123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993 |
- //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass flattens pairs nested loops into a single loop.
- //
- // The intention is to optimise loop nests like this, which together access an
- // array linearly:
- //
- // for (int i = 0; i < N; ++i)
- // for (int j = 0; j < M; ++j)
- // f(A[i*M+j]);
- //
- // into one loop:
- //
- // for (int i = 0; i < (N*M); ++i)
- // f(A[i]);
- //
- // It can also flatten loops where the induction variables are not used in the
- // loop. This is only worth doing if the induction variables are only used in an
- // expression like i*M+j. If they had any other uses, we would have to insert a
- // div/mod to reconstruct the original values, so this wouldn't be profitable.
- //
- // We also need to prove that N*M will not overflow. The preferred solution is
- // to widen the IV, which avoids overflow checks, so that is tried first. If
- // the IV cannot be widened, then we try to determine that this new tripcount
- // expression won't overflow.
- //
- // Q: Does LoopFlatten use SCEV?
- // Short answer: Yes and no.
- //
- // Long answer:
- // For this transformation to be valid, we require all uses of the induction
- // variables to be linear expressions of the form i*M+j. The different Loop
- // APIs are used to get some loop components like the induction variable,
- // compare statement, etc. In addition, we do some pattern matching to find the
- // linear expressions and other loop components like the loop increment. The
- // latter are examples of expressions that do use the induction variable, but
- // are safe to ignore when we check all uses to be of the form i*M+j. We keep
- // track of all of this in bookkeeping struct FlattenInfo.
- // We assume the loops to be canonical, i.e. starting at 0 and increment with
- // 1. This makes RHS of the compare the loop tripcount (with the right
- // predicate). We use SCEV to then sanity check that this tripcount matches
- // with the tripcount as computed by SCEV.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/LoopFlatten.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Verifier.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
- #include "llvm/Transforms/Utils/SimplifyIndVar.h"
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "loop-flatten"
- STATISTIC(NumFlattened, "Number of loops flattened");
- static cl::opt<unsigned> RepeatedInstructionThreshold(
- "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
- cl::desc("Limit on the cost of instructions that can be repeated due to "
- "loop flattening"));
- static cl::opt<bool>
- AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
- cl::init(false),
- cl::desc("Assume that the product of the two iteration "
- "trip counts will never overflow"));
- static cl::opt<bool>
- WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true),
- cl::desc("Widen the loop induction variables, if possible, so "
- "overflow checks won't reject flattening"));
- // We require all uses of both induction variables to match this pattern:
- //
- // (OuterPHI * InnerTripCount) + InnerPHI
- //
- // I.e., it needs to be a linear expression of the induction variables and the
- // inner loop trip count. We keep track of all different expressions on which
- // checks will be performed in this bookkeeping struct.
- //
- struct FlattenInfo {
- Loop *OuterLoop = nullptr; // The loop pair to be flattened.
- Loop *InnerLoop = nullptr;
- PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop
- PHINode *OuterInductionPHI = nullptr; // induction variables, which are
- // expected to start at zero and
- // increment by one on each loop.
- Value *InnerTripCount = nullptr; // The product of these two tripcounts
- Value *OuterTripCount = nullptr; // will be the new flattened loop
- // tripcount. Also used to recognise a
- // linear expression that will be replaced.
- SmallPtrSet<Value *, 4> LinearIVUses; // Contains the linear expressions
- // of the form i*M+j that will be
- // replaced.
- BinaryOperator *InnerIncrement = nullptr; // Uses of induction variables in
- BinaryOperator *OuterIncrement = nullptr; // loop control statements that
- BranchInst *InnerBranch = nullptr; // are safe to ignore.
- BranchInst *OuterBranch = nullptr; // The instruction that needs to be
- // updated with new tripcount.
- SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
- bool Widened = false; // Whether this holds the flatten info before or after
- // widening.
- PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction
- PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV
- // has been apllied. Used to skip
- // checks on phi nodes.
- FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){};
- bool isNarrowInductionPhi(PHINode *Phi) {
- // This can't be the narrow phi if we haven't widened the IV first.
