123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934 |
- //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass implements an idiom recognizer that transforms simple loops into a
- // non-loop form. In cases that this kicks in, it can be a significant
- // performance win.
- //
- // If compiling for code size we avoid idiom recognition if the resulting
- // code could be larger than the code for the original loop. One way this could
- // happen is if the loop is not removable after idiom recognition due to the
- // presence of non-idiom instructions. The initial implementation of the
- // heuristics applies to idioms in multi-block loops.
- //
- //===----------------------------------------------------------------------===//
- //
- // TODO List:
- //
- // Future loop memory idioms to recognize:
- // memcmp, strlen, etc.
- // Future floating point idioms to recognize in -ffast-math mode:
- // fpowi
- // Future integer operation idioms to recognize:
- // ctpop
- //
- // Beware that isel's default lowering for ctpop is highly inefficient for
- // i64 and larger types when i64 is legal and the value has few bits set. It
- // would be good to enhance isel to emit a loop for ctpop in this case.
- //
- // This could recognize common matrix multiplies and dot product idioms and
- // replace them with calls to BLAS (if linked in??).
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/CmpInstAnalysis.h"
- #include "llvm/Analysis/LoopAccessAnalysis.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/MustExecute.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/InstructionCost.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/BuildLibCalls.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <utility>
- #include <vector>
- using namespace llvm;
- #define DEBUG_TYPE "loop-idiom"
- STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
- STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
- STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores");
- STATISTIC(
- NumShiftUntilBitTest,
- "Number of uncountable loops recognized as 'shift until bitttest' idiom");
- STATISTIC(NumShiftUntilZero,
- "Number of uncountable loops recognized as 'shift until zero' idiom");
- bool DisableLIRP::All;
- static cl::opt<bool, true>
- DisableLIRPAll("disable-" DEBUG_TYPE "-all",
- cl::desc("Options to disable Loop Idiom Recognize Pass."),
- cl::location(DisableLIRP::All), cl::init(false),
- cl::ReallyHidden);
- bool DisableLIRP::Memset;
- static cl::opt<bool, true>
- DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
- cl::desc("Proceed with loop idiom recognize pass, but do "
- "not convert loop(s) to memset."),
- cl::location(DisableLIRP::Memset), cl::init(false),
- cl::ReallyHidden);
- bool DisableLIRP::Memcpy;
- static cl::opt<bool, true>
- DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
- cl::desc("Proceed with loop idiom recognize pass, but do "
- "not convert loop(s) to memcpy."),
- cl::location(DisableLIRP::Memcpy), cl::init(false),
- cl::ReallyHidden);
- static cl::opt<bool> UseLIRCodeSizeHeurs(
- "use-lir-code-size-heurs",
- cl::desc("Use loop idiom recognition code size heuristics when compiling"
- "with -Os/-Oz"),
- cl::init(true), cl::Hidden);
- namespace {
- class LoopIdiomRecognize {
- Loop *CurLoop = nullptr;
- AliasAnalysis *AA;
- DominatorTree *DT;
- LoopInfo *LI;
- ScalarEvolution *SE;
- TargetLibraryInfo *TLI;
- const TargetTransformInfo *TTI;
- const DataLayout *DL;
- OptimizationRemarkEmitter &ORE;
- bool ApplyCodeSizeHeuristics;
- std::unique_ptr<MemorySSAUpdater> MSSAU;
- public:
- explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
- LoopInfo *LI, ScalarEvolution *SE,
- TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI, MemorySSA *MSSA,
- const DataLayout *DL,
- OptimizationRemarkEmitter &ORE)
- : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
- if (MSSA)
- MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
- }
- bool runOnLoop(Loop *L);
- private:
- using StoreList = SmallVector<StoreInst *, 8>;
- using StoreListMap = MapVector<Value *, StoreList>;
- StoreListMap StoreRefsForMemset;
- StoreListMap StoreRefsForMemsetPattern;
- StoreList StoreRefsForMemcpy;
- bool HasMemset;
- bool HasMemsetPattern;
- bool HasMemcpy;
- /// Return code for isLegalStore()
- enum LegalStoreKind {
- None = 0,
- Memset,
- MemsetPattern,
- Memcpy,
- UnorderedAtomicMemcpy,
- DontUse // Dummy retval never to be used. Allows catching errors in retval
- // handling.
- };
- /// \name Countable Loop Idiom Handling
- /// @{
- bool runOnCountableLoop();
- bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
- SmallVectorImpl<BasicBlock *> &ExitBlocks);
- void collectStores(BasicBlock *BB);
- LegalStoreKind isLegalStore(StoreInst *SI);
- enum class ForMemset { No, Yes };
- bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
- ForMemset For);
- template <typename MemInst>
- bool processLoopMemIntrinsic(
- BasicBlock *BB,
- bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
- const SCEV *BECount);
- bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount);
- bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
- bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV,
- MaybeAlign StoreAlignment, Value *StoredVal,
- Instruction *TheStore,
- SmallPtrSetImpl<Instruction *> &Stores,
- const SCEVAddRecExpr *Ev, const SCEV *BECount,
- bool IsNegStride, bool IsLoopMemset = false);
- bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
- bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr,
- const SCEV *StoreSize, MaybeAlign StoreAlign,
- MaybeAlign LoadAlign, Instruction *TheStore,
- Instruction *TheLoad,
- const SCEVAddRecExpr *StoreEv,
- const SCEVAddRecExpr *LoadEv,
- const SCEV *BECount);
- bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
- bool IsLoopMemset = false);
- /// @}
- /// \name Noncountable Loop Idiom Handling
- /// @{
- bool runOnNoncountableLoop();
- bool recognizePopcount();
- void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
- PHINode *CntPhi, Value *Var);
- bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz
- void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
- Instruction *CntInst, PHINode *CntPhi,
- Value *Var, Instruction *DefX,
- const DebugLoc &DL, bool ZeroCheck,
- bool IsCntPhiUsedOutsideLoop);
- bool recognizeShiftUntilBitTest();
- bool recognizeShiftUntilZero();
- /// @}
- };
- class LoopIdiomRecognizeLegacyPass : public LoopPass {
- public:
- static char ID;
- explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
- initializeLoopIdiomRecognizeLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
- bool runOnLoop(Loop *L, LPPassManager &LPM) override {
- if (DisableLIRP::All)
- return false;
- if (skipLoop(L))
- return false;
- AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- TargetLibraryInfo *TLI =
- &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
- *L->getHeader()->getParent());
- const TargetTransformInfo *TTI =
- &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
- *L->getHeader()->getParent());
- const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
- auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
- MemorySSA *MSSA = nullptr;
- if (MSSAAnalysis)
- MSSA = &MSSAAnalysis->getMSSA();
- // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
- // pass. Function analyses need to be preserved across loop transformations
- // but ORE cannot be preserved (see comment before the pass definition).
- OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
- LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
- return LIR.runOnLoop(L);
- }
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG.
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- getLoopAnalysisUsage(AU);
- }
- };
- } // end anonymous namespace
- char LoopIdiomRecognizeLegacyPass::ID = 0;
- PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &) {
- if (DisableLIRP::All)
- return PreservedAnalyses::all();
- const auto *DL = &L.getHeader()->getModule()->getDataLayout();
- // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
- // pass. Function analyses need to be preserved across loop transformations
- // but ORE cannot be preserved (see comment before the pass definition).
- OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
- LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
- AR.MSSA, DL, ORE);
- if (!LIR.runOnLoop(&L))
- return PreservedAnalyses::all();
- auto PA = getLoopPassPreservedAnalyses();
- if (AR.MSSA)
- PA.preserve<MemorySSAAnalysis>();
- return PA;
- }
- INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
- "Recognize loop idioms", false, false)
- INITIALIZE_PASS_DEPENDENCY(LoopPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
- "Recognize loop idioms", false, false)
- Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
- static void deleteDeadInstruction(Instruction *I) {
- I->replaceAllUsesWith(UndefValue::get(I->getType()));
- I->eraseFromParent();
- }
- //===----------------------------------------------------------------------===//
- //
- // Implementation of LoopIdiomRecognize
- //
- //===----------------------------------------------------------------------===//
- bool LoopIdiomRecognize::runOnLoop(Loop *L) {
- CurLoop = L;
- // If the loop could not be converted to canonical form, it must have an
- // indirectbr in it, just give up.
- if (!L->getLoopPreheader())
- return false;
- // Disable loop idiom recognition if the function's name is a common idiom.
- StringRef Name = L->getHeader()->getParent()->getName();
- if (Name == "memset" || Name == "memcpy")
- return false;
- // Determine if code size heuristics need to be applied.
- ApplyCodeSizeHeuristics =
- L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
- HasMemset = TLI->has(LibFunc_memset);
- HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
- HasMemcpy = TLI->has(LibFunc_memcpy);
- if (HasMemset || HasMemsetPattern || HasMemcpy)
- if (SE->hasLoopInvariantBackedgeTakenCount(L))
- return runOnCountableLoop();
- return runOnNoncountableLoop();
- }
- bool LoopIdiomRecognize::runOnCountableLoop() {
- const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
- assert(!isa<SCEVCouldNotCompute>(BECount) &&
- "runOnCountableLoop() called on a loop without a predictable"
- "backedge-taken count");
- // If this loop executes exactly one time, then it should be peeled, not
- // optimized by this pass.
- if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
- if (BECst->getAPInt() == 0)
- return false;
- SmallVector<BasicBlock *, 8> ExitBlocks;
- CurLoop->getUniqueExitBlocks(ExitBlocks);
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
- << CurLoop->getHeader()->getParent()->getName()
- << "] Countable Loop %" << CurLoop->getHeader()->getName()
- << "\n");
- // The following transforms hoist stores/memsets into the loop pre-header.
- // Give up if the loop has instructions that may throw.
- SimpleLoopSafetyInfo SafetyInfo;
- SafetyInfo.computeLoopSafetyInfo(CurLoop);
- if (SafetyInfo.anyBlockMayThrow())
- return false;
- bool MadeChange = false;
- // Scan all the blocks in the loop that are not in subloops.
- for (auto *BB : CurLoop->getBlocks()) {
- // Ignore blocks in subloops.
- if (LI->getLoopFor(BB) != CurLoop)
- continue;
- MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
- }
- return MadeChange;
- }
- static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
- const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
- return ConstStride->getAPInt();
- }
- /// getMemSetPatternValue - If a strided store of the specified value is safe to
- /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
- /// be passed in. Otherwise, return null.
- ///
- /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
- /// just replicate their input array and then pass on to memset_pattern16.
- static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
- // FIXME: This could check for UndefValue because it can be merged into any
- // other valid pattern.
- // If the value isn't a constant, we can't promote it to being in a constant
- // array. We could theoretically do a store to an alloca or something, but
- // that doesn't seem worthwhile.
