1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136 |
- //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Rewrite call/invoke instructions so as to make potential relocations
- // performed by the garbage collector explicit in the IR.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/DomTreeUpdater.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Statepoint.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/PromoteMemToReg.h"
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <iterator>
- #include <set>
- #include <string>
- #include <utility>
- #include <vector>
- #define DEBUG_TYPE "rewrite-statepoints-for-gc"
- using namespace llvm;
- // Print the liveset found at the insert location
- static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
- cl::init(false));
- static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
- cl::init(false));
- // Print out the base pointers for debugging
- static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
- cl::init(false));
- // Cost threshold measuring when it is profitable to rematerialize value instead
- // of relocating it
- static cl::opt<unsigned>
- RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
- cl::init(6));
- #ifdef EXPENSIVE_CHECKS
- static bool ClobberNonLive = true;
- #else
- static bool ClobberNonLive = false;
- #endif
- static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
- cl::location(ClobberNonLive),
- cl::Hidden);
- static cl::opt<bool>
- AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
- cl::Hidden, cl::init(true));
- /// The IR fed into RewriteStatepointsForGC may have had attributes and
- /// metadata implying dereferenceability that are no longer valid/correct after
- /// RewriteStatepointsForGC has run. This is because semantically, after
- /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
- /// heap. stripNonValidData (conservatively) restores
- /// correctness by erasing all attributes in the module that externally imply
- /// dereferenceability. Similar reasoning also applies to the noalias
- /// attributes and metadata. gc.statepoint can touch the entire heap including
- /// noalias objects.
- /// Apart from attributes and metadata, we also remove instructions that imply
- /// constant physical memory: llvm.invariant.start.
- static void stripNonValidData(Module &M);
- static bool shouldRewriteStatepointsIn(Function &F);
- PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
- ModuleAnalysisManager &AM) {
- bool Changed = false;
- auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
- for (Function &F : M) {
- // Nothing to do for declarations.
- if (F.isDeclaration() || F.empty())
- continue;
- // Policy choice says not to rewrite - the most common reason is that we're
- // compiling code without a GCStrategy.
- if (!shouldRewriteStatepointsIn(F))
- continue;
- auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
- auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
- auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
- Changed |= runOnFunction(F, DT, TTI, TLI);
- }
- if (!Changed)
- return PreservedAnalyses::all();
- // stripNonValidData asserts that shouldRewriteStatepointsIn
- // returns true for at least one function in the module. Since at least
- // one function changed, we know that the precondition is satisfied.
- stripNonValidData(M);
- PreservedAnalyses PA;
- PA.preserve<TargetIRAnalysis>();
- PA.preserve<TargetLibraryAnalysis>();
- return PA;
- }
- namespace {
- class RewriteStatepointsForGCLegacyPass : public ModulePass {
- RewriteStatepointsForGC Impl;
- public:
- static char ID; // Pass identification, replacement for typeid
- RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
- initializeRewriteStatepointsForGCLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
- bool runOnModule(Module &M) override {
- bool Changed = false;
- for (Function &F : M) {
- // Nothing to do for declarations.
- if (F.isDeclaration() || F.empty())
- continue;
- // Policy choice says not to rewrite - the most common reason is that
- // we're compiling code without a GCStrategy.
- if (!shouldRewriteStatepointsIn(F))
- continue;
- TargetTransformInfo &TTI =
- getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- const TargetLibraryInfo &TLI =
- getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
- auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
- Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
- }
- if (!Changed)
- return false;
- // stripNonValidData asserts that shouldRewriteStatepointsIn
- // returns true for at least one function in the module. Since at least
- // one function changed, we know that the precondition is satisfied.
- stripNonValidData(M);
- return true;
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- // We add and rewrite a bunch of instructions, but don't really do much
- // else. We could in theory preserve a lot more analyses here.
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- }
- };
- } // end anonymous namespace
- char RewriteStatepointsForGCLegacyPass::ID = 0;
- ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
- return new RewriteStatepointsForGCLegacyPass();
- }
- INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
- "rewrite-statepoints-for-gc",
- "Make relocations explicit at statepoints", false, false)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
- "rewrite-statepoints-for-gc",
- "Make relocations explicit at statepoints", false, false)
- namespace {
- struct GCPtrLivenessData {
- /// Values defined in this block.
- MapVector<BasicBlock *, SetVector<Value *>> KillSet;
- /// Values used in this block (and thus live); does not included values
- /// killed within this block.
- MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
- /// Values live into this basic block (i.e. used by any
- /// instruction in this basic block or ones reachable from here)
- MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
- /// Values live out of this basic block (i.e. live into
- /// any successor block)
- MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
- };
- // The type of the internal cache used inside the findBasePointers family
- // of functions. From the callers perspective, this is an opaque type and
- // should not be inspected.
- //
- // In the actual implementation this caches two relations:
- // - The base relation itself (i.e. this pointer is based on that one)
- // - The base defining value relation (i.e. before base_phi insertion)
- // Generally, after the execution of a full findBasePointer call, only the
- // base relation will remain. Internally, we add a mixture of the two
- // types, then update all the second type to the first type
- using DefiningValueMapTy = MapVector<Value *, Value *>;
- using PointerToBaseTy = MapVector<Value *, Value *>;
- using StatepointLiveSetTy = SetVector<Value *>;
- using RematerializedValueMapTy =
- MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
- struct PartiallyConstructedSafepointRecord {
- /// The set of values known to be live across this safepoint
- StatepointLiveSetTy LiveSet;
- /// The *new* gc.statepoint instruction itself. This produces the token
- /// that normal path gc.relocates and the gc.result are tied to.
- GCStatepointInst *StatepointToken;
- /// Instruction to which exceptional gc relocates are attached
- /// Makes it easier to iterate through them during relocationViaAlloca.
- Instruction *UnwindToken;
- /// Record live values we are rematerialized instead of relocating.
- /// They are not included into 'LiveSet' field.
- /// Maps rematerialized copy to it's original value.
- RematerializedValueMapTy RematerializedValues;
- };
- } // end anonymous namespace
- static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
- Optional<OperandBundleUse> DeoptBundle =
- Call->getOperandBundle(LLVMContext::OB_deopt);
- if (!DeoptBundle.hasValue()) {
- assert(AllowStatepointWithNoDeoptInfo &&
- "Found non-leaf call without deopt info!");
- return None;
- }
- return DeoptBundle.getValue().Inputs;
- }
- /// Compute the live-in set for every basic block in the function
- static void computeLiveInValues(DominatorTree &DT, Function &F,
- GCPtrLivenessData &Data);
- /// Given results from the dataflow liveness computation, find the set of live
- /// Values at a particular instruction.
- static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
- StatepointLiveSetTy &out);
- // TODO: Once we can get to the GCStrategy, this becomes
- // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
- static bool isGCPointerType(Type *T) {
- if (auto *PT = dyn_cast<PointerType>(T))
- // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
- // GC managed heap. We know that a pointer into this heap needs to be
- // updated and that no other pointer does.
- return PT->getAddressSpace() == 1;
- return false;
- }
- // Return true if this type is one which a) is a gc pointer or contains a GC
- // pointer and b) is of a type this code expects to encounter as a live value.
- // (The insertion code will assert that a type which matches (a) and not (b)
- // is not encountered.)
- static bool isHandledGCPointerType(Type *T) {
- // We fully support gc pointers
- if (isGCPointerType(T))
- return true;
- // We partially support vectors of gc pointers. The code will assert if it
- // can't handle something.
- if (auto VT = dyn_cast<VectorType>(T))
- if (isGCPointerType(VT->getElementType()))
- return true;
- return false;
- }
- #ifndef NDEBUG
- /// Returns true if this type contains a gc pointer whether we know how to
- /// handle that type or not.
- static bool containsGCPtrType(Type *Ty) {
- if (isGCPointerType(Ty))
- return true;
- if (VectorType *VT = dyn_cast<VectorType>(Ty))
- return isGCPointerType(VT->getScalarType());
- if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
- return containsGCPtrType(AT->getElementType());
- if (StructType *ST = dyn_cast<StructType>(Ty))
- return llvm::any_of(ST->elements(), containsGCPtrType);
- return false;
- }
- // Returns true if this is a type which a) is a gc pointer or contains a GC
- // pointer and b) is of a type which the code doesn't expect (i.e. first class
- // aggregates). Used to trip assertions.
- static bool isUnhandledGCPointerType(Type *Ty) {
- return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
- }
- #endif
- // Return the name of the value suffixed with the provided value, or if the
- // value didn't have a name, the default value specified.
- static std::string suffixed_name_or(Value *V, StringRef Suffix,
- StringRef DefaultName) {
- return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
- }
- // Conservatively identifies any definitions which might be live at the
- // given instruction. The analysis is performed immediately before the
- // given instruction. Values defined by that instruction are not considered
- // live. Values used by that instruction are considered live.
- static void analyzeParsePointLiveness(
- DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
- PartiallyConstructedSafepointRecord &Result) {
- StatepointLiveSetTy LiveSet;
- findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
- if (PrintLiveSet) {
- dbgs() << "Live Variables:\n";
- for (Value *V : LiveSet)
- dbgs() << " " << V->getName() << " " << *V << "\n";
- }
- if (PrintLiveSetSize) {
- dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
- dbgs() << "Number live values: " << LiveSet.size() << "\n";
- }
- Result.LiveSet = LiveSet;
- }
- // Returns true is V is a knownBaseResult.
- static bool isKnownBaseResult(Value *V);
- // Returns true if V is a BaseResult that already exists in the IR, i.e. it is
- // not created by the findBasePointers algorithm.
- static bool isOriginalBaseResult(Value *V);
- namespace {
- /// A single base defining value - An immediate base defining value for an
- /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
- /// For instructions which have multiple pointer [vector] inputs or that
- /// transition between vector and scalar types, there is no immediate base
- /// defining value. The 'base defining value' for 'Def' is the transitive
- /// closure of this relation stopping at the first instruction which has no
- /// immediate base defining value. The b.d.v. might itself be a base pointer,
- /// but it can also be an arbitrary derived pointer.
- struct BaseDefiningValueResult {
- /// Contains the value which is the base defining value.
- Value * const BDV;
- /// True if the base defining value is also known to be an actual base
- /// pointer.
- const bool IsKnownBase;
- BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
- : BDV(BDV), IsKnownBase(IsKnownBase) {
- #ifndef NDEBUG
- // Check consistency between new and old means of checking whether a BDV is
- // a base.
- bool MustBeBase = isKnownBaseResult(BDV);
- assert(!MustBeBase || MustBeBase == IsKnownBase);
- #endif
- }
- };
- } // end anonymous namespace
- static BaseDefiningValueResult findBaseDefiningValue(Value *I);
- /// Return a base defining value for the 'Index' element of the given vector
- /// instruction 'I'. If Index is null, returns a BDV for the entire vector
- /// 'I'. As an optimization, this method will try to determine when the
- /// element is known to already be a base pointer. If this can be established,
- /// the second value in the returned pair will be true. Note that either a
- /// vector or a pointer typed value can be returned. For the former, the
- /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
- /// If the later, the return pointer is a BDV (or possibly a base) for the
- /// particular element in 'I'.
- static BaseDefiningValueResult
- findBaseDefiningValueOfVector(Value *I) {
- // Each case parallels findBaseDefiningValue below, see that code for
- // detailed motivation.
- if (isa<Argument>(I))
- // An incoming argument to the function is a base pointer
- return BaseDefiningValueResult(I, true);
- if (isa<Constant>(I))
- // Base of constant vector consists only of constant null pointers.
- // For reasoning see similar case inside 'findBaseDefiningValue' function.
- return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
- true);
- if (isa<LoadInst>(I))
- return BaseDefiningValueResult(I, true);
- if (isa<InsertElementInst>(I))
- // We don't know whether this vector contains entirely base pointers or
- // not. To be conservatively correct, we treat it as a BDV and will
- // duplicate code as needed to construct a parallel vector of bases.
- return BaseDefiningValueResult(I, false);
- if (isa<ShuffleVectorInst>(I))
- // We don't know whether this vector contains entirely base pointers or
- // not. To be conservatively correct, we treat it as a BDV and will
- // duplicate code as needed to construct a parallel vector of bases.
- // TODO: There a number of local optimizations which could be applied here
- // for particular sufflevector patterns.
- return BaseDefiningValueResult(I, false);
- // The behavior of getelementptr instructions is the same for vector and
- // non-vector data types.
- if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
- return findBaseDefiningValue(GEP->getPointerOperand());
- // If the pointer comes through a bitcast of a vector of pointers to
- // a vector of another type of pointer, then look through the bitcast
- if (auto *BC = dyn_cast<BitCastInst>(I))
- return findBaseDefiningValue(BC->getOperand(0));
- // We assume that functions in the source language only return base
- // pointers. This should probably be generalized via attributes to support
- // both source language and internal functions.
