.Context);
- }
- llvm_unreachable("unhandled type trait");
- return false;
- }
- default: llvm_unreachable("not a BTT");
- }
- llvm_unreachable("Unknown type trait or not implemented");
- }
- ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
- SourceLocation KWLoc,
- ParsedType Ty,
- Expr* DimExpr,
- SourceLocation RParen) {
- TypeSourceInfo *TSInfo;
- QualType T = GetTypeFromParser(Ty, &TSInfo);
- if (!TSInfo)
- TSInfo = Context.getTrivialTypeSourceInfo(T);
- return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
- }
- static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
- QualType T, Expr *DimExpr,
- SourceLocation KeyLoc) {
- assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
- switch(ATT) {
- case ATT_ArrayRank:
- if (T->isArrayType()) {
- unsigned Dim = 0;
- while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
- ++Dim;
- T = AT->getElementType();
- }
- return Dim;
- }
- return 0;
- case ATT_ArrayExtent: {
- llvm::APSInt Value;
- uint64_t Dim;
- if (Self.VerifyIntegerConstantExpression(
- DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
- .isInvalid())
- return 0;
- if (Value.isSigned() && Value.isNegative()) {
- Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
- << DimExpr->getSourceRange();
- return 0;
- }
- Dim = Value.getLimitedValue();
- if (T->isArrayType()) {
- unsigned D = 0;
- bool Matched = false;
- while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
- if (Dim == D) {
- Matched = true;
- break;
- }
- ++D;
- T = AT->getElementType();
- }
- if (Matched && T->isArrayType()) {
- if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
- return CAT->getSize().getLimitedValue();
- }
- }
- return 0;
- }
- }
- llvm_unreachable("Unknown type trait or not implemented");
- }
- ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
- SourceLocation KWLoc,
- TypeSourceInfo *TSInfo,
- Expr* DimExpr,
- SourceLocation RParen) {
- QualType T = TSInfo->getType();
- // FIXME: This should likely be tracked as an APInt to remove any host
- // assumptions about the width of size_t on the target.
- uint64_t Value = 0;
- if (!T->isDependentType())
- Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
- // While the specification for these traits from the Embarcadero C++
- // compiler's documentation says the return type is 'unsigned int', Clang
- // returns 'size_t'. On Windows, the primary platform for the Embarcadero
- // compiler, there is no difference. On several other platforms this is an
- // important distinction.
- return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
- RParen, Context.getSizeType());
- }
- ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
- SourceLocation KWLoc,
- Expr *Queried,
- SourceLocation RParen) {
- // If error parsing the expression, ignore.
- if (!Queried)
- return ExprError();
- ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
- return Result;
- }
- static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
- switch (ET) {
- case ET_IsLValueExpr: return E->isLValue();
- case ET_IsRValueExpr:
- return E->isPRValue();
- }
- llvm_unreachable("Expression trait not covered by switch");
- }
- ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
- SourceLocation KWLoc,
- Expr *Queried,
- SourceLocation RParen) {
- if (Queried->isTypeDependent()) {
- // Delay type-checking for type-dependent expressions.
- } else if (Queried->hasPlaceholderType()) {
- ExprResult PE = CheckPlaceholderExpr(Queried);
- if (PE.isInvalid()) return ExprError();
- return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
- }
- bool Value = EvaluateExpressionTrait(ET, Queried);
- return new (Context)
- ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
- }
- QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
- ExprValueKind &VK,
- SourceLocation Loc,
- bool isIndirect) {
- assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&
- "placeholders should have been weeded out by now");
- // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
- // temporary materialization conversion otherwise.
- if (isIndirect)
- LHS = DefaultLvalueConversion(LHS.get());
- else if (LHS.get()->isPRValue())
- LHS = TemporaryMaterializationConversion(LHS.get());
- if (LHS.isInvalid())
- return QualType();
- // The RHS always undergoes lvalue conversions.
- RHS = DefaultLvalueConversion(RHS.get());
- if (RHS.isInvalid()) return QualType();
- const char *OpSpelling = isIndirect ? "->*" : ".*";
- // C++ 5.5p2
- // The binary operator .* [p3: ->*] binds its second operand, which shall
- // be of type "pointer to member of T" (where T is a completely-defined
- // class type) [...]
- QualType RHSType = RHS.get()->getType();
- const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
- if (!MemPtr) {
- Diag(Loc, diag::err_bad_memptr_rhs)
- << OpSpelling << RHSType << RHS.get()->getSourceRange();
- return QualType();
- }
- QualType Class(MemPtr->getClass(), 0);
- // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
- // member pointer points must be completely-defined. However, there is no
- // reason for this semantic distinction, and the rule is not enforced by
- // other compilers. Therefore, we do not check this property, as it is
- // likely to be considered a defect.
- // C++ 5.5p2
- // [...] to its first operand, which shall be of class T or of a class of
- // which T is an unambiguous and accessible base class. [p3: a pointer to
- // such a class]
- QualType LHSType = LHS.get()->getType();
- if (isIndirect) {
- if (const PointerType *Ptr = LHSType->getAs<PointerType>())
- LHSType = Ptr->getPointeeType();
- else {
- Diag(Loc, diag::err_bad_memptr_lhs)
- << OpSpelling << 1 << LHSType
- << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
- return QualType();
- }
- }
- if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
- // If we want to check the hierarchy, we need a complete type.
- if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
- OpSpelling, (int)isIndirect)) {
- return QualType();
- }
- if (!IsDerivedFrom(Loc, LHSType, Class)) {
- Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
- << (int)isIndirect << LHS.get()->getType();
- return QualType();
- }
- CXXCastPath BasePath;
- if (CheckDerivedToBaseConversion(
- LHSType, Class, Loc,
- SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
- &BasePath))
- return QualType();
- // Cast LHS to type of use.
- QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
- if (isIndirect)
- UseType = Context.getPointerType(UseType);
- ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
- LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
- &BasePath);
- }
- if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
- // Diagnose use of pointer-to-member type which when used as
- // the functional cast in a pointer-to-member expression.
- Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
- return QualType();
- }
- // C++ 5.5p2
- // The result is an object or a function of the type specified by the
- // second operand.
- // The cv qualifiers are the union of those in the pointer and the left side,
- // in accordance with 5.5p5 and 5.2.5.
- QualType Result = MemPtr->getPointeeType();
- Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
- // C++0x [expr.mptr.oper]p6:
- // In a .* expression whose object expression is an rvalue, the program is
- // ill-formed if the second operand is a pointer to member function with
- // ref-qualifier &. In a ->* expression or in a .* expression whose object
- // expression is an lvalue, the program is ill-formed if the second operand
- // is a pointer to member function with ref-qualifier &&.
- if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
- switch (Proto->getRefQualifier()) {
- case RQ_None:
- // Do nothing
- break;
- case RQ_LValue:
- if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
- // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
- // is (exactly) 'const'.
- if (Proto->isConst() && !Proto->isVolatile())
- Diag(Loc, getLangOpts().CPlusPlus20
- ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
- : diag::ext_pointer_to_const_ref_member_on_rvalue);
- else
- Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
- << RHSType << 1 << LHS.get()->getSourceRange();
- }
- break;
- case RQ_RValue:
- if (isIndirect || !LHS.get()->Classify(Context).isRValue())
- Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
- << RHSType << 0 << LHS.get()->getSourceRange();
- break;
- }
- }
- // C++ [expr.mptr.oper]p6:
- // The result of a .* expression whose second operand is a pointer
- // to a data member is of the same value category as its
- // first operand. The result of a .* expression whose second
- // operand is a pointer to a member function is a prvalue. The
- // result of an ->* expression is an lvalue if its second operand
- // is a pointer to data member and a prvalue otherwise.
- if (Result->isFunctionType()) {
- VK = VK_PRValue;
- return Context.BoundMemberTy;
- } else if (isIndirect) {
- VK = VK_LValue;
- } else {
- VK = LHS.get()->getValueKind();
- }
- return Result;
- }
- /// Try to convert a type to another according to C++11 5.16p3.
- ///
- /// This is part of the parameter validation for the ? operator. If either
- /// value operand is a class type, the two operands are attempted to be
- /// converted to each other. This function does the conversion in one direction.
- /// It returns true if the program is ill-formed and has already been diagnosed
- /// as such.
- static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
- SourceLocation QuestionLoc,
- bool &HaveConversion,
- QualType &ToType) {
- HaveConversion = false;
- ToType = To->getType();
- InitializationKind Kind =
- InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
- // C++11 5.16p3
- // The process for determining whether an operand expression E1 of type T1
- // can be converted to match an operand expression E2 of type T2 is defined
- // as follows:
- // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
- // implicitly converted to type "lvalue reference to T2", subject to the
- // constraint that in the conversion the reference must bind directly to
- // an lvalue.
- // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
- // implicitly converted to the type "rvalue reference to R2", subject to
- // the constraint that the reference must bind directly.
- if (To->isGLValue()) {
- QualType T = Self.Context.getReferenceQualifiedType(To);
- InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
- InitializationSequence InitSeq(Self, Entity, Kind, From);
- if (InitSeq.isDirectReferenceBinding()) {
- ToType = T;
- HaveConversion = true;
- return false;
- }
- if (InitSeq.isAmbiguous())
- return InitSeq.Diagnose(Self, Entity, Kind, From);
- }
- // -- If E2 is an rvalue, or if the conversion above cannot be done:
- // -- if E1 and E2 have class type, and the underlying class types are
- // the same or one is a base class of the other:
- QualType FTy = From->getType();
- QualType TTy = To->getType();
- const RecordType *FRec = FTy->getAs<RecordType>();
- const RecordType *TRec = TTy->getAs<RecordType>();
- bool FDerivedFromT = FRec && TRec && FRec != TRec &&
- Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
- if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
- Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
- // E1 can be converted to match E2 if the class of T2 is the
- // same type as, or a base class of, the class of T1, and
- // [cv2 > cv1].
- if (FRec == TRec || FDerivedFromT) {
- if (TTy.isAtLeastAsQualifiedAs(FTy)) {
- InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
- InitializationSequence InitSeq(Self, Entity, Kind, From);
- if (InitSeq) {
- HaveConversion = true;
- return false;
- }
- if (InitSeq.isAmbiguous())
- return InitSeq.Diagnose(Self, Entity, Kind, From);
- }
- }
- return false;
- }
- // -- Otherwise: E1 can be converted to match E2 if E1 can be
- // implicitly converted to the type that expression E2 would have
- // if E2 were converted to an rvalue (or the type it has, if E2 is
- // an rvalue).
- //
- // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
- // to the array-to-pointer or function-to-pointer conversions.
- TTy = TTy.getNonLValueExprType(Self.Context);
- InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
- InitializationSequence InitSeq(Self, Entity, Kind, From);
- HaveConversion = !InitSeq.Failed();
- ToType = TTy;
- if (InitSeq.isAmbiguous())
- return InitSeq.Diagnose(Self, Entity, Kind, From);
- return false;
- }
- /// Try to find a common type for two according to C++0x 5.16p5.
- ///
- /// This is part of the parameter validation for the ? operator. If either
- /// value operand is a class type, overload resolution is used to find a
- /// conversion to a common type.
- static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
- SourceLocation QuestionLoc) {
- Expr *Args[2] = { LHS.get(), RHS.get() };
- OverloadCandidateSet CandidateSet(QuestionLoc,
- OverloadCandidateSet::CSK_Operator);
- Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
- CandidateSet);
- OverloadCandidateSet::iterator Best;
- switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
- case OR_Success: {
- // We found a match. Perform the conversions on the arguments and move on.
- ExprResult LHSRes = Self.PerformImplicitConversion(
- LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
- Sema::AA_Converting);
- if (LHSRes.isInvalid())
- break;
- LHS = LHSRes;
- ExprResult RHSRes = Self.PerformImplicitConversion(
- RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
- Sema::AA_Converting);
- if (RHSRes.isInvalid())
- break;
- RHS = RHSRes;
- if (Best->Function)
- Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
- return false;
- }
- case OR_No_Viable_Function:
- // Emit a better diagnostic if one of the expressions is a null pointer
- // constant and the other is a pointer type. In this case, the user most
- // likely forgot to take the address of the other expression.
- if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
- return true;
- Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
- << LHS.get()->getType() << RHS.get()->getType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return true;
- case OR_Ambiguous:
- Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
- << LHS.get()->getType() << RHS.get()->getType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- // FIXME: Print the possible common types by printing the return types of
- // the viable candidates.
- break;
- case OR_Deleted:
- llvm_unreachable("Conditional operator has only built-in overloads");
- }
- return true;
- }
- /// Perform an "extended" implicit conversion as returned by
- /// TryClassUnification.