- Constant *C = dyn_cast<Constant>(V);
- if (!C)
- return nullptr;
- // Only handle simple values that are a power of two bytes in size.
- uint64_t Size = DL->getTypeSizeInBits(V->getType());
- if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
- return nullptr;
- // Don't care enough about darwin/ppc to implement this.
- if (DL->isBigEndian())
- return nullptr;
- // Convert to size in bytes.
- Size /= 8;
- // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
- // if the top and bottom are the same (e.g. for vectors and large integers).
- if (Size > 16)
- return nullptr;
- // If the constant is exactly 16 bytes, just use it.
- if (Size == 16)
- return C;
- // Otherwise, we'll use an array of the constants.
- unsigned ArraySize = 16 / Size;
- ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
- return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
- }
- LoopIdiomRecognize::LegalStoreKind
- LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
- // Don't touch volatile stores.
- if (SI->isVolatile())
- return LegalStoreKind::None;
- // We only want simple or unordered-atomic stores.
- if (!SI->isUnordered())
- return LegalStoreKind::None;
- // Avoid merging nontemporal stores.
- if (SI->getMetadata(LLVMContext::MD_nontemporal))
- return LegalStoreKind::None;
- Value *StoredVal = SI->getValueOperand();
- Value *StorePtr = SI->getPointerOperand();
- // Don't convert stores of non-integral pointer types to memsets (which stores
- // integers).
- if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
- return LegalStoreKind::None;
- // Reject stores that are so large that they overflow an unsigned.
- // When storing out scalable vectors we bail out for now, since the code
- // below currently only works for constant strides.
- TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
- if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) ||
- (SizeInBits.getFixedSize() >> 32) != 0)
- return LegalStoreKind::None;
- // See if the pointer expression is an AddRec like {base,+,1} on the current
- // loop, which indicates a strided store. If we have something else, it's a
- // random store we can't handle.
- const SCEVAddRecExpr *StoreEv =
- dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
- if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
- return LegalStoreKind::None;
- // Check to see if we have a constant stride.
- if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
- return LegalStoreKind::None;
- // See if the store can be turned into a memset.
- // If the stored value is a byte-wise value (like i32 -1), then it may be
- // turned into a memset of i8 -1, assuming that all the consecutive bytes
- // are stored. A store of i32 0x01020304 can never be turned into a memset,
- // but it can be turned into memset_pattern if the target supports it.
- Value *SplatValue = isBytewiseValue(StoredVal, *DL);
- // Note: memset and memset_pattern on unordered-atomic is yet not supported
- bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
- // If we're allowed to form a memset, and the stored value would be
- // acceptable for memset, use it.
- if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
- // Verify that the stored value is loop invariant. If not, we can't
- // promote the memset.
- CurLoop->isLoopInvariant(SplatValue)) {
- // It looks like we can use SplatValue.
- return LegalStoreKind::Memset;
- }
- if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
- // Don't create memset_pattern16s with address spaces.
- StorePtr->getType()->getPointerAddressSpace() == 0 &&
- getMemSetPatternValue(StoredVal, DL)) {
- // It looks like we can use PatternValue!
- return LegalStoreKind::MemsetPattern;
- }
- // Otherwise, see if the store can be turned into a memcpy.
- if (HasMemcpy && !DisableLIRP::Memcpy) {
- // Check to see if the stride matches the size of the store. If so, then we
- // know that every byte is touched in the loop.
- APInt Stride = getStoreStride(StoreEv);
- unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
- if (StoreSize != Stride && StoreSize != -Stride)
- return LegalStoreKind::None;
- // The store must be feeding a non-volatile load.
- LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
- // Only allow non-volatile loads
- if (!LI || LI->isVolatile())
- return LegalStoreKind::None;
- // Only allow simple or unordered-atomic loads
- if (!LI->isUnordered())
- return LegalStoreKind::None;
- // See if the pointer expression is an AddRec like {base,+,1} on the current
- // loop, which indicates a strided load. If we have something else, it's a
- // random load we can't handle.
- const SCEVAddRecExpr *LoadEv =
- dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
- if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
- return LegalStoreKind::None;
- // The store and load must share the same stride.
- if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
- return LegalStoreKind::None;
- // Success. This store can be converted into a memcpy.
- UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
- return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
- : LegalStoreKind::Memcpy;
- }
- // This store can't be transformed into a memset/memcpy.
- return LegalStoreKind::None;
- }
- void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
- StoreRefsForMemset.clear();
- StoreRefsForMemsetPattern.clear();
- StoreRefsForMemcpy.clear();
- for (Instruction &I : *BB) {
- StoreInst *SI = dyn_cast<StoreInst>(&I);
- if (!SI)
- continue;
- // Make sure this is a strided store with a constant stride.
- switch (isLegalStore(SI)) {
- case LegalStoreKind::None:
- // Nothing to do
- break;
- case LegalStoreKind::Memset: {
- // Find the base pointer.
- Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
- StoreRefsForMemset[Ptr].push_back(SI);
- } break;
- case LegalStoreKind::MemsetPattern: {
- // Find the base pointer.
- Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
- StoreRefsForMemsetPattern[Ptr].push_back(SI);
- } break;
- case LegalStoreKind::Memcpy:
- case LegalStoreKind::UnorderedAtomicMemcpy:
- StoreRefsForMemcpy.push_back(SI);
- break;
- default:
- assert(false && "unhandled return value");
- break;
- }
- }
- }
- /// runOnLoopBlock - Process the specified block, which lives in a counted loop
- /// with the specified backedge count. This block is known to be in the current
- /// loop and not in any subloops.
- bool LoopIdiomRecognize::runOnLoopBlock(
- BasicBlock *BB, const SCEV *BECount,
- SmallVectorImpl<BasicBlock *> &ExitBlocks) {
- // We can only promote stores in this block if they are unconditionally
- // executed in the loop. For a block to be unconditionally executed, it has
- // to dominate all the exit blocks of the loop. Verify this now.
- for (BasicBlock *ExitBlock : ExitBlocks)
- if (!DT->dominates(BB, ExitBlock))
- return false;
- bool MadeChange = false;
- // Look for store instructions, which may be optimized to memset/memcpy.
- collectStores(BB);
- // Look for a single store or sets of stores with a common base, which can be
- // optimized into a memset (memset_pattern). The latter most commonly happens
- // with structs and handunrolled loops.
- for (auto &SL : StoreRefsForMemset)
- MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
- for (auto &SL : StoreRefsForMemsetPattern)
- MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
- // Optimize the store into a memcpy, if it feeds an similarly strided load.
- for (auto &SI : StoreRefsForMemcpy)
- MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
- MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
- BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
- MadeChange |= processLoopMemIntrinsic<MemSetInst>(
- BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
- return MadeChange;
- }
- /// See if this store(s) can be promoted to a memset.
- bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
- const SCEV *BECount, ForMemset For) {
- // Try to find consecutive stores that can be transformed into memsets.
- SetVector<StoreInst *> Heads, Tails;
- SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
- // Do a quadratic search on all of the given stores and find
- // all of the pairs of stores that follow each other.
- SmallVector<unsigned, 16> IndexQueue;
- for (unsigned i = 0, e = SL.size(); i < e; ++i) {
- assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
- Value *FirstStoredVal = SL[i]->getValueOperand();
- Value *FirstStorePtr = SL[i]->getPointerOperand();
- const SCEVAddRecExpr *FirstStoreEv =
- cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
- APInt FirstStride = getStoreStride(FirstStoreEv);
- unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
- // See if we can optimize just this store in isolation.
- if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
- Heads.insert(SL[i]);
- continue;
- }
- Value *FirstSplatValue = nullptr;
- Constant *FirstPatternValue = nullptr;
- if (For == ForMemset::Yes)
- FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
- else
- FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
- assert((FirstSplatValue || FirstPatternValue) &&
- "Expected either splat value or pattern value.");
- IndexQueue.clear();
- // If a store has multiple consecutive store candidates, search Stores
- // array according to the sequence: from i+1 to e, then from i-1 to 0.
- // This is because usually pairing with immediate succeeding or preceding
- // candidate create the best chance to find memset opportunity.
- unsigned j = 0;
- for (j = i + 1; j < e; ++j)
- IndexQueue.push_back(j);
- for (j = i; j > 0; --j)
- IndexQueue.push_back(j - 1);
- for (auto &k : IndexQueue) {
- assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
- Value *SecondStorePtr = SL[k]->getPointerOperand();
- const SCEVAddRecExpr *SecondStoreEv =
- cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
- APInt SecondStride = getStoreStride(SecondStoreEv);
- if (FirstStride != SecondStride)
- continue;
- Value *SecondStoredVal = SL[k]->getValueOperand();
- Value *SecondSplatValue = nullptr;
- Constant *SecondPatternValue = nullptr;
- if (For == ForMemset::Yes)
- SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
- else
- SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
- assert((SecondSplatValue || SecondPatternValue) &&
- "Expected either splat value or pattern value.");
- if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
- if (For == ForMemset::Yes) {
- if (isa<UndefValue>(FirstSplatValue))
- FirstSplatValue = SecondSplatValue;
- if (FirstSplatValue != SecondSplatValue)
- continue;
- } else {
- if (isa<UndefValue>(FirstPatternValue))
- FirstPatternValue = SecondPatternValue;
- if (FirstPatternValue != SecondPatternValue)
- continue;
- }
- Tails.insert(SL[k]);
- Heads.insert(SL[i]);
- ConsecutiveChain[SL[i]] = SL[k];
- break;
- }
- }
- }
- // We may run into multiple chains that merge into a single chain. We mark the
- // stores that we transformed so that we don't visit the same store twice.
- SmallPtrSet<Value *, 16> TransformedStores;
- bool Changed = false;
- // For stores that start but don't end a link in the chain:
- for (StoreInst *I : Heads) {
- if (Tails.count(I))
- continue;
- // We found a store instr that starts a chain. Now follow the chain and try
- // to transform it.
- SmallPtrSet<Instruction *, 8> AdjacentStores;
- StoreInst *HeadStore = I;
- unsigned StoreSize = 0;
- // Collect the chain into a list.
- while (Tails.count(I) || Heads.count(I)) {
- if (TransformedStores.count(I))
- break;
- AdjacentStores.insert(I);
- StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
- // Move to the next value in the chain.
- I = ConsecutiveChain[I];
- }
- Value *StoredVal = HeadStore->getValueOperand();
- Value *StorePtr = HeadStore->getPointerOperand();
- const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
- APInt Stride = getStoreStride(StoreEv);
- // Check to see if the stride matches the size of the stores. If so, then
- // we know that every byte is touched in the loop.