- if (!Widened)
- return false;
- return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi;
- }
- bool isInnerLoopIncrement(User *U) {
- return InnerIncrement == U;
- }
- bool isOuterLoopIncrement(User *U) {
- return OuterIncrement == U;
- }
- bool isInnerLoopTest(User *U) {
- return InnerBranch->getCondition() == U;
- }
- bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
- for (User *U : OuterInductionPHI->users()) {
- if (isOuterLoopIncrement(U))
- continue;
- auto IsValidOuterPHIUses = [&] (User *U) -> bool {
- LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
- if (!ValidOuterPHIUses.count(U)) {
- LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
- return false;
- }
- LLVM_DEBUG(dbgs() << "Use is optimisable\n");
- return true;
- };
- if (auto *V = dyn_cast<TruncInst>(U)) {
- for (auto *K : V->users()) {
- if (!IsValidOuterPHIUses(K))
- return false;
- }
- continue;
- }
- if (!IsValidOuterPHIUses(U))
- return false;
- }
- return true;
- }
- bool matchLinearIVUser(User *U, Value *InnerTripCount,
- SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
- LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
- Value *MatchedMul = nullptr;
- Value *MatchedItCount = nullptr;
- bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI),
- m_Value(MatchedMul))) &&
- match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
- m_Value(MatchedItCount)));
- // Matches the same pattern as above, except it also looks for truncs
- // on the phi, which can be the result of widening the induction variables.
- bool IsAddTrunc =
- match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)),
- m_Value(MatchedMul))) &&
- match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)),
- m_Value(MatchedItCount)));
- if (!MatchedItCount)
- return false;
- // Look through extends if the IV has been widened.
- if (Widened &&
- (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) {
- assert(MatchedItCount->getType() == InnerInductionPHI->getType() &&
- "Unexpected type mismatch in types after widening");
- MatchedItCount = isa<SExtInst>(MatchedItCount)
- ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0)
- : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0);
- }
- if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
- LLVM_DEBUG(dbgs() << "Use is optimisable\n");
- ValidOuterPHIUses.insert(MatchedMul);
- LinearIVUses.insert(U);
- return true;
- }
- LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
- return false;
- }
- bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
- Value *SExtInnerTripCount = InnerTripCount;
- if (Widened &&
- (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
- SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
- for (User *U : InnerInductionPHI->users()) {
- if (isInnerLoopIncrement(U))
- continue;
- // After widening the IVs, a trunc instruction might have been introduced,
- // so look through truncs.
- if (isa<TruncInst>(U)) {
- if (!U->hasOneUse())
- return false;
- U = *U->user_begin();
- }
- // If the use is in the compare (which is also the condition of the inner
- // branch) then the compare has been altered by another transformation e.g
- // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
- // a constant. Ignore this use as the compare gets removed later anyway.
- if (isInnerLoopTest(U))
- continue;
- if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses))
- return false;
- }
- return true;
- }
- };
- static bool
- setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
- SmallPtrSetImpl<Instruction *> &IterationInstructions) {
- TripCount = TC;
- IterationInstructions.insert(Increment);
- LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
- LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
- LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
- return true;
- }
- // Given the RHS of the loop latch compare instruction, verify with SCEV
- // that this is indeed the loop tripcount.
- // TODO: This used to be a straightforward check but has grown to be quite
- // complicated now. It is therefore worth revisiting what the additional
- // benefits are of this (compared to relying on canonical loops and pattern
- // matching).
- static bool verifyTripCount(Value *RHS, Loop *L,
- SmallPtrSetImpl<Instruction *> &IterationInstructions,
- PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
- BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
- const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
- if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
- LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
- return false;
- }
- // The Extend=false flag is used for getTripCountFromExitCount as we want
- // to verify and match it with the pattern matched tripcount. Please note
- // that overflow checks are performed in checkOverflow, but are first tried
- // to avoid by widening the IV.
