12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997 |
- //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // The InductiveRangeCheckElimination pass splits a loop's iteration space into
- // three disjoint ranges. It does that in a way such that the loop running in
- // the middle loop provably does not need range checks. As an example, it will
- // convert
- //
- // len = < known positive >
- // for (i = 0; i < n; i++) {
- // if (0 <= i && i < len) {
- // do_something();
- // } else {
- // throw_out_of_bounds();
- // }
- // }
- //
- // to
- //
- // len = < known positive >
- // limit = smin(n, len)
- // // no first segment
- // for (i = 0; i < limit; i++) {
- // if (0 <= i && i < len) { // this check is fully redundant
- // do_something();
- // } else {
- // throw_out_of_bounds();
- // }
- // }
- // for (i = limit; i < n; i++) {
- // if (0 <= i && i < len) {
- // do_something();
- // } else {
- // throw_out_of_bounds();
- // }
- // }
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/PriorityWorklist.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/BranchProbabilityInfo.h"
- #include "llvm/Analysis/LoopAnalysisManager.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/PostDominators.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/BranchProbability.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/LoopSimplify.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
- #include "llvm/Transforms/Utils/ValueMapper.h"
- #include <algorithm>
- #include <cassert>
- #include <iterator>
- #include <limits>
- #include <utility>
- #include <vector>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
- cl::init(64));
- static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
- cl::init(false));
- static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
- cl::init(false));
- static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
- cl::Hidden, cl::init(false));
- static cl::opt<unsigned> MinRuntimeIterations("irce-min-runtime-iterations",
- cl::Hidden, cl::init(10));
- static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
- cl::Hidden, cl::init(true));
- static cl::opt<bool> AllowNarrowLatchCondition(
- "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
- cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
- "with narrow latch condition."));
- static const char *ClonedLoopTag = "irce.loop.clone";
- #define DEBUG_TYPE "irce"
- namespace {
- /// An inductive range check is conditional branch in a loop with
- ///
- /// 1. a very cold successor (i.e. the branch jumps to that successor very
- /// rarely)
- ///
- /// and
- ///
- /// 2. a condition that is provably true for some contiguous range of values
- /// taken by the containing loop's induction variable.
- ///
- class InductiveRangeCheck {
- const SCEV *Begin = nullptr;
- const SCEV *Step = nullptr;
- const SCEV *End = nullptr;
- Use *CheckUse = nullptr;
- static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
- Value *&Index, Value *&Length,
- bool &IsSigned);
- static void
- extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
- SmallVectorImpl<InductiveRangeCheck> &Checks,
- SmallPtrSetImpl<Value *> &Visited);
- public:
- const SCEV *getBegin() const { return Begin; }
- const SCEV *getStep() const { return Step; }
- const SCEV *getEnd() const { return End; }
- void print(raw_ostream &OS) const {
- OS << "InductiveRangeCheck:\n";
- OS << " Begin: ";
- Begin->print(OS);
- OS << " Step: ";
- Step->print(OS);
- OS << " End: ";
- End->print(OS);
- OS << "\n CheckUse: ";
- getCheckUse()->getUser()->print(OS);
- OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
- }
- LLVM_DUMP_METHOD
- void dump() {
- print(dbgs());
- }
- Use *getCheckUse() const { return CheckUse; }
- /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
- /// R.getEnd() le R.getBegin(), then R denotes the empty range.
- class Range {
- const SCEV *Begin;
- const SCEV *End;
- public:
- Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
- assert(Begin->getType() == End->getType() && "ill-typed range!");
- }
- Type *getType() const { return Begin->getType(); }
- const SCEV *getBegin() const { return Begin; }
- const SCEV *getEnd() const { return End; }
- bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
- if (Begin == End)
- return true;
- if (IsSigned)
- return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
- else
- return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
- }
- };
- /// This is the value the condition of the branch needs to evaluate to for the
- /// branch to take the hot successor (see (1) above).
- bool getPassingDirection() { return true; }
- /// Computes a range for the induction variable (IndVar) in which the range
- /// check is redundant and can be constant-folded away. The induction
- /// variable is not required to be the canonical {0,+,1} induction variable.
- Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
- const SCEVAddRecExpr *IndVar,
- bool IsLatchSigned) const;
- /// Parse out a set of inductive range checks from \p BI and append them to \p
- /// Checks.
- ///
- /// NB! There may be conditions feeding into \p BI that aren't inductive range
- /// checks, and hence don't end up in \p Checks.
- static void
- extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
- BranchProbabilityInfo *BPI,
- SmallVectorImpl<InductiveRangeCheck> &Checks);
- };
- struct LoopStructure;
- class InductiveRangeCheckElimination {
- ScalarEvolution &SE;
- BranchProbabilityInfo *BPI;
- DominatorTree &DT;
- LoopInfo &LI;
- using GetBFIFunc =
- llvm::Optional<llvm::function_ref<llvm::BlockFrequencyInfo &()> >;
- GetBFIFunc GetBFI;
- // Returns true if it is profitable to do a transform basing on estimation of
- // number of iterations.
- bool isProfitableToTransform(const Loop &L, LoopStructure &LS);
- public:
- InductiveRangeCheckElimination(ScalarEvolution &SE,
- BranchProbabilityInfo *BPI, DominatorTree &DT,
- LoopInfo &LI, GetBFIFunc GetBFI = None)
- : SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {}
- bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
- };
- class IRCELegacyPass : public FunctionPass {
- public:
- static char ID;
- IRCELegacyPass() : FunctionPass(ID) {
- initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<BranchProbabilityInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addPreserved<ScalarEvolutionWrapperPass>();
- }
- bool runOnFunction(Function &F) override;
- };
- } // end anonymous namespace
- char IRCELegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
- "Inductive range check elimination", false, false)
- INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
- false, false)
- /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot
- /// be interpreted as a range check, return false and set `Index` and `Length`
- /// to `nullptr`. Otherwise set `Index` to the value being range checked, and
- /// set `Length` to the upper limit `Index` is being range checked.