- if (StoreSize != Stride && StoreSize != -Stride)
- continue;
- bool IsNegStride = StoreSize == -Stride;
- Type *IntIdxTy = DL->getIndexType(StorePtr->getType());
- const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize);
- if (processLoopStridedStore(StorePtr, StoreSizeSCEV,
- MaybeAlign(HeadStore->getAlign()), StoredVal,
- HeadStore, AdjacentStores, StoreEv, BECount,
- IsNegStride)) {
- TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
- Changed = true;
- }
- }
- return Changed;
- }
- /// processLoopMemIntrinsic - Template function for calling different processor
- /// functions based on mem instrinsic type.
- template <typename MemInst>
- bool LoopIdiomRecognize::processLoopMemIntrinsic(
- BasicBlock *BB,
- bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
- const SCEV *BECount) {
- bool MadeChange = false;
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
- Instruction *Inst = &*I++;
- // Look for memory instructions, which may be optimized to a larger one.
- if (MemInst *MI = dyn_cast<MemInst>(Inst)) {
- WeakTrackingVH InstPtr(&*I);
- if (!(this->*Processor)(MI, BECount))
- continue;
- MadeChange = true;
- // If processing the instruction invalidated our iterator, start over from
- // the top of the block.
- if (!InstPtr)
- I = BB->begin();
- }
- }
- return MadeChange;
- }
- /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy
- bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI,
- const SCEV *BECount) {
- // We can only handle non-volatile memcpys with a constant size.
- if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength()))
- return false;
- // If we're not allowed to hack on memcpy, we fail.
- if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy)
- return false;
- Value *Dest = MCI->getDest();
- Value *Source = MCI->getSource();
- if (!Dest || !Source)
- return false;
- // See if the load and store pointer expressions are AddRec like {base,+,1} on
- // the current loop, which indicates a strided load and store. If we have
- // something else, it's a random load or store we can't handle.
- const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest));
- if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
- return false;
- const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source));
- if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
- return false;
- // Reject memcpys that are so large that they overflow an unsigned.
- uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue();
- if ((SizeInBytes >> 32) != 0)
- return false;
- // Check if the stride matches the size of the memcpy. If so, then we know
- // that every byte is touched in the loop.
- const SCEVConstant *ConstStoreStride =
- dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
- const SCEVConstant *ConstLoadStride =
- dyn_cast<SCEVConstant>(LoadEv->getOperand(1));
- if (!ConstStoreStride || !ConstLoadStride)
- return false;
- APInt StoreStrideValue = ConstStoreStride->getAPInt();
- APInt LoadStrideValue = ConstLoadStride->getAPInt();
- // Huge stride value - give up
- if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64)
- return false;
- if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) {
- ORE.emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI)
- << ore::NV("Inst", "memcpy") << " in "
- << ore::NV("Function", MCI->getFunction())
- << " function will not be hoisted: "
- << ore::NV("Reason", "memcpy size is not equal to stride");
- });
- return false;
- }
- int64_t StoreStrideInt = StoreStrideValue.getSExtValue();
- int64_t LoadStrideInt = LoadStrideValue.getSExtValue();
- // Check if the load stride matches the store stride.
- if (StoreStrideInt != LoadStrideInt)
- return false;
- return processLoopStoreOfLoopLoad(
- Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes),
- MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv,
- BECount);
- }
- /// processLoopMemSet - See if this memset can be promoted to a large memset.
- bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
- const SCEV *BECount) {
- // We can only handle non-volatile memsets.
- if (MSI->isVolatile())
- return false;
- // If we're not allowed to hack on memset, we fail.
- if (!HasMemset || DisableLIRP::Memset)
- return false;
- Value *Pointer = MSI->getDest();
- // See if the pointer expression is an AddRec like {base,+,1} on the current
- // loop, which indicates a strided store. If we have something else, it's a
- // random store we can't handle.
- const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
- if (!Ev || Ev->getLoop() != CurLoop)
- return false;
- if (!Ev->isAffine()) {
- LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n");
- return false;
- }
- const SCEV *PointerStrideSCEV = Ev->getOperand(1);
- const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength());
- if (!PointerStrideSCEV || !MemsetSizeSCEV)
- return false;
- bool IsNegStride = false;
- const bool IsConstantSize = isa<ConstantInt>(MSI->getLength());
- if (IsConstantSize) {
- // Memset size is constant.
- // Check if the pointer stride matches the memset size. If so, then
- // we know that every byte is touched in the loop.
- LLVM_DEBUG(dbgs() << " memset size is constant\n");
- uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
- const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
- if (!ConstStride)
- return false;
- APInt Stride = ConstStride->getAPInt();
- if (SizeInBytes != Stride && SizeInBytes != -Stride)
- return false;
- IsNegStride = SizeInBytes == -Stride;
- } else {
- // Memset size is non-constant.
- // Check if the pointer stride matches the memset size.
- // To be conservative, the pass would not promote pointers that aren't in
- // address space zero. Also, the pass only handles memset length and stride
- // that are invariant for the top level loop.
- LLVM_DEBUG(dbgs() << " memset size is non-constant\n");
- if (Pointer->getType()->getPointerAddressSpace() != 0) {
- LLVM_DEBUG(dbgs() << " pointer is not in address space zero, "
- << "abort\n");
- return false;
- }
- if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) {
- LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, "
- << "abort\n");
- return false;
- }
- // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV
- IsNegStride = PointerStrideSCEV->isNonConstantNegative();
- const SCEV *PositiveStrideSCEV =
- IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV)
- : PointerStrideSCEV;
- LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n"
- << " PositiveStrideSCEV: " << *PositiveStrideSCEV
- << "\n");
- if (PositiveStrideSCEV != MemsetSizeSCEV) {
- // If an expression is covered by the loop guard, compare again and
- // proceed with optimization if equal.
- const SCEV *FoldedPositiveStride =
- SE->applyLoopGuards(PositiveStrideSCEV, CurLoop);
- const SCEV *FoldedMemsetSize =
- SE->applyLoopGuards(MemsetSizeSCEV, CurLoop);
- LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n"
- << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n"
- << " FoldedPositiveStride: " << *FoldedPositiveStride
- << "\n");
- if (FoldedPositiveStride != FoldedMemsetSize) {
- LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n");
- return false;
- }
- }
- }
- // Verify that the memset value is loop invariant. If not, we can't promote
- // the memset.
- Value *SplatValue = MSI->getValue();
- if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
- return false;
- SmallPtrSet<Instruction *, 1> MSIs;
- MSIs.insert(MSI);
- return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()),
- MaybeAlign(MSI->getDestAlignment()),
- SplatValue, MSI, MSIs, Ev, BECount,
- IsNegStride, /*IsLoopMemset=*/true);
- }
- /// mayLoopAccessLocation - Return true if the specified loop might access the
- /// specified pointer location, which is a loop-strided access. The 'Access'
- /// argument specifies what the verboten forms of access are (read or write).
- static bool
- mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
- const SCEV *BECount, const SCEV *StoreSizeSCEV,
- AliasAnalysis &AA,
- SmallPtrSetImpl<Instruction *> &IgnoredInsts) {
- // Get the location that may be stored across the loop. Since the access is
- // strided positively through memory, we say that the modified location starts
- // at the pointer and has infinite size.
- LocationSize AccessSize = LocationSize::afterPointer();
- // If the loop iterates a fixed number of times, we can refine the access size
- // to be exactly the size of the memset, which is (BECount+1)*StoreSize
- const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount);
- const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
- if (BECst && ConstSize)
- AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
- ConstSize->getValue()->getZExtValue());
- // TODO: For this to be really effective, we have to dive into the pointer
- // operand in the store. Store to &A[i] of 100 will always return may alias
- // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
- // which will then no-alias a store to &A[100].
- MemoryLocation StoreLoc(Ptr, AccessSize);
- for (BasicBlock *B : L->blocks())
- for (Instruction &I : *B)
- if (!IgnoredInsts.contains(&I) &&
- isModOrRefSet(
- intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
- return true;
- return false;
- }
- // If we have a negative stride, Start refers to the end of the memory location
- // we're trying to memset. Therefore, we need to recompute the base pointer,
- // which is just Start - BECount*Size.
- static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
- Type *IntPtr, const SCEV *StoreSizeSCEV,
- ScalarEvolution *SE) {
- const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
- if (!StoreSizeSCEV->isOne()) {
- // index = back edge count * store size
- Index = SE->getMulExpr(Index,
- SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
- SCEV::FlagNUW);
- }
- // base pointer = start - index * store size
- return SE->getMinusSCEV(Start, Index);
- }
- /// Compute trip count from the backedge taken count.
- static const SCEV *getTripCount(const SCEV *BECount, Type *IntPtr,
- Loop *CurLoop, const DataLayout *DL,
- ScalarEvolution *SE) {
- const SCEV *TripCountS = nullptr;
- // The # stored bytes is (BECount+1). Expand the trip count out to
- // pointer size if it isn't already.
- //
- // If we're going to need to zero extend the BE count, check if we can add
- // one to it prior to zero extending without overflow. Provided this is safe,
- // it allows better simplification of the +1.
- if (DL->getTypeSizeInBits(BECount->getType()) <
- DL->getTypeSizeInBits(IntPtr) &&
- SE->isLoopEntryGuardedByCond(
- CurLoop, ICmpInst::ICMP_NE, BECount,
- SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
- TripCountS = SE->getZeroExtendExpr(
- SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
- IntPtr);
- } else {
- TripCountS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
- SE->getOne(IntPtr), SCEV::FlagNUW);
- }
- return TripCountS;
- }
- /// Compute the number of bytes as a SCEV from the backedge taken count.
- ///
- /// This also maps the SCEV into the provided type and tries to handle the
- /// computation in a way that will fold cleanly.
- static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
- const SCEV *StoreSizeSCEV, Loop *CurLoop,
- const DataLayout *DL, ScalarEvolution *SE) {
- const SCEV *TripCountSCEV = getTripCount(BECount, IntPtr, CurLoop, DL, SE);
- return SE->getMulExpr(TripCountSCEV,
- SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
- SCEV::FlagNUW);
- }
- /// processLoopStridedStore - We see a strided store of some value. If we can
- /// transform this into a memset or memset_pattern in the loop preheader, do so.
- bool LoopIdiomRecognize::processLoopStridedStore(
- Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment,
- Value *StoredVal, Instruction *TheStore,
- SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
- const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) {
- Value *SplatValue = isBytewiseValue(StoredVal, *DL);
- Constant *PatternValue = nullptr;
- if (!SplatValue)
- PatternValue = getMemSetPatternValue(StoredVal, DL);
- assert((SplatValue || PatternValue) &&
- "Expected either splat value or pattern value.");
- // The trip count of the loop and the base pointer of the addrec SCEV is
- // guaranteed to be loop invariant, which means that it should dominate the
- // header. This allows us to insert code for it in the preheader.
- unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
- BasicBlock *Preheader = CurLoop->getLoopPreheader();
- IRBuilder<> Builder(Preheader->getTerminator());
- SCEVExpander Expander(*SE, *DL, "loop-idiom");
- SCEVExpanderCleaner ExpCleaner(Expander);
- Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
- Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
- bool Changed = false;
- const SCEV *Start = Ev->getStart();
- // Handle negative strided loops.
- if (IsNegStride)
- Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE);
- // TODO: ideally we should still be able to generate memset if SCEV expander
- // is taught to generate the dependencies at the latest point.
- if (!isSafeToExpand(Start, *SE))
- return Changed;
- // Okay, we have a strided store "p[i]" of a splattable value. We can turn
- // this into a memset in the loop preheader now if we want. However, this
- // would be unsafe to do if there is anything else in the loop that may read
- // or write to the aliased location. Check for any overlap by generating the
- // base pointer and checking the region.
- Value *BasePtr =
- Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
- // From here on out, conservatively report to the pass manager that we've
- // changed the IR, even if we later clean up these added instructions. There
- // may be structural differences e.g. in the order of use lists not accounted
- // for in just a textual dump of the IR. This is written as a variable, even
- // though statically all the places this dominates could be replaced with
- // 'true', with the hope that anyone trying to be clever / "more precise" with
- // the return value will read this comment, and leave them alone.
- Changed = true;
- if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
- StoreSizeSCEV, *AA, Stores))
- return Changed;
- if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
- return Changed;
- // Okay, everything looks good, insert the memset.
- const SCEV *NumBytesS =
- getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
- // TODO: ideally we should still be able to generate memset if SCEV expander
- // is taught to generate the dependencies at the latest point.
- if (!isSafeToExpand(NumBytesS, *SE))
- return Changed;
- Value *NumBytes =
- Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
- CallInst *NewCall;
- if (SplatValue) {
- AAMDNodes AATags = TheStore->getAAMetadata();
- for (Instruction *Store : Stores)
- AATags = AATags.merge(Store->getAAMetadata());
- if (auto CI = dyn_cast<ConstantInt>(NumBytes))
- AATags = AATags.extendTo(CI->getZExtValue());
- else
- AATags = AATags.extendTo(-1);
- NewCall = Builder.CreateMemSet(
- BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment),
- /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
- } else {
- // Everything is emitted in default address space
- Type *Int8PtrTy = DestInt8PtrTy;
- Module *M = TheStore->getModule();
- StringRef FuncName = "memset_pattern16";
- FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
- Int8PtrTy, Int8PtrTy, IntIdxTy);
- inferLibFuncAttributes(M, FuncName, *TLI);
- // Otherwise we should form a memset_pattern16. PatternValue is known to be
- // an constant array of 16-bytes. Plop the value into a mergable global.
- GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
- GlobalValue::PrivateLinkage,
- PatternValue, ".memset_pattern");
- GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
- GV->setAlignment(Align(16));
- Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
- NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
- }
- NewCall->setDebugLoc(TheStore->getDebugLoc());
- if (MSSAU) {
- MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
- NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
- MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
- }
- LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
- << " from store to: " << *Ev << " at: " << *TheStore
- << "\n");
- ORE.emit([&]() {
- OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore",
- NewCall->getDebugLoc(), Preheader);
- R << "Transformed loop-strided store in "
- << ore::NV("Function", TheStore->getFunction())
- << " function into a call to "
- << ore::NV("NewFunction", NewCall->getCalledFunction())
- << "() intrinsic";
- if (!Stores.empty())
- R << ore::setExtraArgs();
- for (auto *I : Stores) {
- R << ore::NV("FromBlock", I->getParent()->getName())
- << ore::NV("ToBlock", Preheader->getName());
- }
- return R;
- });
- // Okay, the memset has been formed. Zap the original store and anything that
- // feeds into it.
- for (auto *I : Stores) {
- if (MSSAU)
- MSSAU->removeMemoryAccess(I, true);
- deleteDeadInstruction(I);
- }
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- ++NumMemSet;
- ExpCleaner.markResultUsed();
- return true;
- }
- /// If the stored value is a strided load in the same loop with the same stride
- /// this may be transformable into a memcpy. This kicks in for stuff like
- /// for (i) A[i] = B[i];
- bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
- const SCEV *BECount) {
- assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
- Value *StorePtr = SI->getPointerOperand();
- const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
- unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
- // The store must be feeding a non-volatile load.
- LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
- assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
- // See if the pointer expression is an AddRec like {base,+,1} on the current
- // loop, which indicates a strided load. If we have something else, it's a
- // random load we can't handle.
- Value *LoadPtr = LI->getPointerOperand();
- const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
- const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize);
- return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV,
- SI->getAlign(), LI->getAlign(), SI, LI,
- StoreEv, LoadEv, BECount);
- }
- class MemmoveVerifier {
- public:
- explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr,
- const DataLayout &DL)
- : DL(DL), LoadOff(0), StoreOff(0),
- BP1(llvm::GetPointerBaseWithConstantOffset(
- LoadBasePtr.stripPointerCasts(), LoadOff, DL)),
- BP2(llvm::GetPointerBaseWithConstantOffset(
- StoreBasePtr.stripPointerCasts(), StoreOff, DL)),
- IsSameObject(BP1 == BP2) {}
- bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride,
- const Instruction &TheLoad,
- bool IsMemCpy) const {
- if (IsMemCpy) {
- // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
- // for negative stride.
- if ((!IsNegStride && LoadOff <= StoreOff) ||
- (IsNegStride && LoadOff >= StoreOff))
- return false;
- } else {
- // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
- // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr.
- int64_t LoadSize =
- DL.getTypeSizeInBits(TheLoad.getType()).getFixedSize() / 8;
- if (BP1 != BP2 || LoadSize != int64_t(StoreSize))
- return false;
- if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) ||
- (IsNegStride && LoadOff + LoadSize > StoreOff))
- return false;
- }
- return true;
- }
- private:
- const DataLayout &DL;
- int64_t LoadOff;
- int64_t StoreOff;
- const Value *BP1;
- const Value *BP2;
- public:
- const bool IsSameObject;
- };
- bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
- Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV,
- MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore,
- Instruction *TheLoad, const SCEVAddRecExpr *StoreEv,
- const SCEVAddRecExpr *LoadEv, const SCEV *BECount) {
- // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to
- // conservatively bail here, since otherwise we may have to transform
- // llvm.memcpy.inline into llvm.memcpy which is illegal.
- if (isa<MemCpyInlineInst>(TheStore))
- return false;
- // The trip count of the loop and the base pointer of the addrec SCEV is
- // guaranteed to be loop invariant, which means that it should dominate the
- // header. This allows us to insert code for it in the preheader.
- BasicBlock *Preheader = CurLoop->getLoopPreheader();
- IRBuilder<> Builder(Preheader->getTerminator());
- SCEVExpander Expander(*SE, *DL, "loop-idiom");
- SCEVExpanderCleaner ExpCleaner(Expander);
- bool Changed = false;
- const SCEV *StrStart = StoreEv->getStart();
- unsigned StrAS = DestPtr->getType()->getPointerAddressSpace();
- Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
- APInt Stride = getStoreStride(StoreEv);
- const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
- // TODO: Deal with non-constant size; Currently expect constant store size
- assert(ConstStoreSize && "store size is expected to be a constant");
- int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue();
- bool IsNegStride = StoreSize == -Stride;
- // Handle negative strided loops.
- if (IsNegStride)
- StrStart =
- getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
- // Okay, we have a strided store "p[i]" of a loaded value. We can turn
- // this into a memcpy in the loop preheader now if we want. However, this
- // would be unsafe to do if there is anything else in the loop that may read
- // or write the memory region we're storing to. This includes the load that
- // feeds the stores. Check for an alias by generating the base address and
- // checking everything.
- Value *StoreBasePtr = Expander.expandCodeFor(
- StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
- // From here on out, conservatively report to the pass manager that we've
- // changed the IR, even if we later clean up these added instructions. There
- // may be structural differences e.g. in the order of use lists not accounted
- // for in just a textual dump of the IR. This is written as a variable, even
- // though statically all the places this dominates could be replaced with
- // 'true', with the hope that anyone trying to be clever / "more precise" with
- // the return value will read this comment, and leave them alone.
- Changed = true;
- SmallPtrSet<Instruction *, 2> IgnoredInsts;
- IgnoredInsts.insert(TheStore);
- bool IsMemCpy = isa<MemCpyInst>(TheStore);
- const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store";
- bool LoopAccessStore =
- mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
- StoreSizeSCEV, *AA, IgnoredInsts);
- if (LoopAccessStore) {
- // For memmove case it's not enough to guarantee that loop doesn't access
- // TheStore and TheLoad. Additionally we need to make sure that TheStore is
- // the only user of TheLoad.
- if (!TheLoad->hasOneUse())
- return Changed;
- IgnoredInsts.insert(TheLoad);
- if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
- BECount, StoreSizeSCEV, *AA, IgnoredInsts)) {
- ORE.emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore",
- TheStore)
- << ore::NV("Inst", InstRemark) << " in "
- << ore::NV("Function", TheStore->getFunction())
- << " function will not be hoisted: "
- << ore::NV("Reason", "The loop may access store location");
- });
- return Changed;
- }
- IgnoredInsts.erase(TheLoad);
- }
- const SCEV *LdStart = LoadEv->getStart();
- unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace();
- // Handle negative strided loops.
- if (IsNegStride)
- LdStart =
- getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
- // For a memcpy, we have to make sure that the input array is not being
- // mutated by the loop.
- Value *LoadBasePtr = Expander.expandCodeFor(
- LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
- // If the store is a memcpy instruction, we must check if it will write to
- // the load memory locations. So remove it from the ignored stores.
- MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL);
- if (IsMemCpy && !Verifier.IsSameObject)
- IgnoredInsts.erase(TheStore);
- if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
- StoreSizeSCEV, *AA, IgnoredInsts)) {
- ORE.emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad)
- << ore::NV("Inst", InstRemark) << " in "
- << ore::NV("Function", TheStore->getFunction())
- << " function will not be hoisted: "
- << ore::NV("Reason", "The loop may access load location");
- });
- return Changed;
- }
- bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore;
- if (UseMemMove)
- if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad,
- IsMemCpy))
- return Changed;
- if (avoidLIRForMultiBlockLoop())
- return Changed;
- // Okay, everything is safe, we can transform this!