- if (isa<CallInst>(I) || isa<InvokeInst>(I))
- return BaseDefiningValueResult(I, true);
- // A PHI or Select is a base defining value. The outer findBasePointer
- // algorithm is responsible for constructing a base value for this BDV.
- assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
- "unknown vector instruction - no base found for vector element");
- return BaseDefiningValueResult(I, false);
- }
- /// Helper function for findBasePointer - Will return a value which either a)
- /// defines the base pointer for the input, b) blocks the simple search
- /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
- /// from pointer to vector type or back.
- static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
- assert(I->getType()->isPtrOrPtrVectorTy() &&
- "Illegal to ask for the base pointer of a non-pointer type");
- if (I->getType()->isVectorTy())
- return findBaseDefiningValueOfVector(I);
- if (isa<Argument>(I))
- // An incoming argument to the function is a base pointer
- // We should have never reached here if this argument isn't an gc value
- return BaseDefiningValueResult(I, true);
- if (isa<Constant>(I)) {
- // We assume that objects with a constant base (e.g. a global) can't move
- // and don't need to be reported to the collector because they are always
- // live. Besides global references, all kinds of constants (e.g. undef,
- // constant expressions, null pointers) can be introduced by the inliner or
- // the optimizer, especially on dynamically dead paths.
- // Here we treat all of them as having single null base. By doing this we
- // trying to avoid problems reporting various conflicts in a form of
- // "phi (const1, const2)" or "phi (const, regular gc ptr)".
- // See constant.ll file for relevant test cases.
- return BaseDefiningValueResult(
- ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
- }
- // inttoptrs in an integral address space are currently ill-defined. We
- // treat them as defining base pointers here for consistency with the
- // constant rule above and because we don't really have a better semantic
- // to give them. Note that the optimizer is always free to insert undefined
- // behavior on dynamically dead paths as well.
- if (isa<IntToPtrInst>(I))
- return BaseDefiningValueResult(I, true);
- if (CastInst *CI = dyn_cast<CastInst>(I)) {
- Value *Def = CI->stripPointerCasts();
- // If stripping pointer casts changes the address space there is an
- // addrspacecast in between.
- assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
- cast<PointerType>(CI->getType())->getAddressSpace() &&
- "unsupported addrspacecast");
- // If we find a cast instruction here, it means we've found a cast which is
- // not simply a pointer cast (i.e. an inttoptr). We don't know how to
- // handle int->ptr conversion.
- assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
- return findBaseDefiningValue(Def);
- }
- if (isa<LoadInst>(I))
- // The value loaded is an gc base itself
- return BaseDefiningValueResult(I, true);
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
- // The base of this GEP is the base
- return findBaseDefiningValue(GEP->getPointerOperand());
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default:
- // fall through to general call handling
- break;
- case Intrinsic::experimental_gc_statepoint:
- llvm_unreachable("statepoints don't produce pointers");
- case Intrinsic::experimental_gc_relocate:
- // Rerunning safepoint insertion after safepoints are already
- // inserted is not supported. It could probably be made to work,
- // but why are you doing this? There's no good reason.
- llvm_unreachable("repeat safepoint insertion is not supported");
- case Intrinsic::gcroot:
- // Currently, this mechanism hasn't been extended to work with gcroot.
- // There's no reason it couldn't be, but I haven't thought about the
- // implications much.
- llvm_unreachable(
- "interaction with the gcroot mechanism is not supported");
- case Intrinsic::experimental_gc_get_pointer_base:
- return findBaseDefiningValue(II->getOperand(0));
- }
- }
- // We assume that functions in the source language only return base
- // pointers. This should probably be generalized via attributes to support
- // both source language and internal functions.
- if (isa<CallInst>(I) || isa<InvokeInst>(I))
- return BaseDefiningValueResult(I, true);
- // TODO: I have absolutely no idea how to implement this part yet. It's not
- // necessarily hard, I just haven't really looked at it yet.
- assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
- if (isa<AtomicCmpXchgInst>(I))
- // A CAS is effectively a atomic store and load combined under a
- // predicate. From the perspective of base pointers, we just treat it
- // like a load.
- return BaseDefiningValueResult(I, true);
- assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
- "binary ops which don't apply to pointers");
- // The aggregate ops. Aggregates can either be in the heap or on the
- // stack, but in either case, this is simply a field load. As a result,
- // this is a defining definition of the base just like a load is.
- if (isa<ExtractValueInst>(I))
- return BaseDefiningValueResult(I, true);
- // We should never see an insert vector since that would require we be
- // tracing back a struct value not a pointer value.
- assert(!isa<InsertValueInst>(I) &&
- "Base pointer for a struct is meaningless");
- // This value might have been generated by findBasePointer() called when
- // substituting gc.get.pointer.base() intrinsic.
- bool IsKnownBase =
- isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value");
- // An extractelement produces a base result exactly when it's input does.
- // We may need to insert a parallel instruction to extract the appropriate
- // element out of the base vector corresponding to the input. Given this,
- // it's analogous to the phi and select case even though it's not a merge.
- if (isa<ExtractElementInst>(I))
- // Note: There a lot of obvious peephole cases here. This are deliberately
- // handled after the main base pointer inference algorithm to make writing
- // test cases to exercise that code easier.
- return BaseDefiningValueResult(I, IsKnownBase);
- // The last two cases here don't return a base pointer. Instead, they
- // return a value which dynamically selects from among several base
- // derived pointers (each with it's own base potentially). It's the job of
- // the caller to resolve these.
- assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
- "missing instruction case in findBaseDefiningValing");
- return BaseDefiningValueResult(I, IsKnownBase);
- }
- /// Returns the base defining value for this value.
- static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
- Value *&Cached = Cache[I];
- if (!Cached) {
- Cached = findBaseDefiningValue(I).BDV;
- LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
- << Cached->getName() << "\n");
- }
- assert(Cache[I] != nullptr);
- return Cached;
- }
- /// Return a base pointer for this value if known. Otherwise, return it's
- /// base defining value.
- static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
- Value *Def = findBaseDefiningValueCached(I, Cache);
- auto Found = Cache.find(Def);
- if (Found != Cache.end()) {
- // Either a base-of relation, or a self reference. Caller must check.
- return Found->second;
- }
- // Only a BDV available
- return Def;
- }
- /// This value is a base pointer that is not generated by RS4GC, i.e. it already
- /// exists in the code.
- static bool isOriginalBaseResult(Value *V) {
- // no recursion possible
- return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
- !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
- !isa<ShuffleVectorInst>(V);
- }
- /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
- /// is it known to be a base pointer? Or do we need to continue searching.
- static bool isKnownBaseResult(Value *V) {
- if (isOriginalBaseResult(V))
- return true;
- if (isa<Instruction>(V) &&
- cast<Instruction>(V)->getMetadata("is_base_value")) {
- // This is a previously inserted base phi or select. We know
- // that this is a base value.
- return true;
- }
- // We need to keep searching
- return false;
- }
- // Returns true if First and Second values are both scalar or both vector.
- static bool areBothVectorOrScalar(Value *First, Value *Second) {
- return isa<VectorType>(First->getType()) ==
- isa<VectorType>(Second->getType());
- }
- namespace {
- /// Models the state of a single base defining value in the findBasePointer
- /// algorithm for determining where a new instruction is needed to propagate
- /// the base of this BDV.
- class BDVState {
- public:
- enum StatusTy {
- // Starting state of lattice
- Unknown,
- // Some specific base value -- does *not* mean that instruction
- // propagates the base of the object
- // ex: gep %arg, 16 -> %arg is the base value
- Base,
- // Need to insert a node to represent a merge.
- Conflict
- };
- BDVState() {
- llvm_unreachable("missing state in map");
- }
- explicit BDVState(Value *OriginalValue)
- : OriginalValue(OriginalValue) {}
- explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
- : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
- assert(Status != Base || BaseValue);
- }
- StatusTy getStatus() const { return Status; }
- Value *getOriginalValue() const { return OriginalValue; }
- Value *getBaseValue() const { return BaseValue; }
- bool isBase() const { return getStatus() == Base; }
- bool isUnknown() const { return getStatus() == Unknown; }
- bool isConflict() const { return getStatus() == Conflict; }
- // Values of type BDVState form a lattice, and this function implements the
- // meet
- // operation.
- void meet(const BDVState &Other) {
- auto markConflict = [&]() {
- Status = BDVState::Conflict;
- BaseValue = nullptr;
- };
- // Conflict is a final state.
- if (isConflict())
- return;
- // if we are not known - just take other state.
- if (isUnknown()) {
- Status = Other.getStatus();
- BaseValue = Other.getBaseValue();
- return;
- }
- // We are base.
- assert(isBase() && "Unknown state");
- // If other is unknown - just keep our state.
- if (Other.isUnknown())
- return;
- // If other is conflict - it is a final state.
- if (Other.isConflict())
- return markConflict();
- // Other is base as well.
- assert(Other.isBase() && "Unknown state");
- // If bases are different - Conflict.
- if (getBaseValue() != Other.getBaseValue())
- return markConflict();
- // We are identical, do nothing.
- }
- bool operator==(const BDVState &Other) const {
- return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue &&
- Status == Other.Status;
- }
- bool operator!=(const BDVState &other) const { return !(*this == other); }
- LLVM_DUMP_METHOD
- void dump() const {
- print(dbgs());
- dbgs() << '\n';
- }
- void print(raw_ostream &OS) const {
- switch (getStatus()) {
- case Unknown:
- OS << "U";
- break;
- case Base:
- OS << "B";
- break;
- case Conflict:
- OS << "C";
- break;
- }
- OS << " (base " << getBaseValue() << " - "
- << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
- << " for " << OriginalValue->getName() << ":";
- }
- private:
- AssertingVH<Value> OriginalValue; // instruction this state corresponds to
- StatusTy Status = Unknown;
- AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
- };
- } // end anonymous namespace
- #ifndef NDEBUG
- static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
- State.print(OS);
- return OS;
- }
- #endif
- /// For a given value or instruction, figure out what base ptr its derived from.
- /// For gc objects, this is simply itself. On success, returns a value which is
- /// the base pointer. (This is reliable and can be used for relocation.) On
- /// failure, returns nullptr.
- static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
- Value *Def = findBaseOrBDV(I, Cache);
- if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I))
- return Def;
- // Here's the rough algorithm:
- // - For every SSA value, construct a mapping to either an actual base
- // pointer or a PHI which obscures the base pointer.
- // - Construct a mapping from PHI to unknown TOP state. Use an
- // optimistic algorithm to propagate base pointer information. Lattice
- // looks like:
- // UNKNOWN
- // b1 b2 b3 b4
- // CONFLICT
- // When algorithm terminates, all PHIs will either have a single concrete
- // base or be in a conflict state.
- // - For every conflict, insert a dummy PHI node without arguments. Add
- // these to the base[Instruction] = BasePtr mapping. For every
- // non-conflict, add the actual base.
- // - For every conflict, add arguments for the base[a] of each input
- // arguments.
- //
- // Note: A simpler form of this would be to add the conflict form of all
- // PHIs without running the optimistic algorithm. This would be
- // analogous to pessimistic data flow and would likely lead to an
- // overall worse solution.
- #ifndef NDEBUG
- auto isExpectedBDVType = [](Value *BDV) {
- return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
- isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
- isa<ShuffleVectorInst>(BDV);
- };
- #endif
- // Once populated, will contain a mapping from each potentially non-base BDV
- // to a lattice value (described above) which corresponds to that BDV.
- // We use the order of insertion (DFS over the def/use graph) to provide a
- // stable deterministic ordering for visiting DenseMaps (which are unordered)
- // below. This is important for deterministic compilation.
- MapVector<Value *, BDVState> States;
- #ifndef NDEBUG
- auto VerifyStates = [&]() {
- for (auto &Entry : States) {
- assert(Entry.first == Entry.second.getOriginalValue());
- }
- };
- #endif
- auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
- if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
- for (Value *InVal : PN->incoming_values())
- F(InVal);
- } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
- F(SI->getTrueValue());
- F(SI->getFalseValue());
- } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
- F(EE->getVectorOperand());
- } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
- F(IE->getOperand(0));
- F(IE->getOperand(1));
- } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
- // For a canonical broadcast, ignore the undef argument
- // (without this, we insert a parallel base shuffle for every broadcast)
- F(SV->getOperand(0));
- if (!SV->isZeroEltSplat())
- F(SV->getOperand(1));
- } else {
- llvm_unreachable("unexpected BDV type");
- }
- };
- // Recursively fill in all base defining values reachable from the initial
- // one for which we don't already know a definite base value for
- /* scope */ {
- SmallVector<Value*, 16> Worklist;
- Worklist.push_back(Def);
- States.insert({Def, BDVState(Def)});
- while (!Worklist.empty()) {
- Value *Current = Worklist.pop_back_val();
- assert(!isOriginalBaseResult(Current) && "why did it get added?");
- auto visitIncomingValue = [&](Value *InVal) {
- Value *Base = findBaseOrBDV(InVal, Cache);
- if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal))
- // Known bases won't need new instructions introduced and can be
- // ignored safely. However, this can only be done when InVal and Base
- // are both scalar or both vector. Otherwise, we need to find a
- // correct BDV for InVal, by creating an entry in the lattice
- // (States).