- static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
- InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
- InitializationKind Kind =
- InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
- Expr *Arg = E.get();
- InitializationSequence InitSeq(Self, Entity, Kind, Arg);
- ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
- if (Result.isInvalid())
- return true;
- E = Result;
- return false;
- }
- // Check the condition operand of ?: to see if it is valid for the GCC
- // extension.
- static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
- QualType CondTy) {
- if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
- return false;
- const QualType EltTy =
- cast<VectorType>(CondTy.getCanonicalType())->getElementType();
- assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
- return EltTy->isIntegralType(Ctx);
- }
- static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx,
- QualType CondTy) {
- if (!CondTy->isVLSTBuiltinType())
- return false;
- const QualType EltTy =
- cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx);
- assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
- return EltTy->isIntegralType(Ctx);
- }
- QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
- ExprResult &RHS,
- SourceLocation QuestionLoc) {
- LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
- RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
- QualType CondType = Cond.get()->getType();
- const auto *CondVT = CondType->castAs<VectorType>();
- QualType CondElementTy = CondVT->getElementType();
- unsigned CondElementCount = CondVT->getNumElements();
- QualType LHSType = LHS.get()->getType();
- const auto *LHSVT = LHSType->getAs<VectorType>();
- QualType RHSType = RHS.get()->getType();
- const auto *RHSVT = RHSType->getAs<VectorType>();
- QualType ResultType;
- if (LHSVT && RHSVT) {
- if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
- Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
- << /*isExtVector*/ isa<ExtVectorType>(CondVT);
- return {};
- }
- // If both are vector types, they must be the same type.
- if (!Context.hasSameType(LHSType, RHSType)) {
- Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
- << LHSType << RHSType;
- return {};
- }
- ResultType = Context.getCommonSugaredType(LHSType, RHSType);
- } else if (LHSVT || RHSVT) {
- ResultType = CheckVectorOperands(
- LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
- /*AllowBoolConversions*/ false,
- /*AllowBoolOperation*/ true,
- /*ReportInvalid*/ true);
- if (ResultType.isNull())
- return {};
- } else {
- // Both are scalar.
- LHSType = LHSType.getUnqualifiedType();
- RHSType = RHSType.getUnqualifiedType();
- QualType ResultElementTy =
- Context.hasSameType(LHSType, RHSType)
- ? Context.getCommonSugaredType(LHSType, RHSType)
- : UsualArithmeticConversions(LHS, RHS, QuestionLoc,
- ACK_Conditional);
- if (ResultElementTy->isEnumeralType()) {
- Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
- << ResultElementTy;
- return {};
- }
- if (CondType->isExtVectorType())
- ResultType =
- Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
- else
- ResultType = Context.getVectorType(
- ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector);
- LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
- RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
- }
- assert(!ResultType.isNull() && ResultType->isVectorType() &&
- (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
- "Result should have been a vector type");
- auto *ResultVectorTy = ResultType->castAs<VectorType>();
- QualType ResultElementTy = ResultVectorTy->getElementType();
- unsigned ResultElementCount = ResultVectorTy->getNumElements();
- if (ResultElementCount != CondElementCount) {
- Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
- << ResultType;
- return {};
- }
- if (Context.getTypeSize(ResultElementTy) !=
- Context.getTypeSize(CondElementTy)) {
- Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
- << ResultType;
- return {};
- }
- return ResultType;
- }
- QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond,
- ExprResult &LHS,
- ExprResult &RHS,
- SourceLocation QuestionLoc) {
- LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
- RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
- QualType CondType = Cond.get()->getType();
- const auto *CondBT = CondType->castAs<BuiltinType>();
- QualType CondElementTy = CondBT->getSveEltType(Context);
- llvm::ElementCount CondElementCount =
- Context.getBuiltinVectorTypeInfo(CondBT).EC;
- QualType LHSType = LHS.get()->getType();
- const auto *LHSBT =
- LHSType->isVLSTBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr;
- QualType RHSType = RHS.get()->getType();
- const auto *RHSBT =
- RHSType->isVLSTBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr;
- QualType ResultType;
- if (LHSBT && RHSBT) {
- // If both are sizeless vector types, they must be the same type.
- if (!Context.hasSameType(LHSType, RHSType)) {
- Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
- << LHSType << RHSType;
- return QualType();
- }
- ResultType = LHSType;
- } else if (LHSBT || RHSBT) {
- ResultType = CheckSizelessVectorOperands(
- LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional);
- if (ResultType.isNull())
- return QualType();
- } else {
- // Both are scalar so splat
- QualType ResultElementTy;
- LHSType = LHSType.getCanonicalType().getUnqualifiedType();
- RHSType = RHSType.getCanonicalType().getUnqualifiedType();
- if (Context.hasSameType(LHSType, RHSType))
- ResultElementTy = LHSType;
- else
- ResultElementTy =
- UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
- if (ResultElementTy->isEnumeralType()) {
- Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
- << ResultElementTy;
- return QualType();
- }
- ResultType = Context.getScalableVectorType(
- ResultElementTy, CondElementCount.getKnownMinValue());
- LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
- RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
- }
- assert(!ResultType.isNull() && ResultType->isVLSTBuiltinType() &&
- "Result should have been a vector type");
- auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>();
- QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context);
- llvm::ElementCount ResultElementCount =
- Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC;
- if (ResultElementCount != CondElementCount) {
- Diag(QuestionLoc, diag::err_conditional_vector_size)
- << CondType << ResultType;
- return QualType();
- }
- if (Context.getTypeSize(ResultElementTy) !=
- Context.getTypeSize(CondElementTy)) {
- Diag(QuestionLoc, diag::err_conditional_vector_element_size)
- << CondType << ResultType;
- return QualType();
- }
- return ResultType;
- }
- /// Check the operands of ?: under C++ semantics.
- ///
- /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
- /// extension. In this case, LHS == Cond. (But they're not aliases.)
- ///
- /// This function also implements GCC's vector extension and the
- /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
- /// permit the use of a?b:c where the type of a is that of a integer vector with
- /// the same number of elements and size as the vectors of b and c. If one of
- /// either b or c is a scalar it is implicitly converted to match the type of
- /// the vector. Otherwise the expression is ill-formed. If both b and c are
- /// scalars, then b and c are checked and converted to the type of a if
- /// possible.
- ///
- /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
- /// For the GCC extension, the ?: operator is evaluated as
- /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
- /// For the OpenCL extensions, the ?: operator is evaluated as
- /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. ,
- /// most-significant-bit-set(a[n]) ? b[n] : c[n]).
- QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
- ExprResult &RHS, ExprValueKind &VK,
- ExprObjectKind &OK,
- SourceLocation QuestionLoc) {
- // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
- // pointers.
- // Assume r-value.
- VK = VK_PRValue;
- OK = OK_Ordinary;
- bool IsVectorConditional =
- isValidVectorForConditionalCondition(Context, Cond.get()->getType());
- bool IsSizelessVectorConditional =
- isValidSizelessVectorForConditionalCondition(Context,
- Cond.get()->getType());
- // C++11 [expr.cond]p1
- // The first expression is contextually converted to bool.
- if (!Cond.get()->isTypeDependent()) {
- ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional
- ? DefaultFunctionArrayLvalueConversion(Cond.get())
- : CheckCXXBooleanCondition(Cond.get());
- if (CondRes.isInvalid())
- return QualType();
- Cond = CondRes;
- } else {
- // To implement C++, the first expression typically doesn't alter the result
- // type of the conditional, however the GCC compatible vector extension
- // changes the result type to be that of the conditional. Since we cannot
- // know if this is a vector extension here, delay the conversion of the
- // LHS/RHS below until later.
- return Context.DependentTy;
- }
- // Either of the arguments dependent?
- if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
- return Context.DependentTy;
- // C++11 [expr.cond]p2
- // If either the second or the third operand has type (cv) void, ...
- QualType LTy = LHS.get()->getType();
- QualType RTy = RHS.get()->getType();
- bool LVoid = LTy->isVoidType();
- bool RVoid = RTy->isVoidType();
- if (LVoid || RVoid) {
- // ... one of the following shall hold:
- // -- The second or the third operand (but not both) is a (possibly
- // parenthesized) throw-expression; the result is of the type
- // and value category of the other.
- bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
- bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
- // Void expressions aren't legal in the vector-conditional expressions.
- if (IsVectorConditional) {
- SourceRange DiagLoc =
- LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
- bool IsThrow = LVoid ? LThrow : RThrow;
- Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
- << DiagLoc << IsThrow;
- return QualType();
- }
- if (LThrow != RThrow) {
- Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
- VK = NonThrow->getValueKind();
- // DR (no number yet): the result is a bit-field if the
- // non-throw-expression operand is a bit-field.
- OK = NonThrow->getObjectKind();
- return NonThrow->getType();
- }
- // -- Both the second and third operands have type void; the result is of
- // type void and is a prvalue.
- if (LVoid && RVoid)
- return Context.getCommonSugaredType(LTy, RTy);
- // Neither holds, error.
- Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
- << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return QualType();
- }
- // Neither is void.
- if (IsVectorConditional)
- return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
- if (IsSizelessVectorConditional)
- return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
- // C++11 [expr.cond]p3
- // Otherwise, if the second and third operand have different types, and
- // either has (cv) class type [...] an attempt is made to convert each of
- // those operands to the type of the other.
- if (!Context.hasSameType(LTy, RTy) &&
- (LTy->isRecordType() || RTy->isRecordType())) {
- // These return true if a single direction is already ambiguous.
- QualType L2RType, R2LType;
- bool HaveL2R, HaveR2L;
- if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
- return QualType();
- if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
- return QualType();
- // If both can be converted, [...] the program is ill-formed.
- if (HaveL2R && HaveR2L) {
- Diag(QuestionLoc, diag::err_conditional_ambiguous)
- << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return QualType();
- }
- // If exactly one conversion is possible, that conversion is applied to
- // the chosen operand and the converted operands are used in place of the
- // original operands for the remainder of this section.
- if (HaveL2R) {
- if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
- return QualType();
- LTy = LHS.get()->getType();
- } else if (HaveR2L) {
- if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
- return QualType();
- RTy = RHS.get()->getType();
- }
- }
- // C++11 [expr.cond]p3
- // if both are glvalues of the same value category and the same type except
- // for cv-qualification, an attempt is made to convert each of those
- // operands to the type of the other.
- // FIXME:
- // Resolving a defect in P0012R1: we extend this to cover all cases where
- // one of the operands is reference-compatible with the other, in order
- // to support conditionals between functions differing in noexcept. This
- // will similarly cover difference in array bounds after P0388R4.
- // FIXME: If LTy and RTy have a composite pointer type, should we convert to
- // that instead?
- ExprValueKind LVK = LHS.get()->getValueKind();
- ExprValueKind RVK = RHS.get()->getValueKind();
- if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
- // DerivedToBase was already handled by the class-specific case above.
- // FIXME: Should we allow ObjC conversions here?
- const ReferenceConversions AllowedConversions =
- ReferenceConversions::Qualification |
- ReferenceConversions::NestedQualification |
- ReferenceConversions::Function;
- ReferenceConversions RefConv;
- if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
- Ref_Compatible &&
- !(RefConv & ~AllowedConversions) &&
- // [...] subject to the constraint that the reference must bind
- // directly [...]
- !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
- RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
- RTy = RHS.get()->getType();
- } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
- Ref_Compatible &&
- !(RefConv & ~AllowedConversions) &&
- !LHS.get()->refersToBitField() &&
- !LHS.get()->refersToVectorElement()) {
- LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
- LTy = LHS.get()->getType();
- }
- }
- // C++11 [expr.cond]p4
- // If the second and third operands are glvalues of the same value
- // category and have the same type, the result is of that type and
- // value category and it is a bit-field if the second or the third
- // operand is a bit-field, or if both are bit-fields.
- // We only extend this to bitfields, not to the crazy other kinds of
- // l-values.
- bool Same = Context.hasSameType(LTy, RTy);
- if (Same && LVK == RVK && LVK != VK_PRValue &&
- LHS.get()->isOrdinaryOrBitFieldObject() &&
- RHS.get()->isOrdinaryOrBitFieldObject()) {
- VK = LHS.get()->getValueKind();
- if (LHS.get()->getObjectKind() == OK_BitField ||
- RHS.get()->getObjectKind() == OK_BitField)
- OK = OK_BitField;
- return Context.getCommonSugaredType(LTy, RTy);
- }
- // C++11 [expr.cond]p5
- // Otherwise, the result is a prvalue. If the second and third operands
- // do not have the same type, and either has (cv) class type, ...