- const SCEV *SCEVTripCount =
- SE->getTripCountFromExitCount(BackedgeTakenCount, /*Extend=*/false);
- const SCEV *SCEVRHS = SE->getSCEV(RHS);
- if (SCEVRHS == SCEVTripCount)
- return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
- ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
- if (ConstantRHS) {
- const SCEV *BackedgeTCExt = nullptr;
- if (IsWidened) {
- const SCEV *SCEVTripCountExt;
- // Find the extended backedge taken count and extended trip count using
- // SCEV. One of these should now match the RHS of the compare.
- BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
- SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, false);
- if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
- LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
- return false;
- }
- }
- // If the RHS of the compare is equal to the backedge taken count we need
- // to add one to get the trip count.
- if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
- ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1);
- Value *NewRHS = ConstantInt::get(
- ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue());
- return setLoopComponents(NewRHS, TripCount, Increment,
- IterationInstructions);
- }
- return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
- }
- // If the RHS isn't a constant then check that the reason it doesn't match
- // the SCEV trip count is because the RHS is a ZExt or SExt instruction
- // (and take the trip count to be the RHS).
- if (!IsWidened) {
- LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
- return false;
- }
- auto *TripCountInst = dyn_cast<Instruction>(RHS);
- if (!TripCountInst) {
- LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
- return false;
- }
- if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
- SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
- LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
- return false;
- }
- return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
- }
- // Finds the induction variable, increment and trip count for a simple loop that
- // we can flatten.
- static bool findLoopComponents(
- Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
- PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
- BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
- LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
- if (!L->isLoopSimplifyForm()) {
- LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
- return false;
- }
- // Currently, to simplify the implementation, the Loop induction variable must
- // start at zero and increment with a step size of one.
- if (!L->isCanonical(*SE)) {
- LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
- return false;
- }
- // There must be exactly one exiting block, and it must be the same at the
- // latch.
- BasicBlock *Latch = L->getLoopLatch();
- if (L->getExitingBlock() != Latch) {
- LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
- return false;
- }
- // Find the induction PHI. If there is no induction PHI, we can't do the
- // transformation. TODO: could other variables trigger this? Do we have to
- // search for the best one?
- InductionPHI = L->getInductionVariable(*SE);
- if (!InductionPHI) {
- LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
- return false;
- }
- LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
- bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
- auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
- if (ContinueOnTrue)
- return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
- else
- return Pred == CmpInst::ICMP_EQ;
- };
- // Find Compare and make sure it is valid. getLatchCmpInst checks that the
- // back branch of the latch is conditional.
- ICmpInst *Compare = L->getLatchCmpInst();
- if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
- Compare->hasNUsesOrMore(2)) {
- LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
- return false;
- }
- BackBranch = cast<BranchInst>(Latch->getTerminator());
- IterationInstructions.insert(BackBranch);
- LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
- IterationInstructions.insert(Compare);
- LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
- // Find increment and trip count.
- // There are exactly 2 incoming values to the induction phi; one from the
- // pre-header and one from the latch. The incoming latch value is the
- // increment variable.
- Increment =
- dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
- if (Increment->hasNUsesOrMore(3)) {
- LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
- return false;
- }
- // The trip count is the RHS of the compare. If this doesn't match the trip
- // count computed by SCEV then this is because the trip count variable
- // has been widened so the types don't match, or because it is a constant and
- // another transformation has changed the compare (e.g. icmp ult %inc,
- // tripcount -> icmp ult %j, tripcount-1), or both.
- Value *RHS = Compare->getOperand(1);
- return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount,
- Increment, BackBranch, SE, IsWidened);
- }
- static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
- // All PHIs in the inner and outer headers must either be:
- // - The induction PHI, which we are going to rewrite as one induction in
- // the new loop. This is already checked by findLoopComponents.
- // - An outer header PHI with all incoming values from outside the loop.
- // LoopSimplify guarantees we have a pre-header, so we don't need to
- // worry about that here.
- // - Pairs of PHIs in the inner and outer headers, which implement a
- // loop-carried dependency that will still be valid in the new loop. To
- // be valid, this variable must be modified only in the inner loop.
- // The set of PHI nodes in the outer loop header that we know will still be
- // valid after the transformation. These will not need to be modified (with
- // the exception of the induction variable), but we do need to check that
- // there are no unsafe PHI nodes.
- SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
- SafeOuterPHIs.insert(FI.OuterInductionPHI);
- // Check that all PHI nodes in the inner loop header match one of the valid
- // patterns.
- for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
- // The induction PHIs break these rules, and that's OK because we treat
- // them specially when doing the transformation.
- if (&InnerPHI == FI.InnerInductionPHI)
- continue;
- if (FI.isNarrowInductionPhi(&InnerPHI))
- continue;
- // Each inner loop PHI node must have two incoming values/blocks - one
- // from the pre-header, and one from the latch.
- assert(InnerPHI.getNumIncomingValues() == 2);
- Value *PreHeaderValue =
- InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
- Value *LatchValue =
- InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
- // The incoming value from the outer loop must be the PHI node in the
- // outer loop header, with no modifications made in the top of the outer
- // loop.
- PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
- if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
- LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
- return false;
- }
- // The other incoming value must come from the inner loop, without any
- // modifications in the tail end of the outer loop. We are in LCSSA form,
- // so this will actually be a PHI in the inner loop's exit block, which
- // only uses values from inside the inner loop.
- PHINode *LCSSAPHI = dyn_cast<PHINode>(
- OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
- if (!LCSSAPHI) {
- LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
- return false;
- }
- // The value used by the LCSSA PHI must be the same one that the inner
- // loop's PHI uses.
- if (LCSSAPHI->hasConstantValue() != LatchValue) {
- LLVM_DEBUG(
- dbgs() << "LCSSA PHI incoming value does not match latch value\n");
- return false;
- }
- LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
- LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump());
- LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump());
- SafeOuterPHIs.insert(OuterPHI);
- FI.InnerPHIsToTransform.insert(&InnerPHI);
- }
- for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
- if (FI.isNarrowInductionPhi(&OuterPHI))
- continue;
- if (!SafeOuterPHIs.count(&OuterPHI)) {
- LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
- return false;
- }
- }
- LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
- return true;
- }
- static bool
- checkOuterLoopInsts(FlattenInfo &FI,
- SmallPtrSetImpl<Instruction *> &IterationInstructions,
- const TargetTransformInfo *TTI) {
- // Check for instructions in the outer but not inner loop. If any of these
- // have side-effects then this transformation is not legal, and if there is
- // a significant amount of code here which can't be optimised out that it's
- // not profitable (as these instructions would get executed for each
- // iteration of the inner loop).
- InstructionCost RepeatedInstrCost = 0;
- for (auto *B : FI.OuterLoop->getBlocks()) {
- if (FI.InnerLoop->contains(B))
- continue;
- for (auto &I : *B) {
- if (!isa<PHINode>(&I) && !I.isTerminator() &&
- !isSafeToSpeculativelyExecute(&I)) {
- LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
- "side effects: ";
- I.dump());
- return false;
- }
- // The execution count of the outer loop's iteration instructions
- // (increment, compare and branch) will be increased, but the
- // equivalent instructions will be removed from the inner loop, so
- // they make a net difference of zero.
- if (IterationInstructions.count(&I))
- continue;
- // The uncoditional branch to the inner loop's header will turn into
- // a fall-through, so adds no cost.
- BranchInst *Br = dyn_cast<BranchInst>(&I);
- if (Br && Br->isUnconditional() &&
- Br->getSuccessor(0) == FI.InnerLoop->getHeader())
- continue;
- // Multiplies of the outer iteration variable and inner iteration
- // count will be optimised out.
- if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
- m_Specific(FI.InnerTripCount))))
- continue;
- InstructionCost Cost =
- TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
- LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
- RepeatedInstrCost += Cost;
- }
- }
- LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
- << RepeatedInstrCost << "\n");
- // Bail out if flattening the loops would cause instructions in the outer
- // loop but not in the inner loop to be executed extra times.
