123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483 |
- //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the SSAUpdater class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/SSAUpdater.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/TinyPtrVector.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
- #include <cassert>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "ssaupdater"
- using AvailableValsTy = DenseMap<BasicBlock *, Value *>;
- static AvailableValsTy &getAvailableVals(void *AV) {
- return *static_cast<AvailableValsTy*>(AV);
- }
- SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
- : InsertedPHIs(NewPHI) {}
- SSAUpdater::~SSAUpdater() {
- delete static_cast<AvailableValsTy*>(AV);
- }
- void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
- if (!AV)
- AV = new AvailableValsTy();
- else
- getAvailableVals(AV).clear();
- ProtoType = Ty;
- ProtoName = std::string(Name);
- }
- bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
- return getAvailableVals(AV).count(BB);
- }
- Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
- return getAvailableVals(AV).lookup(BB);
- }
- void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
- assert(ProtoType && "Need to initialize SSAUpdater");
- assert(ProtoType == V->getType() &&
- "All rewritten values must have the same type");
- getAvailableVals(AV)[BB] = V;
- }
- static bool IsEquivalentPHI(PHINode *PHI,
- SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
- unsigned PHINumValues = PHI->getNumIncomingValues();
- if (PHINumValues != ValueMapping.size())
- return false;
- // Scan the phi to see if it matches.
- for (unsigned i = 0, e = PHINumValues; i != e; ++i)
- if (ValueMapping[PHI->getIncomingBlock(i)] !=
- PHI->getIncomingValue(i)) {
- return false;
- }
- return true;
- }
- Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
- Value *Res = GetValueAtEndOfBlockInternal(BB);
- return Res;
- }
- Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
- // If there is no definition of the renamed variable in this block, just use
- // GetValueAtEndOfBlock to do our work.
- if (!HasValueForBlock(BB))
- return GetValueAtEndOfBlock(BB);
- // Otherwise, we have the hard case. Get the live-in values for each
- // predecessor.
- SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
- Value *SingularValue = nullptr;
- // We can get our predecessor info by walking the pred_iterator list, but it
- // is relatively slow. If we already have PHI nodes in this block, walk one
- // of them to get the predecessor list instead.
- if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
- for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
- Value *PredVal = GetValueAtEndOfBlock(PredBB);
- PredValues.push_back(std::make_pair(PredBB, PredVal));
- // Compute SingularValue.
- if (i == 0)
- SingularValue = PredVal;
- else if (PredVal != SingularValue)
- SingularValue = nullptr;
- }
- } else {
- bool isFirstPred = true;
- for (BasicBlock *PredBB : predecessors(BB)) {
- Value *PredVal = GetValueAtEndOfBlock(PredBB);
- PredValues.push_back(std::make_pair(PredBB, PredVal));
- // Compute SingularValue.
- if (isFirstPred) {
- SingularValue = PredVal;
- isFirstPred = false;
- } else if (PredVal != SingularValue)
- SingularValue = nullptr;
- }
- }
- // If there are no predecessors, just return undef.
- if (PredValues.empty())
- return UndefValue::get(ProtoType);
- // Otherwise, if all the merged values are the same, just use it.
- if (SingularValue)
- return SingularValue;
- // Otherwise, we do need a PHI: check to see if we already have one available
- // in this block that produces the right value.
- if (isa<PHINode>(BB->begin())) {
- SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
- PredValues.end());
- for (PHINode &SomePHI : BB->phis()) {
- if (IsEquivalentPHI(&SomePHI, ValueMapping))
- return &SomePHI;
- }
- }
- // Ok, we have no way out, insert a new one now.
- PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
- ProtoName, &BB->front());
- // Fill in all the predecessors of the PHI.
- for (const auto &PredValue : PredValues)
- InsertedPHI->addIncoming(PredValue.second, PredValue.first);
- // See if the PHI node can be merged to a single value. This can happen in
- // loop cases when we get a PHI of itself and one other value.
- if (Value *V =
- SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
- InsertedPHI->eraseFromParent();
- return V;
- }
- // Set the DebugLoc of the inserted PHI, if available.
- DebugLoc DL;
- if (const Instruction *I = BB->getFirstNonPHI())
- DL = I->getDebugLoc();
- InsertedPHI->setDebugLoc(DL);
- // If the client wants to know about all new instructions, tell it.