- const SCEV *NumBytesS =
- getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
- Value *NumBytes =
- Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
- AAMDNodes AATags = TheLoad->getAAMetadata();
- AAMDNodes StoreAATags = TheStore->getAAMetadata();
- AATags = AATags.merge(StoreAATags);
- if (auto CI = dyn_cast<ConstantInt>(NumBytes))
- AATags = AATags.extendTo(CI->getZExtValue());
- else
- AATags = AATags.extendTo(-1);
- CallInst *NewCall = nullptr;
- // Check whether to generate an unordered atomic memcpy:
- // If the load or store are atomic, then they must necessarily be unordered
- // by previous checks.
- if (!TheStore->isAtomic() && !TheLoad->isAtomic()) {
- if (UseMemMove)
- NewCall = Builder.CreateMemMove(
- StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes,
- /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
- else
- NewCall =
- Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign,
- NumBytes, /*isVolatile=*/false, AATags.TBAA,
- AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
- } else {
- // For now don't support unordered atomic memmove.
- if (UseMemMove)
- return Changed;
- // We cannot allow unaligned ops for unordered load/store, so reject
- // anything where the alignment isn't at least the element size.
- assert((StoreAlign.hasValue() && LoadAlign.hasValue()) &&
- "Expect unordered load/store to have align.");
- if (StoreAlign.getValue() < StoreSize || LoadAlign.getValue() < StoreSize)
- return Changed;
- // If the element.atomic memcpy is not lowered into explicit
- // loads/stores later, then it will be lowered into an element-size
- // specific lib call. If the lib call doesn't exist for our store size, then
- // we shouldn't generate the memcpy.
- if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
- return Changed;
- // Create the call.
- // Note that unordered atomic loads/stores are *required* by the spec to
- // have an alignment but non-atomic loads/stores may not.
- NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
- StoreBasePtr, StoreAlign.getValue(), LoadBasePtr, LoadAlign.getValue(),
- NumBytes, StoreSize, AATags.TBAA, AATags.TBAAStruct, AATags.Scope,
- AATags.NoAlias);
- }
- NewCall->setDebugLoc(TheStore->getDebugLoc());
- if (MSSAU) {
- MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
- NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
- MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
- }
- LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n"
- << " from load ptr=" << *LoadEv << " at: " << *TheLoad
- << "\n"
- << " from store ptr=" << *StoreEv << " at: " << *TheStore
- << "\n");
- ORE.emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
- NewCall->getDebugLoc(), Preheader)
- << "Formed a call to "
- << ore::NV("NewFunction", NewCall->getCalledFunction())
- << "() intrinsic from " << ore::NV("Inst", InstRemark)
- << " instruction in " << ore::NV("Function", TheStore->getFunction())
- << " function"
- << ore::setExtraArgs()
- << ore::NV("FromBlock", TheStore->getParent()->getName())
- << ore::NV("ToBlock", Preheader->getName());
- });
- // Okay, a new call to memcpy/memmove has been formed. Zap the original store
- // and anything that feeds into it.
- if (MSSAU)
- MSSAU->removeMemoryAccess(TheStore, true);
- deleteDeadInstruction(TheStore);
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- if (UseMemMove)
- ++NumMemMove;
- else
- ++NumMemCpy;
- ExpCleaner.markResultUsed();
- return true;
- }
- // When compiling for codesize we avoid idiom recognition for a multi-block loop
- // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
- //
- bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
- bool IsLoopMemset) {
- if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
- if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
- LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName()
- << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
- << " avoided: multi-block top-level loop\n");
- return true;
- }
- }
- return false;
- }
- bool LoopIdiomRecognize::runOnNoncountableLoop() {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
- << CurLoop->getHeader()->getParent()->getName()
- << "] Noncountable Loop %"
- << CurLoop->getHeader()->getName() << "\n");
- return recognizePopcount() || recognizeAndInsertFFS() ||
- recognizeShiftUntilBitTest() || recognizeShiftUntilZero();
- }
- /// Check if the given conditional branch is based on the comparison between
- /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
- /// true), the control yields to the loop entry. If the branch matches the
- /// behavior, the variable involved in the comparison is returned. This function
- /// will be called to see if the precondition and postcondition of the loop are
- /// in desirable form.
- static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
- bool JmpOnZero = false) {
- if (!BI || !BI->isConditional())
- return nullptr;
- ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
- if (!Cond)
- return nullptr;
- ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
- if (!CmpZero || !CmpZero->isZero())
- return nullptr;
- BasicBlock *TrueSucc = BI->getSuccessor(0);
- BasicBlock *FalseSucc = BI->getSuccessor(1);
- if (JmpOnZero)
- std::swap(TrueSucc, FalseSucc);
- ICmpInst::Predicate Pred = Cond->getPredicate();
- if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
- (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
- return Cond->getOperand(0);
- return nullptr;
- }
- // Check if the recurrence variable `VarX` is in the right form to create
- // the idiom. Returns the value coerced to a PHINode if so.
- static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
- BasicBlock *LoopEntry) {
- auto *PhiX = dyn_cast<PHINode>(VarX);
- if (PhiX && PhiX->getParent() == LoopEntry &&
- (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
- return PhiX;
- return nullptr;
- }
- /// Return true iff the idiom is detected in the loop.
- ///
- /// Additionally:
- /// 1) \p CntInst is set to the instruction counting the population bit.
- /// 2) \p CntPhi is set to the corresponding phi node.
- /// 3) \p Var is set to the value whose population bits are being counted.
- ///
- /// The core idiom we are trying to detect is:
- /// \code
- /// if (x0 != 0)
- /// goto loop-exit // the precondition of the loop
- /// cnt0 = init-val;
- /// do {
- /// x1 = phi (x0, x2);
- /// cnt1 = phi(cnt0, cnt2);
- ///
- /// cnt2 = cnt1 + 1;
- /// ...
- /// x2 = x1 & (x1 - 1);
- /// ...
- /// } while(x != 0);
- ///
- /// loop-exit:
- /// \endcode
- static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
- Instruction *&CntInst, PHINode *&CntPhi,
- Value *&Var) {
- // step 1: Check to see if the look-back branch match this pattern:
- // "if (a!=0) goto loop-entry".
- BasicBlock *LoopEntry;
- Instruction *DefX2, *CountInst;
- Value *VarX1, *VarX0;
- PHINode *PhiX, *CountPhi;
- DefX2 = CountInst = nullptr;
- VarX1 = VarX0 = nullptr;
- PhiX = CountPhi = nullptr;
- LoopEntry = *(CurLoop->block_begin());
- // step 1: Check if the loop-back branch is in desirable form.
- {
- if (Value *T = matchCondition(
- dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
- DefX2 = dyn_cast<Instruction>(T);
- else
- return false;
- }
- // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
- {
- if (!DefX2 || DefX2->getOpcode() != Instruction::And)
- return false;
- BinaryOperator *SubOneOp;
- if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
- VarX1 = DefX2->getOperand(1);
- else {
- VarX1 = DefX2->getOperand(0);
- SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
- }
- if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
- return false;
- ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
- if (!Dec ||
- !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
- (SubOneOp->getOpcode() == Instruction::Add &&
- Dec->isMinusOne()))) {
- return false;
- }
- }
- // step 3: Check the recurrence of variable X
- PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
- if (!PhiX)
- return false;
- // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
- {
- CountInst = nullptr;
- for (Instruction &Inst : llvm::make_range(
- LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
- if (Inst.getOpcode() != Instruction::Add)
- continue;
- ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
- if (!Inc || !Inc->isOne())
- continue;
- PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
- if (!Phi)
- continue;
- // Check if the result of the instruction is live of the loop.
- bool LiveOutLoop = false;
- for (User *U : Inst.users()) {
- if ((cast<Instruction>(U))->getParent() != LoopEntry) {
- LiveOutLoop = true;
- break;
- }
- }
- if (LiveOutLoop) {
- CountInst = &Inst;
- CountPhi = Phi;
- break;
- }
- }
- if (!CountInst)
- return false;
- }
- // step 5: check if the precondition is in this form:
- // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
- {
- auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
- Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
- if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
- return false;
- CntInst = CountInst;
- CntPhi = CountPhi;
- Var = T;
- }
- return true;
- }
- /// Return true if the idiom is detected in the loop.
- ///
- /// Additionally:
- /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
- /// or nullptr if there is no such.
- /// 2) \p CntPhi is set to the corresponding phi node
- /// or nullptr if there is no such.
- /// 3) \p Var is set to the value whose CTLZ could be used.
- /// 4) \p DefX is set to the instruction calculating Loop exit condition.
- ///
- /// The core idiom we are trying to detect is:
- /// \code
- /// if (x0 == 0)
- /// goto loop-exit // the precondition of the loop
- /// cnt0 = init-val;
- /// do {
- /// x = phi (x0, x.next); //PhiX
- /// cnt = phi(cnt0, cnt.next);
- ///
- /// cnt.next = cnt + 1;
- /// ...
- /// x.next = x >> 1; // DefX
- /// ...
- /// } while(x.next != 0);
- ///
- /// loop-exit:
- /// \endcode
- static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
- Intrinsic::ID &IntrinID, Value *&InitX,
- Instruction *&CntInst, PHINode *&CntPhi,
- Instruction *&DefX) {
- BasicBlock *LoopEntry;
- Value *VarX = nullptr;
- DefX = nullptr;
- CntInst = nullptr;
- CntPhi = nullptr;
- LoopEntry = *(CurLoop->block_begin());
- // step 1: Check if the loop-back branch is in desirable form.
- if (Value *T = matchCondition(
- dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
- DefX = dyn_cast<Instruction>(T);
- else
- return false;
- // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
- if (!DefX || !DefX->isShift())
- return false;
- IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
- Intrinsic::ctlz;
- ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
- if (!Shft || !Shft->isOne())
- return false;
- VarX = DefX->getOperand(0);
- // step 3: Check the recurrence of variable X
- PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
- if (!PhiX)
- return false;
- InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
- // Make sure the initial value can't be negative otherwise the ashr in the
- // loop might never reach zero which would make the loop infinite.
- if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
- return false;
- // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
- // or cnt.next = cnt + -1.
- // TODO: We can skip the step. If loop trip count is known (CTLZ),
- // then all uses of "cnt.next" could be optimized to the trip count
- // plus "cnt0". Currently it is not optimized.
- // This step could be used to detect POPCNT instruction:
- // cnt.next = cnt + (x.next & 1)
- for (Instruction &Inst : llvm::make_range(
- LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
- if (Inst.getOpcode() != Instruction::Add)
- continue;
- ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
- if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
- continue;
- PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
- if (!Phi)
- continue;
- CntInst = &Inst;
- CntPhi = Phi;
- break;
- }
- if (!CntInst)
- return false;
- return true;
- }
- /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
- /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
- /// trip count returns true; otherwise, returns false.
- bool LoopIdiomRecognize::recognizeAndInsertFFS() {
- // Give up if the loop has multiple blocks or multiple backedges.