- return;
- assert(isExpectedBDVType(Base) && "the only non-base values "
- "we see should be base defining values");
- if (States.insert(std::make_pair(Base, BDVState(Base))).second)
- Worklist.push_back(Base);
- };
- visitBDVOperands(Current, visitIncomingValue);
- }
- }
- #ifndef NDEBUG
- VerifyStates();
- LLVM_DEBUG(dbgs() << "States after initialization:\n");
- for (const auto &Pair : States) {
- LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
- }
- #endif
- // Iterate forward through the value graph pruning any node from the state
- // list where all of the inputs are base pointers. The purpose of this is to
- // reuse existing values when the derived pointer we were asked to materialize
- // a base pointer for happens to be a base pointer itself. (Or a sub-graph
- // feeding it does.)
- SmallVector<Value *> ToRemove;
- do {
- ToRemove.clear();
- for (auto Pair : States) {
- Value *BDV = Pair.first;
- auto canPruneInput = [&](Value *V) {
- Value *BDV = findBaseOrBDV(V, Cache);
- if (V->stripPointerCasts() != BDV)
- return false;
- // The assumption is that anything not in the state list is
- // propagates a base pointer.
- return States.count(BDV) == 0;
- };
- bool CanPrune = true;
- visitBDVOperands(BDV, [&](Value *Op) {
- CanPrune = CanPrune && canPruneInput(Op);
- });
- if (CanPrune)
- ToRemove.push_back(BDV);
- }
- for (Value *V : ToRemove) {
- States.erase(V);
- // Cache the fact V is it's own base for later usage.
- Cache[V] = V;
- }
- } while (!ToRemove.empty());
- // Did we manage to prove that Def itself must be a base pointer?
- if (!States.count(Def))
- return Def;
- // Return a phi state for a base defining value. We'll generate a new
- // base state for known bases and expect to find a cached state otherwise.
- auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
- auto I = States.find(BaseValue);
- if (I != States.end())
- return I->second;
- assert(areBothVectorOrScalar(BaseValue, Input));
- return BDVState(BaseValue, BDVState::Base, BaseValue);
- };
- bool Progress = true;
- while (Progress) {
- #ifndef NDEBUG
- const size_t OldSize = States.size();
- #endif
- Progress = false;
- // We're only changing values in this loop, thus safe to keep iterators.
- // Since this is computing a fixed point, the order of visit does not
- // effect the result. TODO: We could use a worklist here and make this run
- // much faster.
- for (auto Pair : States) {
- Value *BDV = Pair.first;
- // Only values that do not have known bases or those that have differing
- // type (scalar versus vector) from a possible known base should be in the
- // lattice.
- assert((!isKnownBaseResult(BDV) ||
- !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
- "why did it get added?");
- BDVState NewState(BDV);
- visitBDVOperands(BDV, [&](Value *Op) {
- Value *BDV = findBaseOrBDV(Op, Cache);
- auto OpState = GetStateForBDV(BDV, Op);
- NewState.meet(OpState);
- });
- BDVState OldState = States[BDV];
- if (OldState != NewState) {
- Progress = true;
- States[BDV] = NewState;
- }
- }
- assert(OldSize == States.size() &&
- "fixed point shouldn't be adding any new nodes to state");
- }
- #ifndef NDEBUG
- VerifyStates();
- LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
- for (const auto &Pair : States) {
- LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
- }
- #endif
- // Handle all instructions that have a vector BDV, but the instruction itself
- // is of scalar type.
- for (auto Pair : States) {
- Instruction *I = cast<Instruction>(Pair.first);
- BDVState State = Pair.second;
- auto *BaseValue = State.getBaseValue();
- // Only values that do not have known bases or those that have differing
- // type (scalar versus vector) from a possible known base should be in the
- // lattice.
- assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) &&
- "why did it get added?");
- assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
- if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
- continue;
- // extractelement instructions are a bit special in that we may need to
- // insert an extract even when we know an exact base for the instruction.
- // The problem is that we need to convert from a vector base to a scalar
- // base for the particular indice we're interested in.
- if (isa<ExtractElementInst>(I)) {
- auto *EE = cast<ExtractElementInst>(I);
- // TODO: In many cases, the new instruction is just EE itself. We should
- // exploit this, but can't do it here since it would break the invariant
- // about the BDV not being known to be a base.
- auto *BaseInst = ExtractElementInst::Create(
- State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
- BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
- States[I] = BDVState(I, BDVState::Base, BaseInst);
- } else if (!isa<VectorType>(I->getType())) {
- // We need to handle cases that have a vector base but the instruction is
- // a scalar type (these could be phis or selects or any instruction that
- // are of scalar type, but the base can be a vector type). We
- // conservatively set this as conflict. Setting the base value for these
- // conflicts is handled in the next loop which traverses States.
- States[I] = BDVState(I, BDVState::Conflict);
- }
- }
- #ifndef NDEBUG
- VerifyStates();
- #endif
- // Insert Phis for all conflicts
- // TODO: adjust naming patterns to avoid this order of iteration dependency
- for (auto Pair : States) {
- Instruction *I = cast<Instruction>(Pair.first);
- BDVState State = Pair.second;
- // Only values that do not have known bases or those that have differing
- // type (scalar versus vector) from a possible known base should be in the
- // lattice.
- assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) &&
- "why did it get added?");
- assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
- // Since we're joining a vector and scalar base, they can never be the
- // same. As a result, we should always see insert element having reached
- // the conflict state.
- assert(!isa<InsertElementInst>(I) || State.isConflict());
- if (!State.isConflict())
- continue;
- auto getMangledName = [](Instruction *I) -> std::string {
- if (isa<PHINode>(I)) {
- return suffixed_name_or(I, ".base", "base_phi");
- } else if (isa<SelectInst>(I)) {
- return suffixed_name_or(I, ".base", "base_select");
- } else if (isa<ExtractElementInst>(I)) {
- return suffixed_name_or(I, ".base", "base_ee");
- } else if (isa<InsertElementInst>(I)) {
- return suffixed_name_or(I, ".base", "base_ie");
- } else {
- return suffixed_name_or(I, ".base", "base_sv");
- }
- };
- Instruction *BaseInst = I->clone();
- BaseInst->insertBefore(I);
- BaseInst->setName(getMangledName(I));
- // Add metadata marking this as a base value
- BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
- States[I] = BDVState(I, BDVState::Conflict, BaseInst);
- }
- #ifndef NDEBUG
- VerifyStates();
- #endif
- // Returns a instruction which produces the base pointer for a given
- // instruction. The instruction is assumed to be an input to one of the BDVs
- // seen in the inference algorithm above. As such, we must either already
- // know it's base defining value is a base, or have inserted a new
- // instruction to propagate the base of it's BDV and have entered that newly
- // introduced instruction into the state table. In either case, we are
- // assured to be able to determine an instruction which produces it's base
- // pointer.
- auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
- Value *BDV = findBaseOrBDV(Input, Cache);
- Value *Base = nullptr;
- if (!States.count(BDV)) {
- assert(areBothVectorOrScalar(BDV, Input));
- Base = BDV;
- } else {
- // Either conflict or base.
- assert(States.count(BDV));
- Base = States[BDV].getBaseValue();
- }
- assert(Base && "Can't be null");
- // The cast is needed since base traversal may strip away bitcasts
- if (Base->getType() != Input->getType() && InsertPt)
- Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
- return Base;
- };
- // Fixup all the inputs of the new PHIs. Visit order needs to be
- // deterministic and predictable because we're naming newly created
- // instructions.
- for (auto Pair : States) {
- Instruction *BDV = cast<Instruction>(Pair.first);
- BDVState State = Pair.second;
- // Only values that do not have known bases or those that have differing
- // type (scalar versus vector) from a possible known base should be in the
- // lattice.
- assert((!isKnownBaseResult(BDV) ||
- !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
- "why did it get added?");
- assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
- if (!State.isConflict())
- continue;
- if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
- PHINode *PN = cast<PHINode>(BDV);
- const unsigned NumPHIValues = PN->getNumIncomingValues();
- // The IR verifier requires phi nodes with multiple entries from the
- // same basic block to have the same incoming value for each of those
- // entries. Since we're inserting bitcasts in the loop, make sure we
- // do so at least once per incoming block.
- DenseMap<BasicBlock *, Value*> BlockToValue;
- for (unsigned i = 0; i < NumPHIValues; i++) {
- Value *InVal = PN->getIncomingValue(i);
- BasicBlock *InBB = PN->getIncomingBlock(i);
- if (!BlockToValue.count(InBB))
- BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator());
- else {
- #ifndef NDEBUG
- Value *OldBase = BlockToValue[InBB];
- Value *Base = getBaseForInput(InVal, nullptr);
- // In essence this assert states: the only way two values
- // incoming from the same basic block may be different is by
- // being different bitcasts of the same value. A cleanup
- // that remains TODO is changing findBaseOrBDV to return an
- // llvm::Value of the correct type (and still remain pure).
- // This will remove the need to add bitcasts.
- assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
- "findBaseOrBDV should be pure!");
- #endif
- }
- Value *Base = BlockToValue[InBB];
- BasePHI->setIncomingValue(i, Base);
- }
- } else if (SelectInst *BaseSI =
- dyn_cast<SelectInst>(State.getBaseValue())) {
- SelectInst *SI = cast<SelectInst>(BDV);
- // Find the instruction which produces the base for each input.
- // We may need to insert a bitcast.
- BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
- BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
- } else if (auto *BaseEE =
- dyn_cast<ExtractElementInst>(State.getBaseValue())) {
- Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
- // Find the instruction which produces the base for each input. We may
- // need to insert a bitcast.
- BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
- } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
- auto *BdvIE = cast<InsertElementInst>(BDV);
- auto UpdateOperand = [&](int OperandIdx) {
- Value *InVal = BdvIE->getOperand(OperandIdx);
- Value *Base = getBaseForInput(InVal, BaseIE);
- BaseIE->setOperand(OperandIdx, Base);
- };
- UpdateOperand(0); // vector operand
- UpdateOperand(1); // scalar operand
- } else {
- auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
- auto *BdvSV = cast<ShuffleVectorInst>(BDV);
- auto UpdateOperand = [&](int OperandIdx) {
- Value *InVal = BdvSV->getOperand(OperandIdx);
- Value *Base = getBaseForInput(InVal, BaseSV);
- BaseSV->setOperand(OperandIdx, Base);
- };
- UpdateOperand(0); // vector operand
- if (!BdvSV->isZeroEltSplat())
- UpdateOperand(1); // vector operand
- else {
- // Never read, so just use undef
- Value *InVal = BdvSV->getOperand(1);
- BaseSV->setOperand(1, UndefValue::get(InVal->getType()));
- }
- }
- }
- #ifndef NDEBUG
- VerifyStates();
- #endif
- // Cache all of our results so we can cheaply reuse them
- // NOTE: This is actually two caches: one of the base defining value
- // relation and one of the base pointer relation! FIXME
- for (auto Pair : States) {
- auto *BDV = Pair.first;
- Value *Base = Pair.second.getBaseValue();
- assert(BDV && Base);
- // Only values that do not have known bases or those that have differing
- // type (scalar versus vector) from a possible known base should be in the
- // lattice.
- assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) &&
- "why did it get added?");
- LLVM_DEBUG(
- dbgs() << "Updating base value cache"
- << " for: " << BDV->getName() << " from: "
- << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
- << " to: " << Base->getName() << "\n");
- Cache[BDV] = Base;
- }
- assert(Cache.count(Def));
- return Cache[Def];
- }
- // For a set of live pointers (base and/or derived), identify the base
- // pointer of the object which they are derived from. This routine will
- // mutate the IR graph as needed to make the 'base' pointer live at the
- // definition site of 'derived'. This ensures that any use of 'derived' can
- // also use 'base'. This may involve the insertion of a number of
- // additional PHI nodes.
- //
- // preconditions: live is a set of pointer type Values
- //
- // side effects: may insert PHI nodes into the existing CFG, will preserve
- // CFG, will not remove or mutate any existing nodes
- //
- // post condition: PointerToBase contains one (derived, base) pair for every
- // pointer in live. Note that derived can be equal to base if the original
- // pointer was a base pointer.
- static void findBasePointers(const StatepointLiveSetTy &live,
- PointerToBaseTy &PointerToBase, DominatorTree *DT,
- DefiningValueMapTy &DVCache) {
- for (Value *ptr : live) {
- Value *base = findBasePointer(ptr, DVCache);
- assert(base && "failed to find base pointer");
- PointerToBase[ptr] = base;
- assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
- DT->dominates(cast<Instruction>(base)->getParent(),
- cast<Instruction>(ptr)->getParent())) &&
- "The base we found better dominate the derived pointer");
- }
- }
- /// Find the required based pointers (and adjust the live set) for the given
- /// parse point.