- if (RepeatedInstrCost > RepeatedInstructionThreshold) {
- LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
- return false;
- }
- LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
- return true;
- }
- // We require all uses of both induction variables to match this pattern:
- //
- // (OuterPHI * InnerTripCount) + InnerPHI
- //
- // Any uses of the induction variables not matching that pattern would
- // require a div/mod to reconstruct in the flattened loop, so the
- // transformation wouldn't be profitable.
- static bool checkIVUsers(FlattenInfo &FI) {
- // Check that all uses of the inner loop's induction variable match the
- // expected pattern, recording the uses of the outer IV.
- SmallPtrSet<Value *, 4> ValidOuterPHIUses;
- if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses))
- return false;
- // Check that there are no uses of the outer IV other than the ones found
- // as part of the pattern above.
- if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses))
- return false;
- LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
- dbgs() << "Found " << FI.LinearIVUses.size()
- << " value(s) that can be replaced:\n";
- for (Value *V : FI.LinearIVUses) {
- dbgs() << " ";
- V->dump();
- });
- return true;
- }
- // Return an OverflowResult dependant on if overflow of the multiplication of
- // InnerTripCount and OuterTripCount can be assumed not to happen.
- static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
- AssumptionCache *AC) {
- Function *F = FI.OuterLoop->getHeader()->getParent();
- const DataLayout &DL = F->getParent()->getDataLayout();
- // For debugging/testing.
- if (AssumeNoOverflow)
- return OverflowResult::NeverOverflows;
- // Check if the multiply could not overflow due to known ranges of the
- // input values.
- OverflowResult OR = computeOverflowForUnsignedMul(
- FI.InnerTripCount, FI.OuterTripCount, DL, AC,
- FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
- if (OR != OverflowResult::MayOverflow)
- return OR;
- for (Value *V : FI.LinearIVUses) {
- for (Value *U : V->users()) {
- if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
- for (Value *GEPUser : U->users()) {
- auto *GEPUserInst = cast<Instruction>(GEPUser);
- if (!isa<LoadInst>(GEPUserInst) &&
- !(isa<StoreInst>(GEPUserInst) &&
- GEP == GEPUserInst->getOperand(1)))
- continue;
- if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst,
- FI.InnerLoop))
- continue;
- // The IV is used as the operand of a GEP which dominates the loop
- // latch, and the IV is at least as wide as the address space of the
- // GEP. In this case, the GEP would wrap around the address space
- // before the IV increment wraps, which would be UB.
- if (GEP->isInBounds() &&
- V->getType()->getIntegerBitWidth() >=
- DL.getPointerTypeSizeInBits(GEP->getType())) {
- LLVM_DEBUG(
- dbgs() << "use of linear IV would be UB if overflow occurred: ";
- GEP->dump());
- return OverflowResult::NeverOverflows;
- }
- }
- }
- }
- }
- return OverflowResult::MayOverflow;
- }
- static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
- ScalarEvolution *SE, AssumptionCache *AC,
- const TargetTransformInfo *TTI) {
- SmallPtrSet<Instruction *, 8> IterationInstructions;
- if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
- FI.InnerInductionPHI, FI.InnerTripCount,
- FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
- return false;
- if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
- FI.OuterInductionPHI, FI.OuterTripCount,
- FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
- return false;
- // Both of the loop trip count values must be invariant in the outer loop
- // (non-instructions are all inherently invariant).
- if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
- LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
- return false;
- }
- if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
- LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
- return false;
- }
- if (!checkPHIs(FI, TTI))
- return false;
- // FIXME: it should be possible to handle different types correctly.
- if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
- return false;
- if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
- return false;
- // Find the values in the loop that can be replaced with the linearized
- // induction variable, and check that there are no other uses of the inner
- // or outer induction variable. If there were, we could still do this
- // transformation, but we'd have to insert a div/mod to calculate the
- // original IVs, so it wouldn't be profitable.
- if (!checkIVUsers(FI))
- return false;
- LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
- return true;
- }
- static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
- ScalarEvolution *SE, AssumptionCache *AC,
- const TargetTransformInfo *TTI, LPMUpdater *U,
- MemorySSAUpdater *MSSAU) {
- Function *F = FI.OuterLoop->getHeader()->getParent();
- LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
- {
- using namespace ore;
- OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
- FI.InnerLoop->getHeader());
- OptimizationRemarkEmitter ORE(F);
- Remark << "Flattened into outer loop";
- ORE.emit(Remark);
- }
- Value *NewTripCount = BinaryOperator::CreateMul(
- FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
- FI.OuterLoop->getLoopPreheader()->getTerminator());
- LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
- NewTripCount->dump());
- // Fix up PHI nodes that take values from the inner loop back-edge, which
- // we are about to remove.
- FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
- // The old Phi will be optimised away later, but for now we can't leave
- // leave it in an invalid state, so are updating them too.
- for (PHINode *PHI : FI.InnerPHIsToTransform)
- PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
- // Modify the trip count of the outer loop to be the product of the two
- // trip counts.
- cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
- // Replace the inner loop backedge with an unconditional branch to the exit.
- BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
- BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
- InnerExitingBlock->getTerminator()->eraseFromParent();
- BranchInst::Create(InnerExitBlock, InnerExitingBlock);
- // Update the DomTree and MemorySSA.
- DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
- if (MSSAU)
- MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
- // Replace all uses of the polynomial calculated from the two induction
- // variables with the one new one.
- IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
- for (Value *V : FI.LinearIVUses) {
- Value *OuterValue = FI.OuterInductionPHI;
- if (FI.Widened)
- OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
- "flatten.trunciv");
- LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with: ";
- OuterValue->dump());
- V->replaceAllUsesWith(OuterValue);
- }
- // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
- // deleted, and any information that have about the outer loop invalidated.
- SE->forgetLoop(FI.OuterLoop);
- SE->forgetLoop(FI.InnerLoop);
- if (U)
- U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName());
- LI->erase(FI.InnerLoop);
- // Increment statistic value.
- NumFlattened++;
- return true;
- }
- static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
- ScalarEvolution *SE, AssumptionCache *AC,
- const TargetTransformInfo *TTI) {
- if (!WidenIV) {
- LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
- return false;
- }
- LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
- Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
- auto &DL = M->getDataLayout();
- auto *InnerType = FI.InnerInductionPHI->getType();
- auto *OuterType = FI.OuterInductionPHI->getType();
- unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
- auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
- // If both induction types are less than the maximum legal integer width,
- // promote both to the widest type available so we know calculating
- // (OuterTripCount * InnerTripCount) as the new trip count is safe.
- if (InnerType != OuterType ||
- InnerType->getScalarSizeInBits() >= MaxLegalSize ||
- MaxLegalType->getScalarSizeInBits() <
- InnerType->getScalarSizeInBits() * 2) {
- LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
- return false;
- }
- SCEVExpander Rewriter(*SE, DL, "loopflatten");
- SmallVector<WeakTrackingVH, 4> DeadInsts;
- unsigned ElimExt = 0;
- unsigned Widened = 0;
- auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool {
- PHINode *WidePhi =
- createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened,
- true /* HasGuards */, true /* UsePostIncrementRanges */);
- if (!WidePhi)
- return false;
- LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
- LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
- Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
- return true;
- };
- bool Deleted;
- if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted))
- return false;
- // Add the narrow phi to list, so that it will be adjusted later when the
- // the transformation is performed.
- if (!Deleted)
- FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI);
- if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted))
- return false;
- assert(Widened && "Widened IV expected");
- FI.Widened = true;
- // Save the old/narrow induction phis, which we need to ignore in CheckPHIs.
- FI.NarrowInnerInductionPHI = FI.InnerInductionPHI;
- FI.NarrowOuterInductionPHI = FI.OuterInductionPHI;
- // After widening, rediscover all the loop components.
- return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
- }
- static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
- ScalarEvolution *SE, AssumptionCache *AC,
- const TargetTransformInfo *TTI, LPMUpdater *U,
- MemorySSAUpdater *MSSAU) {
- LLVM_DEBUG(
- dbgs() << "Loop flattening running on outer loop "
- << FI.OuterLoop->getHeader()->getName() << " and inner loop "
- << FI.InnerLoop->getHeader()->getName() << " in "
- << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
- if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
- return false;
- // Check if we can widen the induction variables to avoid overflow checks.
- bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI);
- // It can happen that after widening of the IV, flattening may not be
- // possible/happening, e.g. when it is deemed unprofitable. So bail here if
- // that is the case.
- // TODO: IV widening without performing the actual flattening transformation
- // is not ideal. While this codegen change should not matter much, it is an
- // unnecessary change which is better to avoid. It's unlikely this happens
- // often, because if it's unprofitibale after widening, it should be
- // unprofitabe before widening as checked in the first round of checks. But
- // 'RepeatedInstructionThreshold' is set to only 2, which can probably be
- // relaxed. Because this is making a code change (the IV widening, but not
- // the flattening), we return true here.
- if (FI.Widened && !CanFlatten)
- return true;
- // If we have widened and can perform the transformation, do that here.
- if (CanFlatten)
- return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
- // Otherwise, if we haven't widened the IV, check if the new iteration
- // variable might overflow. In this case, we need to version the loop, and
- // select the original version at runtime if the iteration space is too
- // large.
- // TODO: We currently don't version the loop.
- OverflowResult OR = checkOverflow(FI, DT, AC);
- if (OR == OverflowResult::AlwaysOverflowsHigh ||
- OR == OverflowResult::AlwaysOverflowsLow) {
- LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
- return false;
- } else if (OR == OverflowResult::MayOverflow) {
- LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
- return false;
- }
- LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
- return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
- }
- bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
- AssumptionCache *AC, TargetTransformInfo *TTI, LPMUpdater *U,
- MemorySSAUpdater *MSSAU) {
- bool Changed = false;
- for (Loop *InnerLoop : LN.getLoops()) {
- auto *OuterLoop = InnerLoop->getParentLoop();
- if (!OuterLoop)
- continue;
- FlattenInfo FI(OuterLoop, InnerLoop);
- Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
- }
- return Changed;
- }
- PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &U) {
- bool Changed = false;
- Optional<MemorySSAUpdater> MSSAU;
- if (AR.MSSA) {
- MSSAU = MemorySSAUpdater(AR.MSSA);
- if (VerifyMemorySSA)
- AR.MSSA->verifyMemorySSA();
- }
- // The loop flattening pass requires loops to be
- // in simplified form, and also needs LCSSA. Running
- // this pass will simplify all loops that contain inner loops,
- // regardless of whether anything ends up being flattened.
- Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U,
- MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
- if (!Changed)
- return PreservedAnalyses::all();
- if (AR.MSSA && VerifyMemorySSA)
- AR.MSSA->verifyMemorySSA();
- auto PA = getLoopPassPreservedAnalyses();
- if (AR.MSSA)
- PA.preserve<MemorySSAAnalysis>();
- return PA;
- }
- namespace {
- class LoopFlattenLegacyPass : public FunctionPass {
- public:
- static char ID; // Pass ID, replacement for typeid
- LoopFlattenLegacyPass() : FunctionPass(ID) {
- initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- // Possibly flatten loop L into its child.
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- getLoopAnalysisUsage(AU);
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addPreserved<TargetTransformInfoWrapperPass>();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addPreserved<AssumptionCacheTracker>();
- AU.addPreserved<MemorySSAWrapperPass>();
- }
- };
- } // namespace
- char LoopFlattenLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
- false, false)
- FunctionPass *llvm::createLoopFlattenPass() {
- return new LoopFlattenLegacyPass();
- }
- bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
- ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
- auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
- auto *TTI = &TTIP.getTTI(F);
- auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto *MSSA = getAnalysisIfAvailable<MemorySSAWrapperPass>();
- Optional<MemorySSAUpdater> MSSAU;
- if (MSSA)
- MSSAU = MemorySSAUpdater(&MSSA->getMSSA());
- bool Changed = false;
- for (Loop *L : *LI) {
- auto LN = LoopNest::getLoopNest(*L, *SE);
- Changed |= Flatten(*LN, DT, LI, SE, AC, TTI, nullptr,
- MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
- }
- return Changed;
- }
|