- if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
- return false;
- Intrinsic::ID IntrinID;
- Value *InitX;
- Instruction *DefX = nullptr;
- PHINode *CntPhi = nullptr;
- Instruction *CntInst = nullptr;
- // Help decide if transformation is profitable. For ShiftUntilZero idiom,
- // this is always 6.
- size_t IdiomCanonicalSize = 6;
- if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
- CntInst, CntPhi, DefX))
- return false;
- bool IsCntPhiUsedOutsideLoop = false;
- for (User *U : CntPhi->users())
- if (!CurLoop->contains(cast<Instruction>(U))) {
- IsCntPhiUsedOutsideLoop = true;
- break;
- }
- bool IsCntInstUsedOutsideLoop = false;
- for (User *U : CntInst->users())
- if (!CurLoop->contains(cast<Instruction>(U))) {
- IsCntInstUsedOutsideLoop = true;
- break;
- }
- // If both CntInst and CntPhi are used outside the loop the profitability
- // is questionable.
- if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
- return false;
- // For some CPUs result of CTLZ(X) intrinsic is undefined
- // when X is 0. If we can not guarantee X != 0, we need to check this
- // when expand.
- bool ZeroCheck = false;
- // It is safe to assume Preheader exist as it was checked in
- // parent function RunOnLoop.
- BasicBlock *PH = CurLoop->getLoopPreheader();
- // If we are using the count instruction outside the loop, make sure we
- // have a zero check as a precondition. Without the check the loop would run
- // one iteration for before any check of the input value. This means 0 and 1
- // would have identical behavior in the original loop and thus
- if (!IsCntPhiUsedOutsideLoop) {
- auto *PreCondBB = PH->getSinglePredecessor();
- if (!PreCondBB)
- return false;
- auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
- if (!PreCondBI)
- return false;
- if (matchCondition(PreCondBI, PH) != InitX)
- return false;
- ZeroCheck = true;
- }
- // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
- // profitable if we delete the loop.
- // the loop has only 6 instructions:
- // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
- // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
- // %shr = ashr %n.addr.0, 1
- // %tobool = icmp eq %shr, 0
- // %inc = add nsw %i.0, 1
- // br i1 %tobool
- const Value *Args[] = {InitX,
- ConstantInt::getBool(InitX->getContext(), ZeroCheck)};
- // @llvm.dbg doesn't count as they have no semantic effect.
- auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
- uint32_t HeaderSize =
- std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
- IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
- InstructionCost Cost =
- TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
- if (HeaderSize != IdiomCanonicalSize &&
- Cost > TargetTransformInfo::TCC_Basic)
- return false;
- transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
- DefX->getDebugLoc(), ZeroCheck,
- IsCntPhiUsedOutsideLoop);
- return true;
- }
- /// Recognizes a population count idiom in a non-countable loop.
- ///
- /// If detected, transforms the relevant code to issue the popcount intrinsic
- /// function call, and returns true; otherwise, returns false.
- bool LoopIdiomRecognize::recognizePopcount() {
- if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
- return false;
- // Counting population are usually conducted by few arithmetic instructions.
- // Such instructions can be easily "absorbed" by vacant slots in a
- // non-compact loop. Therefore, recognizing popcount idiom only makes sense
- // in a compact loop.
- // Give up if the loop has multiple blocks or multiple backedges.
- if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
- return false;
- BasicBlock *LoopBody = *(CurLoop->block_begin());
- if (LoopBody->size() >= 20) {
- // The loop is too big, bail out.
- return false;
- }
- // It should have a preheader containing nothing but an unconditional branch.
- BasicBlock *PH = CurLoop->getLoopPreheader();
- if (!PH || &PH->front() != PH->getTerminator())
- return false;
- auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
- if (!EntryBI || EntryBI->isConditional())
- return false;
- // It should have a precondition block where the generated popcount intrinsic
- // function can be inserted.
- auto *PreCondBB = PH->getSinglePredecessor();
- if (!PreCondBB)
- return false;
- auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
- if (!PreCondBI || PreCondBI->isUnconditional())
- return false;
- Instruction *CntInst;
- PHINode *CntPhi;
- Value *Val;
- if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
- return false;
- transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
- return true;
- }
- static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
- const DebugLoc &DL) {
- Value *Ops[] = {Val};
- Type *Tys[] = {Val->getType()};
- Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
- Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
- CallInst *CI = IRBuilder.CreateCall(Func, Ops);
- CI->setDebugLoc(DL);
- return CI;
- }
- static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
- const DebugLoc &DL, bool ZeroCheck,
- Intrinsic::ID IID) {
- Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)};
- Type *Tys[] = {Val->getType()};
- Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
- Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
- CallInst *CI = IRBuilder.CreateCall(Func, Ops);
- CI->setDebugLoc(DL);
- return CI;
- }
- /// Transform the following loop (Using CTLZ, CTTZ is similar):
- /// loop:
- /// CntPhi = PHI [Cnt0, CntInst]
- /// PhiX = PHI [InitX, DefX]
- /// CntInst = CntPhi + 1
- /// DefX = PhiX >> 1
- /// LOOP_BODY
- /// Br: loop if (DefX != 0)
- /// Use(CntPhi) or Use(CntInst)
- ///
- /// Into:
- /// If CntPhi used outside the loop:
- /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
- /// Count = CountPrev + 1
- /// else
- /// Count = BitWidth(InitX) - CTLZ(InitX)
- /// loop:
- /// CntPhi = PHI [Cnt0, CntInst]
- /// PhiX = PHI [InitX, DefX]
- /// PhiCount = PHI [Count, Dec]
- /// CntInst = CntPhi + 1
- /// DefX = PhiX >> 1
- /// Dec = PhiCount - 1
- /// LOOP_BODY
- /// Br: loop if (Dec != 0)
- /// Use(CountPrev + Cnt0) // Use(CntPhi)
- /// or
- /// Use(Count + Cnt0) // Use(CntInst)
- ///
- /// If LOOP_BODY is empty the loop will be deleted.
- /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
- void LoopIdiomRecognize::transformLoopToCountable(
- Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
- PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
- bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
- BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
- // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
- IRBuilder<> Builder(PreheaderBr);
- Builder.SetCurrentDebugLocation(DL);
- // If there are no uses of CntPhi crate:
- // Count = BitWidth - CTLZ(InitX);
- // NewCount = Count;
- // If there are uses of CntPhi create:
- // NewCount = BitWidth - CTLZ(InitX >> 1);
- // Count = NewCount + 1;
- Value *InitXNext;
- if (IsCntPhiUsedOutsideLoop) {
- if (DefX->getOpcode() == Instruction::AShr)
- InitXNext = Builder.CreateAShr(InitX, 1);
- else if (DefX->getOpcode() == Instruction::LShr)
- InitXNext = Builder.CreateLShr(InitX, 1);
- else if (DefX->getOpcode() == Instruction::Shl) // cttz
- InitXNext = Builder.CreateShl(InitX, 1);
- else
- llvm_unreachable("Unexpected opcode!");
- } else
- InitXNext = InitX;
- Value *Count =
- createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
- Type *CountTy = Count->getType();
- Count = Builder.CreateSub(
- ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count);
- Value *NewCount = Count;
- if (IsCntPhiUsedOutsideLoop)
- Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1));
- NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType());
- Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
- if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
- // If the counter was being incremented in the loop, add NewCount to the
- // counter's initial value, but only if the initial value is not zero.
- ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
- if (!InitConst || !InitConst->isZero())
- NewCount = Builder.CreateAdd(NewCount, CntInitVal);
- } else {
- // If the count was being decremented in the loop, subtract NewCount from
- // the counter's initial value.
- NewCount = Builder.CreateSub(CntInitVal, NewCount);
- }
- // Step 2: Insert new IV and loop condition:
- // loop:
- // ...
- // PhiCount = PHI [Count, Dec]
- // ...
- // Dec = PhiCount - 1
- // ...
- // Br: loop if (Dec != 0)
- BasicBlock *Body = *(CurLoop->block_begin());
- auto *LbBr = cast<BranchInst>(Body->getTerminator());
- ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
- PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front());
- Builder.SetInsertPoint(LbCond);
- Instruction *TcDec = cast<Instruction>(Builder.CreateSub(
- TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true));
- TcPhi->addIncoming(Count, Preheader);
- TcPhi->addIncoming(TcDec, Body);
- CmpInst::Predicate Pred =
- (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
- LbCond->setPredicate(Pred);
- LbCond->setOperand(0, TcDec);
- LbCond->setOperand(1, ConstantInt::get(CountTy, 0));
- // Step 3: All the references to the original counter outside
- // the loop are replaced with the NewCount
- if (IsCntPhiUsedOutsideLoop)
- CntPhi->replaceUsesOutsideBlock(NewCount, Body);
- else
- CntInst->replaceUsesOutsideBlock(NewCount, Body);
- // step 4: Forget the "non-computable" trip-count SCEV associated with the
- // loop. The loop would otherwise not be deleted even if it becomes empty.
- SE->forgetLoop(CurLoop);
- }
- void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
- Instruction *CntInst,
- PHINode *CntPhi, Value *Var) {
- BasicBlock *PreHead = CurLoop->getLoopPreheader();
- auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
- const DebugLoc &DL = CntInst->getDebugLoc();
- // Assuming before transformation, the loop is following:
- // if (x) // the precondition
- // do { cnt++; x &= x - 1; } while(x);
- // Step 1: Insert the ctpop instruction at the end of the precondition block
- IRBuilder<> Builder(PreCondBr);
- Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
- {
- PopCnt = createPopcntIntrinsic(Builder, Var, DL);
- NewCount = PopCntZext =
- Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
- if (NewCount != PopCnt)
- (cast<Instruction>(NewCount))->setDebugLoc(DL);
- // TripCnt is exactly the number of iterations the loop has
- TripCnt = NewCount;
- // If the population counter's initial value is not zero, insert Add Inst.
- Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
- ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
- if (!InitConst || !InitConst->isZero()) {
- NewCount = Builder.CreateAdd(NewCount, CntInitVal);
- (cast<Instruction>(NewCount))->setDebugLoc(DL);
- }
- }
- // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
- // "if (NewCount == 0) loop-exit". Without this change, the intrinsic
- // function would be partial dead code, and downstream passes will drag
- // it back from the precondition block to the preheader.
- {
- ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
- Value *Opnd0 = PopCntZext;
- Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
- if (PreCond->getOperand(0) != Var)
- std::swap(Opnd0, Opnd1);
- ICmpInst *NewPreCond = cast<ICmpInst>(
- Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
- PreCondBr->setCondition(NewPreCond);
- RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
- }
- // Step 3: Note that the population count is exactly the trip count of the
- // loop in question, which enable us to convert the loop from noncountable
- // loop into a countable one. The benefit is twofold:
- //
- // - If the loop only counts population, the entire loop becomes dead after
- // the transformation. It is a lot easier to prove a countable loop dead
- // than to prove a noncountable one. (In some C dialects, an infinite loop
- // isn't dead even if it computes nothing useful. In general, DCE needs
- // to prove a noncountable loop finite before safely delete it.)
- //
- // - If the loop also performs something else, it remains alive.
- // Since it is transformed to countable form, it can be aggressively
- // optimized by some optimizations which are in general not applicable
- // to a noncountable loop.
- //
- // After this step, this loop (conceptually) would look like following:
- // newcnt = __builtin_ctpop(x);
- // t = newcnt;
- // if (x)
- // do { cnt++; x &= x-1; t--) } while (t > 0);
- BasicBlock *Body = *(CurLoop->block_begin());
- {
- auto *LbBr = cast<BranchInst>(Body->getTerminator());
- ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
- Type *Ty = TripCnt->getType();
- PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
- Builder.SetInsertPoint(LbCond);
- Instruction *TcDec = cast<Instruction>(
- Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
- "tcdec", false, true));
- TcPhi->addIncoming(TripCnt, PreHead);
- TcPhi->addIncoming(TcDec, Body);
- CmpInst::Predicate Pred =
- (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
- LbCond->setPredicate(Pred);
- LbCond->setOperand(0, TcDec);
- LbCond->setOperand(1, ConstantInt::get(Ty, 0));
- }
- // Step 4: All the references to the original population counter outside
- // the loop are replaced with the NewCount -- the value returned from
- // __builtin_ctpop().
- CntInst->replaceUsesOutsideBlock(NewCount, Body);
- // step 5: Forget the "non-computable" trip-count SCEV associated with the
- // loop. The loop would otherwise not be deleted even if it becomes empty.
- SE->forgetLoop(CurLoop);
- }
- /// Match loop-invariant value.
- template <typename SubPattern_t> struct match_LoopInvariant {
- SubPattern_t SubPattern;
- const Loop *L;
- match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
- : SubPattern(SP), L(L) {}
- template <typename ITy> bool match(ITy *V) {
- return L->isLoopInvariant(V) && SubPattern.match(V);
- }
- };
- /// Matches if the value is loop-invariant.
- template <typename Ty>
- inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
- return match_LoopInvariant<Ty>(M, L);
- }
- /// Return true if the idiom is detected in the loop.
- ///
- /// The core idiom we are trying to detect is:
- /// \code
- /// entry:
- /// <...>
- /// %bitmask = shl i32 1, %bitpos
- /// br label %loop
- ///
- /// loop:
- /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
- /// %x.curr.bitmasked = and i32 %x.curr, %bitmask
- /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
- /// %x.next = shl i32 %x.curr, 1
- /// <...>
- /// br i1 %x.curr.isbitunset, label %loop, label %end
- ///
- /// end:
- /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
- /// %x.next.res = phi i32 [ %x.next, %loop ] <...>
- /// <...>
- /// \endcode
- static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
- Value *&BitMask, Value *&BitPos,
- Value *&CurrX, Instruction *&NextX) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE
- " Performing shift-until-bittest idiom detection.\n");
- // Give up if the loop has multiple blocks or multiple backedges.
- if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
- return false;
- }
- BasicBlock *LoopHeaderBB = CurLoop->getHeader();
- BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
- assert(LoopPreheaderBB && "There is always a loop preheader.");
- using namespace PatternMatch;
- // Step 1: Check if the loop backedge is in desirable form.
- ICmpInst::Predicate Pred;
- Value *CmpLHS, *CmpRHS;
- BasicBlock *TrueBB, *FalseBB;
- if (!match(LoopHeaderBB->getTerminator(),
- m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
- m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
- return false;
- }
- // Step 2: Check if the backedge's condition is in desirable form.
- auto MatchVariableBitMask = [&]() {
- return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
- match(CmpLHS,
- m_c_And(m_Value(CurrX),
- m_CombineAnd(
- m_Value(BitMask),
- m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
- CurLoop))));
- };
- auto MatchConstantBitMask = [&]() {
- return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
- match(CmpLHS, m_And(m_Value(CurrX),
- m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
- (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
- };
- auto MatchDecomposableConstantBitMask = [&]() {
- APInt Mask;
- return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) &&
- ICmpInst::isEquality(Pred) && Mask.isPowerOf2() &&
- (BitMask = ConstantInt::get(CurrX->getType(), Mask)) &&
- (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2()));
- };
- if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
- !MatchDecomposableConstantBitMask()) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
- return false;
- }
- // Step 3: Check if the recurrence is in desirable form.
- auto *CurrXPN = dyn_cast<PHINode>(CurrX);
- if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
- return false;
- }
- BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
- NextX =
- dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
- assert(CurLoop->isLoopInvariant(BaseX) &&
- "Expected BaseX to be avaliable in the preheader!");
- if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
- // FIXME: support right-shift?
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
- return false;
- }
- // Step 4: Check if the backedge's destinations are in desirable form.
- assert(ICmpInst::isEquality(Pred) &&
- "Should only get equality predicates here.");
- // cmp-br is commutative, so canonicalize to a single variant.
- if (Pred != ICmpInst::Predicate::ICMP_EQ) {
- Pred = ICmpInst::getInversePredicate(Pred);
- std::swap(TrueBB, FalseBB);
- }
- // We expect to exit loop when comparison yields false,
- // so when it yields true we should branch back to loop header.
- if (TrueBB != LoopHeaderBB) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
- return false;
- }
- // Okay, idiom checks out.
- return true;
- }
- /// Look for the following loop:
- /// \code
- /// entry:
- /// <...>
- /// %bitmask = shl i32 1, %bitpos
- /// br label %loop
- ///
- /// loop:
- /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
- /// %x.curr.bitmasked = and i32 %x.curr, %bitmask
- /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
- /// %x.next = shl i32 %x.curr, 1
- /// <...>
- /// br i1 %x.curr.isbitunset, label %loop, label %end
- ///
- /// end:
- /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
- /// %x.next.res = phi i32 [ %x.next, %loop ] <...>
- /// <...>
- /// \endcode
- ///
- /// And transform it into:
- /// \code
- /// entry:
- /// %bitmask = shl i32 1, %bitpos
- /// %lowbitmask = add i32 %bitmask, -1
- /// %mask = or i32 %lowbitmask, %bitmask
- /// %x.masked = and i32 %x, %mask
- /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
- /// i1 true)
- /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
- /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
- /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
- /// %tripcount = add i32 %backedgetakencount, 1
- /// %x.curr = shl i32 %x, %backedgetakencount
- /// %x.next = shl i32 %x, %tripcount
- /// br label %loop
- ///
- /// loop:
- /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
- /// %loop.iv.next = add nuw i32 %loop.iv, 1
- /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
- /// <...>
- /// br i1 %loop.ivcheck, label %end, label %loop
- ///
- /// end:
- /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
- /// %x.next.res = phi i32 [ %x.next, %loop ] <...>
- /// <...>
- /// \endcode
- bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
- bool MadeChange = false;
- Value *X, *BitMask, *BitPos, *XCurr;
- Instruction *XNext;
- if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
- XNext)) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE
- " shift-until-bittest idiom detection failed.\n");
- return MadeChange;
- }
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
- // Ok, it is the idiom we were looking for, we *could* transform this loop,
- // but is it profitable to transform?
- BasicBlock *LoopHeaderBB = CurLoop->getHeader();
- BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
- assert(LoopPreheaderBB && "There is always a loop preheader.");
- BasicBlock *SuccessorBB = CurLoop->getExitBlock();
- assert(SuccessorBB && "There is only a single successor.");
- IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
- Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
- Intrinsic::ID IntrID = Intrinsic::ctlz;
- Type *Ty = X->getType();
- unsigned Bitwidth = Ty->getScalarSizeInBits();
- TargetTransformInfo::TargetCostKind CostKind =
- TargetTransformInfo::TCK_SizeAndLatency;
- // The rewrite is considered to be unprofitable iff and only iff the
- // intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
- // making the loop countable, even if nothing else changes.
- IntrinsicCostAttributes Attrs(
- IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()});
- InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
- if (Cost > TargetTransformInfo::TCC_Basic) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE
- " Intrinsic is too costly, not beneficial\n");
- return MadeChange;
- }
- if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
- TargetTransformInfo::TCC_Basic) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
- return MadeChange;
- }
- // Ok, transform appears worthwhile.
- MadeChange = true;
- // Step 1: Compute the loop trip count.
- Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
- BitPos->getName() + ".lowbitmask");
- Value *Mask =
- Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
- Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
- CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
- IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()},
- /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
- Value *XMaskedNumActiveBits = Builder.CreateSub(
- ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
- XMasked->getName() + ".numactivebits", /*HasNUW=*/true,
- /*HasNSW=*/Bitwidth != 2);
- Value *XMaskedLeadingOnePos =
- Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
- XMasked->getName() + ".leadingonepos", /*HasNUW=*/false,
- /*HasNSW=*/Bitwidth > 2);
- Value *LoopBackedgeTakenCount = Builder.CreateSub(
- BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount",
- /*HasNUW=*/true, /*HasNSW=*/true);
- // We know loop's backedge-taken count, but what's loop's trip count?
- // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
- Value *LoopTripCount =
- Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
- CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
- /*HasNSW=*/Bitwidth != 2);
- // Step 2: Compute the recurrence's final value without a loop.
- // NewX is always safe to compute, because `LoopBackedgeTakenCount`
- // will always be smaller than `bitwidth(X)`, i.e. we never get poison.
- Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
- NewX->takeName(XCurr);
- if (auto *I = dyn_cast<Instruction>(NewX))
- I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
- Value *NewXNext;
- // Rewriting XNext is more complicated, however, because `X << LoopTripCount`
- // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
- // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
- // that isn't the case, we'll need to emit an alternative, safe IR.
- if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
- PatternMatch::match(
- BitPos, PatternMatch::m_SpecificInt_ICMP(
- ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
- Ty->getScalarSizeInBits() - 1))))
- NewXNext = Builder.CreateShl(X, LoopTripCount);
- else {
- // Otherwise, just additionally shift by one. It's the smallest solution,
- // alternatively, we could check that NewX is INT_MIN (or BitPos is )
- // and select 0 instead.
- NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
- }
- NewXNext->takeName(XNext);
- if (auto *I = dyn_cast<Instruction>(NewXNext))
- I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
- // Step 3: Adjust the successor basic block to recieve the computed
- // recurrence's final value instead of the recurrence itself.
- XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
- XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
- // Step 4: Rewrite the loop into a countable form, with canonical IV.
- // The new canonical induction variable.
- Builder.SetInsertPoint(&LoopHeaderBB->front());
- auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
- // The induction itself.
- // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
- Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
- auto *IVNext =
- Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
- /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
- // The loop trip count check.
- auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
- CurLoop->getName() + ".ivcheck");
- Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
- LoopHeaderBB->getTerminator()->eraseFromParent();
- // Populate the IV PHI.
- IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
- IV->addIncoming(IVNext, LoopHeaderBB);
- // Step 5: Forget the "non-computable" trip-count SCEV associated with the
- // loop. The loop would otherwise not be deleted even if it becomes empty.
- SE->forgetLoop(CurLoop);
- // Other passes will take care of actually deleting the loop if possible.
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
- ++NumShiftUntilBitTest;
- return MadeChange;
- }
- /// Return true if the idiom is detected in the loop.
- ///
- /// The core idiom we are trying to detect is:
- /// \code
- /// entry:
- /// <...>
- /// %start = <...>
- /// %extraoffset = <...>
- /// <...>
- /// br label %for.cond
- ///
- /// loop:
- /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
- /// %nbits = add nsw i8 %iv, %extraoffset
- /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
- /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0
- /// %iv.next = add i8 %iv, 1
- /// <...>
- /// br i1 %val.shifted.iszero, label %end, label %loop
- ///
- /// end:
- /// %iv.res = phi i8 [ %iv, %loop ] <...>
- /// %nbits.res = phi i8 [ %nbits, %loop ] <...>
- /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
- /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
- /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
- /// <...>
- /// \endcode
- static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE,
- Instruction *&ValShiftedIsZero,
- Intrinsic::ID &IntrinID, Instruction *&IV,
- Value *&Start, Value *&Val,
- const SCEV *&ExtraOffsetExpr,
- bool &InvertedCond) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE
- " Performing shift-until-zero idiom detection.\n");
- // Give up if the loop has multiple blocks or multiple backedges.
- if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
- return false;
- }
- Instruction *ValShifted, *NBits, *IVNext;
- Value *ExtraOffset;
- BasicBlock *LoopHeaderBB = CurLoop->getHeader();
- BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
- assert(LoopPreheaderBB && "There is always a loop preheader.");
- using namespace PatternMatch;
- // Step 1: Check if the loop backedge, condition is in desirable form.
- ICmpInst::Predicate Pred;
- BasicBlock *TrueBB, *FalseBB;
- if (!match(LoopHeaderBB->getTerminator(),
- m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB),
- m_BasicBlock(FalseBB))) ||
- !match(ValShiftedIsZero,
- m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) ||
- !ICmpInst::isEquality(Pred)) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
- return false;
- }
- // Step 2: Check if the comparison's operand is in desirable form.
- // FIXME: Val could be a one-input PHI node, which we should look past.
- if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop),
- m_Instruction(NBits)))) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n");
- return false;
- }
- IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz
- : Intrinsic::ctlz;
- // Step 3: Check if the shift amount is in desirable form.
- if (match(NBits, m_c_Add(m_Instruction(IV),
- m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
- (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap()))
- ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset));
- else if (match(NBits,
- m_Sub(m_Instruction(IV),
- m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
- NBits->hasNoSignedWrap())
- ExtraOffsetExpr = SE->getSCEV(ExtraOffset);
- else {
- IV = NBits;
- ExtraOffsetExpr = SE->getZero(NBits->getType());
- }
- // Step 4: Check if the recurrence is in desirable form.
- auto *IVPN = dyn_cast<PHINode>(IV);
- if (!IVPN || IVPN->getParent() != LoopHeaderBB) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
- return false;
- }
- Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB);
- IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB));
- if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
- return false;
- }
- // Step 4: Check if the backedge's destinations are in desirable form.
- assert(ICmpInst::isEquality(Pred) &&
- "Should only get equality predicates here.");
- // cmp-br is commutative, so canonicalize to a single variant.
- InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ;
- if (InvertedCond) {
- Pred = ICmpInst::getInversePredicate(Pred);
- std::swap(TrueBB, FalseBB);
- }
- // We expect to exit loop when comparison yields true,
- // so when it yields false we should branch back to loop header.
- if (FalseBB != LoopHeaderBB) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
- return false;
- }
- // The new, countable, loop will certainly only run a known number of
- // iterations, It won't be infinite. But the old loop might be infinite
- // under certain conditions. For logical shifts, the value will become zero
- // after at most bitwidth(%Val) loop iterations. However, for arithmetic
- // right-shift, iff the sign bit was set, the value will never become zero,
- // and the loop may never finish.
- if (ValShifted->getOpcode() == Instruction::AShr &&
- !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n");
- return false;
- }
- // Okay, idiom checks out.
- return true;
- }
- /// Look for the following loop:
- /// \code
- /// entry:
- /// <...>
- /// %start = <...>
- /// %extraoffset = <...>
- /// <...>
- /// br label %for.cond
- ///
- /// loop:
- /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
- /// %nbits = add nsw i8 %iv, %extraoffset
- /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
- /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0
- /// %iv.next = add i8 %iv, 1
- /// <...>
- /// br i1 %val.shifted.iszero, label %end, label %loop
- ///
- /// end:
- /// %iv.res = phi i8 [ %iv, %loop ] <...>
- /// %nbits.res = phi i8 [ %nbits, %loop ] <...>
- /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
- /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
- /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
- /// <...>
- /// \endcode
- ///
- /// And transform it into:
- /// \code
- /// entry:
- /// <...>
- /// %start = <...>
- /// %extraoffset = <...>
- /// <...>
- /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0)
- /// %val.numactivebits = sub i8 8, %val.numleadingzeros
- /// %extraoffset.neg = sub i8 0, %extraoffset
- /// %tmp = add i8 %val.numactivebits, %extraoffset.neg
- /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start)
- /// %loop.tripcount = sub i8 %iv.final, %start
- /// br label %loop
- ///
- /// loop:
- /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ]
- /// %loop.iv.next = add i8 %loop.iv, 1
- /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount
- /// %iv = add i8 %loop.iv, %start
- /// <...>
- /// br i1 %loop.ivcheck, label %end, label %loop
- ///
- /// end:
- /// %iv.res = phi i8 [ %iv.final, %loop ] <...>
- /// <...>
- /// \endcode
- bool LoopIdiomRecognize::recognizeShiftUntilZero() {
- bool MadeChange = false;
- Instruction *ValShiftedIsZero;
- Intrinsic::ID IntrID;
- Instruction *IV;
- Value *Start, *Val;
- const SCEV *ExtraOffsetExpr;
- bool InvertedCond;
- if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV,
- Start, Val, ExtraOffsetExpr, InvertedCond)) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE
- " shift-until-zero idiom detection failed.\n");
- return MadeChange;
- }
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n");
- // Ok, it is the idiom we were looking for, we *could* transform this loop,
- // but is it profitable to transform?
- BasicBlock *LoopHeaderBB = CurLoop->getHeader();
- BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
- assert(LoopPreheaderBB && "There is always a loop preheader.");
- BasicBlock *SuccessorBB = CurLoop->getExitBlock();
- assert(SuccessorBB && "There is only a single successor.");
- IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
- Builder.SetCurrentDebugLocation(IV->getDebugLoc());
- Type *Ty = Val->getType();
- unsigned Bitwidth = Ty->getScalarSizeInBits();
- TargetTransformInfo::TargetCostKind CostKind =
- TargetTransformInfo::TCK_SizeAndLatency;
- // The rewrite is considered to be unprofitable iff and only iff the
- // intrinsic we'll use are not cheap. Note that we are okay with *just*
- // making the loop countable, even if nothing else changes.
- IntrinsicCostAttributes Attrs(
- IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()});
- InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
- if (Cost > TargetTransformInfo::TCC_Basic) {
- LLVM_DEBUG(dbgs() << DEBUG_TYPE
- " Intrinsic is too costly, not beneficial\n");
- return MadeChange;
- }
- // Ok, transform appears worthwhile.
- MadeChange = true;
- bool OffsetIsZero = false;
- if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr))
- OffsetIsZero = ExtraOffsetExprC->isZero();
- // Step 1: Compute the loop's final IV value / trip count.
- CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic(
- IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()},
- /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros");
- Value *ValNumActiveBits = Builder.CreateSub(
- ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros,
- Val->getName() + ".numactivebits", /*HasNUW=*/true,
- /*HasNSW=*/Bitwidth != 2);
- SCEVExpander Expander(*SE, *DL, "loop-idiom");
- Expander.setInsertPoint(&*Builder.GetInsertPoint());
- Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr);
- Value *ValNumActiveBitsOffset = Builder.CreateAdd(
- ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset",
- /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true);
- Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty},
- {ValNumActiveBitsOffset, Start},
- /*FMFSource=*/nullptr, "iv.final");
- auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub(
- IVFinal, Start, CurLoop->getName() + ".backedgetakencount",
- /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true));
- // FIXME: or when the offset was `add nuw`
- // We know loop's backedge-taken count, but what's loop's trip count?
- Value *LoopTripCount =
- Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
- CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
- /*HasNSW=*/Bitwidth != 2);
- // Step 2: Adjust the successor basic block to recieve the original
- // induction variable's final value instead of the orig. IV itself.
- IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB);
- // Step 3: Rewrite the loop into a countable form, with canonical IV.
- // The new canonical induction variable.
- Builder.SetInsertPoint(&LoopHeaderBB->front());
- auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
- // The induction itself.
- Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI());
- auto *CIVNext =
- Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next",
- /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
- // The loop trip count check.
- auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount,
- CurLoop->getName() + ".ivcheck");
- auto *NewIVCheck = CIVCheck;
- if (InvertedCond) {
- NewIVCheck = Builder.CreateNot(CIVCheck);
- NewIVCheck->takeName(ValShiftedIsZero);
- }
- // The original IV, but rebased to be an offset to the CIV.
- auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false,
- /*HasNSW=*/true); // FIXME: what about NUW?
- IVDePHId->takeName(IV);
- // The loop terminator.
- Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
- Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB);
- LoopHeaderBB->getTerminator()->eraseFromParent();
- // Populate the IV PHI.
- CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
- CIV->addIncoming(CIVNext, LoopHeaderBB);
- // Step 4: Forget the "non-computable" trip-count SCEV associated with the
- // loop. The loop would otherwise not be deleted even if it becomes empty.
- SE->forgetLoop(CurLoop);
- // Step 5: Try to cleanup the loop's body somewhat.
- IV->replaceAllUsesWith(IVDePHId);
- IV->eraseFromParent();
- ValShiftedIsZero->replaceAllUsesWith(NewIVCheck);
- ValShiftedIsZero->eraseFromParent();
- // Other passes will take care of actually deleting the loop if possible.
- LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n");
- ++NumShiftUntilZero;
- return MadeChange;
- }
|