- if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
- // ... overload resolution is used to determine the conversions (if any)
- // to be applied to the operands. If the overload resolution fails, the
- // program is ill-formed.
- if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
- return QualType();
- }
- // C++11 [expr.cond]p6
- // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
- // conversions are performed on the second and third operands.
- LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
- RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- LTy = LHS.get()->getType();
- RTy = RHS.get()->getType();
- // After those conversions, one of the following shall hold:
- // -- The second and third operands have the same type; the result
- // is of that type. If the operands have class type, the result
- // is a prvalue temporary of the result type, which is
- // copy-initialized from either the second operand or the third
- // operand depending on the value of the first operand.
- if (Context.hasSameType(LTy, RTy)) {
- if (LTy->isRecordType()) {
- // The operands have class type. Make a temporary copy.
- ExprResult LHSCopy = PerformCopyInitialization(
- InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS);
- if (LHSCopy.isInvalid())
- return QualType();
- ExprResult RHSCopy = PerformCopyInitialization(
- InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS);
- if (RHSCopy.isInvalid())
- return QualType();
- LHS = LHSCopy;
- RHS = RHSCopy;
- }
- return Context.getCommonSugaredType(LTy, RTy);
- }
- // Extension: conditional operator involving vector types.
- if (LTy->isVectorType() || RTy->isVectorType())
- return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
- /*AllowBothBool*/ true,
- /*AllowBoolConversions*/ false,
- /*AllowBoolOperation*/ false,
- /*ReportInvalid*/ true);
- // -- The second and third operands have arithmetic or enumeration type;
- // the usual arithmetic conversions are performed to bring them to a
- // common type, and the result is of that type.
- if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
- QualType ResTy =
- UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- if (ResTy.isNull()) {
- Diag(QuestionLoc,
- diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return QualType();
- }
- LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
- RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
- return ResTy;
- }
- // -- The second and third operands have pointer type, or one has pointer
- // type and the other is a null pointer constant, or both are null
- // pointer constants, at least one of which is non-integral; pointer
- // conversions and qualification conversions are performed to bring them
- // to their composite pointer type. The result is of the composite
- // pointer type.
- // -- The second and third operands have pointer to member type, or one has
- // pointer to member type and the other is a null pointer constant;
- // pointer to member conversions and qualification conversions are
- // performed to bring them to a common type, whose cv-qualification
- // shall match the cv-qualification of either the second or the third
- // operand. The result is of the common type.
- QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
- if (!Composite.isNull())
- return Composite;
- // Similarly, attempt to find composite type of two objective-c pointers.
- Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- if (!Composite.isNull())
- return Composite;
- // Check if we are using a null with a non-pointer type.
- if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
- return QualType();
- Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
- << LHS.get()->getType() << RHS.get()->getType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return QualType();
- }
- /// Find a merged pointer type and convert the two expressions to it.
- ///
- /// This finds the composite pointer type for \p E1 and \p E2 according to
- /// C++2a [expr.type]p3. It converts both expressions to this type and returns
- /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
- /// is \c true).
- ///
- /// \param Loc The location of the operator requiring these two expressions to
- /// be converted to the composite pointer type.
- ///
- /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
- QualType Sema::FindCompositePointerType(SourceLocation Loc,
- Expr *&E1, Expr *&E2,
- bool ConvertArgs) {
- assert(getLangOpts().CPlusPlus && "This function assumes C++");
- // C++1z [expr]p14:
- // The composite pointer type of two operands p1 and p2 having types T1
- // and T2
- QualType T1 = E1->getType(), T2 = E2->getType();
- // where at least one is a pointer or pointer to member type or
- // std::nullptr_t is:
- bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
- T1->isNullPtrType();
- bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
- T2->isNullPtrType();
- if (!T1IsPointerLike && !T2IsPointerLike)
- return QualType();
- // - if both p1 and p2 are null pointer constants, std::nullptr_t;
- // This can't actually happen, following the standard, but we also use this
- // to implement the end of [expr.conv], which hits this case.
- //
- // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
- if (T1IsPointerLike &&
- E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
- if (ConvertArgs)
- E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
- ? CK_NullToMemberPointer
- : CK_NullToPointer).get();
- return T1;
- }
- if (T2IsPointerLike &&
- E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
- if (ConvertArgs)
- E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
- ? CK_NullToMemberPointer
- : CK_NullToPointer).get();
- return T2;
- }
- // Now both have to be pointers or member pointers.
- if (!T1IsPointerLike || !T2IsPointerLike)
- return QualType();
- assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
- "nullptr_t should be a null pointer constant");
- struct Step {
- enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
- // Qualifiers to apply under the step kind.
- Qualifiers Quals;
- /// The class for a pointer-to-member; a constant array type with a bound
- /// (if any) for an array.
- const Type *ClassOrBound;
- Step(Kind K, const Type *ClassOrBound = nullptr)
- : K(K), ClassOrBound(ClassOrBound) {}
- QualType rebuild(ASTContext &Ctx, QualType T) const {
- T = Ctx.getQualifiedType(T, Quals);
- switch (K) {
- case Pointer:
- return Ctx.getPointerType(T);
- case MemberPointer:
- return Ctx.getMemberPointerType(T, ClassOrBound);
- case ObjCPointer:
- return Ctx.getObjCObjectPointerType(T);
- case Array:
- if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
- return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
- ArrayType::Normal, 0);
- else
- return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0);
- }
- llvm_unreachable("unknown step kind");
- }
- };
- SmallVector<Step, 8> Steps;
- // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
- // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
- // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
- // respectively;
- // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
- // to member of C2 of type cv2 U2" for some non-function type U, where
- // C1 is reference-related to C2 or C2 is reference-related to C1, the
- // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
- // respectively;
- // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
- // T2;
- //
- // Dismantle T1 and T2 to simultaneously determine whether they are similar
- // and to prepare to form the cv-combined type if so.
- QualType Composite1 = T1;
- QualType Composite2 = T2;
- unsigned NeedConstBefore = 0;
- while (true) {
- assert(!Composite1.isNull() && !Composite2.isNull());
- Qualifiers Q1, Q2;
- Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
- Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
- // Top-level qualifiers are ignored. Merge at all lower levels.
- if (!Steps.empty()) {
- // Find the qualifier union: (approximately) the unique minimal set of
- // qualifiers that is compatible with both types.
- Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
- Q2.getCVRUQualifiers());
- // Under one level of pointer or pointer-to-member, we can change to an
- // unambiguous compatible address space.
- if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
- Quals.setAddressSpace(Q1.getAddressSpace());
- } else if (Steps.size() == 1) {
- bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
- bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
- if (MaybeQ1 == MaybeQ2) {
- // Exception for ptr size address spaces. Should be able to choose
- // either address space during comparison.
- if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
- isPtrSizeAddressSpace(Q2.getAddressSpace()))
- MaybeQ1 = true;
- else
- return QualType(); // No unique best address space.
- }
- Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
- : Q2.getAddressSpace());
- } else {
- return QualType();
- }
- // FIXME: In C, we merge __strong and none to __strong at the top level.
- if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
- Quals.setObjCGCAttr(Q1.getObjCGCAttr());
- else if (T1->isVoidPointerType() || T2->isVoidPointerType())
- assert(Steps.size() == 1);
- else
- return QualType();
- // Mismatched lifetime qualifiers never compatibly include each other.
- if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
- Quals.setObjCLifetime(Q1.getObjCLifetime());
- else if (T1->isVoidPointerType() || T2->isVoidPointerType())
- assert(Steps.size() == 1);
- else
- return QualType();
- Steps.back().Quals = Quals;
- if (Q1 != Quals || Q2 != Quals)
- NeedConstBefore = Steps.size() - 1;
- }
- // FIXME: Can we unify the following with UnwrapSimilarTypes?
- const ArrayType *Arr1, *Arr2;
- if ((Arr1 = Context.getAsArrayType(Composite1)) &&
- (Arr2 = Context.getAsArrayType(Composite2))) {
- auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
- auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
- if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
- Composite1 = Arr1->getElementType();
- Composite2 = Arr2->getElementType();
- Steps.emplace_back(Step::Array, CAT1);
- continue;
- }
- bool IAT1 = isa<IncompleteArrayType>(Arr1);
- bool IAT2 = isa<IncompleteArrayType>(Arr2);
- if ((IAT1 && IAT2) ||
- (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
- ((bool)CAT1 != (bool)CAT2) &&
- (Steps.empty() || Steps.back().K != Step::Array))) {
- // In C++20 onwards, we can unify an array of N T with an array of
- // a different or unknown bound. But we can't form an array whose
- // element type is an array of unknown bound by doing so.
- Composite1 = Arr1->getElementType();
- Composite2 = Arr2->getElementType();
- Steps.emplace_back(Step::Array);
- if (CAT1 || CAT2)
- NeedConstBefore = Steps.size();
- continue;
- }
- }
- const PointerType *Ptr1, *Ptr2;
- if ((Ptr1 = Composite1->getAs<PointerType>()) &&
- (Ptr2 = Composite2->getAs<PointerType>())) {
- Composite1 = Ptr1->getPointeeType();
- Composite2 = Ptr2->getPointeeType();
- Steps.emplace_back(Step::Pointer);
- continue;
- }
- const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
- if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
- (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
- Composite1 = ObjPtr1->getPointeeType();
- Composite2 = ObjPtr2->getPointeeType();
- Steps.emplace_back(Step::ObjCPointer);
- continue;
- }
- const MemberPointerType *MemPtr1, *MemPtr2;
- if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
- (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
- Composite1 = MemPtr1->getPointeeType();
- Composite2 = MemPtr2->getPointeeType();
- // At the top level, we can perform a base-to-derived pointer-to-member
- // conversion:
- //
- // - [...] where C1 is reference-related to C2 or C2 is
- // reference-related to C1
- //
- // (Note that the only kinds of reference-relatedness in scope here are
- // "same type or derived from".) At any other level, the class must
- // exactly match.
- const Type *Class = nullptr;
- QualType Cls1(MemPtr1->getClass(), 0);
- QualType Cls2(MemPtr2->getClass(), 0);
- if (Context.hasSameType(Cls1, Cls2))
- Class = MemPtr1->getClass();
- else if (Steps.empty())
- Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
- IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
- if (!Class)
- return QualType();
- Steps.emplace_back(Step::MemberPointer, Class);
- continue;
- }
- // Special case: at the top level, we can decompose an Objective-C pointer
- // and a 'cv void *'. Unify the qualifiers.
- if (Steps.empty() && ((Composite1->isVoidPointerType() &&
- Composite2->isObjCObjectPointerType()) ||
- (Composite1->isObjCObjectPointerType() &&
- Composite2->isVoidPointerType()))) {
- Composite1 = Composite1->getPointeeType();
- Composite2 = Composite2->getPointeeType();
- Steps.emplace_back(Step::Pointer);
- continue;
- }
- // FIXME: block pointer types?
- // Cannot unwrap any more types.
- break;
- }
- // - if T1 or T2 is "pointer to noexcept function" and the other type is
- // "pointer to function", where the function types are otherwise the same,
- // "pointer to function";
- // - if T1 or T2 is "pointer to member of C1 of type function", the other
- // type is "pointer to member of C2 of type noexcept function", and C1
- // is reference-related to C2 or C2 is reference-related to C1, where
- // the function types are otherwise the same, "pointer to member of C2 of
- // type function" or "pointer to member of C1 of type function",
- // respectively;
- //
- // We also support 'noreturn' here, so as a Clang extension we generalize the
- // above to:
- //
- // - [Clang] If T1 and T2 are both of type "pointer to function" or
- // "pointer to member function" and the pointee types can be unified
- // by a function pointer conversion, that conversion is applied
- // before checking the following rules.
- //
- // We've already unwrapped down to the function types, and we want to merge
- // rather than just convert, so do this ourselves rather than calling
- // IsFunctionConversion.
- //
- // FIXME: In order to match the standard wording as closely as possible, we
- // currently only do this under a single level of pointers. Ideally, we would
- // allow this in general, and set NeedConstBefore to the relevant depth on
- // the side(s) where we changed anything. If we permit that, we should also
- // consider this conversion when determining type similarity and model it as
- // a qualification conversion.
- if (Steps.size() == 1) {
- if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
- if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
- FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
- FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
- // The result is noreturn if both operands are.
- bool Noreturn =
- EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
- EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
- EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
- // The result is nothrow if both operands are.
- SmallVector<QualType, 8> ExceptionTypeStorage;
- EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs(
- EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage,
- getLangOpts().CPlusPlus17);
- Composite1 = Context.getFunctionType(FPT1->getReturnType(),
- FPT1->getParamTypes(), EPI1);
- Composite2 = Context.getFunctionType(FPT2->getReturnType(),
- FPT2->getParamTypes(), EPI2);
- }
- }
- }
- // There are some more conversions we can perform under exactly one pointer.
