12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654 |
- //===- InlineFunction.cpp - Code to perform function inlining -------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements inlining of a function into a call site, resolving
- // parameters and the return value as appropriate.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/CallGraph.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/EHPersonalities.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
- #include "llvm/Analysis/ObjCARCUtil.h"
- #include "llvm/Analysis/ProfileSummaryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DIBuilder.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/ValueMapper.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <limits>
- #include <string>
- #include <utility>
- #include <vector>
- using namespace llvm;
- using ProfileCount = Function::ProfileCount;
- static cl::opt<bool>
- EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
- cl::Hidden,
- cl::desc("Convert noalias attributes to metadata during inlining."));
- static cl::opt<bool>
- UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
- cl::ZeroOrMore, cl::init(true),
- cl::desc("Use the llvm.experimental.noalias.scope.decl "
- "intrinsic during inlining."));
- // Disabled by default, because the added alignment assumptions may increase
- // compile-time and block optimizations. This option is not suitable for use
- // with frontends that emit comprehensive parameter alignment annotations.
- static cl::opt<bool>
- PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
- cl::init(false), cl::Hidden,
- cl::desc("Convert align attributes to assumptions during inlining."));
- static cl::opt<bool> UpdateReturnAttributes(
- "update-return-attrs", cl::init(true), cl::Hidden,
- cl::desc("Update return attributes on calls within inlined body"));
- static cl::opt<unsigned> InlinerAttributeWindow(
- "max-inst-checked-for-throw-during-inlining", cl::Hidden,
- cl::desc("the maximum number of instructions analyzed for may throw during "
- "attribute inference in inlined body"),
- cl::init(4));
- namespace {
- /// A class for recording information about inlining a landing pad.
- class LandingPadInliningInfo {
- /// Destination of the invoke's unwind.
- BasicBlock *OuterResumeDest;
- /// Destination for the callee's resume.
- BasicBlock *InnerResumeDest = nullptr;
- /// LandingPadInst associated with the invoke.
- LandingPadInst *CallerLPad = nullptr;
- /// PHI for EH values from landingpad insts.
- PHINode *InnerEHValuesPHI = nullptr;
- SmallVector<Value*, 8> UnwindDestPHIValues;
- public:
- LandingPadInliningInfo(InvokeInst *II)
- : OuterResumeDest(II->getUnwindDest()) {
- // If there are PHI nodes in the unwind destination block, we need to keep
- // track of which values came into them from the invoke before removing
- // the edge from this block.
- BasicBlock *InvokeBB = II->getParent();
- BasicBlock::iterator I = OuterResumeDest->begin();
- for (; isa<PHINode>(I); ++I) {
- // Save the value to use for this edge.
- PHINode *PHI = cast<PHINode>(I);
- UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
- }
- CallerLPad = cast<LandingPadInst>(I);
- }
- /// The outer unwind destination is the target of
- /// unwind edges introduced for calls within the inlined function.
- BasicBlock *getOuterResumeDest() const {
- return OuterResumeDest;
- }
- BasicBlock *getInnerResumeDest();
- LandingPadInst *getLandingPadInst() const { return CallerLPad; }
- /// Forward the 'resume' instruction to the caller's landing pad block.
- /// When the landing pad block has only one predecessor, this is
- /// a simple branch. When there is more than one predecessor, we need to
- /// split the landing pad block after the landingpad instruction and jump
- /// to there.
- void forwardResume(ResumeInst *RI,
- SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
- /// Add incoming-PHI values to the unwind destination block for the given
- /// basic block, using the values for the original invoke's source block.
- void addIncomingPHIValuesFor(BasicBlock *BB) const {
- addIncomingPHIValuesForInto(BB, OuterResumeDest);
- }
- void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
- BasicBlock::iterator I = dest->begin();
- for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
- PHINode *phi = cast<PHINode>(I);
- phi->addIncoming(UnwindDestPHIValues[i], src);
- }
- }
- };
- } // end anonymous namespace
- /// Get or create a target for the branch from ResumeInsts.
- BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
- if (InnerResumeDest) return InnerResumeDest;
- // Split the landing pad.
- BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
- InnerResumeDest =
- OuterResumeDest->splitBasicBlock(SplitPoint,
- OuterResumeDest->getName() + ".body");
- // The number of incoming edges we expect to the inner landing pad.
- const unsigned PHICapacity = 2;
- // Create corresponding new PHIs for all the PHIs in the outer landing pad.
- Instruction *InsertPoint = &InnerResumeDest->front();
- BasicBlock::iterator I = OuterResumeDest->begin();
- for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
- PHINode *OuterPHI = cast<PHINode>(I);
- PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
- OuterPHI->getName() + ".lpad-body",
- InsertPoint);
- OuterPHI->replaceAllUsesWith(InnerPHI);
- InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
- }
- // Create a PHI for the exception values.
- InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
- "eh.lpad-body", InsertPoint);
- CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
- InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
- // All done.
- return InnerResumeDest;
- }
- /// Forward the 'resume' instruction to the caller's landing pad block.
- /// When the landing pad block has only one predecessor, this is a simple
- /// branch. When there is more than one predecessor, we need to split the
- /// landing pad block after the landingpad instruction and jump to there.
- void LandingPadInliningInfo::forwardResume(
- ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
- BasicBlock *Dest = getInnerResumeDest();
- BasicBlock *Src = RI->getParent();
- BranchInst::Create(Dest, Src);
- // Update the PHIs in the destination. They were inserted in an order which
- // makes this work.
- addIncomingPHIValuesForInto(Src, Dest);
- InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
- RI->eraseFromParent();
- }
- /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
- static Value *getParentPad(Value *EHPad) {
- if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
- return FPI->getParentPad();
- return cast<CatchSwitchInst>(EHPad)->getParentPad();
- }
- using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
- /// Helper for getUnwindDestToken that does the descendant-ward part of
- /// the search.
- static Value *getUnwindDestTokenHelper(Instruction *EHPad,
- UnwindDestMemoTy &MemoMap) {
- SmallVector<Instruction *, 8> Worklist(1, EHPad);
- while (!Worklist.empty()) {
- Instruction *CurrentPad = Worklist.pop_back_val();
- // We only put pads on the worklist that aren't in the MemoMap. When
- // we find an unwind dest for a pad we may update its ancestors, but
- // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
- // so they should never get updated while queued on the worklist.
- assert(!MemoMap.count(CurrentPad));
- Value *UnwindDestToken = nullptr;
- if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
- if (CatchSwitch->hasUnwindDest()) {
- UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
- } else {
- // Catchswitch doesn't have a 'nounwind' variant, and one might be
- // annotated as "unwinds to caller" when really it's nounwind (see
- // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
- // parent's unwind dest from this. We can check its catchpads'
- // descendants, since they might include a cleanuppad with an
- // "unwinds to caller" cleanupret, which can be trusted.
- for (auto HI = CatchSwitch->handler_begin(),
- HE = CatchSwitch->handler_end();
- HI != HE && !UnwindDestToken; ++HI) {
- BasicBlock *HandlerBlock = *HI;
- auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
- for (User *Child : CatchPad->users()) {
- // Intentionally ignore invokes here -- since the catchswitch is
- // marked "unwind to caller", it would be a verifier error if it
- // contained an invoke which unwinds out of it, so any invoke we'd
- // encounter must unwind to some child of the catch.
- if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
- continue;
- Instruction *ChildPad = cast<Instruction>(Child);
- auto Memo = MemoMap.find(ChildPad);
- if (Memo == MemoMap.end()) {
- // Haven't figured out this child pad yet; queue it.
- Worklist.push_back(ChildPad);
- continue;
- }
- // We've already checked this child, but might have found that
- // it offers no proof either way.
- Value *ChildUnwindDestToken = Memo->second;
- if (!ChildUnwindDestToken)
- continue;
- // We already know the child's unwind dest, which can either
- // be ConstantTokenNone to indicate unwind to caller, or can
- // be another child of the catchpad. Only the former indicates
- // the unwind dest of the catchswitch.
- if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
- UnwindDestToken = ChildUnwindDestToken;
- break;
- }
- assert(getParentPad(ChildUnwindDestToken) == CatchPad);
- }
- }
- }
- } else {
- auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
- for (User *U : CleanupPad->users()) {
- if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
- if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
- UnwindDestToken = RetUnwindDest->getFirstNonPHI();
- else
- UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
- break;
- }
- Value *ChildUnwindDestToken;
- if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
- ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
- } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
- Instruction *ChildPad = cast<Instruction>(U);
- auto Memo = MemoMap.find(ChildPad);
- if (Memo == MemoMap.end()) {
- // Haven't resolved this child yet; queue it and keep searching.
- Worklist.push_back(ChildPad);
- continue;
- }
- // We've checked this child, but still need to ignore it if it
- // had no proof either way.
- ChildUnwindDestToken = Memo->second;
- if (!ChildUnwindDestToken)
- continue;
- } else {
- // Not a relevant user of the cleanuppad
- continue;
- }
- // In a well-formed program, the child/invoke must either unwind to
- // an(other) child of the cleanup, or exit the cleanup. In the
- // first case, continue searching.
- if (isa<Instruction>(ChildUnwindDestToken) &&
- getParentPad(ChildUnwindDestToken) == CleanupPad)
- continue;
- UnwindDestToken = ChildUnwindDestToken;
- break;
- }
- }
- // If we haven't found an unwind dest for CurrentPad, we may have queued its
- // children, so move on to the next in the worklist.
- if (!UnwindDestToken)
- continue;
- // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
- // any ancestors of CurrentPad up to but not including UnwindDestToken's
- // parent pad. Record this in the memo map, and check to see if the
- // original EHPad being queried is one of the ones exited.
- Value *UnwindParent;
- if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
- UnwindParent = getParentPad(UnwindPad);
- else
- UnwindParent = nullptr;
- bool ExitedOriginalPad = false;
- for (Instruction *ExitedPad = CurrentPad;
- ExitedPad && ExitedPad != UnwindParent;
- ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
- // Skip over catchpads since they just follow their catchswitches.
- if (isa<CatchPadInst>(ExitedPad))
- continue;
- MemoMap[ExitedPad] = UnwindDestToken;
- ExitedOriginalPad |= (ExitedPad == EHPad);
- }
- if (ExitedOriginalPad)
- return UnwindDestToken;
- // Continue the search.
- }
- // No definitive information is contained within this funclet.
- return nullptr;
- }
- /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
- /// return that pad instruction. If it unwinds to caller, return
- /// ConstantTokenNone. If it does not have a definitive unwind destination,
- /// return nullptr.
- ///
- /// This routine gets invoked for calls in funclets in inlinees when inlining
- /// an invoke. Since many funclets don't have calls inside them, it's queried
- /// on-demand rather than building a map of pads to unwind dests up front.
- /// Determining a funclet's unwind dest may require recursively searching its
- /// descendants, and also ancestors and cousins if the descendants don't provide
- /// an answer. Since most funclets will have their unwind dest immediately
- /// available as the unwind dest of a catchswitch or cleanupret, this routine
- /// searches top-down from the given pad and then up. To avoid worst-case
- /// quadratic run-time given that approach, it uses a memo map to avoid
- /// re-processing funclet trees. The callers that rewrite the IR as they go
- /// take advantage of this, for correctness, by checking/forcing rewritten
- /// pads' entries to match the original callee view.
- static Value *getUnwindDestToken(Instruction *EHPad,
- UnwindDestMemoTy &MemoMap) {
- // Catchpads unwind to the same place as their catchswitch;
- // redirct any queries on catchpads so the code below can
- // deal with just catchswitches and cleanuppads.
- if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
- EHPad = CPI->getCatchSwitch();
- // Check if we've already determined the unwind dest for this pad.
- auto Memo = MemoMap.find(EHPad);
- if (Memo != MemoMap.end())
- return Memo->second;
- // Search EHPad and, if necessary, its descendants.
- Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
- assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
- if (UnwindDestToken)
- return UnwindDestToken;
- // No information is available for this EHPad from itself or any of its
- // descendants. An unwind all the way out to a pad in the caller would
- // need also to agree with the unwind dest of the parent funclet, so
- // search up the chain to try to find a funclet with information. Put
- // null entries in the memo map to avoid re-processing as we go up.
- MemoMap[EHPad] = nullptr;
- #ifndef NDEBUG
- SmallPtrSet<Instruction *, 4> TempMemos;
- TempMemos.insert(EHPad);
- #endif
- Instruction *LastUselessPad = EHPad;
- Value *AncestorToken;
- for (AncestorToken = getParentPad(EHPad);
- auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
- AncestorToken = getParentPad(AncestorToken)) {
- // Skip over catchpads since they just follow their catchswitches.
- if (isa<CatchPadInst>(AncestorPad))
- continue;
- // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
- // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
- // call to getUnwindDestToken, that would mean that AncestorPad had no
- // information in itself, its descendants, or its ancestors. If that
- // were the case, then we should also have recorded the lack of information
- // for the descendant that we're coming from. So assert that we don't
- // find a null entry in the MemoMap for AncestorPad.
- assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
- auto AncestorMemo = MemoMap.find(AncestorPad);
- if (AncestorMemo == MemoMap.end()) {
- UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
- } else {
- UnwindDestToken = AncestorMemo->second;
- }
- if (UnwindDestToken)
- break;
- LastUselessPad = AncestorPad;
- MemoMap[LastUselessPad] = nullptr;
- #ifndef NDEBUG
- TempMemos.insert(LastUselessPad);
- #endif
- }
- // We know that getUnwindDestTokenHelper was called on LastUselessPad and
- // returned nullptr (and likewise for EHPad and any of its ancestors up to
- // LastUselessPad), so LastUselessPad has no information from below. Since
- // getUnwindDestTokenHelper must investigate all downward paths through
- // no-information nodes to prove that a node has no information like this,
- // and since any time it finds information it records it in the MemoMap for
- // not just the immediately-containing funclet but also any ancestors also
- // exited, it must be the case that, walking downward from LastUselessPad,
- // visiting just those nodes which have not been mapped to an unwind dest
- // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
- // they are just used to keep getUnwindDestTokenHelper from repeating work),
- // any node visited must have been exhaustively searched with no information
- // for it found.
- SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
- while (!Worklist.empty()) {
- Instruction *UselessPad = Worklist.pop_back_val();
- auto Memo = MemoMap.find(UselessPad);
- if (Memo != MemoMap.end() && Memo->second) {
- // Here the name 'UselessPad' is a bit of a misnomer, because we've found
- // that it is a funclet that does have information about unwinding to
- // a particular destination; its parent was a useless pad.
- // Since its parent has no information, the unwind edge must not escape
- // the parent, and must target a sibling of this pad. This local unwind
- // gives us no information about EHPad. Leave it and the subtree rooted
- // at it alone.
- assert(getParentPad(Memo->second) == getParentPad(UselessPad));
- continue;
- }
- // We know we don't have information for UselesPad. If it has an entry in
- // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
- // added on this invocation of getUnwindDestToken; if a previous invocation
- // recorded nullptr, it would have had to prove that the ancestors of
- // UselessPad, which include LastUselessPad, had no information, and that
- // in turn would have required proving that the descendants of
- // LastUselesPad, which include EHPad, have no information about
- // LastUselessPad, which would imply that EHPad was mapped to nullptr in
- // the MemoMap on that invocation, which isn't the case if we got here.
- assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
- // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
- // information that we'd be contradicting by making a map entry for it
- // (which is something that getUnwindDestTokenHelper must have proved for
- // us to get here). Just assert on is direct users here; the checks in
- // this downward walk at its descendants will verify that they don't have
- // any unwind edges that exit 'UselessPad' either (i.e. they either have no
- // unwind edges or unwind to a sibling).
- MemoMap[UselessPad] = UnwindDestToken;
- if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
- assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
- for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
- auto *CatchPad = HandlerBlock->getFirstNonPHI();
- for (User *U : CatchPad->users()) {
- assert(
- (!isa<InvokeInst>(U) ||
- (getParentPad(
- cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
- CatchPad)) &&
- "Expected useless pad");
- if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
- Worklist.push_back(cast<Instruction>(U));
- }
- }
- } else {
- assert(isa<CleanupPadInst>(UselessPad));
- for (User *U : UselessPad->users()) {
- assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
- assert((!isa<InvokeInst>(U) ||
- (getParentPad(
- cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
- UselessPad)) &&
- "Expected useless pad");
- if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
- Worklist.push_back(cast<Instruction>(U));
- }
- }
- }
- return UnwindDestToken;
- }
- /// When we inline a basic block into an invoke,
- /// we have to turn all of the calls that can throw into invokes.
- /// This function analyze BB to see if there are any calls, and if so,
- /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
- /// nodes in that block with the values specified in InvokeDestPHIValues.
- static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
- BasicBlock *BB, BasicBlock *UnwindEdge,
- UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
- for (Instruction &I : llvm::make_early_inc_range(*BB)) {
- // We only need to check for function calls: inlined invoke
- // instructions require no special handling.
- CallInst *CI = dyn_cast<CallInst>(&I);
- if (!CI || CI->doesNotThrow())
- continue;
- if (CI->isInlineAsm()) {
- InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
- if (!IA->canThrow()) {
- continue;
- }
- }
- // We do not need to (and in fact, cannot) convert possibly throwing calls
- // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
- // invokes. The caller's "segment" of the deoptimization continuation
- // attached to the newly inlined @llvm.experimental_deoptimize
- // (resp. @llvm.experimental.guard) call should contain the exception
- // handling logic, if any.
- if (auto *F = CI->getCalledFunction())
- if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
- F->getIntrinsicID() == Intrinsic::experimental_guard)
- continue;
- if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
- // This call is nested inside a funclet. If that funclet has an unwind
- // destination within the inlinee, then unwinding out of this call would
- // be UB. Rewriting this call to an invoke which targets the inlined
- // invoke's unwind dest would give the call's parent funclet multiple
- // unwind destinations, which is something that subsequent EH table
- // generation can't handle and that the veirifer rejects. So when we
- // see such a call, leave it as a call.
- auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
- Value *UnwindDestToken =
- getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
- if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
- continue;
- #ifndef NDEBUG
- Instruction *MemoKey;
- if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
- MemoKey = CatchPad->getCatchSwitch();
- else
- MemoKey = FuncletPad;
- assert(FuncletUnwindMap->count(MemoKey) &&
- (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
- "must get memoized to avoid confusing later searches");
- #endif // NDEBUG
- }
- changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
- return BB;
- }
- return nullptr;
- }
- /// If we inlined an invoke site, we need to convert calls
- /// in the body of the inlined function into invokes.
- ///
- /// II is the invoke instruction being inlined. FirstNewBlock is the first
- /// block of the inlined code (the last block is the end of the function),
- /// and InlineCodeInfo is information about the code that got inlined.
- static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
- ClonedCodeInfo &InlinedCodeInfo) {
- BasicBlock *InvokeDest = II->getUnwindDest();
- Function *Caller = FirstNewBlock->getParent();
- // The inlined code is currently at the end of the function, scan from the
- // start of the inlined code to its end, checking for stuff we need to
- // rewrite.
- LandingPadInliningInfo Invoke(II);
- // Get all of the inlined landing pad instructions.
- SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
- for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
- I != E; ++I)
- if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
- InlinedLPads.insert(II->getLandingPadInst());
- // Append the clauses from the outer landing pad instruction into the inlined
- // landing pad instructions.
- LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
- for (LandingPadInst *InlinedLPad : InlinedLPads) {
- unsigned OuterNum = OuterLPad->getNumClauses();
- InlinedLPad->reserveClauses(OuterNum);
- for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
- InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
- if (OuterLPad->isCleanup())
- InlinedLPad->setCleanup(true);
- }
- for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
- BB != E; ++BB) {
- if (InlinedCodeInfo.ContainsCalls)
- if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
- &*BB, Invoke.getOuterResumeDest()))
- // Update any PHI nodes in the exceptional block to indicate that there
- // is now a new entry in them.
- Invoke.addIncomingPHIValuesFor(NewBB);
- // Forward any resumes that are remaining here.
- if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
- Invoke.forwardResume(RI, InlinedLPads);
- }
- // Now that everything is happy, we have one final detail. The PHI nodes in
- // the exception destination block still have entries due to the original
- // invoke instruction. Eliminate these entries (which might even delete the
- // PHI node) now.
- InvokeDest->removePredecessor(II->getParent());
- }
- /// If we inlined an invoke site, we need to convert calls
- /// in the body of the inlined function into invokes.
- ///
- /// II is the invoke instruction being inlined. FirstNewBlock is the first
- /// block of the inlined code (the last block is the end of the function),
- /// and InlineCodeInfo is information about the code that got inlined.
- static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
- ClonedCodeInfo &InlinedCodeInfo) {
- BasicBlock *UnwindDest = II->getUnwindDest();
- Function *Caller = FirstNewBlock->getParent();
- assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
- // If there are PHI nodes in the unwind destination block, we need to keep
- // track of which values came into them from the invoke before removing the
- // edge from this block.
- SmallVector<Value *, 8> UnwindDestPHIValues;
- BasicBlock *InvokeBB = II->getParent();
- for (PHINode &PHI : UnwindDest->phis()) {
- // Save the value to use for this edge.
- UnwindDestPHIValues.push_back(PHI.getIncomingValueForBlock(InvokeBB));
- }
- // Add incoming-PHI values to the unwind destination block for the given basic
- // block, using the values for the original invoke's source block.
- auto UpdatePHINodes = [&](BasicBlock *Src) {
- BasicBlock::iterator I = UnwindDest->begin();
- for (Value *V : UnwindDestPHIValues) {
- PHINode *PHI = cast<PHINode>(I);
- PHI->addIncoming(V, Src);
- ++I;
- }
- };
- // This connects all the instructions which 'unwind to caller' to the invoke
- // destination.
- UnwindDestMemoTy FuncletUnwindMap;
- for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
- BB != E; ++BB) {
- if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
- if (CRI->unwindsToCaller()) {
- auto *CleanupPad = CRI->getCleanupPad();
- CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
- CRI->eraseFromParent();
- UpdatePHINodes(&*BB);
- // Finding a cleanupret with an unwind destination would confuse
- // subsequent calls to getUnwindDestToken, so map the cleanuppad
- // to short-circuit any such calls and recognize this as an "unwind
- // to caller" cleanup.
- assert(!FuncletUnwindMap.count(CleanupPad) ||
- isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
- FuncletUnwindMap[CleanupPad] =
- ConstantTokenNone::get(Caller->getContext());
- }
- }
- Instruction *I = BB->getFirstNonPHI();
- if (!I->isEHPad())
- continue;
- Instruction *Replacement = nullptr;
- if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
- if (CatchSwitch->unwindsToCaller()) {
- Value *UnwindDestToken;
- if (auto *ParentPad =
- dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
- // This catchswitch is nested inside another funclet. If that
- // funclet has an unwind destination within the inlinee, then
- // unwinding out of this catchswitch would be UB. Rewriting this
- // catchswitch to unwind to the inlined invoke's unwind dest would
- // give the parent funclet multiple unwind destinations, which is
- // something that subsequent EH table generation can't handle and
- // that the veirifer rejects. So when we see such a call, leave it
- // as "unwind to caller".
- UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
- if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
- continue;
- } else {
- // This catchswitch has no parent to inherit constraints from, and
- // none of its descendants can have an unwind edge that exits it and
- // targets another funclet in the inlinee. It may or may not have a
- // descendant that definitively has an unwind to caller. In either
- // case, we'll have to assume that any unwinds out of it may need to
- // be routed to the caller, so treat it as though it has a definitive
- // unwind to caller.
- UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
- }
- auto *NewCatchSwitch = CatchSwitchInst::Create(
- CatchSwitch->getParentPad(), UnwindDest,
- CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
- CatchSwitch);
- for (BasicBlock *PadBB : CatchSwitch->handlers())
- NewCatchSwitch->addHandler(PadBB);
- // Propagate info for the old catchswitch over to the new one in
- // the unwind map. This also serves to short-circuit any subsequent
- // checks for the unwind dest of this catchswitch, which would get
- // confused if they found the outer handler in the callee.
- FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
- Replacement = NewCatchSwitch;
- }
- } else if (!isa<FuncletPadInst>(I)) {
- llvm_unreachable("unexpected EHPad!");
- }
- if (Replacement) {
- Replacement->takeName(I);
- I->replaceAllUsesWith(Replacement);
- I->eraseFromParent();
- UpdatePHINodes(&*BB);
- }
- }
- if (InlinedCodeInfo.ContainsCalls)
- for (Function::iterator BB = FirstNewBlock->getIterator(),
- E = Caller->end();
- BB != E; ++BB)
- if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
- &*BB, UnwindDest, &FuncletUnwindMap))
- // Update any PHI nodes in the exceptional block to indicate that there
- // is now a new entry in them.
- UpdatePHINodes(NewBB);
- // Now that everything is happy, we have one final detail. The PHI nodes in
- // the exception destination block still have entries due to the original
- // invoke instruction. Eliminate these entries (which might even delete the
- // PHI node) now.
- UnwindDest->removePredecessor(InvokeBB);
- }
- /// When inlining a call site that has !llvm.mem.parallel_loop_access,
- /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
- /// be propagated to all memory-accessing cloned instructions.
- static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
- Function::iterator FEnd) {
- MDNode *MemParallelLoopAccess =
- CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
- MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
- MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
- MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
- if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
- return;
- for (BasicBlock &BB : make_range(FStart, FEnd)) {
- for (Instruction &I : BB) {
- // This metadata is only relevant for instructions that access memory.
- if (!I.mayReadOrWriteMemory())
- continue;
- if (MemParallelLoopAccess) {
- // TODO: This probably should not overwrite MemParalleLoopAccess.
- MemParallelLoopAccess = MDNode::concatenate(
- I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
- MemParallelLoopAccess);
- I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
- MemParallelLoopAccess);
- }
- if (AccessGroup)
- I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
- I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
- if (AliasScope)
- I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
- I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
- if (NoAlias)
- I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
- I.getMetadata(LLVMContext::MD_noalias), NoAlias));
- }
- }
- }
- namespace {
- /// Utility for cloning !noalias and !alias.scope metadata. When a code region
- /// using scoped alias metadata is inlined, the aliasing relationships may not
- /// hold between the two version. It is necessary to create a deep clone of the
- /// metadata, putting the two versions in separate scope domains.
- class ScopedAliasMetadataDeepCloner {
- using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
- SetVector<const MDNode *> MD;
- MetadataMap MDMap;
- void addRecursiveMetadataUses();
- public:
- ScopedAliasMetadataDeepCloner(const Function *F);
- /// Create a new clone of the scoped alias metadata, which will be used by
- /// subsequent remap() calls.
- void clone();
- /// Remap instructions in the given range from the original to the cloned
- /// metadata.
- void remap(Function::iterator FStart, Function::iterator FEnd);
- };
- } // namespace
- ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
- const Function *F) {
- for (const BasicBlock &BB : *F) {
- for (const Instruction &I : BB) {
- if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
- MD.insert(M);
- if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
- MD.insert(M);
- // We also need to clone the metadata in noalias intrinsics.
- if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
- MD.insert(Decl->getScopeList());
- }
- }
- addRecursiveMetadataUses();
- }
- void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
- SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
- while (!Queue.empty()) {
- const MDNode *M = cast<MDNode>(Queue.pop_back_val());
- for (const Metadata *Op : M->operands())
- if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
- if (MD.insert(OpMD))
- Queue.push_back(OpMD);
- }
- }
- void ScopedAliasMetadataDeepCloner::clone() {
- assert(MDMap.empty() && "clone() already called ?");
- SmallVector<TempMDTuple, 16> DummyNodes;
- for (const MDNode *I : MD) {
- DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None));
- MDMap[I].reset(DummyNodes.back().get());
- }
- // Create new metadata nodes to replace the dummy nodes, replacing old
- // metadata references with either a dummy node or an already-created new
- // node.
- SmallVector<Metadata *, 4> NewOps;
- for (const MDNode *I : MD) {
- for (const Metadata *Op : I->operands()) {
- if (const MDNode *M = dyn_cast<MDNode>(Op))
- NewOps.push_back(MDMap[M]);
- else
- NewOps.push_back(const_cast<Metadata *>(Op));
- }
- MDNode *NewM = MDNode::get(I->getContext(), NewOps);
- MDTuple *TempM = cast<MDTuple>(MDMap[I]);
- assert(TempM->isTemporary() && "Expected temporary node");
- TempM->replaceAllUsesWith(NewM);
- NewOps.clear();
- }
- }
- void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
- Function::iterator FEnd) {
- if (MDMap.empty())
- return; // Nothing to do.
- for (BasicBlock &BB : make_range(FStart, FEnd)) {
- for (Instruction &I : BB) {
- // TODO: The null checks for the MDMap.lookup() results should no longer
- // be necessary.
- if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
- if (MDNode *MNew = MDMap.lookup(M))
- I.setMetadata(LLVMContext::MD_alias_scope, MNew);
- if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
- if (MDNode *MNew = MDMap.lookup(M))
- I.setMetadata(LLVMContext::MD_noalias, MNew);
- if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
- if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
- Decl->setScopeList(MNew);
- }
- }
- }
- /// If the inlined function has noalias arguments,
- /// then add new alias scopes for each noalias argument, tag the mapped noalias
- /// parameters with noalias metadata specifying the new scope, and tag all
- /// non-derived loads, stores and memory intrinsics with the new alias scopes.
- static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
- const DataLayout &DL, AAResults *CalleeAAR,
- ClonedCodeInfo &InlinedFunctionInfo) {
- if (!EnableNoAliasConversion)
- return;
- const Function *CalledFunc = CB.getCalledFunction();
- SmallVector<const Argument *, 4> NoAliasArgs;
- for (const Argument &Arg : CalledFunc->args())
- if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
- NoAliasArgs.push_back(&Arg);
- if (NoAliasArgs.empty())
- return;
- // To do a good job, if a noalias variable is captured, we need to know if
- // the capture point dominates the particular use we're considering.
- DominatorTree DT;
- DT.recalculate(const_cast<Function&>(*CalledFunc));
- // noalias indicates that pointer values based on the argument do not alias
- // pointer values which are not based on it. So we add a new "scope" for each
- // noalias function argument. Accesses using pointers based on that argument
- // become part of that alias scope, accesses using pointers not based on that
- // argument are tagged as noalias with that scope.
- DenseMap<const Argument *, MDNode *> NewScopes;
- MDBuilder MDB(CalledFunc->getContext());
- // Create a new scope domain for this function.
- MDNode *NewDomain =
- MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
- for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
- const Argument *A = NoAliasArgs[i];
- std::string Name = std::string(CalledFunc->getName());
- if (A->hasName()) {
- Name += ": %";
- Name += A->getName();
- } else {
- Name += ": argument ";
- Name += utostr(i);
- }
- // Note: We always create a new anonymous root here. This is true regardless
- // of the linkage of the callee because the aliasing "scope" is not just a
- // property of the callee, but also all control dependencies in the caller.
- MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
- NewScopes.insert(std::make_pair(A, NewScope));
- if (UseNoAliasIntrinsic) {
- // Introduce a llvm.experimental.noalias.scope.decl for the noalias
- // argument.
- MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
- auto *NoAliasDecl =
- IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
- // Ignore the result for now. The result will be used when the
- // llvm.noalias intrinsic is introduced.
- (void)NoAliasDecl;
- }
- }
- // Iterate over all new instructions in the map; for all memory-access
- // instructions, add the alias scope metadata.
- for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
- VMI != VMIE; ++VMI) {
- if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
- if (!VMI->second)
- continue;
- Instruction *NI = dyn_cast<Instruction>(VMI->second);
- if (!NI || InlinedFunctionInfo.isSimplified(I, NI))
- continue;
- bool IsArgMemOnlyCall = false, IsFuncCall = false;
- SmallVector<const Value *, 2> PtrArgs;
- if (const LoadInst *LI = dyn_cast<LoadInst>(I))
- PtrArgs.push_back(LI->getPointerOperand());
- else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
- PtrArgs.push_back(SI->getPointerOperand());
- else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
- PtrArgs.push_back(VAAI->getPointerOperand());
- else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
- PtrArgs.push_back(CXI->getPointerOperand());
- else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
- PtrArgs.push_back(RMWI->getPointerOperand());
- else if (const auto *Call = dyn_cast<CallBase>(I)) {
- // If we know that the call does not access memory, then we'll still
- // know that about the inlined clone of this call site, and we don't
- // need to add metadata.