- static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
- CallBase *Call,
- PartiallyConstructedSafepointRecord &result,
- PointerToBaseTy &PointerToBase) {
- StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
- // We assume that all pointers passed to deopt are base pointers; as an
- // optimization, we can use this to avoid seperately materializing the base
- // pointer graph. This is only relevant since we're very conservative about
- // generating new conflict nodes during base pointer insertion. If we were
- // smarter there, this would be irrelevant.
- if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
- for (Value *V : Opt->Inputs) {
- if (!PotentiallyDerivedPointers.count(V))
- continue;
- PotentiallyDerivedPointers.remove(V);
- PointerToBase[V] = V;
- }
- findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache);
- }
- /// Given an updated version of the dataflow liveness results, update the
- /// liveset and base pointer maps for the call site CS.
- static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
- CallBase *Call,
- PartiallyConstructedSafepointRecord &result,
- PointerToBaseTy &PointerToBase);
- static void recomputeLiveInValues(
- Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
- MutableArrayRef<struct PartiallyConstructedSafepointRecord> records,
- PointerToBaseTy &PointerToBase) {
- // TODO-PERF: reuse the original liveness, then simply run the dataflow
- // again. The old values are still live and will help it stabilize quickly.
- GCPtrLivenessData RevisedLivenessData;
- computeLiveInValues(DT, F, RevisedLivenessData);
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info,
- PointerToBase);
- }
- }
- // When inserting gc.relocate and gc.result calls, we need to ensure there are
- // no uses of the original value / return value between the gc.statepoint and
- // the gc.relocate / gc.result call. One case which can arise is a phi node
- // starting one of the successor blocks. We also need to be able to insert the
- // gc.relocates only on the path which goes through the statepoint. We might
- // need to split an edge to make this possible.
- static BasicBlock *
- normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
- DominatorTree &DT) {
- BasicBlock *Ret = BB;
- if (!BB->getUniquePredecessor())
- Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
- // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
- // from it
- FoldSingleEntryPHINodes(Ret);
- assert(!isa<PHINode>(Ret->begin()) &&
- "All PHI nodes should have been removed!");
- // At this point, we can safely insert a gc.relocate or gc.result as the first
- // instruction in Ret if needed.
- return Ret;
- }
- // List of all function attributes which must be stripped when lowering from
- // abstract machine model to physical machine model. Essentially, these are
- // all the effects a safepoint might have which we ignored in the abstract
- // machine model for purposes of optimization. We have to strip these on
- // both function declarations and call sites.
- static constexpr Attribute::AttrKind FnAttrsToStrip[] =
- {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly,
- Attribute::ArgMemOnly, Attribute::InaccessibleMemOnly,
- Attribute::InaccessibleMemOrArgMemOnly,
- Attribute::NoSync, Attribute::NoFree};
- // Create new attribute set containing only attributes which can be transferred
- // from original call to the safepoint.
- static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
- AttributeList AL) {
- if (AL.isEmpty())
- return AL;
- // Remove the readonly, readnone, and statepoint function attributes.
- AttrBuilder FnAttrs(Ctx, AL.getFnAttrs());
- for (auto Attr : FnAttrsToStrip)
- FnAttrs.removeAttribute(Attr);
- for (Attribute A : AL.getFnAttrs()) {
- if (isStatepointDirectiveAttr(A))
- FnAttrs.removeAttribute(A);
- }
- // Just skip parameter and return attributes for now
- return AttributeList::get(Ctx, AttributeList::FunctionIndex,
- AttributeSet::get(Ctx, FnAttrs));
- }
- /// Helper function to place all gc relocates necessary for the given
- /// statepoint.
- /// Inputs:
- /// liveVariables - list of variables to be relocated.
- /// basePtrs - base pointers.
- /// statepointToken - statepoint instruction to which relocates should be
- /// bound.
- /// Builder - Llvm IR builder to be used to construct new calls.
- static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
- ArrayRef<Value *> BasePtrs,
- Instruction *StatepointToken,
- IRBuilder<> &Builder) {
- if (LiveVariables.empty())
- return;
- auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
- auto ValIt = llvm::find(LiveVec, Val);
- assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
- size_t Index = std::distance(LiveVec.begin(), ValIt);
- assert(Index < LiveVec.size() && "Bug in std::find?");
- return Index;
- };
- Module *M = StatepointToken->getModule();
- // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
- // element type is i8 addrspace(1)*). We originally generated unique
- // declarations for each pointer type, but this proved problematic because
- // the intrinsic mangling code is incomplete and fragile. Since we're moving
- // towards a single unified pointer type anyways, we can just cast everything
- // to an i8* of the right address space. A bitcast is added later to convert
- // gc_relocate to the actual value's type.
- auto getGCRelocateDecl = [&] (Type *Ty) {
- assert(isHandledGCPointerType(Ty));
- auto AS = Ty->getScalarType()->getPointerAddressSpace();
- Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
- if (auto *VT = dyn_cast<VectorType>(Ty))
- NewTy = FixedVectorType::get(NewTy,
- cast<FixedVectorType>(VT)->getNumElements());
- return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
- {NewTy});
- };
- // Lazily populated map from input types to the canonicalized form mentioned
- // in the comment above. This should probably be cached somewhere more
- // broadly.
- DenseMap<Type *, Function *> TypeToDeclMap;
- for (unsigned i = 0; i < LiveVariables.size(); i++) {
- // Generate the gc.relocate call and save the result
- Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
- Value *LiveIdx = Builder.getInt32(i);
- Type *Ty = LiveVariables[i]->getType();
- if (!TypeToDeclMap.count(Ty))
- TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
- Function *GCRelocateDecl = TypeToDeclMap[Ty];
- // only specify a debug name if we can give a useful one
- CallInst *Reloc = Builder.CreateCall(
- GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
- suffixed_name_or(LiveVariables[i], ".relocated", ""));
- // Trick CodeGen into thinking there are lots of free registers at this
- // fake call.
- Reloc->setCallingConv(CallingConv::Cold);
- }
- }
- namespace {
- /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
- /// avoids having to worry about keeping around dangling pointers to Values.
- class DeferredReplacement {
- AssertingVH<Instruction> Old;
- AssertingVH<Instruction> New;
- bool IsDeoptimize = false;
- DeferredReplacement() = default;
- public:
- static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
- assert(Old != New && Old && New &&
- "Cannot RAUW equal values or to / from null!");
- DeferredReplacement D;
- D.Old = Old;
- D.New = New;
- return D;
- }
- static DeferredReplacement createDelete(Instruction *ToErase) {
- DeferredReplacement D;
- D.Old = ToErase;
- return D;
- }
- static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
- #ifndef NDEBUG
- auto *F = cast<CallInst>(Old)->getCalledFunction();
- assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
- "Only way to construct a deoptimize deferred replacement");
- #endif
- DeferredReplacement D;
- D.Old = Old;
- D.IsDeoptimize = true;
- return D;
- }
- /// Does the task represented by this instance.
- void doReplacement() {
- Instruction *OldI = Old;
- Instruction *NewI = New;
- assert(OldI != NewI && "Disallowed at construction?!");
- assert((!IsDeoptimize || !New) &&
- "Deoptimize intrinsics are not replaced!");
- Old = nullptr;
- New = nullptr;
- if (NewI)
- OldI->replaceAllUsesWith(NewI);
- if (IsDeoptimize) {
- // Note: we've inserted instructions, so the call to llvm.deoptimize may
- // not necessarily be followed by the matching return.
- auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
- new UnreachableInst(RI->getContext(), RI);
- RI->eraseFromParent();
- }
- OldI->eraseFromParent();
- }
- };
- } // end anonymous namespace
- static StringRef getDeoptLowering(CallBase *Call) {
- const char *DeoptLowering = "deopt-lowering";
- if (Call->hasFnAttr(DeoptLowering)) {
- // FIXME: Calls have a *really* confusing interface around attributes
- // with values.
- const AttributeList &CSAS = Call->getAttributes();
- if (CSAS.hasFnAttr(DeoptLowering))
- return CSAS.getFnAttr(DeoptLowering).getValueAsString();
- Function *F = Call->getCalledFunction();
- assert(F && F->hasFnAttribute(DeoptLowering));
- return F->getFnAttribute(DeoptLowering).getValueAsString();
- }
- return "live-through";
- }
- static void
- makeStatepointExplicitImpl(CallBase *Call, /* to replace */
- const SmallVectorImpl<Value *> &BasePtrs,
- const SmallVectorImpl<Value *> &LiveVariables,
- PartiallyConstructedSafepointRecord &Result,
- std::vector<DeferredReplacement> &Replacements,
- const PointerToBaseTy &PointerToBase) {
- assert(BasePtrs.size() == LiveVariables.size());
- // Then go ahead and use the builder do actually do the inserts. We insert
- // immediately before the previous instruction under the assumption that all
- // arguments will be available here. We can't insert afterwards since we may
- // be replacing a terminator.
- IRBuilder<> Builder(Call);
- ArrayRef<Value *> GCArgs(LiveVariables);
- uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
- uint32_t NumPatchBytes = 0;
- uint32_t Flags = uint32_t(StatepointFlags::None);
- SmallVector<Value *, 8> CallArgs(Call->args());
- Optional<ArrayRef<Use>> DeoptArgs;
- if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
- DeoptArgs = Bundle->Inputs;
- Optional<ArrayRef<Use>> TransitionArgs;
- if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
- TransitionArgs = Bundle->Inputs;
- // TODO: This flag no longer serves a purpose and can be removed later
- Flags |= uint32_t(StatepointFlags::GCTransition);
- }
- // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
- // with a return value, we lower then as never returning calls to
- // __llvm_deoptimize that are followed by unreachable to get better codegen.
- bool IsDeoptimize = false;
- StatepointDirectives SD =
- parseStatepointDirectivesFromAttrs(Call->getAttributes());
- if (SD.NumPatchBytes)
- NumPatchBytes = *SD.NumPatchBytes;
- if (SD.StatepointID)
- StatepointID = *SD.StatepointID;
- // Pass through the requested lowering if any. The default is live-through.
- StringRef DeoptLowering = getDeoptLowering(Call);
- if (DeoptLowering.equals("live-in"))
- Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
- else {
- assert(DeoptLowering.equals("live-through") && "Unsupported value!");
- }
- Value *CallTarget = Call->getCalledOperand();
- if (Function *F = dyn_cast<Function>(CallTarget)) {
- auto IID = F->getIntrinsicID();
- if (IID == Intrinsic::experimental_deoptimize) {
- // Calls to llvm.experimental.deoptimize are lowered to calls to the
- // __llvm_deoptimize symbol. We want to resolve this now, since the
- // verifier does not allow taking the address of an intrinsic function.
- SmallVector<Type *, 8> DomainTy;
- for (Value *Arg : CallArgs)
- DomainTy.push_back(Arg->getType());
- auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
- /* isVarArg = */ false);
- // Note: CallTarget can be a bitcast instruction of a symbol if there are
- // calls to @llvm.experimental.deoptimize with different argument types in
- // the same module. This is fine -- we assume the frontend knew what it
- // was doing when generating this kind of IR.
- CallTarget = F->getParent()
- ->getOrInsertFunction("__llvm_deoptimize", FTy)
- .getCallee();
- IsDeoptimize = true;
- } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
- IID == Intrinsic::memmove_element_unordered_atomic) {
- // Unordered atomic memcpy and memmove intrinsics which are not explicitly
- // marked as "gc-leaf-function" should be lowered in a GC parseable way.
- // Specifically, these calls should be lowered to the
- // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
- // Similarly to __llvm_deoptimize we want to resolve this now, since the
- // verifier does not allow taking the address of an intrinsic function.
- //
- // Moreover we need to shuffle the arguments for the call in order to
- // accommodate GC. The underlying source and destination objects might be
- // relocated during copy operation should the GC occur. To relocate the
- // derived source and destination pointers the implementation of the
- // intrinsic should know the corresponding base pointers.
- //
- // To make the base pointers available pass them explicitly as arguments:
- // memcpy(dest_derived, source_derived, ...) =>
- // memcpy(dest_base, dest_offset, source_base, source_offset, ...)
- auto &Context = Call->getContext();
- auto &DL = Call->getModule()->getDataLayout();
- auto GetBaseAndOffset = [&](Value *Derived) {
- assert(PointerToBase.count(Derived));
- unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
- unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
- Value *Base = PointerToBase.find(Derived)->second;
- Value *Base_int = Builder.CreatePtrToInt(
- Base, Type::getIntNTy(Context, IntPtrSize));
- Value *Derived_int = Builder.CreatePtrToInt(
- Derived, Type::getIntNTy(Context, IntPtrSize));
- return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
- };
- auto *Dest = CallArgs[0];
- Value *DestBase, *DestOffset;
- std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
- auto *Source = CallArgs[1];
- Value *SourceBase, *SourceOffset;
- std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
- auto *LengthInBytes = CallArgs[2];
- auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
- CallArgs.clear();
- CallArgs.push_back(DestBase);
- CallArgs.push_back(DestOffset);
- CallArgs.push_back(SourceBase);
- CallArgs.push_back(SourceOffset);
- CallArgs.push_back(LengthInBytes);
- SmallVector<Type *, 8> DomainTy;
- for (Value *Arg : CallArgs)
- DomainTy.push_back(Arg->getType());
- auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
- /* isVarArg = */ false);
- auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
- uint64_t ElementSize = ElementSizeCI->getZExtValue();
- if (IID == Intrinsic::memcpy_element_unordered_atomic) {
- switch (ElementSize) {
- case 1:
- return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
- case 2:
- return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
- case 4:
- return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
- case 8:
- return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
- case 16:
- return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
- default:
- llvm_unreachable("unexpected element size!");
- }
- }
- assert(IID == Intrinsic::memmove_element_unordered_atomic);
- switch (ElementSize) {
- case 1:
- return "__llvm_memmove_element_unordered_atomic_safepoint_1";
- case 2:
- return "__llvm_memmove_element_unordered_atomic_safepoint_2";
- case 4:
- return "__llvm_memmove_element_unordered_atomic_safepoint_4";
- case 8:
- return "__llvm_memmove_element_unordered_atomic_safepoint_8";
- case 16:
- return "__llvm_memmove_element_unordered_atomic_safepoint_16";
- default:
- llvm_unreachable("unexpected element size!");
- }
- };
- CallTarget =
- F->getParent()
- ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy)
- .getCallee();
- }
- }
- // Create the statepoint given all the arguments
- GCStatepointInst *Token = nullptr;
- if (auto *CI = dyn_cast<CallInst>(Call)) {
- CallInst *SPCall = Builder.CreateGCStatepointCall(
- StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
- TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
- SPCall->setTailCallKind(CI->getTailCallKind());
- SPCall->setCallingConv(CI->getCallingConv());
- // Currently we will fail on parameter attributes and on certain
- // function attributes. In case if we can handle this set of attributes -
- // set up function attrs directly on statepoint and return attrs later for
- // gc_result intrinsic.
- SPCall->setAttributes(
- legalizeCallAttributes(CI->getContext(), CI->getAttributes()));
- Token = cast<GCStatepointInst>(SPCall);
- // Put the following gc_result and gc_relocate calls immediately after the
- // the old call (which we're about to delete)
- assert(CI->getNextNode() && "Not a terminator, must have next!");
- Builder.SetInsertPoint(CI->getNextNode());
- Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
- } else {
- auto *II = cast<InvokeInst>(Call);
- // Insert the new invoke into the old block. We'll remove the old one in a
- // moment at which point this will become the new terminator for the
- // original block.
- InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
- StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
- II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
- "statepoint_token");
- SPInvoke->setCallingConv(II->getCallingConv());
- // Currently we will fail on parameter attributes and on certain
- // function attributes. In case if we can handle this set of attributes -
- // set up function attrs directly on statepoint and return attrs later for
- // gc_result intrinsic.
- SPInvoke->setAttributes(
- legalizeCallAttributes(II->getContext(), II->getAttributes()));
- Token = cast<GCStatepointInst>(SPInvoke);
- // Generate gc relocates in exceptional path
- BasicBlock *UnwindBlock = II->getUnwindDest();
- assert(!isa<PHINode>(UnwindBlock->begin()) &&
- UnwindBlock->getUniquePredecessor() &&
- "can't safely insert in this block!");
- Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
- Builder.SetCurrentDebugLocation(II->getDebugLoc());
- // Attach exceptional gc relocates to the landingpad.
- Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
- Result.UnwindToken = ExceptionalToken;
- CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
- // Generate gc relocates and returns for normal block
- BasicBlock *NormalDest = II->getNormalDest();
- assert(!isa<PHINode>(NormalDest->begin()) &&
- NormalDest->getUniquePredecessor() &&
- "can't safely insert in this block!");
- Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
- // gc relocates will be generated later as if it were regular call
- // statepoint
- }
- assert(Token && "Should be set in one of the above branches!");
- if (IsDeoptimize) {
- // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
- // transform the tail-call like structure to a call to a void function
- // followed by unreachable to get better codegen.
- Replacements.push_back(
- DeferredReplacement::createDeoptimizeReplacement(Call));
- } else {
- Token->setName("statepoint_token");
- if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
- StringRef Name = Call->hasName() ? Call->getName() : "";
- CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
- GCResult->setAttributes(
- AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
- Call->getAttributes().getRetAttrs()));
- // We cannot RAUW or delete CS.getInstruction() because it could be in the
- // live set of some other safepoint, in which case that safepoint's
- // PartiallyConstructedSafepointRecord will hold a raw pointer to this
- // llvm::Instruction. Instead, we defer the replacement and deletion to
- // after the live sets have been made explicit in the IR, and we no longer
- // have raw pointers to worry about.
- Replacements.emplace_back(
- DeferredReplacement::createRAUW(Call, GCResult));
- } else {
- Replacements.emplace_back(DeferredReplacement::createDelete(Call));
- }
- }
- Result.StatepointToken = Token;
- // Second, create a gc.relocate for every live variable
- CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
- }
- // Replace an existing gc.statepoint with a new one and a set of gc.relocates
- // which make the relocations happening at this safepoint explicit.
- //
- // WARNING: Does not do any fixup to adjust users of the original live
- // values. That's the callers responsibility.
- static void
- makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
- PartiallyConstructedSafepointRecord &Result,
- std::vector<DeferredReplacement> &Replacements,
- const PointerToBaseTy &PointerToBase) {
- const auto &LiveSet = Result.LiveSet;
- // Convert to vector for efficient cross referencing.
- SmallVector<Value *, 64> BaseVec, LiveVec;
- LiveVec.reserve(LiveSet.size());
- BaseVec.reserve(LiveSet.size());
- for (Value *L : LiveSet) {
- LiveVec.push_back(L);
- assert(PointerToBase.count(L));
- Value *Base = PointerToBase.find(L)->second;
- BaseVec.push_back(Base);
- }
- assert(LiveVec.size() == BaseVec.size());
- // Do the actual rewriting and delete the old statepoint
- makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements,
- PointerToBase);
- }
- // Helper function for the relocationViaAlloca.
- //
- // It receives iterator to the statepoint gc relocates and emits a store to the
- // assigned location (via allocaMap) for the each one of them. It adds the
- // visited values into the visitedLiveValues set, which we will later use them
- // for validation checking.
- static void
- insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
- DenseMap<Value *, AllocaInst *> &AllocaMap,
- DenseSet<Value *> &VisitedLiveValues) {
- for (User *U : GCRelocs) {
- GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
- if (!Relocate)
- continue;
- Value *OriginalValue = Relocate->getDerivedPtr();
- assert(AllocaMap.count(OriginalValue));
- Value *Alloca = AllocaMap[OriginalValue];
- // Emit store into the related alloca
- // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
- // the correct type according to alloca.
- assert(Relocate->getNextNode() &&
- "Should always have one since it's not a terminator");
- IRBuilder<> Builder(Relocate->getNextNode());
- Value *CastedRelocatedValue =
- Builder.CreateBitCast(Relocate,
- cast<AllocaInst>(Alloca)->getAllocatedType(),
- suffixed_name_or(Relocate, ".casted", ""));
- new StoreInst(CastedRelocatedValue, Alloca,
- cast<Instruction>(CastedRelocatedValue)->getNextNode());
- #ifndef NDEBUG
- VisitedLiveValues.insert(OriginalValue);
- #endif
- }
- }
- // Helper function for the "relocationViaAlloca". Similar to the
- // "insertRelocationStores" but works for rematerialized values.
- static void insertRematerializationStores(
- const RematerializedValueMapTy &RematerializedValues,
- DenseMap<Value *, AllocaInst *> &AllocaMap,
- DenseSet<Value *> &VisitedLiveValues) {
- for (auto RematerializedValuePair: RematerializedValues) {
- Instruction *RematerializedValue = RematerializedValuePair.first;
- Value *OriginalValue = RematerializedValuePair.second;
- assert(AllocaMap.count(OriginalValue) &&
- "Can not find alloca for rematerialized value");
- Value *Alloca = AllocaMap[OriginalValue];
- new StoreInst(RematerializedValue, Alloca,
- RematerializedValue->getNextNode());
- #ifndef NDEBUG
- VisitedLiveValues.insert(OriginalValue);
- #endif
- }
- }
- /// Do all the relocation update via allocas and mem2reg
- static void relocationViaAlloca(
- Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
- ArrayRef<PartiallyConstructedSafepointRecord> Records) {
- #ifndef NDEBUG
- // record initial number of (static) allocas; we'll check we have the same
- // number when we get done.
- int InitialAllocaNum = 0;
- for (Instruction &I : F.getEntryBlock())
- if (isa<AllocaInst>(I))
- InitialAllocaNum++;
- #endif
- // TODO-PERF: change data structures, reserve
- DenseMap<Value *, AllocaInst *> AllocaMap;
- SmallVector<AllocaInst *, 200> PromotableAllocas;
- // Used later to chack that we have enough allocas to store all values
- std::size_t NumRematerializedValues = 0;
- PromotableAllocas.reserve(Live.size());
- // Emit alloca for "LiveValue" and record it in "allocaMap" and
- // "PromotableAllocas"
- const DataLayout &DL = F.getParent()->getDataLayout();
- auto emitAllocaFor = [&](Value *LiveValue) {
- AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
- DL.getAllocaAddrSpace(), "",
- F.getEntryBlock().getFirstNonPHI());
- AllocaMap[LiveValue] = Alloca;
- PromotableAllocas.push_back(Alloca);
- };
- // Emit alloca for each live gc pointer
- for (Value *V : Live)
- emitAllocaFor(V);
- // Emit allocas for rematerialized values
- for (const auto &Info : Records)
- for (auto RematerializedValuePair : Info.RematerializedValues) {
- Value *OriginalValue = RematerializedValuePair.second;
- if (AllocaMap.count(OriginalValue) != 0)
- continue;
- emitAllocaFor(OriginalValue);
- ++NumRematerializedValues;
- }
- // The next two loops are part of the same conceptual operation. We need to
- // insert a store to the alloca after the original def and at each
- // redefinition. We need to insert a load before each use. These are split
- // into distinct loops for performance reasons.
- // Update gc pointer after each statepoint: either store a relocated value or
- // null (if no relocated value was found for this gc pointer and it is not a
- // gc_result). This must happen before we update the statepoint with load of
- // alloca otherwise we lose the link between statepoint and old def.
- for (const auto &Info : Records) {
- Value *Statepoint = Info.StatepointToken;
- // This will be used for consistency check
- DenseSet<Value *> VisitedLiveValues;
- // Insert stores for normal statepoint gc relocates
- insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
- // In case if it was invoke statepoint
- // we will insert stores for exceptional path gc relocates.
- if (isa<InvokeInst>(Statepoint)) {
- insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
- VisitedLiveValues);
- }
- // Do similar thing with rematerialized values
- insertRematerializationStores(Info.RematerializedValues, AllocaMap,
- VisitedLiveValues);
- if (ClobberNonLive) {
- // As a debugging aid, pretend that an unrelocated pointer becomes null at
- // the gc.statepoint. This will turn some subtle GC problems into
- // slightly easier to debug SEGVs. Note that on large IR files with
- // lots of gc.statepoints this is extremely costly both memory and time
- // wise.
- SmallVector<AllocaInst *, 64> ToClobber;
- for (auto Pair : AllocaMap) {
- Value *Def = Pair.first;
- AllocaInst *Alloca = Pair.second;
- // This value was relocated
- if (VisitedLiveValues.count(Def)) {
- continue;
- }
- ToClobber.push_back(Alloca);
- }
- auto InsertClobbersAt = [&](Instruction *IP) {
- for (auto *AI : ToClobber) {
- auto PT = cast<PointerType>(AI->getAllocatedType());
- Constant *CPN = ConstantPointerNull::get(PT);
- new StoreInst(CPN, AI, IP);
- }
- };
- // Insert the clobbering stores. These may get intermixed with the
- // gc.results and gc.relocates, but that's fine.
- if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
- InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
- InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
- } else {
- InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
- }
- }
- }
- // Update use with load allocas and add store for gc_relocated.
- for (auto Pair : AllocaMap) {
- Value *Def = Pair.first;
- AllocaInst *Alloca = Pair.second;
- // We pre-record the uses of allocas so that we dont have to worry about
- // later update that changes the user information..
- SmallVector<Instruction *, 20> Uses;
- // PERF: trade a linear scan for repeated reallocation
- Uses.reserve(Def->getNumUses());
- for (User *U : Def->users()) {
- if (!isa<ConstantExpr>(U)) {
- // If the def has a ConstantExpr use, then the def is either a
- // ConstantExpr use itself or null. In either case
- // (recursively in the first, directly in the second), the oop
- // it is ultimately dependent on is null and this particular
- // use does not need to be fixed up.
- Uses.push_back(cast<Instruction>(U));
- }
- }
- llvm::sort(Uses);
- auto Last = std::unique(Uses.begin(), Uses.end());
- Uses.erase(Last, Uses.end());
- for (Instruction *Use : Uses) {
- if (isa<PHINode>(Use)) {
- PHINode *Phi = cast<PHINode>(Use);
- for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
- if (Def == Phi->getIncomingValue(i)) {
- LoadInst *Load =
- new LoadInst(Alloca->getAllocatedType(), Alloca, "",
- Phi->getIncomingBlock(i)->getTerminator());
- Phi->setIncomingValue(i, Load);
- }
- }
- } else {
- LoadInst *Load =
- new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
- Use->replaceUsesOfWith(Def, Load);
- }
- }
- // Emit store for the initial gc value. Store must be inserted after load,
- // otherwise store will be in alloca's use list and an extra load will be
- // inserted before it.
- StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
- DL.getABITypeAlign(Def->getType()));
- if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
- if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
- // InvokeInst is a terminator so the store need to be inserted into its
- // normal destination block.
- BasicBlock *NormalDest = Invoke->getNormalDest();
- Store->insertBefore(NormalDest->getFirstNonPHI());
- } else {
- assert(!Inst->isTerminator() &&
- "The only terminator that can produce a value is "
- "InvokeInst which is handled above.");
- Store->insertAfter(Inst);
- }
- } else {
- assert(isa<Argument>(Def));
- Store->insertAfter(cast<Instruction>(Alloca));
- }
- }
- assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
- "we must have the same allocas with lives");
- if (!PromotableAllocas.empty()) {
- // Apply mem2reg to promote alloca to SSA
- PromoteMemToReg(PromotableAllocas, DT);
- }
- #ifndef NDEBUG
- for (auto &I : F.getEntryBlock())
- if (isa<AllocaInst>(I))
- InitialAllocaNum--;
- assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
- #endif
- }
- /// Implement a unique function which doesn't require we sort the input
- /// vector. Doing so has the effect of changing the output of a couple of
- /// tests in ways which make them less useful in testing fused safepoints.
- template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
- SmallSet<T, 8> Seen;
- erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
- }
- /// Insert holders so that each Value is obviously live through the entire
- /// lifetime of the call.
- static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
- SmallVectorImpl<CallInst *> &Holders) {
- if (Values.empty())
- // No values to hold live, might as well not insert the empty holder
- return;
- Module *M = Call->getModule();
- // Use a dummy vararg function to actually hold the values live
- FunctionCallee Func = M->getOrInsertFunction(
- "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
- if (isa<CallInst>(Call)) {
- // For call safepoints insert dummy calls right after safepoint
- Holders.push_back(
- CallInst::Create(Func, Values, "", &*++Call->getIterator()));
- return;
- }
- // For invoke safepooints insert dummy calls both in normal and
- // exceptional destination blocks
- auto *II = cast<InvokeInst>(Call);
- Holders.push_back(CallInst::Create(
- Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
- Holders.push_back(CallInst::Create(
- Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
- }
- static void findLiveReferences(
- Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
- MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
- GCPtrLivenessData OriginalLivenessData;
- computeLiveInValues(DT, F, OriginalLivenessData);
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
- }
- }
- // Helper function for the "rematerializeLiveValues". It walks use chain
- // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
- // the base or a value it cannot process. Only "simple" values are processed
- // (currently it is GEP's and casts). The returned root is examined by the
- // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array
- // with all visited values.
- static Value* findRematerializableChainToBasePointer(
- SmallVectorImpl<Instruction*> &ChainToBase,
- Value *CurrentValue) {
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
- ChainToBase.push_back(GEP);
- return findRematerializableChainToBasePointer(ChainToBase,
- GEP->getPointerOperand());
- }
- if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
- if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
- return CI;
- ChainToBase.push_back(CI);
- return findRematerializableChainToBasePointer(ChainToBase,
- CI->getOperand(0));
- }
- // We have reached the root of the chain, which is either equal to the base or
- // is the first unsupported value along the use chain.
- return CurrentValue;
- }
- // Helper function for the "rematerializeLiveValues". Compute cost of the use
- // chain we are going to rematerialize.
- static InstructionCost
- chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
- TargetTransformInfo &TTI) {
- InstructionCost Cost = 0;
- for (Instruction *Instr : Chain) {
- if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
- assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
- "non noop cast is found during rematerialization");
- Type *SrcTy = CI->getOperand(0)->getType();
- Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
- TTI::getCastContextHint(CI),
- TargetTransformInfo::TCK_SizeAndLatency, CI);
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
- // Cost of the address calculation
- Type *ValTy = GEP->getSourceElementType();
- Cost += TTI.getAddressComputationCost(ValTy);
- // And cost of the GEP itself
- // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
- // allowed for the external usage)
- if (!GEP->hasAllConstantIndices())
- Cost += 2;
- } else {
- llvm_unreachable("unsupported instruction type during rematerialization");
- }
- }
- return Cost;
- }
- static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
- unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
- if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
- OrigRootPhi.getParent() != AlternateRootPhi.getParent())
- return false;
- // Map of incoming values and their corresponding basic blocks of
- // OrigRootPhi.
- SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
- for (unsigned i = 0; i < PhiNum; i++)
- CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
- OrigRootPhi.getIncomingBlock(i);
- // Both current and base PHIs should have same incoming values and
- // the same basic blocks corresponding to the incoming values.
- for (unsigned i = 0; i < PhiNum; i++) {
- auto CIVI =
- CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
- if (CIVI == CurrentIncomingValues.end())
- return false;
- BasicBlock *CurrentIncomingBB = CIVI->second;
- if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
- return false;
- }
- return true;
- }
- // From the statepoint live set pick values that are cheaper to recompute then
- // to relocate. Remove this values from the live set, rematerialize them after
- // statepoint and record them in "Info" structure. Note that similar to
- // relocated values we don't do any user adjustments here.
- static void rematerializeLiveValues(CallBase *Call,
- PartiallyConstructedSafepointRecord &Info,
- PointerToBaseTy &PointerToBase,
- TargetTransformInfo &TTI) {
- const unsigned int ChainLengthThreshold = 10;
- // Record values we are going to delete from this statepoint live set.
- // We can not di this in following loop due to iterator invalidation.
- SmallVector<Value *, 32> LiveValuesToBeDeleted;
- for (Value *LiveValue: Info.LiveSet) {
- // For each live pointer find its defining chain
- SmallVector<Instruction *, 3> ChainToBase;
- assert(PointerToBase.count(LiveValue));
- Value *RootOfChain =
- findRematerializableChainToBasePointer(ChainToBase,
- LiveValue);
- // Nothing to do, or chain is too long
- if ( ChainToBase.size() == 0 ||
- ChainToBase.size() > ChainLengthThreshold)
- continue;
- // Handle the scenario where the RootOfChain is not equal to the
- // Base Value, but they are essentially the same phi values.
- if (RootOfChain != PointerToBase[LiveValue]) {
- PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
- PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[LiveValue]);
- if (!OrigRootPhi || !AlternateRootPhi)
- continue;
- // PHI nodes that have the same incoming values, and belonging to the same
- // basic blocks are essentially the same SSA value. When the original phi
- // has incoming values with different base pointers, the original phi is
- // marked as conflict, and an additional `AlternateRootPhi` with the same
- // incoming values get generated by the findBasePointer function. We need
- // to identify the newly generated AlternateRootPhi (.base version of phi)
- // and RootOfChain (the original phi node itself) are the same, so that we
- // can rematerialize the gep and casts. This is a workaround for the
- // deficiency in the findBasePointer algorithm.
- if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
- continue;
- // Now that the phi nodes are proved to be the same, assert that
- // findBasePointer's newly generated AlternateRootPhi is present in the
- // liveset of the call.
- assert(Info.LiveSet.count(AlternateRootPhi));
- }
- // Compute cost of this chain
- InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
- // TODO: We can also account for cases when we will be able to remove some
- // of the rematerialized values by later optimization passes. I.e if
- // we rematerialized several intersecting chains. Or if original values
- // don't have any uses besides this statepoint.
- // For invokes we need to rematerialize each chain twice - for normal and
- // for unwind basic blocks. Model this by multiplying cost by two.
- if (isa<InvokeInst>(Call)) {
- Cost *= 2;
- }
- // If it's too expensive - skip it
- if (Cost >= RematerializationThreshold)
- continue;
- // Remove value from the live set
- LiveValuesToBeDeleted.push_back(LiveValue);
- // Clone instructions and record them inside "Info" structure
- // Walk backwards to visit top-most instructions first
- std::reverse(ChainToBase.begin(), ChainToBase.end());
- // Utility function which clones all instructions from "ChainToBase"
- // and inserts them before "InsertBefore". Returns rematerialized value
- // which should be used after statepoint.
- auto rematerializeChain = [&ChainToBase](
- Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
- Instruction *LastClonedValue = nullptr;
- Instruction *LastValue = nullptr;
- for (Instruction *Instr: ChainToBase) {
- // Only GEP's and casts are supported as we need to be careful to not
- // introduce any new uses of pointers not in the liveset.
- // Note that it's fine to introduce new uses of pointers which were
- // otherwise not used after this statepoint.
- assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
- Instruction *ClonedValue = Instr->clone();
- ClonedValue->insertBefore(InsertBefore);
- ClonedValue->setName(Instr->getName() + ".remat");
- // If it is not first instruction in the chain then it uses previously
- // cloned value. We should update it to use cloned value.
- if (LastClonedValue) {
- assert(LastValue);
- ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
- #ifndef NDEBUG
- for (auto OpValue : ClonedValue->operand_values()) {
- // Assert that cloned instruction does not use any instructions from
- // this chain other than LastClonedValue
- assert(!is_contained(ChainToBase, OpValue) &&
- "incorrect use in rematerialization chain");
- // Assert that the cloned instruction does not use the RootOfChain
- // or the AlternateLiveBase.
- assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
- }
- #endif
- } else {
- // For the first instruction, replace the use of unrelocated base i.e.
- // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
- // live set. They have been proved to be the same PHI nodes. Note
- // that the *only* use of the RootOfChain in the ChainToBase list is
- // the first Value in the list.
- if (RootOfChain != AlternateLiveBase)
- ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
- }
- LastClonedValue = ClonedValue;
- LastValue = Instr;
- }
- assert(LastClonedValue);
- return LastClonedValue;
- };
- // Different cases for calls and invokes. For invokes we need to clone
- // instructions both on normal and unwind path.
- if (isa<CallInst>(Call)) {
- Instruction *InsertBefore = Call->getNextNode();
- assert(InsertBefore);
- Instruction *RematerializedValue = rematerializeChain(
- InsertBefore, RootOfChain, PointerToBase[LiveValue]);
- Info.RematerializedValues[RematerializedValue] = LiveValue;
- } else {
- auto *Invoke = cast<InvokeInst>(Call);
- Instruction *NormalInsertBefore =
- &*Invoke->getNormalDest()->getFirstInsertionPt();
- Instruction *UnwindInsertBefore =
- &*Invoke->getUnwindDest()->getFirstInsertionPt();
- Instruction *NormalRematerializedValue = rematerializeChain(
- NormalInsertBefore, RootOfChain, PointerToBase[LiveValue]);
- Instruction *UnwindRematerializedValue = rematerializeChain(
- UnwindInsertBefore, RootOfChain, PointerToBase[LiveValue]);
- Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
- Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
- }
- }
- // Remove rematerializaed values from the live set
- for (auto LiveValue: LiveValuesToBeDeleted) {
- Info.LiveSet.remove(LiveValue);
- }
- }
- static bool inlineGetBaseAndOffset(Function &F,
- SmallVectorImpl<CallInst *> &Intrinsics,
- DefiningValueMapTy &DVCache) {
- auto &Context = F.getContext();
- auto &DL = F.getParent()->getDataLayout();
- bool Changed = false;
- for (auto *Callsite : Intrinsics)
- switch (Callsite->getIntrinsicID()) {
- case Intrinsic::experimental_gc_get_pointer_base: {
- Changed = true;
- Value *Base = findBasePointer(Callsite->getOperand(0), DVCache);
- assert(!DVCache.count(Callsite));
- auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast(
- Base, Callsite->getType(), suffixed_name_or(Base, ".cast", ""));
- if (BaseBC != Base)
- DVCache[BaseBC] = Base;
- Callsite->replaceAllUsesWith(BaseBC);
- if (!BaseBC->hasName())
- BaseBC->takeName(Callsite);
- Callsite->eraseFromParent();
- break;
- }
- case Intrinsic::experimental_gc_get_pointer_offset: {
- Changed = true;
- Value *Derived = Callsite->getOperand(0);
- Value *Base = findBasePointer(Derived, DVCache);
- assert(!DVCache.count(Callsite));
- unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
- unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
- IRBuilder<> Builder(Callsite);
- Value *BaseInt =
- Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize),
- suffixed_name_or(Base, ".int", ""));
- Value *DerivedInt =
- Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize),
- suffixed_name_or(Derived, ".int", ""));
- Value *Offset = Builder.CreateSub(DerivedInt, BaseInt);
- Callsite->replaceAllUsesWith(Offset);
- Offset->takeName(Callsite);
- Callsite->eraseFromParent();
- break;
- }
- default:
- llvm_unreachable("Unknown intrinsic");
- }
- return Changed;
- }
- static bool insertParsePoints(Function &F, DominatorTree &DT,
- TargetTransformInfo &TTI,
- SmallVectorImpl<CallBase *> &ToUpdate,
- DefiningValueMapTy &DVCache) {
- #ifndef NDEBUG
- // Validate the input
- std::set<CallBase *> Uniqued;
- Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
- assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
- for (CallBase *Call : ToUpdate)
- assert(Call->getFunction() == &F);
- #endif
- // When inserting gc.relocates for invokes, we need to be able to insert at
- // the top of the successor blocks. See the comment on
- // normalForInvokeSafepoint on exactly what is needed. Note that this step
- // may restructure the CFG.