- if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
- !Context.hasSameType(Composite1, Composite2)) {
- // - if T1 or T2 is "pointer to cv1 void" and the other type is
- // "pointer to cv2 T", where T is an object type or void,
- // "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
- if (Composite1->isVoidType() && Composite2->isObjectType())
- Composite2 = Composite1;
- else if (Composite2->isVoidType() && Composite1->isObjectType())
- Composite1 = Composite2;
- // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
- // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
- // the cv-combined type of T1 and T2 or the cv-combined type of T2 and
- // T1, respectively;
- //
- // The "similar type" handling covers all of this except for the "T1 is a
- // base class of T2" case in the definition of reference-related.
- else if (IsDerivedFrom(Loc, Composite1, Composite2))
- Composite1 = Composite2;
- else if (IsDerivedFrom(Loc, Composite2, Composite1))
- Composite2 = Composite1;
- }
- // At this point, either the inner types are the same or we have failed to
- // find a composite pointer type.
- if (!Context.hasSameType(Composite1, Composite2))
- return QualType();
- // Per C++ [conv.qual]p3, add 'const' to every level before the last
- // differing qualifier.
- for (unsigned I = 0; I != NeedConstBefore; ++I)
- Steps[I].Quals.addConst();
- // Rebuild the composite type.
- QualType Composite = Context.getCommonSugaredType(Composite1, Composite2);
- for (auto &S : llvm::reverse(Steps))
- Composite = S.rebuild(Context, Composite);
- if (ConvertArgs) {
- // Convert the expressions to the composite pointer type.
- InitializedEntity Entity =
- InitializedEntity::InitializeTemporary(Composite);
- InitializationKind Kind =
- InitializationKind::CreateCopy(Loc, SourceLocation());
- InitializationSequence E1ToC(*this, Entity, Kind, E1);
- if (!E1ToC)
- return QualType();
- InitializationSequence E2ToC(*this, Entity, Kind, E2);
- if (!E2ToC)
- return QualType();
- // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
- ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
- if (E1Result.isInvalid())
- return QualType();
- E1 = E1Result.get();
- ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
- if (E2Result.isInvalid())
- return QualType();
- E2 = E2Result.get();
- }
- return Composite;
- }
- ExprResult Sema::MaybeBindToTemporary(Expr *E) {
- if (!E)
- return ExprError();
- assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
- // If the result is a glvalue, we shouldn't bind it.
- if (E->isGLValue())
- return E;
- // In ARC, calls that return a retainable type can return retained,
- // in which case we have to insert a consuming cast.
- if (getLangOpts().ObjCAutoRefCount &&
- E->getType()->isObjCRetainableType()) {
- bool ReturnsRetained;
- // For actual calls, we compute this by examining the type of the
- // called value.
- if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
- Expr *Callee = Call->getCallee()->IgnoreParens();
- QualType T = Callee->getType();
- if (T == Context.BoundMemberTy) {
- // Handle pointer-to-members.
- if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
- T = BinOp->getRHS()->getType();
- else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
- T = Mem->getMemberDecl()->getType();
- }
- if (const PointerType *Ptr = T->getAs<PointerType>())
- T = Ptr->getPointeeType();
- else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
- T = Ptr->getPointeeType();
- else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
- T = MemPtr->getPointeeType();
- auto *FTy = T->castAs<FunctionType>();
- ReturnsRetained = FTy->getExtInfo().getProducesResult();
- // ActOnStmtExpr arranges things so that StmtExprs of retainable
- // type always produce a +1 object.
- } else if (isa<StmtExpr>(E)) {
- ReturnsRetained = true;
- // We hit this case with the lambda conversion-to-block optimization;
- // we don't want any extra casts here.
- } else if (isa<CastExpr>(E) &&
- isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
- return E;
- // For message sends and property references, we try to find an
- // actual method. FIXME: we should infer retention by selector in
- // cases where we don't have an actual method.
- } else {
- ObjCMethodDecl *D = nullptr;
- if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
- D = Send->getMethodDecl();
- } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
- D = BoxedExpr->getBoxingMethod();
- } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
- // Don't do reclaims if we're using the zero-element array
- // constant.
- if (ArrayLit->getNumElements() == 0 &&
- Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
- return E;
- D = ArrayLit->getArrayWithObjectsMethod();
- } else if (ObjCDictionaryLiteral *DictLit
- = dyn_cast<ObjCDictionaryLiteral>(E)) {
- // Don't do reclaims if we're using the zero-element dictionary
- // constant.
- if (DictLit->getNumElements() == 0 &&
- Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
- return E;
- D = DictLit->getDictWithObjectsMethod();
- }
- ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
- // Don't do reclaims on performSelector calls; despite their
- // return type, the invoked method doesn't necessarily actually
- // return an object.
- if (!ReturnsRetained &&
- D && D->getMethodFamily() == OMF_performSelector)
- return E;
- }
- // Don't reclaim an object of Class type.
- if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
- return E;
- Cleanup.setExprNeedsCleanups(true);
- CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
- : CK_ARCReclaimReturnedObject);
- return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
- VK_PRValue, FPOptionsOverride());
- }
- if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
- Cleanup.setExprNeedsCleanups(true);
- if (!getLangOpts().CPlusPlus)
- return E;
- // Search for the base element type (cf. ASTContext::getBaseElementType) with
- // a fast path for the common case that the type is directly a RecordType.
- const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
- const RecordType *RT = nullptr;
- while (!RT) {
- switch (T->getTypeClass()) {
- case Type::Record:
- RT = cast<RecordType>(T);
- break;
- case Type::ConstantArray:
- case Type::IncompleteArray:
- case Type::VariableArray:
- case Type::DependentSizedArray:
- T = cast<ArrayType>(T)->getElementType().getTypePtr();
- break;
- default:
- return E;
- }
- }
- // That should be enough to guarantee that this type is complete, if we're
- // not processing a decltype expression.
- CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
- if (RD->isInvalidDecl() || RD->isDependentContext())
- return E;
- bool IsDecltype = ExprEvalContexts.back().ExprContext ==
- ExpressionEvaluationContextRecord::EK_Decltype;
- CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
- if (Destructor) {
- MarkFunctionReferenced(E->getExprLoc(), Destructor);
- CheckDestructorAccess(E->getExprLoc(), Destructor,
- PDiag(diag::err_access_dtor_temp)
- << E->getType());
- if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
- return ExprError();
- // If destructor is trivial, we can avoid the extra copy.
- if (Destructor->isTrivial())
- return E;
- // We need a cleanup, but we don't need to remember the temporary.
- Cleanup.setExprNeedsCleanups(true);
- }
- CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
- CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
- if (IsDecltype)
- ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
- return Bind;
- }
- ExprResult
- Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
- if (SubExpr.isInvalid())
- return ExprError();
- return MaybeCreateExprWithCleanups(SubExpr.get());
- }
- Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
- assert(SubExpr && "subexpression can't be null!");
- CleanupVarDeclMarking();
- unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
- assert(ExprCleanupObjects.size() >= FirstCleanup);
- assert(Cleanup.exprNeedsCleanups() ||
- ExprCleanupObjects.size() == FirstCleanup);
- if (!Cleanup.exprNeedsCleanups())
- return SubExpr;
- auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
- ExprCleanupObjects.size() - FirstCleanup);
- auto *E = ExprWithCleanups::Create(
- Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
- DiscardCleanupsInEvaluationContext();
- return E;
- }
- Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
- assert(SubStmt && "sub-statement can't be null!");
- CleanupVarDeclMarking();
- if (!Cleanup.exprNeedsCleanups())
- return SubStmt;
- // FIXME: In order to attach the temporaries, wrap the statement into
- // a StmtExpr; currently this is only used for asm statements.
- // This is hacky, either create a new CXXStmtWithTemporaries statement or
- // a new AsmStmtWithTemporaries.
- CompoundStmt *CompStmt =
- CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(),
- SourceLocation(), SourceLocation());
- Expr *E = new (Context)
- StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
- /*FIXME TemplateDepth=*/0);
- return MaybeCreateExprWithCleanups(E);
- }
- /// Process the expression contained within a decltype. For such expressions,
- /// certain semantic checks on temporaries are delayed until this point, and
- /// are omitted for the 'topmost' call in the decltype expression. If the
- /// topmost call bound a temporary, strip that temporary off the expression.
- ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
- assert(ExprEvalContexts.back().ExprContext ==
- ExpressionEvaluationContextRecord::EK_Decltype &&
- "not in a decltype expression");
- ExprResult Result = CheckPlaceholderExpr(E);
- if (Result.isInvalid())
- return ExprError();
- E = Result.get();
- // C++11 [expr.call]p11:
- // If a function call is a prvalue of object type,
- // -- if the function call is either
- // -- the operand of a decltype-specifier, or
- // -- the right operand of a comma operator that is the operand of a
- // decltype-specifier,
- // a temporary object is not introduced for the prvalue.
- // Recursively rebuild ParenExprs and comma expressions to strip out the
- // outermost CXXBindTemporaryExpr, if any.
- if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
- ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
- if (SubExpr.isInvalid())
- return ExprError();
- if (SubExpr.get() == PE->getSubExpr())
- return E;
- return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
- }
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
- if (BO->getOpcode() == BO_Comma) {
- ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
- if (RHS.isInvalid())
- return ExprError();
- if (RHS.get() == BO->getRHS())
- return E;
- return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
- BO->getType(), BO->getValueKind(),
- BO->getObjectKind(), BO->getOperatorLoc(),
- BO->getFPFeatures());
- }
- }
- CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
- CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
- : nullptr;
- if (TopCall)
- E = TopCall;
- else
- TopBind = nullptr;
- // Disable the special decltype handling now.
- ExprEvalContexts.back().ExprContext =
- ExpressionEvaluationContextRecord::EK_Other;
- Result = CheckUnevaluatedOperand(E);
- if (Result.isInvalid())
- return ExprError();
- E = Result.get();
- // In MS mode, don't perform any extra checking of call return types within a
- // decltype expression.
- if (getLangOpts().MSVCCompat)
- return E;
- // Perform the semantic checks we delayed until this point.
- for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
- I != N; ++I) {
- CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
- if (Call == TopCall)
- continue;
- if (CheckCallReturnType(Call->getCallReturnType(Context),
- Call->getBeginLoc(), Call, Call->getDirectCallee()))
- return ExprError();
- }
- // Now all relevant types are complete, check the destructors are accessible
- // and non-deleted, and annotate them on the temporaries.
- for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
- I != N; ++I) {
- CXXBindTemporaryExpr *Bind =
- ExprEvalContexts.back().DelayedDecltypeBinds[I];
- if (Bind == TopBind)
- continue;
- CXXTemporary *Temp = Bind->getTemporary();
- CXXRecordDecl *RD =
- Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
- CXXDestructorDecl *Destructor = LookupDestructor(RD);
- Temp->setDestructor(Destructor);
- MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
- CheckDestructorAccess(Bind->getExprLoc(), Destructor,
- PDiag(diag::err_access_dtor_temp)
- << Bind->getType());
- if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
- return ExprError();
- // We need a cleanup, but we don't need to remember the temporary.
- Cleanup.setExprNeedsCleanups(true);
- }
- // Possibly strip off the top CXXBindTemporaryExpr.
- return E;
- }
- /// Note a set of 'operator->' functions that were used for a member access.
- static void noteOperatorArrows(Sema &S,
- ArrayRef<FunctionDecl *> OperatorArrows) {
- unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
- // FIXME: Make this configurable?
- unsigned Limit = 9;
- if (OperatorArrows.size() > Limit) {
- // Produce Limit-1 normal notes and one 'skipping' note.
- SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
- SkipCount = OperatorArrows.size() - (Limit - 1);
- }
- for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
- if (I == SkipStart) {
- S.Diag(OperatorArrows[I]->getLocation(),
- diag::note_operator_arrows_suppressed)
- << SkipCount;
- I += SkipCount;
- } else {
- S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
- << OperatorArrows[I]->getCallResultType();
- ++I;
- }
- }
- }
- ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
- SourceLocation OpLoc,
- tok::TokenKind OpKind,
- ParsedType &ObjectType,
- bool &MayBePseudoDestructor) {
- // Since this might be a postfix expression, get rid of ParenListExprs.
- ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
- if (Result.isInvalid()) return ExprError();
- Base = Result.get();
- Result = CheckPlaceholderExpr(Base);
- if (Result.isInvalid()) return ExprError();
- Base = Result.get();
- QualType BaseType = Base->getType();
- MayBePseudoDestructor = false;
- if (BaseType->isDependentType()) {
- // If we have a pointer to a dependent type and are using the -> operator,
- // the object type is the type that the pointer points to. We might still
- // have enough information about that type to do something useful.
- if (OpKind == tok::arrow)
- if (const PointerType *Ptr = BaseType->getAs<PointerType>())
- BaseType = Ptr->getPointeeType();
- ObjectType = ParsedType::make(BaseType);
- MayBePseudoDestructor = true;
- return Base;
- }
- // C++ [over.match.oper]p8:
- // [...] When operator->returns, the operator-> is applied to the value
- // returned, with the original second operand.
- if (OpKind == tok::arrow) {
- QualType StartingType = BaseType;
- bool NoArrowOperatorFound = false;
- bool FirstIteration = true;
- FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
- // The set of types we've considered so far.
- llvm::SmallPtrSet<CanQualType,8> CTypes;
- SmallVector<FunctionDecl*, 8> OperatorArrows;
- CTypes.insert(Context.getCanonicalType(BaseType));
- while (BaseType->isRecordType()) {
- if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
- Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
- << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
- noteOperatorArrows(*this, OperatorArrows);
- Diag(OpLoc, diag::note_operator_arrow_depth)
- << getLangOpts().ArrowDepth;
- return ExprError();
- }
- Result = BuildOverloadedArrowExpr(
- S, Base, OpLoc,
- // When in a template specialization and on the first loop iteration,
- // potentially give the default diagnostic (with the fixit in a
- // separate note) instead of having the error reported back to here
- // and giving a diagnostic with a fixit attached to the error itself.
- (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
- ? nullptr
- : &NoArrowOperatorFound);
- if (Result.isInvalid()) {
- if (NoArrowOperatorFound) {
- if (FirstIteration) {
- Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
- << BaseType << 1 << Base->getSourceRange()
- << FixItHint::CreateReplacement(OpLoc, ".");
- OpKind = tok::period;
- break;
- }
- Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
- << BaseType << Base->getSourceRange();
- CallExpr *CE = dyn_cast<CallExpr>(Base);
- if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
- Diag(CD->getBeginLoc(),
- diag::note_member_reference_arrow_from_operator_arrow);
- }
- }
- return ExprError();
- }
- Base = Result.get();
- if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
- OperatorArrows.push_back(OpCall->getDirectCallee());
- BaseType = Base->getType();
- CanQualType CBaseType = Context.getCanonicalType(BaseType);
- if (!CTypes.insert(CBaseType).second) {
- Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
- noteOperatorArrows(*this, OperatorArrows);
- return ExprError();
- }
- FirstIteration = false;
- }
- if (OpKind == tok::arrow) {
- if (BaseType->isPointerType())
- BaseType = BaseType->getPointeeType();
- else if (auto *AT = Context.getAsArrayType(BaseType))
- BaseType = AT->getElementType();
- }
- }
- // Objective-C properties allow "." access on Objective-C pointer types,
- // so adjust the base type to the object type itself.
- if (BaseType->isObjCObjectPointerType())
- BaseType = BaseType->getPointeeType();
- // C++ [basic.lookup.classref]p2:
- // [...] If the type of the object expression is of pointer to scalar
- // type, the unqualified-id is looked up in the context of the complete
- // postfix-expression.
- //
- // This also indicates that we could be parsing a pseudo-destructor-name.
- // Note that Objective-C class and object types can be pseudo-destructor
- // expressions or normal member (ivar or property) access expressions, and
- // it's legal for the type to be incomplete if this is a pseudo-destructor
- // call. We'll do more incomplete-type checks later in the lookup process,
- // so just skip this check for ObjC types.
- if (!BaseType->isRecordType()) {
- ObjectType = ParsedType::make(BaseType);
- MayBePseudoDestructor = true;
- return Base;
- }
- // The object type must be complete (or dependent), or
- // C++11 [expr.prim.general]p3:
- // Unlike the object expression in other contexts, *this is not required to
- // be of complete type for purposes of class member access (5.2.5) outside
- // the member function body.
- if (!BaseType->isDependentType() &&
- !isThisOutsideMemberFunctionBody(BaseType) &&
- RequireCompleteType(OpLoc, BaseType,
- diag::err_incomplete_member_access)) {
- return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
- }
- // C++ [basic.lookup.classref]p2:
- // If the id-expression in a class member access (5.2.5) is an
- // unqualified-id, and the type of the object expression is of a class
- // type C (or of pointer to a class type C), the unqualified-id is looked
- // up in the scope of class C. [...]
- ObjectType = ParsedType::make(BaseType);
- return Base;
- }
- static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
- tok::TokenKind &OpKind, SourceLocation OpLoc) {
- if (Base->hasPlaceholderType()) {
- ExprResult result = S.CheckPlaceholderExpr(Base);
- if (result.isInvalid()) return true;
- Base = result.get();
- }
- ObjectType = Base->getType();
- // C++ [expr.pseudo]p2:
- // The left-hand side of the dot operator shall be of scalar type. The
- // left-hand side of the arrow operator shall be of pointer to scalar type.
- // This scalar type is the object type.
- // Note that this is rather different from the normal handling for the
- // arrow operator.
- if (OpKind == tok::arrow) {
- // The operator requires a prvalue, so perform lvalue conversions.
- // Only do this if we might plausibly end with a pointer, as otherwise
- // this was likely to be intended to be a '.'.
- if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
- ObjectType->isFunctionType()) {
- ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
- if (BaseResult.isInvalid())
- return true;
- Base = BaseResult.get();
- ObjectType = Base->getType();
- }
- if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
- ObjectType = Ptr->getPointeeType();
- } else if (!Base->isTypeDependent()) {
- // The user wrote "p->" when they probably meant "p."; fix it.
- S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
- << ObjectType << true
- << FixItHint::CreateReplacement(OpLoc, ".");
- if (S.isSFINAEContext())
- return true;
- OpKind = tok::period;
- }
- }
- return false;
- }
- /// Check if it's ok to try and recover dot pseudo destructor calls on
- /// pointer objects.
- static bool
- canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
- QualType DestructedType) {
- // If this is a record type, check if its destructor is callable.
- if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
- if (RD->hasDefinition())
- if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
- return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
- return false;
- }
- // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
- return DestructedType->isDependentType() || DestructedType->isScalarType() ||
- DestructedType->isVectorType();
- }
- ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
- SourceLocation OpLoc,
- tok::TokenKind OpKind,
- const CXXScopeSpec &SS,
- TypeSourceInfo *ScopeTypeInfo,
- SourceLocation CCLoc,
- SourceLocation TildeLoc,
- PseudoDestructorTypeStorage Destructed) {
- TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
- QualType ObjectType;
- if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
- return ExprError();
- if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
- !ObjectType->isVectorType()) {
- if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
- Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
- else {
- Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
- << ObjectType << Base->getSourceRange();
- return ExprError();
- }
- }
- // C++ [expr.pseudo]p2:
- // [...] The cv-unqualified versions of the object type and of the type
- // designated by the pseudo-destructor-name shall be the same type.
- if (DestructedTypeInfo) {
- QualType DestructedType = DestructedTypeInfo->getType();
- SourceLocation DestructedTypeStart =
- DestructedTypeInfo->getTypeLoc().getBeginLoc();
- if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
- if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
- // Detect dot pseudo destructor calls on pointer objects, e.g.:
- // Foo *foo;
- // foo.~Foo();
- if (OpKind == tok::period && ObjectType->isPointerType() &&
- Context.hasSameUnqualifiedType(DestructedType,
- ObjectType->getPointeeType())) {
- auto Diagnostic =
- Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
- << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
- // Issue a fixit only when the destructor is valid.
- if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
- *this, DestructedType))
- Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
- // Recover by setting the object type to the destructed type and the
- // operator to '->'.
- ObjectType = DestructedType;
- OpKind = tok::arrow;
- } else {
- Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
- << ObjectType << DestructedType << Base->getSourceRange()
- << DestructedTypeInfo->getTypeLoc().getSourceRange();
- // Recover by setting the destructed type to the object type.
- DestructedType = ObjectType;
- DestructedTypeInfo =
- Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
- Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
- }
- } else if (DestructedType.getObjCLifetime() !=
- ObjectType.getObjCLifetime()) {
- if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
- // Okay: just pretend that the user provided the correctly-qualified
- // type.
- } else {
- Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
- << ObjectType << DestructedType << Base->getSourceRange()
- << DestructedTypeInfo->getTypeLoc().getSourceRange();
- }
- // Recover by setting the destructed type to the object type.
- DestructedType = ObjectType;
- DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
- DestructedTypeStart);
- Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
- }
- }
- }
- // C++ [expr.pseudo]p2:
- // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
- // form
- //
- // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
- //
- // shall designate the same scalar type.
- if (ScopeTypeInfo) {
- QualType ScopeType = ScopeTypeInfo->getType();
- if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
- !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
- Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(),
- diag::err_pseudo_dtor_type_mismatch)
- << ObjectType << ScopeType << Base->getSourceRange()
- << ScopeTypeInfo->getTypeLoc().getSourceRange();
- ScopeType = QualType();
- ScopeTypeInfo = nullptr;
- }
- }
- Expr *Result
- = new (Context) CXXPseudoDestructorExpr(Context, Base,
- OpKind == tok::arrow, OpLoc,
- SS.getWithLocInContext(Context),
- ScopeTypeInfo,
- CCLoc,
- TildeLoc,
- Destructed);
- return Result;
- }
- ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
- SourceLocation OpLoc,
- tok::TokenKind OpKind,
- CXXScopeSpec &SS,
- UnqualifiedId &FirstTypeName,
- SourceLocation CCLoc,
- SourceLocation TildeLoc,
- UnqualifiedId &SecondTypeName) {
- assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
- FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
- "Invalid first type name in pseudo-destructor");
- assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
- SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
- "Invalid second type name in pseudo-destructor");
- QualType ObjectType;
- if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
- return ExprError();
- // Compute the object type that we should use for name lookup purposes. Only
- // record types and dependent types matter.
- ParsedType ObjectTypePtrForLookup;
- if (!SS.isSet()) {
- if (ObjectType->isRecordType())
- ObjectTypePtrForLookup = ParsedType::make(ObjectType);
- else if (ObjectType->isDependentType())
- ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
- }
- // Convert the name of the type being destructed (following the ~) into a
- // type (with source-location information).
- QualType DestructedType;
- TypeSourceInfo *DestructedTypeInfo = nullptr;
- PseudoDestructorTypeStorage Destructed;
- if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
- ParsedType T = getTypeName(*SecondTypeName.Identifier,
- SecondTypeName.StartLocation,
- S, &SS, true, false, ObjectTypePtrForLookup,
- /*IsCtorOrDtorName*/true);
- if (!T &&
- ((SS.isSet() && !computeDeclContext(SS, false)) ||
- (!SS.isSet() && ObjectType->isDependentType()))) {
- // The name of the type being destroyed is a dependent name, and we
- // couldn't find anything useful in scope. Just store the identifier and
- // it's location, and we'll perform (qualified) name lookup again at
- // template instantiation time.
- Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
- SecondTypeName.StartLocation);
- } else if (!T) {
- Diag(SecondTypeName.StartLocation,
- diag::err_pseudo_dtor_destructor_non_type)
- << SecondTypeName.Identifier << ObjectType;
- if (isSFINAEContext())
- return ExprError();
- // Recover by assuming we had the right type all along.
- DestructedType = ObjectType;
- } else
- DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
- } else {
- // Resolve the template-id to a type.
- TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
- ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
- TemplateId->NumArgs);
- TypeResult T = ActOnTemplateIdType(S,
- SS,
- TemplateId->TemplateKWLoc,
- TemplateId->Template,
- TemplateId->Name,
- TemplateId->TemplateNameLoc,
- TemplateId->LAngleLoc,
- TemplateArgsPtr,
- TemplateId->RAngleLoc,
- /*IsCtorOrDtorName*/true);
- if (T.isInvalid() || !T.get()) {
- // Recover by assuming we had the right type all along.
- DestructedType = ObjectType;
- } else
- DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
- }
- // If we've performed some kind of recovery, (re-)build the type source
- // information.
- if (!DestructedType.isNull()) {
- if (!DestructedTypeInfo)
- DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
- SecondTypeName.StartLocation);
- Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
- }
- // Convert the name of the scope type (the type prior to '::') into a type.
- TypeSourceInfo *ScopeTypeInfo = nullptr;
- QualType ScopeType;
- if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
- FirstTypeName.Identifier) {
- if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
- ParsedType T = getTypeName(*FirstTypeName.Identifier,
- FirstTypeName.StartLocation,
- S, &SS, true, false, ObjectTypePtrForLookup,
- /*IsCtorOrDtorName*/true);
- if (!T) {
- Diag(FirstTypeName.StartLocation,
- diag::err_pseudo_dtor_destructor_non_type)
- << FirstTypeName.Identifier << ObjectType;
- if (isSFINAEContext())
- return ExprError();
- // Just drop this type. It's unnecessary anyway.
- ScopeType = QualType();
- } else
- ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
- } else {
- // Resolve the template-id to a type.
- TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
- ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
- TemplateId->NumArgs);
- TypeResult T = ActOnTemplateIdType(S,
- SS,
- TemplateId->TemplateKWLoc,
- TemplateId->Template,
- TemplateId->Name,
- TemplateId->TemplateNameLoc,
- TemplateId->LAngleLoc,
- TemplateArgsPtr,
- TemplateId->RAngleLoc,
- /*IsCtorOrDtorName*/true);
- if (T.isInvalid() || !T.get()) {
- // Recover by dropping this type.
- ScopeType = QualType();
- } else
- ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
- }
- }
- if (!ScopeType.isNull() && !ScopeTypeInfo)
- ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
- FirstTypeName.StartLocation);
- return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
- ScopeTypeInfo, CCLoc, TildeLoc,
- Destructed);
- }
- ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
- SourceLocation OpLoc,
- tok::TokenKind OpKind,
- SourceLocation TildeLoc,
- const DeclSpec& DS) {
- QualType ObjectType;
- if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
- return ExprError();
- if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
- Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
- return true;
- }
- QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
- TypeLocBuilder TLB;
- DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
- DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
- DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
- TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
- PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
- return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
- nullptr, SourceLocation(), TildeLoc,
- Destructed);
- }
- ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
- CXXConversionDecl *Method,
- bool HadMultipleCandidates) {
- // Convert the expression to match the conversion function's implicit object
- // parameter.
- ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
- FoundDecl, Method);
- if (Exp.isInvalid())
- return true;
- if (Method->getParent()->isLambda() &&
- Method->getConversionType()->isBlockPointerType()) {
- // This is a lambda conversion to block pointer; check if the argument
- // was a LambdaExpr.
- Expr *SubE = E;
- CastExpr *CE = dyn_cast<CastExpr>(SubE);
- if (CE && CE->getCastKind() == CK_NoOp)
- SubE = CE->getSubExpr();
- SubE = SubE->IgnoreParens();
- if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
- SubE = BE->getSubExpr();
- if (isa<LambdaExpr>(SubE)) {
- // For the conversion to block pointer on a lambda expression, we
- // construct a special BlockLiteral instead; this doesn't really make
- // a difference in ARC, but outside of ARC the resulting block literal
- // follows the normal lifetime rules for block literals instead of being
- // autoreleased.
- PushExpressionEvaluationContext(
- ExpressionEvaluationContext::PotentiallyEvaluated);
- ExprResult BlockExp = BuildBlockForLambdaConversion(
- Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
- PopExpressionEvaluationContext();
- // FIXME: This note should be produced by a CodeSynthesisContext.
- if (BlockExp.isInvalid())
- Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
- return BlockExp;
- }
- }
- MemberExpr *ME =
- BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
- NestedNameSpecifierLoc(), SourceLocation(), Method,
- DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
- HadMultipleCandidates, DeclarationNameInfo(),
- Context.BoundMemberTy, VK_PRValue, OK_Ordinary);
- QualType ResultType = Method->getReturnType();
- ExprValueKind VK = Expr::getValueKindForType(ResultType);
- ResultType = ResultType.getNonLValueExprType(Context);
- CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
- Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(),
- CurFPFeatureOverrides());
- if (CheckFunctionCall(Method, CE,
- Method->getType()->castAs<FunctionProtoType>()))
- return ExprError();
- return CheckForImmediateInvocation(CE, CE->getMethodDecl());
- }
- ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
- SourceLocation RParen) {
- // If the operand is an unresolved lookup expression, the expression is ill-
- // formed per [over.over]p1, because overloaded function names cannot be used
- // without arguments except in explicit contexts.
- ExprResult R = CheckPlaceholderExpr(Operand);
- if (R.isInvalid())
- return R;
- R = CheckUnevaluatedOperand(R.get());
- if (R.isInvalid())
- return ExprError();
- Operand = R.get();
- if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
- Operand->HasSideEffects(Context, false)) {
- // The expression operand for noexcept is in an unevaluated expression
- // context, so side effects could result in unintended consequences.
- Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
- }
- CanThrowResult CanThrow = canThrow(Operand);
- return new (Context)
- CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
- }
- ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
- Expr *Operand, SourceLocation RParen) {
- return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
- }
- static void MaybeDecrementCount(
- Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
- DeclRefExpr *LHS = nullptr;
- bool IsCompoundAssign = false;
- bool isIncrementDecrementUnaryOp = false;
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
- if (BO->getLHS()->getType()->isDependentType() ||
- BO->getRHS()->getType()->isDependentType()) {
- if (BO->getOpcode() != BO_Assign)
- return;
- } else if (!BO->isAssignmentOp())
- return;
- else
- IsCompoundAssign = BO->isCompoundAssignmentOp();
- LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
- } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
- if (COCE->getOperator() != OO_Equal)
- return;
- LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
- } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
- if (!UO->isIncrementDecrementOp())
- return;
- isIncrementDecrementUnaryOp = true;
- LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr());
- }
- if (!LHS)
- return;
- VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
- if (!VD)
- return;
- // Don't decrement RefsMinusAssignments if volatile variable with compound
- // assignment (+=, ...) or increment/decrement unary operator to avoid
- // potential unused-but-set-variable warning.
- if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
- VD->getType().isVolatileQualified())
- return;
- auto iter = RefsMinusAssignments.find(VD);
- if (iter == RefsMinusAssignments.end())
- return;
- iter->getSecond()--;
- }
- /// Perform the conversions required for an expression used in a
- /// context that ignores the result.
- ExprResult Sema::IgnoredValueConversions(Expr *E) {
- MaybeDecrementCount(E, RefsMinusAssignments);
- if (E->hasPlaceholderType()) {
- ExprResult result = CheckPlaceholderExpr(E);
- if (result.isInvalid()) return E;
- E = result.get();
- }
- // C99 6.3.2.1:
- // [Except in specific positions,] an lvalue that does not have
- // array type is converted to the value stored in the
- // designated object (and is no longer an lvalue).
- if (E->isPRValue()) {
- // In C, function designators (i.e. expressions of function type)
- // are r-values, but we still want to do function-to-pointer decay
- // on them. This is both technically correct and convenient for
- // some clients.
- if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
- return DefaultFunctionArrayConversion(E);
- return E;
- }
- if (getLangOpts().CPlusPlus) {
- // The C++11 standard defines the notion of a discarded-value expression;
- // normally, we don't need to do anything to handle it, but if it is a
- // volatile lvalue with a special form, we perform an lvalue-to-rvalue
- // conversion.
- if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
- ExprResult Res = DefaultLvalueConversion(E);
- if (Res.isInvalid())
- return E;
- E = Res.get();
- } else {
- // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
- // it occurs as a discarded-value expression.
- CheckUnusedVolatileAssignment(E);
- }
- // C++1z:
- // If the expression is a prvalue after this optional conversion, the
- // temporary materialization conversion is applied.
- //
- // We skip this step: IR generation is able to synthesize the storage for
- // itself in the aggregate case, and adding the extra node to the AST is
- // just clutter.
- // FIXME: We don't emit lifetime markers for the temporaries due to this.
- // FIXME: Do any other AST consumers care about this?
- return E;
- }
- // GCC seems to also exclude expressions of incomplete enum type.
- if (const EnumType *T = E->getType()->getAs<EnumType>()) {
- if (!T->getDecl()->isComplete()) {
- // FIXME: stupid workaround for a codegen bug!
- E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
- return E;
- }
- }
- ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
- if (Res.isInvalid())
- return E;
- E = Res.get();
- if (!E->getType()->isVoidType())
- RequireCompleteType(E->getExprLoc(), E->getType(),
- diag::err_incomplete_type);
- return E;
- }
- ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
- // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
- // it occurs as an unevaluated operand.
- CheckUnusedVolatileAssignment(E);
- return E;
- }
- // If we can unambiguously determine whether Var can never be used
- // in a constant expression, return true.
- // - if the variable and its initializer are non-dependent, then
- // we can unambiguously check if the variable is a constant expression.
- // - if the initializer is not value dependent - we can determine whether
- // it can be used to initialize a constant expression. If Init can not
- // be used to initialize a constant expression we conclude that Var can
- // never be a constant expression.
- // - FXIME: if the initializer is dependent, we can still do some analysis and
- // identify certain cases unambiguously as non-const by using a Visitor:
- // - such as those that involve odr-use of a ParmVarDecl, involve a new
- // delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
- static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
- ASTContext &Context) {
- if (isa<ParmVarDecl>(Var)) return true;
- const VarDecl *DefVD = nullptr;
- // If there is no initializer - this can not be a constant expression.
- if (!Var->getAnyInitializer(DefVD)) return true;
- assert(DefVD);
- if (DefVD->isWeak()) return false;
- EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
- Expr *Init = cast<Expr>(Eval->Value);
- if (Var->getType()->isDependentType() || Init->isValueDependent()) {
- // FIXME: Teach the constant evaluator to deal with the non-dependent parts
- // of value-dependent expressions, and use it here to determine whether the
- // initializer is a potential constant expression.
- return false;
- }
- return !Var->isUsableInConstantExpressions(Context);
- }
- /// Check if the current lambda has any potential captures
- /// that must be captured by any of its enclosing lambdas that are ready to
- /// capture. If there is a lambda that can capture a nested
- /// potential-capture, go ahead and do so. Also, check to see if any
- /// variables are uncaptureable or do not involve an odr-use so do not
- /// need to be captured.
- static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
- Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
- assert(!S.isUnevaluatedContext());
- assert(S.CurContext->isDependentContext());
- #ifndef NDEBUG
- DeclContext *DC = S.CurContext;
- while (DC && isa<CapturedDecl>(DC))
- DC = DC->getParent();
- assert(
- CurrentLSI->CallOperator == DC &&
- "The current call operator must be synchronized with Sema's CurContext");
- #endif // NDEBUG
- const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
- // All the potentially captureable variables in the current nested
- // lambda (within a generic outer lambda), must be captured by an
- // outer lambda that is enclosed within a non-dependent context.
- CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) {
- // If the variable is clearly identified as non-odr-used and the full
- // expression is not instantiation dependent, only then do we not
- // need to check enclosing lambda's for speculative captures.
- // For e.g.:
- // Even though 'x' is not odr-used, it should be captured.
- // int test() {
- // const int x = 10;
- // auto L = [=](auto a) {
- // (void) +x + a;
- // };
- // }
- if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
- !IsFullExprInstantiationDependent)
- return;
- VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl();
- if (!UnderlyingVar)
- return;
- // If we have a capture-capable lambda for the variable, go ahead and
- // capture the variable in that lambda (and all its enclosing lambdas).
- if (const std::optional<unsigned> Index =
- getStackIndexOfNearestEnclosingCaptureCapableLambda(
- S.FunctionScopes, Var, S))
- S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index);
- const bool IsVarNeverAConstantExpression =
- VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context);
- if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
- // This full expression is not instantiation dependent or the variable
- // can not be used in a constant expression - which means
- // this variable must be odr-used here, so diagnose a
- // capture violation early, if the variable is un-captureable.
- // This is purely for diagnosing errors early. Otherwise, this
- // error would get diagnosed when the lambda becomes capture ready.
- QualType CaptureType, DeclRefType;
- SourceLocation ExprLoc = VarExpr->getExprLoc();
- if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
- /*EllipsisLoc*/ SourceLocation(),
- /*BuildAndDiagnose*/false, CaptureType,
- DeclRefType, nullptr)) {
- // We will never be able to capture this variable, and we need
- // to be able to in any and all instantiations, so diagnose it.
- S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
- /*EllipsisLoc*/ SourceLocation(),
- /*BuildAndDiagnose*/true, CaptureType,
- DeclRefType, nullptr);
- }
- }
- });
- // Check if 'this' needs to be captured.
- if (CurrentLSI->hasPotentialThisCapture()) {
- // If we have a capture-capable lambda for 'this', go ahead and capture
- // 'this' in that lambda (and all its enclosing lambdas).
- if (const std::optional<unsigned> Index =
- getStackIndexOfNearestEnclosingCaptureCapableLambda(
- S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
- const unsigned FunctionScopeIndexOfCapturableLambda = *Index;
- S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
- /*Explicit*/ false, /*BuildAndDiagnose*/ true,
- &FunctionScopeIndexOfCapturableLambda);
- }
- }
- // Reset all the potential captures at the end of each full-expression.
- CurrentLSI->clearPotentialCaptures();
- }
- static ExprResult attemptRecovery(Sema &SemaRef,
- const TypoCorrectionConsumer &Consumer,
- const TypoCorrection &TC) {
- LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
- Consumer.getLookupResult().getLookupKind());
- const CXXScopeSpec *SS = Consumer.getSS();
- CXXScopeSpec NewSS;
- // Use an approprate CXXScopeSpec for building the expr.
- if (auto *NNS = TC.getCorrectionSpecifier())
- NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
- else if (SS && !TC.WillReplaceSpecifier())
- NewSS = *SS;
- if (auto *ND = TC.getFoundDecl()) {
- R.setLookupName(ND->getDeclName());
- R.addDecl(ND);
- if (ND->isCXXClassMember()) {
- // Figure out the correct naming class to add to the LookupResult.
- CXXRecordDecl *Record = nullptr;
- if (auto *NNS = TC.getCorrectionSpecifier())
- Record = NNS->getAsType()->getAsCXXRecordDecl();
- if (!Record)
- Record =
- dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
- if (Record)
- R.setNamingClass(Record);
- // Detect and handle the case where the decl might be an implicit
- // member.
- bool MightBeImplicitMember;
- if (!Consumer.isAddressOfOperand())
- MightBeImplicitMember = true;
- else if (!NewSS.isEmpty())
- MightBeImplicitMember = false;
- else if (R.isOverloadedResult())
- MightBeImplicitMember = false;
- else if (R.isUnresolvableResult())
- MightBeImplicitMember = true;
- else
- MightBeImplicitMember = isa<FieldDecl>(ND) ||
- isa<IndirectFieldDecl>(ND) ||
- isa<MSPropertyDecl>(ND);
- if (MightBeImplicitMember)
- return SemaRef.BuildPossibleImplicitMemberExpr(
- NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
- /*TemplateArgs*/ nullptr, /*S*/ nullptr);
- } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
- return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
- Ivar->getIdentifier());
- }
- }
- return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
- /*AcceptInvalidDecl*/ true);
- }
- namespace {
- class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
- llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
- public:
- explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
- : TypoExprs(TypoExprs) {}
- bool VisitTypoExpr(TypoExpr *TE) {
- TypoExprs.insert(TE);
- return true;
- }
- };
- class TransformTypos : public TreeTransform<TransformTypos> {
- typedef TreeTransform<TransformTypos> BaseTransform;
- VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
- // process of being initialized.
- llvm::function_ref<ExprResult(Expr *)> ExprFilter;
- llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
- llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
- llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
- /// Emit diagnostics for all of the TypoExprs encountered.
- ///
- /// If the TypoExprs were successfully corrected, then the diagnostics should
- /// suggest the corrections. Otherwise the diagnostics will not suggest
- /// anything (having been passed an empty TypoCorrection).
- ///
- /// If we've failed to correct due to ambiguous corrections, we need to
- /// be sure to pass empty corrections and replacements. Otherwise it's
- /// possible that the Consumer has a TypoCorrection that failed to ambiguity
- /// and we don't want to report those diagnostics.
- void EmitAllDiagnostics(bool IsAmbiguous) {
- for (TypoExpr *TE : TypoExprs) {
- auto &State = SemaRef.getTypoExprState(TE);
- if (State.DiagHandler) {
- TypoCorrection TC = IsAmbiguous
- ? TypoCorrection() : State.Consumer->getCurrentCorrection();
- ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
- // Extract the NamedDecl from the transformed TypoExpr and add it to the
- // TypoCorrection, replacing the existing decls. This ensures the right
- // NamedDecl is used in diagnostics e.g. in the case where overload
- // resolution was used to select one from several possible decls that
- // had been stored in the TypoCorrection.
- if (auto *ND = getDeclFromExpr(
- Replacement.isInvalid() ? nullptr : Replacement.get()))
- TC.setCorrectionDecl(ND);
- State.DiagHandler(TC);
- }
- SemaRef.clearDelayedTypo(TE);
- }
- }
- /// Try to advance the typo correction state of the first unfinished TypoExpr.
- /// We allow advancement of the correction stream by removing it from the
- /// TransformCache which allows `TransformTypoExpr` to advance during the
- /// next transformation attempt.
- ///
- /// Any substitution attempts for the previous TypoExprs (which must have been
- /// finished) will need to be retried since it's possible that they will now
- /// be invalid given the latest advancement.
- ///
- /// We need to be sure that we're making progress - it's possible that the
- /// tree is so malformed that the transform never makes it to the
- /// `TransformTypoExpr`.
- ///
- /// Returns true if there are any untried correction combinations.
- bool CheckAndAdvanceTypoExprCorrectionStreams() {
- for (auto *TE : TypoExprs) {
- auto &State = SemaRef.getTypoExprState(TE);
- TransformCache.erase(TE);
- if (!State.Consumer->hasMadeAnyCorrectionProgress())
- return false;
- if (!State.Consumer->finished())
- return true;
- State.Consumer->resetCorrectionStream();
- }
- return false;
- }
- NamedDecl *getDeclFromExpr(Expr *E) {
- if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
- E = OverloadResolution[OE];
- if (!E)
- return nullptr;
- if (auto *DRE = dyn_cast<DeclRefExpr>(E))
- return DRE->getFoundDecl();
- if (auto *ME = dyn_cast<MemberExpr>(E))
- return ME->getFoundDecl();
- // FIXME: Add any other expr types that could be seen by the delayed typo
- // correction TreeTransform for which the corresponding TypoCorrection could
- // contain multiple decls.
- return nullptr;
- }
- ExprResult TryTransform(Expr *E) {
- Sema::SFINAETrap Trap(SemaRef);
- ExprResult Res = TransformExpr(E);
- if (Trap.hasErrorOccurred() || Res.isInvalid())
- return ExprError();
- return ExprFilter(Res.get());
- }
- // Since correcting typos may intoduce new TypoExprs, this function
- // checks for new TypoExprs and recurses if it finds any. Note that it will
- // only succeed if it is able to correct all typos in the given expression.
- ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
- if (Res.isInvalid()) {
- return Res;
- }
- // Check to see if any new TypoExprs were created. If so, we need to recurse
- // to check their validity.
- Expr *FixedExpr = Res.get();
- auto SavedTypoExprs = std::move(TypoExprs);
- auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
- TypoExprs.clear();
- AmbiguousTypoExprs.clear();
- FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
- if (!TypoExprs.empty()) {
- // Recurse to handle newly created TypoExprs. If we're not able to
- // handle them, discard these TypoExprs.
- ExprResult RecurResult =
- RecursiveTransformLoop(FixedExpr, IsAmbiguous);
- if (RecurResult.isInvalid()) {
- Res = ExprError();
- // Recursive corrections didn't work, wipe them away and don't add
- // them to the TypoExprs set. Remove them from Sema's TypoExpr list
- // since we don't want to clear them twice. Note: it's possible the
- // TypoExprs were created recursively and thus won't be in our
- // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
- auto &SemaTypoExprs = SemaRef.TypoExprs;
- for (auto *TE : TypoExprs) {
- TransformCache.erase(TE);
- SemaRef.clearDelayedTypo(TE);
- auto SI = find(SemaTypoExprs, TE);
- if (SI != SemaTypoExprs.end()) {
- SemaTypoExprs.erase(SI);
- }
- }
- } else {
- // TypoExpr is valid: add newly created TypoExprs since we were
- // able to correct them.
- Res = RecurResult;
- SavedTypoExprs.set_union(TypoExprs);
- }
- }
- TypoExprs = std::move(SavedTypoExprs);
- AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
- return Res;
- }
- // Try to transform the given expression, looping through the correction
- // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
- //
- // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
- // true and this method immediately will return an `ExprError`.
- ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
- ExprResult Res;
- auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
- SemaRef.TypoExprs.clear();
- while (true) {
- Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
- // Recursion encountered an ambiguous correction. This means that our
- // correction itself is ambiguous, so stop now.
- if (IsAmbiguous)
- break;
- // If the transform is still valid after checking for any new typos,
- // it's good to go.
- if (!Res.isInvalid())
- break;
- // The transform was invalid, see if we have any TypoExprs with untried
- // correction candidates.
- if (!CheckAndAdvanceTypoExprCorrectionStreams())
- break;
- }
- // If we found a valid result, double check to make sure it's not ambiguous.
- if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
- auto SavedTransformCache =
- llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
- // Ensure none of the TypoExprs have multiple typo correction candidates
- // with the same edit length that pass all the checks and filters.
- while (!AmbiguousTypoExprs.empty()) {
- auto TE = AmbiguousTypoExprs.back();
- // TryTransform itself can create new Typos, adding them to the TypoExpr map
- // and invalidating our TypoExprState, so always fetch it instead of storing.
- SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
- TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
- TypoCorrection Next;
- do {
- // Fetch the next correction by erasing the typo from the cache and calling
- // `TryTransform` which will iterate through corrections in
- // `TransformTypoExpr`.
- TransformCache.erase(TE);
- ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
- if (!AmbigRes.isInvalid() || IsAmbiguous) {
- SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
- SavedTransformCache.erase(TE);
- Res = ExprError();
- IsAmbiguous = true;
- break;
- }
- } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
- Next.getEditDistance(false) == TC.getEditDistance(false));
- if (IsAmbiguous)
- break;
- AmbiguousTypoExprs.remove(TE);
- SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
- TransformCache[TE] = SavedTransformCache[TE];
- }
- TransformCache = std::move(SavedTransformCache);
- }
- // Wipe away any newly created TypoExprs that we don't know about. Since we
- // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
- // possible if a `TypoExpr` is created during a transformation but then
- // fails before we can discover it.
- auto &SemaTypoExprs = SemaRef.TypoExprs;
- for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
- auto TE = *Iterator;
- auto FI = find(TypoExprs, TE);
- if (FI != TypoExprs.end()) {
- Iterator++;
- continue;
- }
- SemaRef.clearDelayedTypo(TE);
- Iterator = SemaTypoExprs.erase(Iterator);
- }
- SemaRef.TypoExprs = std::move(SavedTypoExprs);
- return Res;
- }
- public:
- TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
- : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
- ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
- MultiExprArg Args,
- SourceLocation RParenLoc,
- Expr *ExecConfig = nullptr) {
- auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
- RParenLoc, ExecConfig);
- if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
- if (Result.isUsable()) {
- Expr *ResultCall = Result.get();
- if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
- ResultCall = BE->getSubExpr();
- if (auto *CE = dyn_cast<CallExpr>(ResultCall))
- OverloadResolution[OE] = CE->getCallee();
- }
- }
- return Result;
- }
- ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
- ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
- ExprResult Transform(Expr *E) {
- bool IsAmbiguous = false;
- ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
- if (!Res.isUsable())
- FindTypoExprs(TypoExprs).TraverseStmt(E);
- EmitAllDiagnostics(IsAmbiguous);
- return Res;
- }
- ExprResult TransformTypoExpr(TypoExpr *E) {
- // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
- // cached transformation result if there is one and the TypoExpr isn't the
- // first one that was encountered.
- auto &CacheEntry = TransformCache[E];
- if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
- return CacheEntry;
- }
- auto &State = SemaRef.getTypoExprState(E);
- assert(State.Consumer && "Cannot transform a cleared TypoExpr");
- // For the first TypoExpr and an uncached TypoExpr, find the next likely
- // typo correction and return it.
- while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
- if (InitDecl && TC.getFoundDecl() == InitDecl)
- continue;
- // FIXME: If we would typo-correct to an invalid declaration, it's
- // probably best to just suppress all errors from this typo correction.
- ExprResult NE = State.RecoveryHandler ?
- State.RecoveryHandler(SemaRef, E, TC) :
- attemptRecovery(SemaRef, *State.Consumer, TC);
- if (!NE.isInvalid()) {
- // Check whether there may be a second viable correction with the same
- // edit distance; if so, remember this TypoExpr may have an ambiguous
- // correction so it can be more thoroughly vetted later.
- TypoCorrection Next;
- if ((Next = State.Consumer->peekNextCorrection()) &&
- Next.getEditDistance(false) == TC.getEditDistance(false)) {
- AmbiguousTypoExprs.insert(E);
- } else {
- AmbiguousTypoExprs.remove(E);
- }
- assert(!NE.isUnset() &&
- "Typo was transformed into a valid-but-null ExprResult");
- return CacheEntry = NE;
- }
- }
- return CacheEntry = ExprError();
- }
- };
- }
- ExprResult
- Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
- bool RecoverUncorrectedTypos,
- llvm::function_ref<ExprResult(Expr *)> Filter) {
- // If the current evaluation context indicates there are uncorrected typos
- // and the current expression isn't guaranteed to not have typos, try to
- // resolve any TypoExpr nodes that might be in the expression.