- if (Call->doesNotAccessMemory())
- continue;
- IsFuncCall = true;
- if (CalleeAAR) {
- FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
- // We'll retain this knowledge without additional metadata.
- if (AAResults::onlyAccessesInaccessibleMem(MRB))
- continue;
- if (AAResults::onlyAccessesArgPointees(MRB))
- IsArgMemOnlyCall = true;
- }
- for (Value *Arg : Call->args()) {
- // We need to check the underlying objects of all arguments, not just
- // the pointer arguments, because we might be passing pointers as
- // integers, etc.
- // However, if we know that the call only accesses pointer arguments,
- // then we only need to check the pointer arguments.
- if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
- continue;
- PtrArgs.push_back(Arg);
- }
- }
- // If we found no pointers, then this instruction is not suitable for
- // pairing with an instruction to receive aliasing metadata.
- // However, if this is a call, this we might just alias with none of the
- // noalias arguments.
- if (PtrArgs.empty() && !IsFuncCall)
- continue;
- // It is possible that there is only one underlying object, but you
- // need to go through several PHIs to see it, and thus could be
- // repeated in the Objects list.
- SmallPtrSet<const Value *, 4> ObjSet;
- SmallVector<Metadata *, 4> Scopes, NoAliases;
- SmallSetVector<const Argument *, 4> NAPtrArgs;
- for (const Value *V : PtrArgs) {
- SmallVector<const Value *, 4> Objects;
- getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
- for (const Value *O : Objects)
- ObjSet.insert(O);
- }
- // Figure out if we're derived from anything that is not a noalias
- // argument.
- bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
- for (const Value *V : ObjSet) {
- // Is this value a constant that cannot be derived from any pointer
- // value (we need to exclude constant expressions, for example, that
- // are formed from arithmetic on global symbols).
- bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
- isa<ConstantPointerNull>(V) ||
- isa<ConstantDataVector>(V) || isa<UndefValue>(V);
- if (IsNonPtrConst)
- continue;
- // If this is anything other than a noalias argument, then we cannot
- // completely describe the aliasing properties using alias.scope
- // metadata (and, thus, won't add any).
- if (const Argument *A = dyn_cast<Argument>(V)) {
- if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
- UsesAliasingPtr = true;
- } else {
- UsesAliasingPtr = true;
- }
- // If this is not some identified function-local object (which cannot
- // directly alias a noalias argument), or some other argument (which,
- // by definition, also cannot alias a noalias argument), then we could
- // alias a noalias argument that has been captured).
- if (!isa<Argument>(V) &&
- !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
- CanDeriveViaCapture = true;
- }
- // A function call can always get captured noalias pointers (via other
- // parameters, globals, etc.).
- if (IsFuncCall && !IsArgMemOnlyCall)
- CanDeriveViaCapture = true;
- // First, we want to figure out all of the sets with which we definitely
- // don't alias. Iterate over all noalias set, and add those for which:
- // 1. The noalias argument is not in the set of objects from which we
- // definitely derive.
- // 2. The noalias argument has not yet been captured.
- // An arbitrary function that might load pointers could see captured
- // noalias arguments via other noalias arguments or globals, and so we
- // must always check for prior capture.
- for (const Argument *A : NoAliasArgs) {
- if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
- // It might be tempting to skip the
- // PointerMayBeCapturedBefore check if
- // A->hasNoCaptureAttr() is true, but this is
- // incorrect because nocapture only guarantees
- // that no copies outlive the function, not
- // that the value cannot be locally captured.
- !PointerMayBeCapturedBefore(A,
- /* ReturnCaptures */ false,
- /* StoreCaptures */ false, I, &DT)))
- NoAliases.push_back(NewScopes[A]);
- }
- if (!NoAliases.empty())
- NI->setMetadata(LLVMContext::MD_noalias,
- MDNode::concatenate(
- NI->getMetadata(LLVMContext::MD_noalias),
- MDNode::get(CalledFunc->getContext(), NoAliases)));
- // Next, we want to figure out all of the sets to which we might belong.
- // We might belong to a set if the noalias argument is in the set of
- // underlying objects. If there is some non-noalias argument in our list
- // of underlying objects, then we cannot add a scope because the fact
- // that some access does not alias with any set of our noalias arguments
- // cannot itself guarantee that it does not alias with this access
- // (because there is some pointer of unknown origin involved and the
- // other access might also depend on this pointer). We also cannot add
- // scopes to arbitrary functions unless we know they don't access any
- // non-parameter pointer-values.
- bool CanAddScopes = !UsesAliasingPtr;
- if (CanAddScopes && IsFuncCall)
- CanAddScopes = IsArgMemOnlyCall;
- if (CanAddScopes)
- for (const Argument *A : NoAliasArgs) {
- if (ObjSet.count(A))
- Scopes.push_back(NewScopes[A]);
- }
- if (!Scopes.empty())
- NI->setMetadata(
- LLVMContext::MD_alias_scope,
- MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
- MDNode::get(CalledFunc->getContext(), Scopes)));
- }
- }
- }
- static bool MayContainThrowingOrExitingCall(Instruction *Begin,
- Instruction *End) {
- assert(Begin->getParent() == End->getParent() &&
- "Expected to be in same basic block!");
- return !llvm::isGuaranteedToTransferExecutionToSuccessor(
- Begin->getIterator(), End->getIterator(), InlinerAttributeWindow + 1);
- }
- static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
- AttrBuilder AB(CB.getContext(), CB.getAttributes().getRetAttrs());
- if (!AB.hasAttributes())
- return AB;
- AttrBuilder Valid(CB.getContext());
- // Only allow these white listed attributes to be propagated back to the
- // callee. This is because other attributes may only be valid on the call
- // itself, i.e. attributes such as signext and zeroext.
- if (auto DerefBytes = AB.getDereferenceableBytes())
- Valid.addDereferenceableAttr(DerefBytes);
- if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
- Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
- if (AB.contains(Attribute::NoAlias))
- Valid.addAttribute(Attribute::NoAlias);
- if (AB.contains(Attribute::NonNull))
- Valid.addAttribute(Attribute::NonNull);
- return Valid;
- }
- static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
- if (!UpdateReturnAttributes)
- return;
- AttrBuilder Valid = IdentifyValidAttributes(CB);
- if (!Valid.hasAttributes())
- return;
- auto *CalledFunction = CB.getCalledFunction();
- auto &Context = CalledFunction->getContext();
- for (auto &BB : *CalledFunction) {
- auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
- if (!RI || !isa<CallBase>(RI->getOperand(0)))
- continue;
- auto *RetVal = cast<CallBase>(RI->getOperand(0));
- // Check that the cloned RetVal exists and is a call, otherwise we cannot
- // add the attributes on the cloned RetVal. Simplification during inlining
- // could have transformed the cloned instruction.
- auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
- if (!NewRetVal)
- continue;
- // Backward propagation of attributes to the returned value may be incorrect
- // if it is control flow dependent.
- // Consider:
- // @callee {
- // %rv = call @foo()
- // %rv2 = call @bar()
- // if (%rv2 != null)
- // return %rv2
- // if (%rv == null)
- // exit()
- // return %rv
- // }
- // caller() {
- // %val = call nonnull @callee()
- // }
- // Here we cannot add the nonnull attribute on either foo or bar. So, we
- // limit the check to both RetVal and RI are in the same basic block and
- // there are no throwing/exiting instructions between these instructions.
- if (RI->getParent() != RetVal->getParent() ||
- MayContainThrowingOrExitingCall(RetVal, RI))
- continue;
- // Add to the existing attributes of NewRetVal, i.e. the cloned call
- // instruction.
- // NB! When we have the same attribute already existing on NewRetVal, but
- // with a differing value, the AttributeList's merge API honours the already
- // existing attribute value (i.e. attributes such as dereferenceable,
- // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
- AttributeList AL = NewRetVal->getAttributes();
- AttributeList NewAL = AL.addRetAttributes(Context, Valid);
- NewRetVal->setAttributes(NewAL);
- }
- }
- /// If the inlined function has non-byval align arguments, then
- /// add @llvm.assume-based alignment assumptions to preserve this information.
- static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
- if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
- return;
- AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
- auto &DL = CB.getCaller()->getParent()->getDataLayout();
- // To avoid inserting redundant assumptions, we should check for assumptions
- // already in the caller. To do this, we might need a DT of the caller.
- DominatorTree DT;
- bool DTCalculated = false;
- Function *CalledFunc = CB.getCalledFunction();
- for (Argument &Arg : CalledFunc->args()) {
- unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
- if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) {
- if (!DTCalculated) {
- DT.recalculate(*CB.getCaller());
- DTCalculated = true;
- }
- // If we can already prove the asserted alignment in the context of the
- // caller, then don't bother inserting the assumption.
- Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
- if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
- continue;
- CallInst *NewAsmp =
- IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
- AC->registerAssumption(cast<AssumeInst>(NewAsmp));
- }
- }
- }
- /// Once we have cloned code over from a callee into the caller,
- /// update the specified callgraph to reflect the changes we made.
- /// Note that it's possible that not all code was copied over, so only
- /// some edges of the callgraph may remain.
- static void UpdateCallGraphAfterInlining(CallBase &CB,
- Function::iterator FirstNewBlock,
- ValueToValueMapTy &VMap,
- InlineFunctionInfo &IFI) {
- CallGraph &CG = *IFI.CG;
- const Function *Caller = CB.getCaller();
- const Function *Callee = CB.getCalledFunction();
- CallGraphNode *CalleeNode = CG[Callee];
- CallGraphNode *CallerNode = CG[Caller];
- // Since we inlined some uninlined call sites in the callee into the caller,
- // add edges from the caller to all of the callees of the callee.
- CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
- // Consider the case where CalleeNode == CallerNode.
- CallGraphNode::CalledFunctionsVector CallCache;
- if (CalleeNode == CallerNode) {
- CallCache.assign(I, E);
- I = CallCache.begin();
- E = CallCache.end();
- }
- for (; I != E; ++I) {
- // Skip 'refererence' call records.
- if (!I->first)
- continue;
- const Value *OrigCall = *I->first;
- ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
- // Only copy the edge if the call was inlined!
- if (VMI == VMap.end() || VMI->second == nullptr)
- continue;
- // If the call was inlined, but then constant folded, there is no edge to
- // add. Check for this case.
- auto *NewCall = dyn_cast<CallBase>(VMI->second);
- if (!NewCall)
- continue;
- // We do not treat intrinsic calls like real function calls because we
- // expect them to become inline code; do not add an edge for an intrinsic.
- if (NewCall->getCalledFunction() &&
- NewCall->getCalledFunction()->isIntrinsic())
- continue;
- // Remember that this call site got inlined for the client of
- // InlineFunction.
- IFI.InlinedCalls.push_back(NewCall);
- // It's possible that inlining the callsite will cause it to go from an
- // indirect to a direct call by resolving a function pointer. If this
- // happens, set the callee of the new call site to a more precise
- // destination. This can also happen if the call graph node of the caller
- // was just unnecessarily imprecise.
- if (!I->second->getFunction())
- if (Function *F = NewCall->getCalledFunction()) {
- // Indirect call site resolved to direct call.
- CallerNode->addCalledFunction(NewCall, CG[F]);
- continue;
- }
- CallerNode->addCalledFunction(NewCall, I->second);
- }
- // Update the call graph by deleting the edge from Callee to Caller. We must
- // do this after the loop above in case Caller and Callee are the same.
- CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
- }
- static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src,
- Module *M, BasicBlock *InsertBlock,
- InlineFunctionInfo &IFI) {
- IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
- Value *Size =
- Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType));
- // Always generate a memcpy of alignment 1 here because we don't know
- // the alignment of the src pointer. Other optimizations can infer
- // better alignment.
- Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
- /*SrcAlign*/ Align(1), Size);
- }
- /// When inlining a call site that has a byval argument,
- /// we have to make the implicit memcpy explicit by adding it.
- static Value *HandleByValArgument(Type *ByValType, Value *Arg,
- Instruction *TheCall,
- const Function *CalledFunc,
- InlineFunctionInfo &IFI,
- unsigned ByValAlignment) {
- assert(cast<PointerType>(Arg->getType())
- ->isOpaqueOrPointeeTypeMatches(ByValType));
- Function *Caller = TheCall->getFunction();
- const DataLayout &DL = Caller->getParent()->getDataLayout();
- // If the called function is readonly, then it could not mutate the caller's
- // copy of the byval'd memory. In this case, it is safe to elide the copy and
- // temporary.
- if (CalledFunc->onlyReadsMemory()) {
- // If the byval argument has a specified alignment that is greater than the
- // passed in pointer, then we either have to round up the input pointer or
- // give up on this transformation.
- if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
- return Arg;
- AssumptionCache *AC =
- IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
- // If the pointer is already known to be sufficiently aligned, or if we can
- // round it up to a larger alignment, then we don't need a temporary.
- if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
- AC) >= ByValAlignment)
- return Arg;
- // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
- // for code quality, but rarely happens and is required for correctness.
- }
- // Create the alloca. If we have DataLayout, use nice alignment.
- Align Alignment(DL.getPrefTypeAlignment(ByValType));
- // If the byval had an alignment specified, we *must* use at least that
- // alignment, as it is required by the byval argument (and uses of the
- // pointer inside the callee).
- Alignment = max(Alignment, MaybeAlign(ByValAlignment));
- Value *NewAlloca =
- new AllocaInst(ByValType, DL.getAllocaAddrSpace(), nullptr, Alignment,
- Arg->getName(), &*Caller->begin()->begin());
- IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
- // Uses of the argument in the function should use our new alloca
- // instead.
- return NewAlloca;
- }
- // Check whether this Value is used by a lifetime intrinsic.
- static bool isUsedByLifetimeMarker(Value *V) {
- for (User *U : V->users())
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
- if (II->isLifetimeStartOrEnd())
- return true;
- return false;
- }
- // Check whether the given alloca already has
- // lifetime.start or lifetime.end intrinsics.
- static bool hasLifetimeMarkers(AllocaInst *AI) {
- Type *Ty = AI->getType();
- Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
- Ty->getPointerAddressSpace());
- if (Ty == Int8PtrTy)
- return isUsedByLifetimeMarker(AI);
- // Do a scan to find all the casts to i8*.
- for (User *U : AI->users()) {
- if (U->getType() != Int8PtrTy) continue;
- if (U->stripPointerCasts() != AI) continue;
- if (isUsedByLifetimeMarker(U))
- return true;
- }
- return false;
- }
- /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
- /// block. Allocas used in inalloca calls and allocas of dynamic array size
- /// cannot be static.
- static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
- return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
- }
- /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
- /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
- static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
- LLVMContext &Ctx,
- DenseMap<const MDNode *, MDNode *> &IANodes) {
- auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
- return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
- OrigDL.getScope(), IA);
- }
- /// Update inlined instructions' line numbers to
- /// to encode location where these instructions are inlined.
- static void fixupLineNumbers(Function *Fn, Function::iterator FI,
- Instruction *TheCall, bool CalleeHasDebugInfo) {
- const DebugLoc &TheCallDL = TheCall->getDebugLoc();
- if (!TheCallDL)
- return;
- auto &Ctx = Fn->getContext();
- DILocation *InlinedAtNode = TheCallDL;
- // Create a unique call site, not to be confused with any other call from the
- // same location.
- InlinedAtNode = DILocation::getDistinct(
- Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
- InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
- // Cache the inlined-at nodes as they're built so they are reused, without
- // this every instruction's inlined-at chain would become distinct from each
- // other.
- DenseMap<const MDNode *, MDNode *> IANodes;
- // Check if we are not generating inline line tables and want to use
- // the call site location instead.
- bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
- for (; FI != Fn->end(); ++FI) {
- for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
- BI != BE; ++BI) {
- // Loop metadata needs to be updated so that the start and end locs
- // reference inlined-at locations.
- auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode,
- &IANodes](Metadata *MD) -> Metadata * {
- if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
- return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get();
- return MD;
- };
- updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
- if (!NoInlineLineTables)
- if (DebugLoc DL = BI->getDebugLoc()) {
- DebugLoc IDL =
- inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
- BI->setDebugLoc(IDL);
- continue;
- }
- if (CalleeHasDebugInfo && !NoInlineLineTables)
- continue;
- // If the inlined instruction has no line number, or if inline info
- // is not being generated, make it look as if it originates from the call
- // location. This is important for ((__always_inline, __nodebug__))
- // functions which must use caller location for all instructions in their
- // function body.
- // Don't update static allocas, as they may get moved later.
- if (auto *AI = dyn_cast<AllocaInst>(BI))
- if (allocaWouldBeStaticInEntry(AI))
- continue;
- BI->setDebugLoc(TheCallDL);
- }
- // Remove debug info intrinsics if we're not keeping inline info.
- if (NoInlineLineTables) {
- BasicBlock::iterator BI = FI->begin();
- while (BI != FI->end()) {
- if (isa<DbgInfoIntrinsic>(BI)) {
- BI = BI->eraseFromParent();
- continue;
- }
- ++BI;
- }
- }
- }
- }
- /// Update the block frequencies of the caller after a callee has been inlined.
- ///
- /// Each block cloned into the caller has its block frequency scaled by the
- /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
- /// callee's entry block gets the same frequency as the callsite block and the
- /// relative frequencies of all cloned blocks remain the same after cloning.
- static void updateCallerBFI(BasicBlock *CallSiteBlock,
- const ValueToValueMapTy &VMap,
- BlockFrequencyInfo *CallerBFI,
- BlockFrequencyInfo *CalleeBFI,
- const BasicBlock &CalleeEntryBlock) {
- SmallPtrSet<BasicBlock *, 16> ClonedBBs;
- for (auto Entry : VMap) {
- if (!isa<BasicBlock>(Entry.first) || !Entry.second)
- continue;
- auto *OrigBB = cast<BasicBlock>(Entry.first);
- auto *ClonedBB = cast<BasicBlock>(Entry.second);
- uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
- if (!ClonedBBs.insert(ClonedBB).second) {
- // Multiple blocks in the callee might get mapped to one cloned block in
- // the caller since we prune the callee as we clone it. When that happens,
- // we want to use the maximum among the original blocks' frequencies.
- uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
- if (NewFreq > Freq)
- Freq = NewFreq;
- }
- CallerBFI->setBlockFreq(ClonedBB, Freq);
- }
- BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
- CallerBFI->setBlockFreqAndScale(
- EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
- ClonedBBs);
- }
- /// Update the branch metadata for cloned call instructions.
- static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
- const ProfileCount &CalleeEntryCount,
- const CallBase &TheCall, ProfileSummaryInfo *PSI,
- BlockFrequencyInfo *CallerBFI) {
- if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1)
- return;
- auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
- int64_t CallCount =
- std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount());
- updateProfileCallee(Callee, -CallCount, &VMap);
- }
- void llvm::updateProfileCallee(
- Function *Callee, int64_t EntryDelta,
- const ValueMap<const Value *, WeakTrackingVH> *VMap) {
- auto CalleeCount = Callee->getEntryCount();
- if (!CalleeCount.hasValue())
- return;
- const uint64_t PriorEntryCount = CalleeCount->getCount();
- // Since CallSiteCount is an estimate, it could exceed the original callee
- // count and has to be set to 0 so guard against underflow.
- const uint64_t NewEntryCount =
- (EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount)
- ? 0
- : PriorEntryCount + EntryDelta;
- // During inlining ?
- if (VMap) {
- uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount;
- for (auto Entry : *VMap)
- if (isa<CallInst>(Entry.first))
- if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
- CI->updateProfWeight(CloneEntryCount, PriorEntryCount);
- }
- if (EntryDelta) {
- Callee->setEntryCount(NewEntryCount);
- for (BasicBlock &BB : *Callee)
- // No need to update the callsite if it is pruned during inlining.
- if (!VMap || VMap->count(&BB))
- for (Instruction &I : BB)
- if (CallInst *CI = dyn_cast<CallInst>(&I))
- CI->updateProfWeight(NewEntryCount, PriorEntryCount);
- }
- }
- /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
- /// result is implicitly consumed by a call to retainRV or claimRV immediately
- /// after the call. This function inlines the retainRV/claimRV calls.
- ///
- /// There are three cases to consider:
- ///
- /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
- /// object in the callee return block, the autoreleaseRV call and the
- /// retainRV/claimRV call in the caller cancel out. If the call in the caller
- /// is a claimRV call, a call to objc_release is emitted.
- ///
- /// 2. If there is a call in the callee return block that doesn't have operand
- /// bundle "clang.arc.attachedcall", the operand bundle on the original call
- /// is transferred to the call in the callee.
- ///
- /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
- /// a retainRV call.
- static void
- inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind,
- const SmallVectorImpl<ReturnInst *> &Returns) {
- Module *Mod = CB.getModule();
- assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function");
- bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV,
- IsUnsafeClaimRV = !IsRetainRV;
- for (auto *RI : Returns) {
- Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
- bool InsertRetainCall = IsRetainRV;
- IRBuilder<> Builder(RI->getContext());
- // Walk backwards through the basic block looking for either a matching
- // autoreleaseRV call or an unannotated call.
- auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()),
- RI->getParent()->rend());
- for (Instruction &I : llvm::make_early_inc_range(InstRange)) {
- // Ignore casts.
- if (isa<CastInst>(I))
- continue;
- if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
- if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue ||
- !II->hasNUses(0) ||
- objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd)
- break;
- // If we've found a matching authoreleaseRV call:
- // - If claimRV is attached to the call, insert a call to objc_release
- // and erase the autoreleaseRV call.
- // - If retainRV is attached to the call, just erase the autoreleaseRV
- // call.
- if (IsUnsafeClaimRV) {
- Builder.SetInsertPoint(II);
- Function *IFn =
- Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
- Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
- Builder.CreateCall(IFn, BC, "");
- }
- II->eraseFromParent();
- InsertRetainCall = false;
- break;
- }
- auto *CI = dyn_cast<CallInst>(&I);
- if (!CI)
- break;
- if (objcarc::GetRCIdentityRoot(CI) != RetOpnd ||
- objcarc::hasAttachedCallOpBundle(CI))
- break;
- // If we've found an unannotated call that defines RetOpnd, add a
- // "clang.arc.attachedcall" operand bundle.
- Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)};
- OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
- auto *NewCall = CallBase::addOperandBundle(
- CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI);
- NewCall->copyMetadata(*CI);
- CI->replaceAllUsesWith(NewCall);
- CI->eraseFromParent();
- InsertRetainCall = false;
- break;
- }
- if (InsertRetainCall) {
- // The retainRV is attached to the call and we've failed to find a
- // matching autoreleaseRV or an annotated call in the callee. Emit a call
- // to objc_retain.
- Builder.SetInsertPoint(RI);
- Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
- Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
- Builder.CreateCall(IFn, BC, "");
- }
- }
- }
- /// This function inlines the called function into the basic block of the
- /// caller. This returns false if it is not possible to inline this call.
- /// The program is still in a well defined state if this occurs though.
- ///
- /// Note that this only does one level of inlining. For example, if the
- /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
- /// exists in the instruction stream. Similarly this will inline a recursive
- /// function by one level.
- llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
- AAResults *CalleeAAR,
- bool InsertLifetime,
- Function *ForwardVarArgsTo) {
- assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
- // FIXME: we don't inline callbr yet.
- if (isa<CallBrInst>(CB))
- return InlineResult::failure("We don't inline callbr yet.");
- // If IFI has any state in it, zap it before we fill it in.
- IFI.reset();
- Function *CalledFunc = CB.getCalledFunction();
- if (!CalledFunc || // Can't inline external function or indirect
- CalledFunc->isDeclaration()) // call!
- return InlineResult::failure("external or indirect");
- // The inliner does not know how to inline through calls with operand bundles
- // in general ...
- if (CB.hasOperandBundles()) {
- for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
- uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
- // ... but it knows how to inline through "deopt" operand bundles ...
- if (Tag == LLVMContext::OB_deopt)
- continue;
- // ... and "funclet" operand bundles.
- if (Tag == LLVMContext::OB_funclet)
- continue;
- if (Tag == LLVMContext::OB_clang_arc_attachedcall)
- continue;
- return InlineResult::failure("unsupported operand bundle");
- }
- }
- // If the call to the callee cannot throw, set the 'nounwind' flag on any
- // calls that we inline.
- bool MarkNoUnwind = CB.doesNotThrow();
- BasicBlock *OrigBB = CB.getParent();
- Function *Caller = OrigBB->getParent();
- // GC poses two hazards to inlining, which only occur when the callee has GC:
- // 1. If the caller has no GC, then the callee's GC must be propagated to the
- // caller.
- // 2. If the caller has a differing GC, it is invalid to inline.
- if (CalledFunc->hasGC()) {
- if (!Caller->hasGC())
- Caller->setGC(CalledFunc->getGC());
- else if (CalledFunc->getGC() != Caller->getGC())
- return InlineResult::failure("incompatible GC");
- }
- // Get the personality function from the callee if it contains a landing pad.
- Constant *CalledPersonality =
- CalledFunc->hasPersonalityFn()
- ? CalledFunc->getPersonalityFn()->stripPointerCasts()
- : nullptr;
- // Find the personality function used by the landing pads of the caller. If it
- // exists, then check to see that it matches the personality function used in
- // the callee.
- Constant *CallerPersonality =
- Caller->hasPersonalityFn()
- ? Caller->getPersonalityFn()->stripPointerCasts()
- : nullptr;
- if (CalledPersonality) {
- if (!CallerPersonality)
- Caller->setPersonalityFn(CalledPersonality);
- // If the personality functions match, then we can perform the
- // inlining. Otherwise, we can't inline.
- // TODO: This isn't 100% true. Some personality functions are proper
- // supersets of others and can be used in place of the other.
- else if (CalledPersonality != CallerPersonality)
- return InlineResult::failure("incompatible personality");
- }
- // We need to figure out which funclet the callsite was in so that we may
- // properly nest the callee.
- Instruction *CallSiteEHPad = nullptr;
- if (CallerPersonality) {
- EHPersonality Personality = classifyEHPersonality(CallerPersonality);
- if (isScopedEHPersonality(Personality)) {
- Optional<OperandBundleUse> ParentFunclet =
- CB.getOperandBundle(LLVMContext::OB_funclet);
- if (ParentFunclet)
- CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
- // OK, the inlining site is legal. What about the target function?
- if (CallSiteEHPad) {
- if (Personality == EHPersonality::MSVC_CXX) {
- // The MSVC personality cannot tolerate catches getting inlined into
- // cleanup funclets.
- if (isa<CleanupPadInst>(CallSiteEHPad)) {
- // Ok, the call site is within a cleanuppad. Let's check the callee
- // for catchpads.
- for (const BasicBlock &CalledBB : *CalledFunc) {
- if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
- return InlineResult::failure("catch in cleanup funclet");
- }
- }
- } else if (isAsynchronousEHPersonality(Personality)) {
- // SEH is even less tolerant, there may not be any sort of exceptional
- // funclet in the callee.
- for (const BasicBlock &CalledBB : *CalledFunc) {
- if (CalledBB.isEHPad())
- return InlineResult::failure("SEH in cleanup funclet");
- }
- }
- }
- }
- }
- // Determine if we are dealing with a call in an EHPad which does not unwind
- // to caller.
- bool EHPadForCallUnwindsLocally = false;
- if (CallSiteEHPad && isa<CallInst>(CB)) {
- UnwindDestMemoTy FuncletUnwindMap;
- Value *CallSiteUnwindDestToken =
- getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
- EHPadForCallUnwindsLocally =
- CallSiteUnwindDestToken &&
- !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
- }
- // Get an iterator to the last basic block in the function, which will have
- // the new function inlined after it.
- Function::iterator LastBlock = --Caller->end();
- // Make sure to capture all of the return instructions from the cloned
- // function.
- SmallVector<ReturnInst*, 8> Returns;
- ClonedCodeInfo InlinedFunctionInfo;
- Function::iterator FirstNewBlock;
- { // Scope to destroy VMap after cloning.
- ValueToValueMapTy VMap;
- struct ByValInit {
- Value *Dst;
- Value *Src;
- Type *Ty;
- };
- // Keep a list of pair (dst, src) to emit byval initializations.
- SmallVector<ByValInit, 4> ByValInits;
- // When inlining a function that contains noalias scope metadata,
- // this metadata needs to be cloned so that the inlined blocks
- // have different "unique scopes" at every call site.
- // Track the metadata that must be cloned. Do this before other changes to
- // the function, so that we do not get in trouble when inlining caller ==
- // callee.
- ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
- auto &DL = Caller->getParent()->getDataLayout();
- // Calculate the vector of arguments to pass into the function cloner, which
- // matches up the formal to the actual argument values.
- auto AI = CB.arg_begin();
- unsigned ArgNo = 0;
- for (Function::arg_iterator I = CalledFunc->arg_begin(),
- E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
- Value *ActualArg = *AI;
- // When byval arguments actually inlined, we need to make the copy implied
- // by them explicit. However, we don't do this if the callee is readonly
- // or readnone, because the copy would be unneeded: the callee doesn't
- // modify the struct.
- if (CB.isByValArgument(ArgNo)) {
- ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg,
- &CB, CalledFunc, IFI,
- CalledFunc->getParamAlignment(ArgNo));
- if (ActualArg != *AI)
- ByValInits.push_back(
- {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)});
- }
- VMap[&*I] = ActualArg;
- }
- // TODO: Remove this when users have been updated to the assume bundles.
- // Add alignment assumptions if necessary. We do this before the inlined
- // instructions are actually cloned into the caller so that we can easily
- // check what will be known at the start of the inlined code.
- AddAlignmentAssumptions(CB, IFI);
- AssumptionCache *AC =
- IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
- /// Preserve all attributes on of the call and its parameters.
- salvageKnowledge(&CB, AC);
- // We want the inliner to prune the code as it copies. We would LOVE to
- // have no dead or constant instructions leftover after inlining occurs
- // (which can happen, e.g., because an argument was constant), but we'll be
- // happy with whatever the cloner can do.
- CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
- /*ModuleLevelChanges=*/false, Returns, ".i",
- &InlinedFunctionInfo);
- // Remember the first block that is newly cloned over.
- FirstNewBlock = LastBlock; ++FirstNewBlock;
- // Insert retainRV/clainRV runtime calls.
- objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB);
- if (RVCallKind != objcarc::ARCInstKind::None)
- inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns);
- // Updated caller/callee profiles only when requested. For sample loader
- // inlining, the context-sensitive inlinee profile doesn't need to be
- // subtracted from callee profile, and the inlined clone also doesn't need
- // to be scaled based on call site count.
- if (IFI.UpdateProfile) {
- if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
- // Update the BFI of blocks cloned into the caller.
- updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
- CalledFunc->front());
- if (auto Profile = CalledFunc->getEntryCount())
- updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI,
- IFI.CallerBFI);
- }
- // Inject byval arguments initialization.
- for (ByValInit &Init : ByValInits)
- HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(),
- &*FirstNewBlock, IFI);
- Optional<OperandBundleUse> ParentDeopt =
- CB.getOperandBundle(LLVMContext::OB_deopt);
- if (ParentDeopt) {
- SmallVector<OperandBundleDef, 2> OpDefs;
- for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
- CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
- if (!ICS)
- continue; // instruction was DCE'd or RAUW'ed to undef
- OpDefs.clear();
- OpDefs.reserve(ICS->getNumOperandBundles());
- for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
- ++COBi) {
- auto ChildOB = ICS->getOperandBundleAt(COBi);
- if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
- // If the inlined call has other operand bundles, let them be
- OpDefs.emplace_back(ChildOB);
- continue;
- }
- // It may be useful to separate this logic (of handling operand
- // bundles) out to a separate "policy" component if this gets crowded.
- // Prepend the parent's deoptimization continuation to the newly
- // inlined call's deoptimization continuation.
- std::vector<Value *> MergedDeoptArgs;
- MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
- ChildOB.Inputs.size());
- llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
- llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
- OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
- }
- Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
- // Note: the RAUW does the appropriate fixup in VMap, so we need to do
- // this even if the call returns void.
- ICS->replaceAllUsesWith(NewI);
- VH = nullptr;
- ICS->eraseFromParent();
- }
- }
- // Update the callgraph if requested.
- if (IFI.CG)
- UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
- // For 'nodebug' functions, the associated DISubprogram is always null.
- // Conservatively avoid propagating the callsite debug location to
- // instructions inlined from a function whose DISubprogram is not null.
- fixupLineNumbers(Caller, FirstNewBlock, &CB,
- CalledFunc->getSubprogram() != nullptr);
- // Now clone the inlined noalias scope metadata.
- SAMetadataCloner.clone();
- SAMetadataCloner.remap(FirstNewBlock, Caller->end());
- // Add noalias metadata if necessary.
- AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo);
- // Clone return attributes on the callsite into the calls within the inlined
- // function which feed into its return value.
- AddReturnAttributes(CB, VMap);
- // Propagate metadata on the callsite if necessary.
- PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
- // Register any cloned assumptions.
- if (IFI.GetAssumptionCache)
- for (BasicBlock &NewBlock :
- make_range(FirstNewBlock->getIterator(), Caller->end()))
- for (Instruction &I : NewBlock)
- if (auto *II = dyn_cast<AssumeInst>(&I))
- IFI.GetAssumptionCache(*Caller).registerAssumption(II);
- }
- // If there are any alloca instructions in the block that used to be the entry
- // block for the callee, move them to the entry block of the caller. First
- // calculate which instruction they should be inserted before. We insert the
- // instructions at the end of the current alloca list.
- {
- BasicBlock::iterator InsertPoint = Caller->begin()->begin();
- for (BasicBlock::iterator I = FirstNewBlock->begin(),
- E = FirstNewBlock->end(); I != E; ) {
- AllocaInst *AI = dyn_cast<AllocaInst>(I++);
- if (!AI) continue;
- // If the alloca is now dead, remove it. This often occurs due to code
- // specialization.
- if (AI->use_empty()) {
- AI->eraseFromParent();
- continue;
- }
- if (!allocaWouldBeStaticInEntry(AI))
- continue;
- // Keep track of the static allocas that we inline into the caller.
- IFI.StaticAllocas.push_back(AI);
- // Scan for the block of allocas that we can move over, and move them
- // all at once.
- while (isa<AllocaInst>(I) &&
- !cast<AllocaInst>(I)->use_empty() &&
- allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
- IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
- ++I;
- }
- // Transfer all of the allocas over in a block. Using splice means
- // that the instructions aren't removed from the symbol table, then
- // reinserted.
- Caller->getEntryBlock().getInstList().splice(
- InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
- }
- }
- SmallVector<Value*,4> VarArgsToForward;
- SmallVector<AttributeSet, 4> VarArgsAttrs;
- for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
- i < CB.arg_size(); i++) {
- VarArgsToForward.push_back(CB.getArgOperand(i));
- VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i));
- }
- bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
- if (InlinedFunctionInfo.ContainsCalls) {
- CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
- if (CallInst *CI = dyn_cast<CallInst>(&CB))
- CallSiteTailKind = CI->getTailCallKind();
- // For inlining purposes, the "notail" marker is the same as no marker.
- if (CallSiteTailKind == CallInst::TCK_NoTail)
- CallSiteTailKind = CallInst::TCK_None;
- for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
- ++BB) {
- for (Instruction &I : llvm::make_early_inc_range(*BB)) {
- CallInst *CI = dyn_cast<CallInst>(&I);
- if (!CI)
- continue;
- // Forward varargs from inlined call site to calls to the
- // ForwardVarArgsTo function, if requested, and to musttail calls.
- if (!VarArgsToForward.empty() &&
- ((ForwardVarArgsTo &&
- CI->getCalledFunction() == ForwardVarArgsTo) ||
- CI->isMustTailCall())) {
- // Collect attributes for non-vararg parameters.
- AttributeList Attrs = CI->getAttributes();
- SmallVector<AttributeSet, 8> ArgAttrs;
- if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
- for (unsigned ArgNo = 0;
- ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
- ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
- }
- // Add VarArg attributes.
- ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
- Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(),
- Attrs.getRetAttrs(), ArgAttrs);
- // Add VarArgs to existing parameters.
- SmallVector<Value *, 6> Params(CI->args());
- Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
- CallInst *NewCI = CallInst::Create(
- CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
- NewCI->setDebugLoc(CI->getDebugLoc());
- NewCI->setAttributes(Attrs);
- NewCI->setCallingConv(CI->getCallingConv());
- CI->replaceAllUsesWith(NewCI);
- CI->eraseFromParent();
- CI = NewCI;
- }
- if (Function *F = CI->getCalledFunction())
- InlinedDeoptimizeCalls |=
- F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
- // We need to reduce the strength of any inlined tail calls. For
- // musttail, we have to avoid introducing potential unbounded stack
- // growth. For example, if functions 'f' and 'g' are mutually recursive
- // with musttail, we can inline 'g' into 'f' so long as we preserve
- // musttail on the cloned call to 'f'. If either the inlined call site
- // or the cloned call site is *not* musttail, the program already has
- // one frame of stack growth, so it's safe to remove musttail. Here is
- // a table of example transformations:
- //
- // f -> musttail g -> musttail f ==> f -> musttail f
- // f -> musttail g -> tail f ==> f -> tail f
- // f -> g -> musttail f ==> f -> f
- // f -> g -> tail f ==> f -> f
- //
- // Inlined notail calls should remain notail calls.
- CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
- if (ChildTCK != CallInst::TCK_NoTail)
- ChildTCK = std::min(CallSiteTailKind, ChildTCK);
- CI->setTailCallKind(ChildTCK);
- InlinedMustTailCalls |= CI->isMustTailCall();
- // Calls inlined through a 'nounwind' call site should be marked
- // 'nounwind'.
- if (MarkNoUnwind)
- CI->setDoesNotThrow();
- }
- }
- }
- // Leave lifetime markers for the static alloca's, scoping them to the
- // function we just inlined.
- // We need to insert lifetime intrinsics even at O0 to avoid invalid
- // access caused by multithreaded coroutines. The check
- // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only.
- if ((InsertLifetime || Caller->isPresplitCoroutine()) &&
- !IFI.StaticAllocas.empty()) {
- IRBuilder<> builder(&FirstNewBlock->front());
- for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
- AllocaInst *AI = IFI.StaticAllocas[ai];
- // Don't mark swifterror allocas. They can't have bitcast uses.
- if (AI->isSwiftError())
- continue;
- // If the alloca is already scoped to something smaller than the whole
- // function then there's no need to add redundant, less accurate markers.
- if (hasLifetimeMarkers(AI))
- continue;
- // Try to determine the size of the allocation.
- ConstantInt *AllocaSize = nullptr;
- if (ConstantInt *AIArraySize =
- dyn_cast<ConstantInt>(AI->getArraySize())) {
- auto &DL = Caller->getParent()->getDataLayout();
- Type *AllocaType = AI->getAllocatedType();
- TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
- uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
- // Don't add markers for zero-sized allocas.
- if (AllocaArraySize == 0)
- continue;
- // Check that array size doesn't saturate uint64_t and doesn't
- // overflow when it's multiplied by type size.
- if (!AllocaTypeSize.isScalable() &&
- AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
- std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
- AllocaTypeSize.getFixedSize()) {
- AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
- AllocaArraySize * AllocaTypeSize);
- }
- }
- builder.CreateLifetimeStart(AI, AllocaSize);
- for (ReturnInst *RI : Returns) {
- // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
- // call and a return. The return kills all local allocas.
- if (InlinedMustTailCalls &&
- RI->getParent()->getTerminatingMustTailCall())
- continue;
- if (InlinedDeoptimizeCalls &&
- RI->getParent()->getTerminatingDeoptimizeCall())
- continue;
- IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
- }
- }
- }
- // If the inlined code contained dynamic alloca instructions, wrap the inlined
- // code with llvm.stacksave/llvm.stackrestore intrinsics.
- if (InlinedFunctionInfo.ContainsDynamicAllocas) {
- Module *M = Caller->getParent();
- // Get the two intrinsics we care about.
- Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
- Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
- // Insert the llvm.stacksave.
- CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
- .CreateCall(StackSave, {}, "savedstack");
- // Insert a call to llvm.stackrestore before any return instructions in the
- // inlined function.
- for (ReturnInst *RI : Returns) {
- // Don't insert llvm.stackrestore calls between a musttail or deoptimize
- // call and a return. The return will restore the stack pointer.
- if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
- continue;
- if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
- continue;
- IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
- }
- }
- // If we are inlining for an invoke instruction, we must make sure to rewrite
- // any call instructions into invoke instructions. This is sensitive to which
- // funclet pads were top-level in the inlinee, so must be done before
- // rewriting the "parent pad" links.
- if (auto *II = dyn_cast<InvokeInst>(&CB)) {
- BasicBlock *UnwindDest = II->getUnwindDest();
- Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
- if (isa<LandingPadInst>(FirstNonPHI)) {
- HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
- } else {
- HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
- }
- }
- // Update the lexical scopes of the new funclets and callsites.
- // Anything that had 'none' as its parent is now nested inside the callsite's
- // EHPad.
- if (CallSiteEHPad) {
- for (Function::iterator BB = FirstNewBlock->getIterator(),
- E = Caller->end();
- BB != E; ++BB) {
- // Add bundle operands to any top-level call sites.
- SmallVector<OperandBundleDef, 1> OpBundles;
- for (Instruction &II : llvm::make_early_inc_range(*BB)) {
- CallBase *I = dyn_cast<CallBase>(&II);
- if (!I)
- continue;
- // Skip call sites which are nounwind intrinsics.
- auto *CalledFn =
- dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
- if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow())
- continue;
- // Skip call sites which already have a "funclet" bundle.
- if (I->getOperandBundle(LLVMContext::OB_funclet))
- continue;
- I->getOperandBundlesAsDefs(OpBundles);
- OpBundles.emplace_back("funclet", CallSiteEHPad);
- Instruction *NewInst = CallBase::Create(I, OpBundles, I);
- NewInst->takeName(I);
- I->replaceAllUsesWith(NewInst);
- I->eraseFromParent();
- OpBundles.clear();
- }
- // It is problematic if the inlinee has a cleanupret which unwinds to
- // caller and we inline it into a call site which doesn't unwind but into
- // an EH pad that does. Such an edge must be dynamically unreachable.