- for (CallBase *Call : ToUpdate) {
- auto *II = dyn_cast<InvokeInst>(Call);
- if (!II)
- continue;
- normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
- normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
- }
- // A list of dummy calls added to the IR to keep various values obviously
- // live in the IR. We'll remove all of these when done.
- SmallVector<CallInst *, 64> Holders;
- // Insert a dummy call with all of the deopt operands we'll need for the
- // actual safepoint insertion as arguments. This ensures reference operands
- // in the deopt argument list are considered live through the safepoint (and
- // thus makes sure they get relocated.)
- for (CallBase *Call : ToUpdate) {
- SmallVector<Value *, 64> DeoptValues;
- for (Value *Arg : GetDeoptBundleOperands(Call)) {
- assert(!isUnhandledGCPointerType(Arg->getType()) &&
- "support for FCA unimplemented");
- if (isHandledGCPointerType(Arg->getType()))
- DeoptValues.push_back(Arg);
- }
- insertUseHolderAfter(Call, DeoptValues, Holders);
- }
- SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
- // A) Identify all gc pointers which are statically live at the given call
- // site.
- findLiveReferences(F, DT, ToUpdate, Records);
- /// Global mapping from live pointers to a base-defining-value.
- PointerToBaseTy PointerToBase;
- // B) Find the base pointers for each live pointer
- for (size_t i = 0; i < Records.size(); i++) {
- PartiallyConstructedSafepointRecord &info = Records[i];
- findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase);
- }
- if (PrintBasePointers) {
- errs() << "Base Pairs (w/o Relocation):\n";
- for (auto &Pair : PointerToBase) {
- errs() << " derived ";
- Pair.first->printAsOperand(errs(), false);
- errs() << " base ";
- Pair.second->printAsOperand(errs(), false);
- errs() << "\n";
- ;
- }
- }
- // The base phi insertion logic (for any safepoint) may have inserted new
- // instructions which are now live at some safepoint. The simplest such
- // example is:
- // loop:
- // phi a <-- will be a new base_phi here
- // safepoint 1 <-- that needs to be live here
- // gep a + 1
- // safepoint 2
- // br loop
- // We insert some dummy calls after each safepoint to definitely hold live
- // the base pointers which were identified for that safepoint. We'll then
- // ask liveness for _every_ base inserted to see what is now live. Then we
- // remove the dummy calls.
- Holders.reserve(Holders.size() + Records.size());
- for (size_t i = 0; i < Records.size(); i++) {
- PartiallyConstructedSafepointRecord &Info = Records[i];
- SmallVector<Value *, 128> Bases;
- for (auto *Derived : Info.LiveSet) {
- assert(PointerToBase.count(Derived) && "Missed base for derived pointer");
- Bases.push_back(PointerToBase[Derived]);
- }
- insertUseHolderAfter(ToUpdate[i], Bases, Holders);
- }
- // By selecting base pointers, we've effectively inserted new uses. Thus, we
- // need to rerun liveness. We may *also* have inserted new defs, but that's
- // not the key issue.
- recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase);
- if (PrintBasePointers) {
- errs() << "Base Pairs: (w/Relocation)\n";
- for (auto Pair : PointerToBase) {
- errs() << " derived ";
- Pair.first->printAsOperand(errs(), false);
- errs() << " base ";
- Pair.second->printAsOperand(errs(), false);
- errs() << "\n";
- }
- }
- // It is possible that non-constant live variables have a constant base. For
- // example, a GEP with a variable offset from a global. In this case we can
- // remove it from the liveset. We already don't add constants to the liveset
- // because we assume they won't move at runtime and the GC doesn't need to be
- // informed about them. The same reasoning applies if the base is constant.
- // Note that the relocation placement code relies on this filtering for
- // correctness as it expects the base to be in the liveset, which isn't true
- // if the base is constant.
- for (auto &Info : Records) {
- Info.LiveSet.remove_if([&](Value *LiveV) {
- assert(PointerToBase.count(LiveV) && "Missed base for derived pointer");
- return isa<Constant>(PointerToBase[LiveV]);
- });
- }
- for (CallInst *CI : Holders)
- CI->eraseFromParent();
- Holders.clear();
- // In order to reduce live set of statepoint we might choose to rematerialize
- // some values instead of relocating them. This is purely an optimization and
- // does not influence correctness.
- for (size_t i = 0; i < Records.size(); i++)
- rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase, TTI);
- // We need this to safely RAUW and delete call or invoke return values that
- // may themselves be live over a statepoint. For details, please see usage in
- // makeStatepointExplicitImpl.
- std::vector<DeferredReplacement> Replacements;
- // Now run through and replace the existing statepoints with new ones with
- // the live variables listed. We do not yet update uses of the values being
- // relocated. We have references to live variables that need to
- // survive to the last iteration of this loop. (By construction, the
- // previous statepoint can not be a live variable, thus we can and remove
- // the old statepoint calls as we go.)
- for (size_t i = 0; i < Records.size(); i++)
- makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements,
- PointerToBase);
- ToUpdate.clear(); // prevent accident use of invalid calls.
- for (auto &PR : Replacements)
- PR.doReplacement();
- Replacements.clear();
- for (auto &Info : Records) {
- // These live sets may contain state Value pointers, since we replaced calls
- // with operand bundles with calls wrapped in gc.statepoint, and some of
- // those calls may have been def'ing live gc pointers. Clear these out to
- // avoid accidentally using them.
- //
- // TODO: We should create a separate data structure that does not contain
- // these live sets, and migrate to using that data structure from this point
- // onward.
- Info.LiveSet.clear();
- }
- PointerToBase.clear();
- // Do all the fixups of the original live variables to their relocated selves
- SmallVector<Value *, 128> Live;
- for (size_t i = 0; i < Records.size(); i++) {
- PartiallyConstructedSafepointRecord &Info = Records[i];
- // We can't simply save the live set from the original insertion. One of
- // the live values might be the result of a call which needs a safepoint.
- // That Value* no longer exists and we need to use the new gc_result.
- // Thankfully, the live set is embedded in the statepoint (and updated), so
- // we just grab that.
- llvm::append_range(Live, Info.StatepointToken->gc_args());
- #ifndef NDEBUG
- // Do some basic validation checking on our liveness results before
- // performing relocation. Relocation can and will turn mistakes in liveness
- // results into non-sensical code which is must harder to debug.
- // TODO: It would be nice to test consistency as well
- assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
- "statepoint must be reachable or liveness is meaningless");
- for (Value *V : Info.StatepointToken->gc_args()) {
- if (!isa<Instruction>(V))
- // Non-instruction values trivial dominate all possible uses
- continue;
- auto *LiveInst = cast<Instruction>(V);
- assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
- "unreachable values should never be live");
- assert(DT.dominates(LiveInst, Info.StatepointToken) &&
- "basic SSA liveness expectation violated by liveness analysis");
- }
- #endif
- }
- unique_unsorted(Live);
- #ifndef NDEBUG
- // Validation check
- for (auto *Ptr : Live)
- assert(isHandledGCPointerType(Ptr->getType()) &&
- "must be a gc pointer type");
- #endif
- relocationViaAlloca(F, DT, Live, Records);
- return !Records.empty();
- }
- // List of all parameter and return attributes which must be stripped when
- // lowering from the abstract machine model. Note that we list attributes
- // here which aren't valid as return attributes, that is okay.
- static AttributeMask getParamAndReturnAttributesToRemove() {
- AttributeMask R;
- R.addAttribute(Attribute::Dereferenceable);
- R.addAttribute(Attribute::DereferenceableOrNull);
- R.addAttribute(Attribute::ReadNone);
- R.addAttribute(Attribute::ReadOnly);
- R.addAttribute(Attribute::WriteOnly);
- R.addAttribute(Attribute::NoAlias);
- R.addAttribute(Attribute::NoFree);
- return R;
- }
- static void stripNonValidAttributesFromPrototype(Function &F) {
- LLVMContext &Ctx = F.getContext();
- // Intrinsics are very delicate. Lowering sometimes depends the presence
- // of certain attributes for correctness, but we may have also inferred
- // additional ones in the abstract machine model which need stripped. This
- // assumes that the attributes defined in Intrinsic.td are conservatively
- // correct for both physical and abstract model.
- if (Intrinsic::ID id = F.getIntrinsicID()) {
- F.setAttributes(Intrinsic::getAttributes(Ctx, id));
- return;
- }
- AttributeMask R = getParamAndReturnAttributesToRemove();
- for (Argument &A : F.args())
- if (isa<PointerType>(A.getType()))
- F.removeParamAttrs(A.getArgNo(), R);
- if (isa<PointerType>(F.getReturnType()))
- F.removeRetAttrs(R);
- for (auto Attr : FnAttrsToStrip)
- F.removeFnAttr(Attr);
- }
- /// Certain metadata on instructions are invalid after running RS4GC.
- /// Optimizations that run after RS4GC can incorrectly use this metadata to
- /// optimize functions. We drop such metadata on the instruction.
- static void stripInvalidMetadataFromInstruction(Instruction &I) {
- if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
- return;
- // These are the attributes that are still valid on loads and stores after
- // RS4GC.
- // The metadata implying dereferenceability and noalias are (conservatively)
- // dropped. This is because semantically, after RewriteStatepointsForGC runs,
- // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
- // touch the entire heap including noalias objects. Note: The reasoning is
- // same as stripping the dereferenceability and noalias attributes that are
- // analogous to the metadata counterparts.
- // We also drop the invariant.load metadata on the load because that metadata
- // implies the address operand to the load points to memory that is never
- // changed once it became dereferenceable. This is no longer true after RS4GC.
- // Similar reasoning applies to invariant.group metadata, which applies to
- // loads within a group.
- unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
- LLVMContext::MD_range,
- LLVMContext::MD_alias_scope,
- LLVMContext::MD_nontemporal,
- LLVMContext::MD_nonnull,
- LLVMContext::MD_align,
- LLVMContext::MD_type};
- // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
- I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
- }
- static void stripNonValidDataFromBody(Function &F) {
- if (F.empty())
- return;
- LLVMContext &Ctx = F.getContext();
- MDBuilder Builder(Ctx);
- // Set of invariantstart instructions that we need to remove.
- // Use this to avoid invalidating the instruction iterator.
- SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
- for (Instruction &I : instructions(F)) {
- // invariant.start on memory location implies that the referenced memory
- // location is constant and unchanging. This is no longer true after
- // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
- // which frees the entire heap and the presence of invariant.start allows
- // the optimizer to sink the load of a memory location past a statepoint,
- // which is incorrect.
- if (auto *II = dyn_cast<IntrinsicInst>(&I))
- if (II->getIntrinsicID() == Intrinsic::invariant_start) {
- InvariantStartInstructions.push_back(II);
- continue;
- }
- if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
- MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
- I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
- }
- stripInvalidMetadataFromInstruction(I);
- AttributeMask R = getParamAndReturnAttributesToRemove();
- if (auto *Call = dyn_cast<CallBase>(&I)) {
- for (int i = 0, e = Call->arg_size(); i != e; i++)
- if (isa<PointerType>(Call->getArgOperand(i)->getType()))
- Call->removeParamAttrs(i, R);
- if (isa<PointerType>(Call->getType()))
- Call->removeRetAttrs(R);
- }
- }
- // Delete the invariant.start instructions and RAUW undef.
- for (auto *II : InvariantStartInstructions) {
- II->replaceAllUsesWith(UndefValue::get(II->getType()));
- II->eraseFromParent();
- }
- }
- /// Returns true if this function should be rewritten by this pass. The main
- /// point of this function is as an extension point for custom logic.
- static bool shouldRewriteStatepointsIn(Function &F) {
- // TODO: This should check the GCStrategy
- if (F.hasGC()) {
- const auto &FunctionGCName = F.getGC();
- const StringRef StatepointExampleName("statepoint-example");
- const StringRef CoreCLRName("coreclr");
- return (StatepointExampleName == FunctionGCName) ||
- (CoreCLRName == FunctionGCName);
- } else
- return false;
- }
- static void stripNonValidData(Module &M) {
- #ifndef NDEBUG
- assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
- #endif
- for (Function &F : M)
- stripNonValidAttributesFromPrototype(F);
- for (Function &F : M)
- stripNonValidDataFromBody(F);
- }
- bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
- TargetTransformInfo &TTI,
- const TargetLibraryInfo &TLI) {
- assert(!F.isDeclaration() && !F.empty() &&
- "need function body to rewrite statepoints in");
- assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
- auto NeedsRewrite = [&TLI](Instruction &I) {
- if (const auto *Call = dyn_cast<CallBase>(&I)) {
- if (isa<GCStatepointInst>(Call))
- return false;
- if (callsGCLeafFunction(Call, TLI))
- return false;
- // Normally it's up to the frontend to make sure that non-leaf calls also
- // have proper deopt state if it is required. We make an exception for
- // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
- // these are non-leaf by default. They might be generated by the optimizer
- // which doesn't know how to produce a proper deopt state. So if we see a
- // non-leaf memcpy/memmove without deopt state just treat it as a leaf
- // copy and don't produce a statepoint.
- if (!AllowStatepointWithNoDeoptInfo &&
- !Call->getOperandBundle(LLVMContext::OB_deopt)) {
- assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
- "Don't expect any other calls here!");
- return false;
- }
- return true;
- }
- return false;
- };
- // Delete any unreachable statepoints so that we don't have unrewritten
- // statepoints surviving this pass. This makes testing easier and the
- // resulting IR less confusing to human readers.
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
- bool MadeChange = removeUnreachableBlocks(F, &DTU);
- // Flush the Dominator Tree.
- DTU.getDomTree();
- // Gather all the statepoints which need rewritten. Be careful to only
- // consider those in reachable code since we need to ask dominance queries
- // when rewriting. We'll delete the unreachable ones in a moment.
- SmallVector<CallBase *, 64> ParsePointNeeded;
- SmallVector<CallInst *, 64> Intrinsics;
- for (Instruction &I : instructions(F)) {
- // TODO: only the ones with the flag set!
- if (NeedsRewrite(I)) {
- // NOTE removeUnreachableBlocks() is stronger than
- // DominatorTree::isReachableFromEntry(). In other words
- // removeUnreachableBlocks can remove some blocks for which
- // isReachableFromEntry() returns true.
- assert(DT.isReachableFromEntry(I.getParent()) &&
- "no unreachable blocks expected");
- ParsePointNeeded.push_back(cast<CallBase>(&I));
- }
- if (auto *CI = dyn_cast<CallInst>(&I))
- if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base ||
- CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset)
- Intrinsics.emplace_back(CI);
- }
- // Return early if no work to do.
- if (ParsePointNeeded.empty() && Intrinsics.empty())
- return MadeChange;
- // As a prepass, go ahead and aggressively destroy single entry phi nodes.
- // These are created by LCSSA. They have the effect of increasing the size
- // of liveness sets for no good reason. It may be harder to do this post
- // insertion since relocations and base phis can confuse things.
- for (BasicBlock &BB : F)
- if (BB.getUniquePredecessor())
- MadeChange |= FoldSingleEntryPHINodes(&BB);
- // Before we start introducing relocations, we want to tweak the IR a bit to
- // avoid unfortunate code generation effects. The main example is that we
- // want to try to make sure the comparison feeding a branch is after any
- // safepoints. Otherwise, we end up with a comparison of pre-relocation
- // values feeding a branch after relocation. This is semantically correct,
- // but results in extra register pressure since both the pre-relocation and
- // post-relocation copies must be available in registers. For code without
- // relocations this is handled elsewhere, but teaching the scheduler to
- // reverse the transform we're about to do would be slightly complex.
- // Note: This may extend the live range of the inputs to the icmp and thus
- // increase the liveset of any statepoint we move over. This is profitable
- // as long as all statepoints are in rare blocks. If we had in-register
- // lowering for live values this would be a much safer transform.
- auto getConditionInst = [](Instruction *TI) -> Instruction * {
- if (auto *BI = dyn_cast<BranchInst>(TI))
- if (BI->isConditional())
- return dyn_cast<Instruction>(BI->getCondition());
- // TODO: Extend this to handle switches
- return nullptr;
- };
- for (BasicBlock &BB : F) {
- Instruction *TI = BB.getTerminator();
- if (auto *Cond = getConditionInst(TI))
- // TODO: Handle more than just ICmps here. We should be able to move
- // most instructions without side effects or memory access.
- if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
- MadeChange = true;
- Cond->moveBefore(TI);
- }
- }
- // Nasty workaround - The base computation code in the main algorithm doesn't
- // consider the fact that a GEP can be used to convert a scalar to a vector.
- // The right fix for this is to integrate GEPs into the base rewriting
- // algorithm properly, this is just a short term workaround to prevent
- // crashes by canonicalizing such GEPs into fully vector GEPs.
- for (Instruction &I : instructions(F)) {
- if (!isa<GetElementPtrInst>(I))
- continue;
- unsigned VF = 0;
- for (unsigned i = 0; i < I.getNumOperands(); i++)
- if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
- assert(VF == 0 ||
- VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
- VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
- }
- // It's the vector to scalar traversal through the pointer operand which
- // confuses base pointer rewriting, so limit ourselves to that case.
- if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
- IRBuilder<> B(&I);
- auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
- I.setOperand(0, Splat);
- MadeChange = true;
- }
- }
- // Cache the 'defining value' relation used in the computation and
- // insertion of base phis and selects. This ensures that we don't insert
- // large numbers of duplicate base_phis. Use one cache for both
- // inlineGetBaseAndOffset() and insertParsePoints().
- DefiningValueMapTy DVCache;
- if (!Intrinsics.empty())
- // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding
- // live references.
- MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache);
- if (!ParsePointNeeded.empty())
- MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache);
- return MadeChange;
- }
- // liveness computation via standard dataflow
- // -------------------------------------------------------------------
- // TODO: Consider using bitvectors for liveness, the set of potentially
- // interesting values should be small and easy to pre-compute.
- /// Compute the live-in set for the location rbegin starting from
- /// the live-out set of the basic block
- static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
- BasicBlock::reverse_iterator End,
- SetVector<Value *> &LiveTmp) {
- for (auto &I : make_range(Begin, End)) {
- // KILL/Def - Remove this definition from LiveIn
- LiveTmp.remove(&I);
- // Don't consider *uses* in PHI nodes, we handle their contribution to
- // predecessor blocks when we seed the LiveOut sets
- if (isa<PHINode>(I))
- continue;
- // USE - Add to the LiveIn set for this instruction
- for (Value *V : I.operands()) {
- assert(!isUnhandledGCPointerType(V->getType()) &&
- "support for FCA unimplemented");
- if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
- // The choice to exclude all things constant here is slightly subtle.
- // There are two independent reasons:
- // - We assume that things which are constant (from LLVM's definition)
- // do not move at runtime. For example, the address of a global
- // variable is fixed, even though it's contents may not be.
- // - Second, we can't disallow arbitrary inttoptr constants even
- // if the language frontend does. Optimization passes are free to
- // locally exploit facts without respect to global reachability. This
- // can create sections of code which are dynamically unreachable and
- // contain just about anything. (see constants.ll in tests)
- LiveTmp.insert(V);
- }
- }
- }
- }
- static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
- for (BasicBlock *Succ : successors(BB)) {
- for (auto &I : *Succ) {
- PHINode *PN = dyn_cast<PHINode>(&I);
- if (!PN)
- break;
- Value *V = PN->getIncomingValueForBlock(BB);
- assert(!isUnhandledGCPointerType(V->getType()) &&
- "support for FCA unimplemented");
- if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
- LiveTmp.insert(V);
- }
- }
- }
- static SetVector<Value *> computeKillSet(BasicBlock *BB) {
- SetVector<Value *> KillSet;
- for (Instruction &I : *BB)
- if (isHandledGCPointerType(I.getType()))
- KillSet.insert(&I);
- return KillSet;
- }
- #ifndef NDEBUG
- /// Check that the items in 'Live' dominate 'TI'. This is used as a basic
- /// validation check for the liveness computation.
- static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
- Instruction *TI, bool TermOkay = false) {
- for (Value *V : Live) {
- if (auto *I = dyn_cast<Instruction>(V)) {
- // The terminator can be a member of the LiveOut set. LLVM's definition
- // of instruction dominance states that V does not dominate itself. As
- // such, we need to special case this to allow it.
- if (TermOkay && TI == I)
- continue;
- assert(DT.dominates(I, TI) &&
- "basic SSA liveness expectation violated by liveness analysis");
- }
- }
- }
- /// Check that all the liveness sets used during the computation of liveness
- /// obey basic SSA properties. This is useful for finding cases where we miss
- /// a def.
- static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
- BasicBlock &BB) {
- checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
- checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
- checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
- }
- #endif
- static void computeLiveInValues(DominatorTree &DT, Function &F,
- GCPtrLivenessData &Data) {
- SmallSetVector<BasicBlock *, 32> Worklist;
- // Seed the liveness for each individual block
- for (BasicBlock &BB : F) {
- Data.KillSet[&BB] = computeKillSet(&BB);
- Data.LiveSet[&BB].clear();
- computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
- #ifndef NDEBUG
- for (Value *Kill : Data.KillSet[&BB])
- assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
- #endif
- Data.LiveOut[&BB] = SetVector<Value *>();
- computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
- Data.LiveIn[&BB] = Data.LiveSet[&BB];
- Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
- Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
- if (!Data.LiveIn[&BB].empty())
- Worklist.insert(pred_begin(&BB), pred_end(&BB));
- }
- // Propagate that liveness until stable
- while (!Worklist.empty()) {
- BasicBlock *BB = Worklist.pop_back_val();
- // Compute our new liveout set, then exit early if it hasn't changed despite
- // the contribution of our successor.
- SetVector<Value *> LiveOut = Data.LiveOut[BB];
- const auto OldLiveOutSize = LiveOut.size();
- for (BasicBlock *Succ : successors(BB)) {
- assert(Data.LiveIn.count(Succ));
- LiveOut.set_union(Data.LiveIn[Succ]);
- }
- // assert OutLiveOut is a subset of LiveOut
- if (OldLiveOutSize == LiveOut.size()) {
- // If the sets are the same size, then we didn't actually add anything
- // when unioning our successors LiveIn. Thus, the LiveIn of this block
- // hasn't changed.
- continue;
- }
- Data.LiveOut[BB] = LiveOut;
- // Apply the effects of this basic block
- SetVector<Value *> LiveTmp = LiveOut;
- LiveTmp.set_union(Data.LiveSet[BB]);
- LiveTmp.set_subtract(Data.KillSet[BB]);
- assert(Data.LiveIn.count(BB));
- const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
- // assert: OldLiveIn is a subset of LiveTmp
- if (OldLiveIn.size() != LiveTmp.size()) {
- Data.LiveIn[BB] = LiveTmp;
- Worklist.insert(pred_begin(BB), pred_end(BB));
- }
- } // while (!Worklist.empty())
- #ifndef NDEBUG
- // Verify our output against SSA properties. This helps catch any
- // missing kills during the above iteration.
- for (BasicBlock &BB : F)
- checkBasicSSA(DT, Data, BB);
- #endif
- }
- static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
- StatepointLiveSetTy &Out) {
- BasicBlock *BB = Inst->getParent();
- // Note: The copy is intentional and required
- assert(Data.LiveOut.count(BB));
- SetVector<Value *> LiveOut = Data.LiveOut[BB];
- // We want to handle the statepoint itself oddly. It's
- // call result is not live (normal), nor are it's arguments
- // (unless they're used again later). This adjustment is
- // specifically what we need to relocate
- computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
- LiveOut);
- LiveOut.remove(Inst);
- Out.insert(LiveOut.begin(), LiveOut.end());
- }
- static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
- CallBase *Call,
- PartiallyConstructedSafepointRecord &Info,
- PointerToBaseTy &PointerToBase) {
- StatepointLiveSetTy Updated;
- findLiveSetAtInst(Call, RevisedLivenessData, Updated);
- // We may have base pointers which are now live that weren't before. We need
- // to update the PointerToBase structure to reflect this.
- for (auto V : Updated)
- PointerToBase.insert({ V, V });
- Info.LiveSet = Updated;
- }
|