- if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
- (E->isTypeDependent() || E->isValueDependent() ||
- E->isInstantiationDependent())) {
- auto TyposResolved = DelayedTypos.size();
- auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
- TyposResolved -= DelayedTypos.size();
- if (Result.isInvalid() || Result.get() != E) {
- ExprEvalContexts.back().NumTypos -= TyposResolved;
- if (Result.isInvalid() && RecoverUncorrectedTypos) {
- struct TyposReplace : TreeTransform<TyposReplace> {
- TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
- ExprResult TransformTypoExpr(clang::TypoExpr *E) {
- return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
- E->getEndLoc(), {});
- }
- } TT(*this);
- return TT.TransformExpr(E);
- }
- return Result;
- }
- assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
- }
- return E;
- }
- ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
- bool DiscardedValue, bool IsConstexpr,
- bool IsTemplateArgument) {
- ExprResult FullExpr = FE;
- if (!FullExpr.get())
- return ExprError();
- if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get()))
- return ExprError();
- if (DiscardedValue) {
- // Top-level expressions default to 'id' when we're in a debugger.
- if (getLangOpts().DebuggerCastResultToId &&
- FullExpr.get()->getType() == Context.UnknownAnyTy) {
- FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
- if (FullExpr.isInvalid())
- return ExprError();
- }
- FullExpr = CheckPlaceholderExpr(FullExpr.get());
- if (FullExpr.isInvalid())
- return ExprError();
- FullExpr = IgnoredValueConversions(FullExpr.get());
- if (FullExpr.isInvalid())
- return ExprError();
- DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
- }
- FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
- /*RecoverUncorrectedTypos=*/true);
- if (FullExpr.isInvalid())
- return ExprError();
- CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
- // At the end of this full expression (which could be a deeply nested
- // lambda), if there is a potential capture within the nested lambda,
- // have the outer capture-able lambda try and capture it.
- // Consider the following code:
- // void f(int, int);
- // void f(const int&, double);
- // void foo() {
- // const int x = 10, y = 20;
- // auto L = [=](auto a) {
- // auto M = [=](auto b) {
- // f(x, b); <-- requires x to be captured by L and M
- // f(y, a); <-- requires y to be captured by L, but not all Ms
- // };
- // };
- // }
- // FIXME: Also consider what happens for something like this that involves
- // the gnu-extension statement-expressions or even lambda-init-captures:
- // void f() {
- // const int n = 0;
- // auto L = [&](auto a) {
- // +n + ({ 0; a; });
- // };
- // }
- //
- // Here, we see +n, and then the full-expression 0; ends, so we don't
- // capture n (and instead remove it from our list of potential captures),
- // and then the full-expression +n + ({ 0; }); ends, but it's too late
- // for us to see that we need to capture n after all.
- LambdaScopeInfo *const CurrentLSI =
- getCurLambda(/*IgnoreCapturedRegions=*/true);
- // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
- // even if CurContext is not a lambda call operator. Refer to that Bug Report
- // for an example of the code that might cause this asynchrony.
- // By ensuring we are in the context of a lambda's call operator
- // we can fix the bug (we only need to check whether we need to capture
- // if we are within a lambda's body); but per the comments in that
- // PR, a proper fix would entail :
- // "Alternative suggestion:
- // - Add to Sema an integer holding the smallest (outermost) scope
- // index that we are *lexically* within, and save/restore/set to
- // FunctionScopes.size() in InstantiatingTemplate's
- // constructor/destructor.
- // - Teach the handful of places that iterate over FunctionScopes to
- // stop at the outermost enclosing lexical scope."
- DeclContext *DC = CurContext;
- while (DC && isa<CapturedDecl>(DC))
- DC = DC->getParent();
- const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
- if (IsInLambdaDeclContext && CurrentLSI &&
- CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
- CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
- *this);
- return MaybeCreateExprWithCleanups(FullExpr);
- }
- StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
- if (!FullStmt) return StmtError();
- return MaybeCreateStmtWithCleanups(FullStmt);
- }
- Sema::IfExistsResult
- Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
- CXXScopeSpec &SS,
- const DeclarationNameInfo &TargetNameInfo) {
- DeclarationName TargetName = TargetNameInfo.getName();
- if (!TargetName)
- return IER_DoesNotExist;
- // If the name itself is dependent, then the result is dependent.
- if (TargetName.isDependentName())
- return IER_Dependent;
- // Do the redeclaration lookup in the current scope.
- LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
- Sema::NotForRedeclaration);
- LookupParsedName(R, S, &SS);
- R.suppressDiagnostics();
- switch (R.getResultKind()) {
- case LookupResult::Found:
- case LookupResult::FoundOverloaded:
- case LookupResult::FoundUnresolvedValue:
- case LookupResult::Ambiguous:
- return IER_Exists;
- case LookupResult::NotFound:
- return IER_DoesNotExist;
- case LookupResult::NotFoundInCurrentInstantiation:
- return IER_Dependent;
- }
- llvm_unreachable("Invalid LookupResult Kind!");
- }
- Sema::IfExistsResult
- Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
- bool IsIfExists, CXXScopeSpec &SS,
- UnqualifiedId &Name) {
- DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
- // Check for an unexpanded parameter pack.
- auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
- if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
- DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
- return IER_Error;
- return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
- }
- concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
- return BuildExprRequirement(E, /*IsSimple=*/true,
- /*NoexceptLoc=*/SourceLocation(),
- /*ReturnTypeRequirement=*/{});
- }
- concepts::Requirement *
- Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
- SourceLocation NameLoc, IdentifierInfo *TypeName,
- TemplateIdAnnotation *TemplateId) {
- assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
- "Exactly one of TypeName and TemplateId must be specified.");
- TypeSourceInfo *TSI = nullptr;
- if (TypeName) {
- QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc,
- SS.getWithLocInContext(Context), *TypeName,
- NameLoc, &TSI, /*DeducedTSTContext=*/false);
- if (T.isNull())
- return nullptr;
- } else {
- ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
- TemplateId->NumArgs);
- TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
- TemplateId->TemplateKWLoc,
- TemplateId->Template, TemplateId->Name,
- TemplateId->TemplateNameLoc,
- TemplateId->LAngleLoc, ArgsPtr,
- TemplateId->RAngleLoc);
- if (T.isInvalid())
- return nullptr;
- if (GetTypeFromParser(T.get(), &TSI).isNull())
- return nullptr;
- }
- return BuildTypeRequirement(TSI);
- }
- concepts::Requirement *
- Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
- return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
- /*ReturnTypeRequirement=*/{});
- }
- concepts::Requirement *
- Sema::ActOnCompoundRequirement(
- Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
- TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
- // C++2a [expr.prim.req.compound] p1.3.3
- // [..] the expression is deduced against an invented function template
- // F [...] F is a void function template with a single type template
- // parameter T declared with the constrained-parameter. Form a new
- // cv-qualifier-seq cv by taking the union of const and volatile specifiers
- // around the constrained-parameter. F has a single parameter whose
- // type-specifier is cv T followed by the abstract-declarator. [...]
- //
- // The cv part is done in the calling function - we get the concept with
- // arguments and the abstract declarator with the correct CV qualification and
- // have to synthesize T and the single parameter of F.
- auto &II = Context.Idents.get("expr-type");
- auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
- SourceLocation(),
- SourceLocation(), Depth,
- /*Index=*/0, &II,
- /*Typename=*/true,
- /*ParameterPack=*/false,
- /*HasTypeConstraint=*/true);
- if (BuildTypeConstraint(SS, TypeConstraint, TParam,
- /*EllipsisLoc=*/SourceLocation(),
- /*AllowUnexpandedPack=*/true))
- // Just produce a requirement with no type requirements.
- return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
- auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
- SourceLocation(),
- ArrayRef<NamedDecl *>(TParam),
- SourceLocation(),
- /*RequiresClause=*/nullptr);
- return BuildExprRequirement(
- E, /*IsSimple=*/false, NoexceptLoc,
- concepts::ExprRequirement::ReturnTypeRequirement(TPL));
- }
- concepts::ExprRequirement *
- Sema::BuildExprRequirement(
- Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
- concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
- auto Status = concepts::ExprRequirement::SS_Satisfied;
- ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
- if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent())
- Status = concepts::ExprRequirement::SS_Dependent;
- else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
- Status = concepts::ExprRequirement::SS_NoexceptNotMet;
- else if (ReturnTypeRequirement.isSubstitutionFailure())
- Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
- else if (ReturnTypeRequirement.isTypeConstraint()) {
- // C++2a [expr.prim.req]p1.3.3
- // The immediately-declared constraint ([temp]) of decltype((E)) shall
- // be satisfied.
- TemplateParameterList *TPL =
- ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
- QualType MatchedType =
- Context.getReferenceQualifiedType(E).getCanonicalType();
- llvm::SmallVector<TemplateArgument, 1> Args;
- Args.push_back(TemplateArgument(MatchedType));
- auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0));
- TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
- MultiLevelTemplateArgumentList MLTAL(Param, TAL.asArray(),
- /*Final=*/false);
- MLTAL.addOuterRetainedLevels(TPL->getDepth());
- Expr *IDC = Param->getTypeConstraint()->getImmediatelyDeclaredConstraint();
- ExprResult Constraint = SubstExpr(IDC, MLTAL);
- if (Constraint.isInvalid()) {
- Status = concepts::ExprRequirement::SS_ExprSubstitutionFailure;
- } else {
- SubstitutedConstraintExpr =
- cast<ConceptSpecializationExpr>(Constraint.get());
- if (!SubstitutedConstraintExpr->isSatisfied())
- Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
- }
- }
- return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
- ReturnTypeRequirement, Status,
- SubstitutedConstraintExpr);
- }
- concepts::ExprRequirement *
- Sema::BuildExprRequirement(
- concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
- bool IsSimple, SourceLocation NoexceptLoc,
- concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
- return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
- IsSimple, NoexceptLoc,
- ReturnTypeRequirement);
- }
- concepts::TypeRequirement *
- Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
- return new (Context) concepts::TypeRequirement(Type);
- }
- concepts::TypeRequirement *
- Sema::BuildTypeRequirement(
- concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
- return new (Context) concepts::TypeRequirement(SubstDiag);
- }
- concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
- return BuildNestedRequirement(Constraint);
- }
- concepts::NestedRequirement *
- Sema::BuildNestedRequirement(Expr *Constraint) {
- ConstraintSatisfaction Satisfaction;
- if (!Constraint->isInstantiationDependent() &&
- CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
- Constraint->getSourceRange(), Satisfaction))
- return nullptr;
- return new (Context) concepts::NestedRequirement(Context, Constraint,
- Satisfaction);
- }
- concepts::NestedRequirement *
- Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity,
- const ASTConstraintSatisfaction &Satisfaction) {
- return new (Context) concepts::NestedRequirement(
- InvalidConstraintEntity,
- ASTConstraintSatisfaction::Rebuild(Context, Satisfaction));
- }
- RequiresExprBodyDecl *
- Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
- ArrayRef<ParmVarDecl *> LocalParameters,
- Scope *BodyScope) {
- assert(BodyScope);
- RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
- RequiresKWLoc);
- PushDeclContext(BodyScope, Body);
- for (ParmVarDecl *Param : LocalParameters) {
- if (Param->hasDefaultArg())
- // C++2a [expr.prim.req] p4
- // [...] A local parameter of a requires-expression shall not have a
- // default argument. [...]
- Diag(Param->getDefaultArgRange().getBegin(),
- diag::err_requires_expr_local_parameter_default_argument);
- // Ignore default argument and move on
- Param->setDeclContext(Body);
- // If this has an identifier, add it to the scope stack.
- if (Param->getIdentifier()) {
- CheckShadow(BodyScope, Param);
- PushOnScopeChains(Param, BodyScope);
- }
- }
- return Body;
- }
- void Sema::ActOnFinishRequiresExpr() {
- assert(CurContext && "DeclContext imbalance!");
- CurContext = CurContext->getLexicalParent();
- assert(CurContext && "Popped translation unit!");
- }
- ExprResult
- Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc,
- RequiresExprBodyDecl *Body,
- ArrayRef<ParmVarDecl *> LocalParameters,
- ArrayRef<concepts::Requirement *> Requirements,
- SourceLocation ClosingBraceLoc) {
- auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters,
- Requirements, ClosingBraceLoc);
- if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
- return ExprError();
- return RE;
- }
|