- // As such, we replace the cleanupret with unreachable.
- if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
- if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
- changeToUnreachable(CleanupRet);
- Instruction *I = BB->getFirstNonPHI();
- if (!I->isEHPad())
- continue;
- if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
- if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
- CatchSwitch->setParentPad(CallSiteEHPad);
- } else {
- auto *FPI = cast<FuncletPadInst>(I);
- if (isa<ConstantTokenNone>(FPI->getParentPad()))
- FPI->setParentPad(CallSiteEHPad);
- }
- }
- }
- if (InlinedDeoptimizeCalls) {
- // We need to at least remove the deoptimizing returns from the Return set,
- // so that the control flow from those returns does not get merged into the
- // caller (but terminate it instead). If the caller's return type does not
- // match the callee's return type, we also need to change the return type of
- // the intrinsic.
- if (Caller->getReturnType() == CB.getType()) {
- llvm::erase_if(Returns, [](ReturnInst *RI) {
- return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
- });
- } else {
- SmallVector<ReturnInst *, 8> NormalReturns;
- Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
- Caller->getParent(), Intrinsic::experimental_deoptimize,
- {Caller->getReturnType()});
- for (ReturnInst *RI : Returns) {
- CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
- if (!DeoptCall) {
- NormalReturns.push_back(RI);
- continue;
- }
- // The calling convention on the deoptimize call itself may be bogus,
- // since the code we're inlining may have undefined behavior (and may
- // never actually execute at runtime); but all
- // @llvm.experimental.deoptimize declarations have to have the same
- // calling convention in a well-formed module.
- auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
- NewDeoptIntrinsic->setCallingConv(CallingConv);
- auto *CurBB = RI->getParent();
- RI->eraseFromParent();
- SmallVector<Value *, 4> CallArgs(DeoptCall->args());
- SmallVector<OperandBundleDef, 1> OpBundles;
- DeoptCall->getOperandBundlesAsDefs(OpBundles);
- auto DeoptAttributes = DeoptCall->getAttributes();
- DeoptCall->eraseFromParent();
- assert(!OpBundles.empty() &&
- "Expected at least the deopt operand bundle");
- IRBuilder<> Builder(CurBB);
- CallInst *NewDeoptCall =
- Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
- NewDeoptCall->setCallingConv(CallingConv);
- NewDeoptCall->setAttributes(DeoptAttributes);
- if (NewDeoptCall->getType()->isVoidTy())
- Builder.CreateRetVoid();
- else
- Builder.CreateRet(NewDeoptCall);
- }
- // Leave behind the normal returns so we can merge control flow.
- std::swap(Returns, NormalReturns);
- }
- }
- // Handle any inlined musttail call sites. In order for a new call site to be
- // musttail, the source of the clone and the inlined call site must have been
- // musttail. Therefore it's safe to return without merging control into the
- // phi below.
- if (InlinedMustTailCalls) {
- // Check if we need to bitcast the result of any musttail calls.
- Type *NewRetTy = Caller->getReturnType();
- bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
- // Handle the returns preceded by musttail calls separately.
- SmallVector<ReturnInst *, 8> NormalReturns;
- for (ReturnInst *RI : Returns) {
- CallInst *ReturnedMustTail =
- RI->getParent()->getTerminatingMustTailCall();
- if (!ReturnedMustTail) {
- NormalReturns.push_back(RI);
- continue;
- }
- if (!NeedBitCast)
- continue;
- // Delete the old return and any preceding bitcast.
- BasicBlock *CurBB = RI->getParent();
- auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
- RI->eraseFromParent();
- if (OldCast)
- OldCast->eraseFromParent();
- // Insert a new bitcast and return with the right type.
- IRBuilder<> Builder(CurBB);
- Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
- }
- // Leave behind the normal returns so we can merge control flow.
- std::swap(Returns, NormalReturns);
- }
- // Now that all of the transforms on the inlined code have taken place but
- // before we splice the inlined code into the CFG and lose track of which
- // blocks were actually inlined, collect the call sites. We only do this if
- // call graph updates weren't requested, as those provide value handle based
- // tracking of inlined call sites instead. Calls to intrinsics are not
- // collected because they are not inlineable.
- if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
- // Otherwise just collect the raw call sites that were inlined.
- for (BasicBlock &NewBB :
- make_range(FirstNewBlock->getIterator(), Caller->end()))
- for (Instruction &I : NewBB)
- if (auto *CB = dyn_cast<CallBase>(&I))
- if (!(CB->getCalledFunction() &&
- CB->getCalledFunction()->isIntrinsic()))
- IFI.InlinedCallSites.push_back(CB);
- }
- // If we cloned in _exactly one_ basic block, and if that block ends in a
- // return instruction, we splice the body of the inlined callee directly into
- // the calling basic block.
- if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
- // Move all of the instructions right before the call.
- OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
- FirstNewBlock->begin(), FirstNewBlock->end());
- // Remove the cloned basic block.
- Caller->getBasicBlockList().pop_back();
- // If the call site was an invoke instruction, add a branch to the normal
- // destination.
- if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
- BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
- NewBr->setDebugLoc(Returns[0]->getDebugLoc());
- }
- // If the return instruction returned a value, replace uses of the call with
- // uses of the returned value.
- if (!CB.use_empty()) {
- ReturnInst *R = Returns[0];
- if (&CB == R->getReturnValue())
- CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
- else
- CB.replaceAllUsesWith(R->getReturnValue());
- }
- // Since we are now done with the Call/Invoke, we can delete it.
- CB.eraseFromParent();
- // Since we are now done with the return instruction, delete it also.
- Returns[0]->eraseFromParent();
- // We are now done with the inlining.
- return InlineResult::success();
- }
- // Otherwise, we have the normal case, of more than one block to inline or
- // multiple return sites.
- // We want to clone the entire callee function into the hole between the
- // "starter" and "ender" blocks. How we accomplish this depends on whether
- // this is an invoke instruction or a call instruction.
- BasicBlock *AfterCallBB;
- BranchInst *CreatedBranchToNormalDest = nullptr;
- if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
- // Add an unconditional branch to make this look like the CallInst case...
- CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
- // Split the basic block. This guarantees that no PHI nodes will have to be
- // updated due to new incoming edges, and make the invoke case more
- // symmetric to the call case.
- AfterCallBB =
- OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
- CalledFunc->getName() + ".exit");
- } else { // It's a call
- // If this is a call instruction, we need to split the basic block that
- // the call lives in.
- //
- AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
- CalledFunc->getName() + ".exit");
- }
- if (IFI.CallerBFI) {
- // Copy original BB's block frequency to AfterCallBB
- IFI.CallerBFI->setBlockFreq(
- AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
- }
- // Change the branch that used to go to AfterCallBB to branch to the first
- // basic block of the inlined function.
- //
- Instruction *Br = OrigBB->getTerminator();
- assert(Br && Br->getOpcode() == Instruction::Br &&
- "splitBasicBlock broken!");
- Br->setOperand(0, &*FirstNewBlock);
- // Now that the function is correct, make it a little bit nicer. In
- // particular, move the basic blocks inserted from the end of the function
- // into the space made by splitting the source basic block.
- Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
- Caller->getBasicBlockList(), FirstNewBlock,
- Caller->end());
- // Handle all of the return instructions that we just cloned in, and eliminate
- // any users of the original call/invoke instruction.
- Type *RTy = CalledFunc->getReturnType();
- PHINode *PHI = nullptr;
- if (Returns.size() > 1) {
- // The PHI node should go at the front of the new basic block to merge all
- // possible incoming values.
- if (!CB.use_empty()) {
- PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
- &AfterCallBB->front());
- // Anything that used the result of the function call should now use the
- // PHI node as their operand.
- CB.replaceAllUsesWith(PHI);
- }
- // Loop over all of the return instructions adding entries to the PHI node
- // as appropriate.
- if (PHI) {
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- ReturnInst *RI = Returns[i];
- assert(RI->getReturnValue()->getType() == PHI->getType() &&
- "Ret value not consistent in function!");
- PHI->addIncoming(RI->getReturnValue(), RI->getParent());
- }
- }
- // Add a branch to the merge points and remove return instructions.
- DebugLoc Loc;
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- ReturnInst *RI = Returns[i];
- BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
- Loc = RI->getDebugLoc();
- BI->setDebugLoc(Loc);
- RI->eraseFromParent();
- }
- // We need to set the debug location to *somewhere* inside the
- // inlined function. The line number may be nonsensical, but the
- // instruction will at least be associated with the right
- // function.
- if (CreatedBranchToNormalDest)
- CreatedBranchToNormalDest->setDebugLoc(Loc);
- } else if (!Returns.empty()) {
- // Otherwise, if there is exactly one return value, just replace anything
- // using the return value of the call with the computed value.
- if (!CB.use_empty()) {
- if (&CB == Returns[0]->getReturnValue())
- CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
- else
- CB.replaceAllUsesWith(Returns[0]->getReturnValue());
- }
- // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
- BasicBlock *ReturnBB = Returns[0]->getParent();
- ReturnBB->replaceAllUsesWith(AfterCallBB);
- // Splice the code from the return block into the block that it will return
- // to, which contains the code that was after the call.
- AfterCallBB->getInstList().splice(AfterCallBB->begin(),
- ReturnBB->getInstList());
- if (CreatedBranchToNormalDest)
- CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
- // Delete the return instruction now and empty ReturnBB now.
- Returns[0]->eraseFromParent();
- ReturnBB->eraseFromParent();
- } else if (!CB.use_empty()) {
- // No returns, but something is using the return value of the call. Just
- // nuke the result.
- CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
- }
- // Since we are now done with the Call/Invoke, we can delete it.
- CB.eraseFromParent();
- // If we inlined any musttail calls and the original return is now
- // unreachable, delete it. It can only contain a bitcast and ret.
- if (InlinedMustTailCalls && pred_empty(AfterCallBB))
- AfterCallBB->eraseFromParent();
- // We should always be able to fold the entry block of the function into the
- // single predecessor of the block...
- assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
- BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
- // Splice the code entry block into calling block, right before the
- // unconditional branch.
- CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
- OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
- // Remove the unconditional branch.
- OrigBB->getInstList().erase(Br);
- // Now we can remove the CalleeEntry block, which is now empty.
- Caller->getBasicBlockList().erase(CalleeEntry);
- // If we inserted a phi node, check to see if it has a single value (e.g. all
- // the entries are the same or undef). If so, remove the PHI so it doesn't
- // block other optimizations.
- if (PHI) {
- AssumptionCache *AC =
- IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
- auto &DL = Caller->getParent()->getDataLayout();
- if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
- PHI->replaceAllUsesWith(V);
- PHI->eraseFromParent();
- }
- }
- return InlineResult::success();
- }
|