- if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
- LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
- return InsertedPHI;
- }
- void SSAUpdater::RewriteUse(Use &U) {
- Instruction *User = cast<Instruction>(U.getUser());
- Value *V;
- if (PHINode *UserPN = dyn_cast<PHINode>(User))
- V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
- else
- V = GetValueInMiddleOfBlock(User->getParent());
- U.set(V);
- }
- void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
- Instruction *User = cast<Instruction>(U.getUser());
- Value *V;
- if (PHINode *UserPN = dyn_cast<PHINode>(User))
- V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
- else
- V = GetValueAtEndOfBlock(User->getParent());
- U.set(V);
- }
- namespace llvm {
- template<>
- class SSAUpdaterTraits<SSAUpdater> {
- public:
- using BlkT = BasicBlock;
- using ValT = Value *;
- using PhiT = PHINode;
- using BlkSucc_iterator = succ_iterator;
- static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
- static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
- class PHI_iterator {
- private:
- PHINode *PHI;
- unsigned idx;
- public:
- explicit PHI_iterator(PHINode *P) // begin iterator
- : PHI(P), idx(0) {}
- PHI_iterator(PHINode *P, bool) // end iterator
- : PHI(P), idx(PHI->getNumIncomingValues()) {}
- PHI_iterator &operator++() { ++idx; return *this; }
- bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
- bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
- Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
- BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
- };
- static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
- static PHI_iterator PHI_end(PhiT *PHI) {
- return PHI_iterator(PHI, true);
- }
- /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
- /// vector, set Info->NumPreds, and allocate space in Info->Preds.
- static void FindPredecessorBlocks(BasicBlock *BB,
- SmallVectorImpl<BasicBlock *> *Preds) {
- // We can get our predecessor info by walking the pred_iterator list,
- // but it is relatively slow. If we already have PHI nodes in this
- // block, walk one of them to get the predecessor list instead.
- if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin()))
- append_range(*Preds, SomePhi->blocks());
- else
- append_range(*Preds, predecessors(BB));
- }
- /// GetUndefVal - Get an undefined value of the same type as the value
- /// being handled.
- static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
- return UndefValue::get(Updater->ProtoType);
- }
- /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
- /// Reserve space for the operands but do not fill them in yet.
- static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
- SSAUpdater *Updater) {
- PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
- Updater->ProtoName, &BB->front());
- return PHI;
- }
- /// AddPHIOperand - Add the specified value as an operand of the PHI for
- /// the specified predecessor block.
- static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
- PHI->addIncoming(Val, Pred);
- }
- /// ValueIsPHI - Check if a value is a PHI.
- static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
- return dyn_cast<PHINode>(Val);
- }
- /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
- /// operands, i.e., it was just added.
- static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
- PHINode *PHI = ValueIsPHI(Val, Updater);
- if (PHI && PHI->getNumIncomingValues() == 0)
- return PHI;
- return nullptr;
- }
- /// GetPHIValue - For the specified PHI instruction, return the value
- /// that it defines.
- static Value *GetPHIValue(PHINode *PHI) {
- return PHI;
- }
- };
- } // end namespace llvm
- /// Check to see if AvailableVals has an entry for the specified BB and if so,
- /// return it. If not, construct SSA form by first calculating the required
- /// placement of PHIs and then inserting new PHIs where needed.
- Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
- AvailableValsTy &AvailableVals = getAvailableVals(AV);
- if (Value *V = AvailableVals[BB])
- return V;
- SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
- return Impl.GetValue(BB);
- }
- //===----------------------------------------------------------------------===//
- // LoadAndStorePromoter Implementation
- //===----------------------------------------------------------------------===//
- LoadAndStorePromoter::
- LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
- SSAUpdater &S, StringRef BaseName) : SSA(S) {
- if (Insts.empty()) return;
- const Value *SomeVal;
- if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
- SomeVal = LI;
- else
- SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
- if (BaseName.empty())
- BaseName = SomeVal->getName();
- SSA.Initialize(SomeVal->getType(), BaseName);
- }
- void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) {
- // First step: bucket up uses of the alloca by the block they occur in.
- // This is important because we have to handle multiple defs/uses in a block
- // ourselves: SSAUpdater is purely for cross-block references.
- DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;
- for (Instruction *User : Insts)
- UsesByBlock[User->getParent()].push_back(User);
- // Okay, now we can iterate over all the blocks in the function with uses,
- // processing them. Keep track of which loads are loading a live-in value.
- // Walk the uses in the use-list order to be determinstic.
- SmallVector<LoadInst *, 32> LiveInLoads;
- DenseMap<Value *, Value *> ReplacedLoads;
- for (Instruction *User : Insts) {
- BasicBlock *BB = User->getParent();
- TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];
- // If this block has already been processed, ignore this repeat use.
- if (BlockUses.empty()) continue;
- // Okay, this is the first use in the block. If this block just has a
- // single user in it, we can rewrite it trivially.
- if (BlockUses.size() == 1) {
- // If it is a store, it is a trivial def of the value in the block.
- if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
- updateDebugInfo(SI);
- SSA.AddAvailableValue(BB, SI->getOperand(0));
- } else
- // Otherwise it is a load, queue it to rewrite as a live-in load.
- LiveInLoads.push_back(cast<LoadInst>(User));
- BlockUses.clear();
- continue;
- }
- // Otherwise, check to see if this block is all loads.
- bool HasStore = false;
- for (Instruction *I : BlockUses) {
- if (isa<StoreInst>(I)) {
- HasStore = true;
- break;
- }
- }
- // If so, we can queue them all as live in loads. We don't have an
- // efficient way to tell which on is first in the block and don't want to
- // scan large blocks, so just add all loads as live ins.
- if (!HasStore) {
- for (Instruction *I : BlockUses)
- LiveInLoads.push_back(cast<LoadInst>(I));
- BlockUses.clear();
- continue;
- }
- // Otherwise, we have mixed loads and stores (or just a bunch of stores).
- // Since SSAUpdater is purely for cross-block values, we need to determine
- // the order of these instructions in the block. If the first use in the
- // block is a load, then it uses the live in value. The last store defines
- // the live out value. We handle this by doing a linear scan of the block.
- Value *StoredValue = nullptr;
- for (Instruction &I : *BB) {
- if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
- // If this is a load from an unrelated pointer, ignore it.
- if (!isInstInList(L, Insts)) continue;
- // If we haven't seen a store yet, this is a live in use, otherwise
- // use the stored value.
- if (StoredValue) {
- replaceLoadWithValue(L, StoredValue);
- L->replaceAllUsesWith(StoredValue);
- ReplacedLoads[L] = StoredValue;
- } else {
- LiveInLoads.push_back(L);
- }
- continue;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
- // If this is a store to an unrelated pointer, ignore it.
- if (!isInstInList(SI, Insts)) continue;
- updateDebugInfo(SI);
- // Remember that this is the active value in the block.
- StoredValue = SI->getOperand(0);
- }
- }
- // The last stored value that happened is the live-out for the block.
- assert(StoredValue && "Already checked that there is a store in block");
- SSA.AddAvailableValue(BB, StoredValue);
- BlockUses.clear();
- }
- // Okay, now we rewrite all loads that use live-in values in the loop,
- // inserting PHI nodes as necessary.
- for (LoadInst *ALoad : LiveInLoads) {
- Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
- replaceLoadWithValue(ALoad, NewVal);
- // Avoid assertions in unreachable code.
- if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
- ALoad->replaceAllUsesWith(NewVal);
- ReplacedLoads[ALoad] = NewVal;
- }
- // Allow the client to do stuff before we start nuking things.
- doExtraRewritesBeforeFinalDeletion();
- // Now that everything is rewritten, delete the old instructions from the
- // function. They should all be dead now.
- for (Instruction *User : Insts) {
- if (!shouldDelete(User))
- continue;
- // If this is a load that still has uses, then the load must have been added
- // as a live value in the SSAUpdate data structure for a block (e.g. because
- // the loaded value was stored later). In this case, we need to recursively
- // propagate the updates until we get to the real value.
- if (!User->use_empty()) {
- Value *NewVal = ReplacedLoads[User];
- assert(NewVal && "not a replaced load?");
- // Propagate down to the ultimate replacee. The intermediately loads
- // could theoretically already have been deleted, so we don't want to
- // dereference the Value*'s.
- DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
- while (RLI != ReplacedLoads.end()) {
- NewVal = RLI->second;
- RLI = ReplacedLoads.find(NewVal);
- }
- replaceLoadWithValue(cast<LoadInst>(User), NewVal);
- User->replaceAllUsesWith(NewVal);
- }
- instructionDeleted(User);
- User->eraseFromParent();
- }
- }
- bool
- LoadAndStorePromoter::isInstInList(Instruction *I,
- const SmallVectorImpl<Instruction *> &Insts)
- const {
- return is_contained(Insts, I);
- }
|