- bool
- InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
- ScalarEvolution &SE, Value *&Index,
- Value *&Length, bool &IsSigned) {
- auto IsLoopInvariant = [&SE, L](Value *V) {
- return SE.isLoopInvariant(SE.getSCEV(V), L);
- };
- ICmpInst::Predicate Pred = ICI->getPredicate();
- Value *LHS = ICI->getOperand(0);
- Value *RHS = ICI->getOperand(1);
- switch (Pred) {
- default:
- return false;
- case ICmpInst::ICMP_SLE:
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ICmpInst::ICMP_SGE:
- IsSigned = true;
- if (match(RHS, m_ConstantInt<0>())) {
- Index = LHS;
- return true; // Lower.
- }
- return false;
- case ICmpInst::ICMP_SLT:
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ICmpInst::ICMP_SGT:
- IsSigned = true;
- if (match(RHS, m_ConstantInt<-1>())) {
- Index = LHS;
- return true; // Lower.
- }
- if (IsLoopInvariant(LHS)) {
- Index = RHS;
- Length = LHS;
- return true; // Upper.
- }
- return false;
- case ICmpInst::ICMP_ULT:
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ICmpInst::ICMP_UGT:
- IsSigned = false;
- if (IsLoopInvariant(LHS)) {
- Index = RHS;
- Length = LHS;
- return true; // Both lower and upper.
- }
- return false;
- }
- llvm_unreachable("default clause returns!");
- }
- void InductiveRangeCheck::extractRangeChecksFromCond(
- Loop *L, ScalarEvolution &SE, Use &ConditionUse,
- SmallVectorImpl<InductiveRangeCheck> &Checks,
- SmallPtrSetImpl<Value *> &Visited) {
- Value *Condition = ConditionUse.get();
- if (!Visited.insert(Condition).second)
- return;
- // TODO: Do the same for OR, XOR, NOT etc?
- if (match(Condition, m_LogicalAnd(m_Value(), m_Value()))) {
- extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
- Checks, Visited);
- extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
- Checks, Visited);
- return;
- }
- ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
- if (!ICI)
- return;
- Value *Length = nullptr, *Index;
- bool IsSigned;
- if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
- return;
- const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
- bool IsAffineIndex =
- IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
- if (!IsAffineIndex)
- return;
- const SCEV *End = nullptr;
- // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
- // We can potentially do much better here.
- if (Length)
- End = SE.getSCEV(Length);
- else {
- // So far we can only reach this point for Signed range check. This may
- // change in future. In this case we will need to pick Unsigned max for the
- // unsigned range check.
- unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
- const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
- End = SIntMax;
- }
- InductiveRangeCheck IRC;
- IRC.End = End;
- IRC.Begin = IndexAddRec->getStart();
- IRC.Step = IndexAddRec->getStepRecurrence(SE);
- IRC.CheckUse = &ConditionUse;
- Checks.push_back(IRC);
- }
- void InductiveRangeCheck::extractRangeChecksFromBranch(
- BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
- SmallVectorImpl<InductiveRangeCheck> &Checks) {
- if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
- return;
- BranchProbability LikelyTaken(15, 16);
- if (!SkipProfitabilityChecks && BPI &&
- BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
- return;
- SmallPtrSet<Value *, 8> Visited;
- InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
- Checks, Visited);
- }
- // Add metadata to the loop L to disable loop optimizations. Callers need to
- // confirm that optimizing loop L is not beneficial.
- static void DisableAllLoopOptsOnLoop(Loop &L) {
- // We do not care about any existing loopID related metadata for L, since we
- // are setting all loop metadata to false.
- LLVMContext &Context = L.getHeader()->getContext();
- // Reserve first location for self reference to the LoopID metadata node.
- MDNode *Dummy = MDNode::get(Context, {});
- MDNode *DisableUnroll = MDNode::get(
- Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
- Metadata *FalseVal =
- ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
- MDNode *DisableVectorize = MDNode::get(
- Context,
- {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
- MDNode *DisableLICMVersioning = MDNode::get(
- Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
- MDNode *DisableDistribution= MDNode::get(
- Context,
- {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
- MDNode *NewLoopID =
- MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
- DisableLICMVersioning, DisableDistribution});
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
- L.setLoopID(NewLoopID);
- }
- namespace {
- // Keeps track of the structure of a loop. This is similar to llvm::Loop,
- // except that it is more lightweight and can track the state of a loop through
- // changing and potentially invalid IR. This structure also formalizes the
- // kinds of loops we can deal with -- ones that have a single latch that is also
- // an exiting block *and* have a canonical induction variable.
- struct LoopStructure {
- const char *Tag = "";
- BasicBlock *Header = nullptr;
- BasicBlock *Latch = nullptr;
- // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
- // successor is `LatchExit', the exit block of the loop.
- BranchInst *LatchBr = nullptr;
- BasicBlock *LatchExit = nullptr;
- unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
- // The loop represented by this instance of LoopStructure is semantically
- // equivalent to:
- //
- // intN_ty inc = IndVarIncreasing ? 1 : -1;
- // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
- //
- // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
- // ... body ...
- Value *IndVarBase = nullptr;
- Value *IndVarStart = nullptr;
- Value *IndVarStep = nullptr;
- Value *LoopExitAt = nullptr;
- bool IndVarIncreasing = false;
- bool IsSignedPredicate = true;
- LoopStructure() = default;
- template <typename M> LoopStructure map(M Map) const {
- LoopStructure Result;
- Result.Tag = