123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains routines that help analyze properties that chains of
- // computations have.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_VALUETRACKING_H
- #define LLVM_ANALYSIS_VALUETRACKING_H
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Intrinsics.h"
- #include <cassert>
- #include <cstdint>
- namespace llvm {
- class Operator;
- class AddOperator;
- class AllocaInst;
- class APInt;
- class AssumptionCache;
- class DominatorTree;
- class GEPOperator;
- class LoadInst;
- class WithOverflowInst;
- struct KnownBits;
- class Loop;
- class LoopInfo;
- class MDNode;
- class OptimizationRemarkEmitter;
- class StringRef;
- class TargetLibraryInfo;
- class Value;
- constexpr unsigned MaxAnalysisRecursionDepth = 6;
- /// Determine which bits of V are known to be either zero or one and return
- /// them in the KnownZero/KnownOne bit sets.
- ///
- /// This function is defined on values with integer type, values with pointer
- /// type, and vectors of integers. In the case
- /// where V is a vector, the known zero and known one values are the
- /// same width as the vector element, and the bit is set only if it is true
- /// for all of the elements in the vector.
- void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL,
- unsigned Depth = 0, AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr,
- OptimizationRemarkEmitter *ORE = nullptr,
- bool UseInstrInfo = true);
- /// Determine which bits of V are known to be either zero or one and return
- /// them in the KnownZero/KnownOne bit sets.
- ///
- /// This function is defined on values with integer type, values with pointer
- /// type, and vectors of integers. In the case
- /// where V is a vector, the known zero and known one values are the
- /// same width as the vector element, and the bit is set only if it is true
- /// for all of the demanded elements in the vector.
- void computeKnownBits(const Value *V, const APInt &DemandedElts,
- KnownBits &Known, const DataLayout &DL,
- unsigned Depth = 0, AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr,
- OptimizationRemarkEmitter *ORE = nullptr,
- bool UseInstrInfo = true);
- /// Returns the known bits rather than passing by reference.
- KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
- unsigned Depth = 0, AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr,
- OptimizationRemarkEmitter *ORE = nullptr,
- bool UseInstrInfo = true);
- /// Returns the known bits rather than passing by reference.
- KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
- const DataLayout &DL, unsigned Depth = 0,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr,
- OptimizationRemarkEmitter *ORE = nullptr,
- bool UseInstrInfo = true);
- /// Compute known bits from the range metadata.
- /// \p KnownZero the set of bits that are known to be zero
- /// \p KnownOne the set of bits that are known to be one
- void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known);
- /// Return true if LHS and RHS have no common bits set.
- bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
- const DataLayout &DL, AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr,
- bool UseInstrInfo = true);
- /// Return true if the given value is known to have exactly one bit set when
- /// defined. For vectors return true if every element is known to be a power
- /// of two when defined. Supports values with integer or pointer type and
- /// vectors of integers. If 'OrZero' is set, then return true if the given
- /// value is either a power of two or zero.
- bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
- bool OrZero = false, unsigned Depth = 0,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr,
- bool UseInstrInfo = true);
- bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
- /// Return true if the given value is known to be non-zero when defined. For
- /// vectors, return true if every element is known to be non-zero when
- /// defined. For pointers, if the context instruction and dominator tree are
- /// specified, perform context-sensitive analysis and return true if the
- /// pointer couldn't possibly be null at the specified instruction.
- /// Supports values with integer or pointer type and vectors of integers.
- bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr,
- bool UseInstrInfo = true);
- /// Return true if the two given values are negation.
- /// Currently can recoginze Value pair:
- /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
- /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
- bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false);
- /// Returns true if the give value is known to be non-negative.
- bool isKnownNonNegative(const Value *V, const DataLayout &DL,
- unsigned Depth = 0, AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr,
- bool UseInstrInfo = true);
- /// Returns true if the given value is known be positive (i.e. non-negative
- /// and non-zero).
- bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth = 0,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr,
- bool UseInstrInfo = true);
- /// Returns true if the given value is known be negative (i.e. non-positive
- /// and non-zero).
- bool isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth = 0,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr,
- bool UseInstrInfo = true);
- /// Return true if the given values are known to be non-equal when defined.
- /// Supports scalar integer types only.
- bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr,
- bool UseInstrInfo = true);
- /// Return true if 'V & Mask' is known to be zero. We use this predicate to
- /// simplify operations downstream. Mask is known to be zero for bits that V
- /// cannot have.
- ///
- /// This function is defined on values with integer type, values with pointer
- /// type, and vectors of integers. In the case
- /// where V is a vector, the mask, known zero, and known one values are the
- /// same width as the vector element, and the bit is set only if it is true
- /// for all of the elements in the vector.
- bool MaskedValueIsZero(const Value *V, const APInt &Mask, const DataLayout &DL,
- unsigned Depth = 0, AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr,
- bool UseInstrInfo = true);
- /// Return the number of times the sign bit of the register is replicated into
- /// the other bits. We know that at least 1 bit is always equal to the sign
- /// bit (itself), but other cases can give us information. For example,
- /// immediately after an "ashr X, 2", we know that the top 3 bits are all
- /// equal to each other, so we return 3. For vectors, return the number of
- /// sign bits for the vector element with the mininum number of known sign
- /// bits.
- unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
- unsigned Depth = 0, AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr,
- bool UseInstrInfo = true);
- /// Get the upper bound on bit size for this Value \p Op as a signed integer.
- /// i.e. x == sext(trunc(x to MaxSignificantBits) to bitwidth(x)).
- /// Similar to the APInt::getSignificantBits function.
- unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL,
- unsigned Depth = 0,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr);
- /// Map a call instruction to an intrinsic ID. Libcalls which have equivalent
- /// intrinsics are treated as-if they were intrinsics.
- Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB,
- const TargetLibraryInfo *TLI);
- /// Return true if we can prove that the specified FP value is never equal to
- /// -0.0.
- bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
- unsigned Depth = 0);
- /// Return true if we can prove that the specified FP value is either NaN or
- /// never less than -0.0.
- ///
- /// NaN --> true
- /// +0 --> true
- /// -0 --> true
- /// x > +0 --> true
- /// x < -0 --> false
- bool CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI);
- /// Return true if the floating-point scalar value is not an infinity or if
- /// the floating-point vector value has no infinities. Return false if a value
- /// could ever be infinity.
- bool isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
- unsigned Depth = 0);
- /// Return true if the floating-point scalar value is not a NaN or if the
- /// floating-point vector value has no NaN elements. Return false if a value
- /// could ever be NaN.
- bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
- unsigned Depth = 0);
- /// Return true if we can prove that the specified FP value's sign bit is 0.
- ///
- /// NaN --> true/false (depending on the NaN's sign bit)
- /// +0 --> true
- /// -0 --> false
- /// x > +0 --> true
- /// x < -0 --> false
- bool SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI);
- /// If the specified value can be set by repeating the same byte in memory,
- /// return the i8 value that it is represented with. This is true for all i8
- /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
- /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
- /// i16 0x1234), return null. If the value is entirely undef and padding,
- /// return undef.
- Value *isBytewiseValue(Value *V, const DataLayout &DL);
- /// Given an aggregate and an sequence of indices, see if the scalar value
- /// indexed is already around as a register, for example if it were inserted
- /// directly into the aggregate.
- ///
- /// If InsertBefore is not null, this function will duplicate (modified)
- /// insertvalues when a part of a nested struct is extracted.
- Value *FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
- Instruction *InsertBefore = nullptr);
- /// Analyze the specified pointer to see if it can be expressed as a base
- /// pointer plus a constant offset. Return the base and offset to the caller.
- ///
- /// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
- /// creates and later unpacks the required APInt.
- inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
- const DataLayout &DL,
- bool AllowNonInbounds = true) {
- APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
- Value *Base =
- Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);
- Offset = OffsetAPInt.getSExtValue();
- return Base;
- }
- inline const Value *
- GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
- const DataLayout &DL,
- bool AllowNonInbounds = true) {
- return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
- AllowNonInbounds);
- }
- /// Returns true if the GEP is based on a pointer to a string (array of
- // \p CharSize integers) and is indexing into this string.
- bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize = 8);
- /// Represents offset+length into a ConstantDataArray.
- struct ConstantDataArraySlice {
- /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
- /// initializer, it just doesn't fit the ConstantDataArray interface).
- const ConstantDataArray *Array;
- /// Slice starts at this Offset.
- uint64_t Offset;
- /// Length of the slice.
- uint64_t Length;
- /// Moves the Offset and adjusts Length accordingly.
- void move(uint64_t Delta) {
- assert(Delta < Length);
- Offset += Delta;
- Length -= Delta;
- }
- /// Convenience accessor for elements in the slice.
- uint64_t operator[](unsigned I) const {
- return Array == nullptr ? 0 : Array->getElementAsInteger(I + Offset);
- }
- };
- /// Returns true if the value \p V is a pointer into a ConstantDataArray.
- /// If successful \p Slice will point to a ConstantDataArray info object
- /// with an appropriate offset.
- bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
- unsigned ElementSize, uint64_t Offset = 0);
- /// This function computes the length of a null-terminated C string pointed to
- /// by V. If successful, it returns true and returns the string in Str. If
- /// unsuccessful, it returns false. This does not include the trailing null
- /// character by default. If TrimAtNul is set to false, then this returns any
- /// trailing null characters as well as any other characters that come after
- /// it.
- bool getConstantStringInfo(const Value *V, StringRef &Str,
- bool TrimAtNul = true);
- /// If we can compute the length of the string pointed to by the specified
- /// pointer, return 'len+1'. If we can't, return 0.
- uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
- /// This function returns call pointer argument that is considered the same by
- /// aliasing rules. You CAN'T use it to replace one value with another. If
- /// \p MustPreserveNullness is true, the call must preserve the nullness of
- /// the pointer.
- const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
- bool MustPreserveNullness);
- inline Value *getArgumentAliasingToReturnedPointer(CallBase *Call,
- bool MustPreserveNullness) {
- return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
- const_cast<const CallBase *>(Call), MustPreserveNullness));
- }
- /// {launder,strip}.invariant.group returns pointer that aliases its argument,
- /// and it only captures pointer by returning it.
- /// These intrinsics are not marked as nocapture, because returning is
- /// considered as capture. The arguments are not marked as returned neither,
- /// because it would make it useless. If \p MustPreserveNullness is true,
- /// the intrinsic must preserve the nullness of the pointer.
- bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
- const CallBase *Call, bool MustPreserveNullness);
- /// This method strips off any GEP address adjustments and pointer casts from
- /// the specified value, returning the original object being addressed. Note
- /// that the returned value has pointer type if the specified value does. If
- /// the MaxLookup value is non-zero, it limits the number of instructions to
- /// be stripped off.
- const Value *getUnderlyingObject(const Value *V, unsigned MaxLookup = 6);
- inline Value *getUnderlyingObject(Value *V, unsigned MaxLookup = 6) {
- // Force const to avoid infinite recursion.
- const Value *VConst = V;
- return const_cast<Value *>(getUnderlyingObject(VConst, MaxLookup));
- }
- /// This method is similar to getUnderlyingObject except that it can
- /// look through phi and select instructions and return multiple objects.
- ///
- /// If LoopInfo is passed, loop phis are further analyzed. If a pointer
- /// accesses different objects in each iteration, we don't look through the
- /// phi node. E.g. consider this loop nest:
- ///
- /// int **A;
- /// for (i)
- /// for (j) {
- /// A[i][j] = A[i-1][j] * B[j]
- /// }
- ///
- /// This is transformed by Load-PRE to stash away A[i] for the next iteration
- /// of the outer loop:
- ///
- /// Curr = A[0]; // Prev_0
- /// for (i: 1..N) {
- /// Prev = Curr; // Prev = PHI (Prev_0, Curr)
- /// Curr = A[i];
- /// for (j: 0..N) {
- /// Curr[j] = Prev[j] * B[j]
- /// }
- /// }
- ///
- /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
- /// should not assume that Curr and Prev share the same underlying object thus
- /// it shouldn't look through the phi above.
- void getUnderlyingObjects(const Value *V,
- SmallVectorImpl<const Value *> &Objects,
- LoopInfo *LI = nullptr, unsigned MaxLookup = 6);
- /// This is a wrapper around getUnderlyingObjects and adds support for basic
- /// ptrtoint+arithmetic+inttoptr sequences.
- bool getUnderlyingObjectsForCodeGen(const Value *V,
- SmallVectorImpl<Value *> &Objects);
- /// Returns unique alloca where the value comes from, or nullptr.
- /// If OffsetZero is true check that V points to the begining of the alloca.
- AllocaInst *findAllocaForValue(Value *V, bool OffsetZero = false);
- inline const AllocaInst *findAllocaForValue(const Value *V,
- bool OffsetZero = false) {
- return findAllocaForValue(const_cast<Value *>(V), OffsetZero);
- }
- /// Return true if the only users of this pointer are lifetime markers.
- bool onlyUsedByLifetimeMarkers(const Value *V);
- /// Return true if the only users of this pointer are lifetime markers or
- /// droppable instructions.
- bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V);
- /// Return true if speculation of the given load must be suppressed to avoid
- /// ordering or interfering with an active sanitizer. If not suppressed,
- /// dereferenceability and alignment must be proven separately. Note: This
- /// is only needed for raw reasoning; if you use the interface below
- /// (isSafeToSpeculativelyExecute), this is handled internally.
- bool mustSuppressSpeculation(const LoadInst &LI);
- /// Return true if the instruction does not have any effects besides
- /// calculating the result and does not have undefined behavior.
- ///
- /// This method never returns true for an instruction that returns true for
- /// mayHaveSideEffects; however, this method also does some other checks in
- /// addition. It checks for undefined behavior, like dividing by zero or
- /// loading from an invalid pointer (but not for undefined results, like a
- /// shift with a shift amount larger than the width of the result). It checks
- /// for malloc and alloca because speculatively executing them might cause a
- /// memory leak. It also returns false for instructions related to control
- /// flow, specifically terminators and PHI nodes.
- ///
- /// If the CtxI is specified this method performs context-sensitive analysis
- /// and returns true if it is safe to execute the instruction immediately
- /// before the CtxI.
- ///
- /// If the CtxI is NOT specified this method only looks at the instruction
- /// itself and its operands, so if this method returns true, it is safe to
- /// move the instruction as long as the correct dominance relationships for
- /// the operands and users hold.
- ///
- /// This method can return true for instructions that read memory;
- /// for such instructions, moving them may change the resulting value.
- bool isSafeToSpeculativelyExecute(const Instruction *I,
- const Instruction *CtxI = nullptr,
- AssumptionCache *AC = nullptr,
- const DominatorTree *DT = nullptr,
- const TargetLibraryInfo *TLI = nullptr);
- /// This returns the same result as isSafeToSpeculativelyExecute if Opcode is
- /// the actual opcode of Inst. If the provided and actual opcode differ, the
- /// function (virtually) overrides the opcode of Inst with the provided
- /// Opcode. There are come constraints in this case:
- /// * If Opcode has a fixed number of operands (eg, as binary operators do),
- /// then Inst has to have at least as many leading operands. The function
- /// will ignore all trailing operands beyond that number.
- /// * If Opcode allows for an arbitrary number of operands (eg, as CallInsts
- /// do), then all operands are considered.
- /// * The virtual instruction has to satisfy all typing rules of the provided
- /// Opcode.
- /// * This function is pessimistic in the following sense: If one actually
- /// materialized the virtual instruction, then isSafeToSpeculativelyExecute
- /// may say that the materialized instruction is speculatable whereas this
- /// function may have said that the instruction wouldn't be speculatable.
- /// This behavior is a shortcoming in the current implementation and not
- /// intentional.
- bool isSafeToSpeculativelyExecuteWithOpcode(
- unsigned Opcode, const Instruction *Inst, const Instruction *CtxI = nullptr,
- AssumptionCache *AC = nullptr, const DominatorTree *DT = nullptr,
- const TargetLibraryInfo *TLI = nullptr);
- /// Returns true if the result or effects of the given instructions \p I
- /// depend values not reachable through the def use graph.
- /// * Memory dependence arises for example if the instruction reads from
- /// memory or may produce effects or undefined behaviour. Memory dependent
- /// instructions generally cannot be reorderd with respect to other memory
- /// dependent instructions.
- /// * Control dependence arises for example if the instruction may fault
- /// if lifted above a throwing call or infinite loop.
- bool mayHaveNonDefUseDependency(const Instruction &I);
- /// Return true if it is an intrinsic that cannot be speculated but also
- /// cannot trap.
- bool isAssumeLikeIntrinsic(const Instruction *I);
- /// Return true if it is valid to use the assumptions provided by an
- /// assume intrinsic, I, at the point in the control-flow identified by the
- /// context instruction, CxtI.
- bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
- const DominatorTree *DT = nullptr);
- enum class OverflowResult {
- /// Always overflows in the direction of signed/unsigned min value.
- AlwaysOverflowsLow,
- /// Always overflows in the direction of signed/unsigned max value.
- AlwaysOverflowsHigh,
- /// May or may not overflow.
- MayOverflow,
- /// Never overflows.
- NeverOverflows,
- };
- OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT,
- bool UseInstrInfo = true);
- OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT,
- bool UseInstrInfo = true);
- OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, const Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT,
- bool UseInstrInfo = true);
- OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr);
- /// This version also leverages the sign bit of Add if known.
- OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
- const DataLayout &DL,
- AssumptionCache *AC = nullptr,
- const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr);
- OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT);
- OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT);
- /// Returns true if the arithmetic part of the \p WO 's result is
- /// used only along the paths control dependent on the computation
- /// not overflowing, \p WO being an <op>.with.overflow intrinsic.
- bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
- const DominatorTree &DT);
- /// Determine the possible constant range of an integer or vector of integer
- /// value. This is intended as a cheap, non-recursive check.
- ConstantRange computeConstantRange(const Value *V, bool ForSigned,
- bool UseInstrInfo = true,
- AssumptionCache *AC = nullptr,
- const Instruction *CtxI = nullptr,
- const DominatorTree *DT = nullptr,
- unsigned Depth = 0);
- /// Return true if this function can prove that the instruction I will
- /// always transfer execution to one of its successors (including the next
- /// instruction that follows within a basic block). E.g. this is not
- /// guaranteed for function calls that could loop infinitely.
- ///
- /// In other words, this function returns false for instructions that may
- /// transfer execution or fail to transfer execution in a way that is not
- /// captured in the CFG nor in the sequence of instructions within a basic
- /// block.
- ///
- /// Undefined behavior is assumed not to happen, so e.g. division is
- /// guaranteed to transfer execution to the following instruction even
- /// though division by zero might cause undefined behavior.
- bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
- /// Returns true if this block does not contain a potential implicit exit.
- /// This is equivelent to saying that all instructions within the basic block
- /// are guaranteed to transfer execution to their successor within the basic
- /// block. This has the same assumptions w.r.t. undefined behavior as the
- /// instruction variant of this function.
- bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
- /// Return true if every instruction in the range (Begin, End) is
- /// guaranteed to transfer execution to its static successor. \p ScanLimit
- /// bounds the search to avoid scanning huge blocks.
- bool isGuaranteedToTransferExecutionToSuccessor(
- BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
- unsigned ScanLimit = 32);
- /// Same as previous, but with range expressed via iterator_range.
- bool isGuaranteedToTransferExecutionToSuccessor(
- iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit = 32);
- /// Return true if this function can prove that the instruction I
- /// is executed for every iteration of the loop L.
- ///
- /// Note that this currently only considers the loop header.
- bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
- const Loop *L);
- /// Return true if \p PoisonOp's user yields poison or raises UB if its
- /// operand \p PoisonOp is poison.
- ///
- /// If \p PoisonOp is a vector or an aggregate and the operation's result is a
- /// single value, any poison element in /p PoisonOp should make the result
- /// poison or raise UB.
- ///
- /// To filter out operands that raise UB on poison, you can use
- /// getGuaranteedNonPoisonOp.
- bool propagatesPoison(const Use &PoisonOp);
- /// Insert operands of I into Ops such that I will trigger undefined behavior
- /// if I is executed and that operand has a poison value.
- void getGuaranteedNonPoisonOps(const Instruction *I,
- SmallVectorImpl<const Value *> &Ops);
- /// Insert operands of I into Ops such that I will trigger undefined behavior
- /// if I is executed and that operand is not a well-defined value
- /// (i.e. has undef bits or poison).
- void getGuaranteedWellDefinedOps(const Instruction *I,
- SmallVectorImpl<const Value *> &Ops);
- /// Return true if the given instruction must trigger undefined behavior
- /// when I is executed with any operands which appear in KnownPoison holding
- /// a poison value at the point of execution.
- bool mustTriggerUB(const Instruction *I,
- const SmallSet<const Value *, 16> &KnownPoison);
- /// Return true if this function can prove that if Inst is executed
- /// and yields a poison value or undef bits, then that will trigger
- /// undefined behavior.
- ///
- /// Note that this currently only considers the basic block that is
- /// the parent of Inst.
- bool programUndefinedIfUndefOrPoison(const Instruction *Inst);
- bool programUndefinedIfPoison(const Instruction *Inst);
- /// canCreateUndefOrPoison returns true if Op can create undef or poison from
- /// non-undef & non-poison operands.
- /// For vectors, canCreateUndefOrPoison returns true if there is potential
- /// poison or undef in any element of the result when vectors without
- /// undef/poison poison are given as operands.
- /// For example, given `Op = shl <2 x i32> %x, <0, 32>`, this function returns
- /// true. If Op raises immediate UB but never creates poison or undef
- /// (e.g. sdiv I, 0), canCreatePoison returns false.
- ///
- /// \p ConsiderFlagsAndMetadata controls whether poison producing flags and
- /// metadata on the instruction are considered. This can be used to see if the
- /// instruction could still introduce undef or poison even without poison
- /// generating flags and metadata which might be on the instruction.
- /// (i.e. could the result of Op->dropPoisonGeneratingFlags() still create
- /// poison or undef)
- ///
- /// canCreatePoison returns true if Op can create poison from non-poison
- /// operands.
- bool canCreateUndefOrPoison(const Operator *Op,
- bool ConsiderFlagsAndMetadata = true);
- bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata = true);
- /// Return true if V is poison given that ValAssumedPoison is already poison.
- /// For example, if ValAssumedPoison is `icmp X, 10` and V is `icmp X, 5`,
- /// impliesPoison returns true.
- bool impliesPoison(const Value *ValAssumedPoison, const Value *V);
- /// Return true if this function can prove that V does not have undef bits
- /// and is never poison. If V is an aggregate value or vector, check whether
- /// all elements (except padding) are not undef or poison.
- /// Note that this is different from canCreateUndefOrPoison because the
- /// function assumes Op's operands are not poison/undef.
- ///
- /// If CtxI and DT are specified this method performs flow-sensitive analysis
- /// and returns true if it is guaranteed to be never undef or poison
- /// immediately before the CtxI.
- bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
- AssumptionCache *AC = nullptr,
- const Instruction *CtxI = nullptr,
- const DominatorTree *DT = nullptr,
- unsigned Depth = 0);
- bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC = nullptr,
- const Instruction *CtxI = nullptr,
- const DominatorTree *DT = nullptr,
- unsigned Depth = 0);
- /// Specific patterns of select instructions we can match.
- enum SelectPatternFlavor {
- SPF_UNKNOWN = 0,
- SPF_SMIN, /// Signed minimum
- SPF_UMIN, /// Unsigned minimum
- SPF_SMAX, /// Signed maximum
- SPF_UMAX, /// Unsigned maximum
- SPF_FMINNUM, /// Floating point minnum
- SPF_FMAXNUM, /// Floating point maxnum
- SPF_ABS, /// Absolute value
- SPF_NABS /// Negated absolute value
- };
- /// Behavior when a floating point min/max is given one NaN and one
- /// non-NaN as input.
- enum SelectPatternNaNBehavior {
- SPNB_NA = 0, /// NaN behavior not applicable.
- SPNB_RETURNS_NAN, /// Given one NaN input, returns the NaN.
- SPNB_RETURNS_OTHER, /// Given one NaN input, returns the non-NaN.
- SPNB_RETURNS_ANY /// Given one NaN input, can return either (or
- /// it has been determined that no operands can
- /// be NaN).
- };
- struct SelectPatternResult {
- SelectPatternFlavor Flavor;
- SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
- /// SPF_FMINNUM or SPF_FMAXNUM.
- bool Ordered; /// When implementing this min/max pattern as
- /// fcmp; select, does the fcmp have to be
- /// ordered?
- /// Return true if \p SPF is a min or a max pattern.
- static bool isMinOrMax(SelectPatternFlavor SPF) {
- return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
- }
- };
- /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
- /// and providing the out parameter results if we successfully match.
- ///
- /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
- /// the negation instruction from the idiom.
- ///
- /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
- /// not match that of the original select. If this is the case, the cast
- /// operation (one of Trunc,SExt,Zext) that must be done to transform the
- /// type of LHS and RHS into the type of V is returned in CastOp.
- ///
- /// For example:
- /// %1 = icmp slt i32 %a, i32 4
- /// %2 = sext i32 %a to i64
- /// %3 = select i1 %1, i64 %2, i64 4
- ///
- /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
- ///
- SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
- Instruction::CastOps *CastOp = nullptr,
- unsigned Depth = 0);
- inline SelectPatternResult matchSelectPattern(const Value *V, const Value *&LHS,
- const Value *&RHS) {
- Value *L = const_cast<Value *>(LHS);
- Value *R = const_cast<Value *>(RHS);
- auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
- LHS = L;
- RHS = R;
- return Result;
- }
- /// Determine the pattern that a select with the given compare as its
- /// predicate and given values as its true/false operands would match.
- SelectPatternResult matchDecomposedSelectPattern(
- CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
- Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
- /// Return the canonical comparison predicate for the specified
- /// minimum/maximum flavor.
- CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered = false);
- /// Return the inverse minimum/maximum flavor of the specified flavor.
- /// For example, signed minimum is the inverse of signed maximum.
- SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);
- Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID);
- /// Return the minimum or maximum constant value for the specified integer
- /// min/max flavor and type.
- APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth);
- /// Check if the values in \p VL are select instructions that can be converted
- /// to a min or max (vector) intrinsic. Returns the intrinsic ID, if such a
- /// conversion is possible, together with a bool indicating whether all select
- /// conditions are only used by the selects. Otherwise return
- /// Intrinsic::not_intrinsic.
- std::pair<Intrinsic::ID, bool>
- canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL);
- /// Attempt to match a simple first order recurrence cycle of the form:
- /// %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
- /// %inc = binop %iv, %step
- /// OR
- /// %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
- /// %inc = binop %step, %iv
- ///
- /// A first order recurrence is a formula with the form: X_n = f(X_(n-1))
- ///
- /// A couple of notes on subtleties in that definition:
- /// * The Step does not have to be loop invariant. In math terms, it can
- /// be a free variable. We allow recurrences with both constant and
- /// variable coefficients. Callers may wish to filter cases where Step
- /// does not dominate P.
- /// * For non-commutative operators, we will match both forms. This
- /// results in some odd recurrence structures. Callers may wish to filter
- /// out recurrences where the phi is not the LHS of the returned operator.
- /// * Because of the structure matched, the caller can assume as a post
- /// condition of the match the presence of a Loop with P's parent as it's
- /// header *except* in unreachable code. (Dominance decays in unreachable
- /// code.)
- ///
- /// NOTE: This is intentional simple. If you want the ability to analyze
- /// non-trivial loop conditons, see ScalarEvolution instead.
- bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start,
- Value *&Step);
- /// Analogous to the above, but starting from the binary operator
- bool matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, Value *&Start,
- Value *&Step);
- /// Return true if RHS is known to be implied true by LHS. Return false if
- /// RHS is known to be implied false by LHS. Otherwise, return std::nullopt if
- /// no implication can be made. A & B must be i1 (boolean) values or a vector of
- /// such values. Note that the truth table for implication is the same as <=u on
- /// i1 values (but not
- /// <=s!). The truth table for both is:
- /// | T | F (B)
- /// T | T | F
- /// F | T | T
- /// (A)
- std::optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
- const DataLayout &DL,
- bool LHSIsTrue = true,
- unsigned Depth = 0);
- std::optional<bool> isImpliedCondition(const Value *LHS,
- CmpInst::Predicate RHSPred,
- const Value *RHSOp0, const Value *RHSOp1,
- const DataLayout &DL,
- bool LHSIsTrue = true,
- unsigned Depth = 0);
- /// Return the boolean condition value in the context of the given instruction
- /// if it is known based on dominating conditions.
- std::optional<bool> isImpliedByDomCondition(const Value *Cond,
- const Instruction *ContextI,
- const DataLayout &DL);
- std::optional<bool> isImpliedByDomCondition(CmpInst::Predicate Pred,
- const Value *LHS, const Value *RHS,
- const Instruction *ContextI,
- const DataLayout &DL);
- /// If Ptr1 is provably equal to Ptr2 plus a constant offset, return that
- /// offset. For example, Ptr1 might be &A[42], and Ptr2 might be &A[40]. In
- /// this case offset would be -8.
- std::optional<int64_t> isPointerOffset(const Value *Ptr1, const Value *Ptr2,
- const DataLayout &DL);
- } // end namespace llvm
- #endif // LLVM_ANALYSIS_VALUETRACKING_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|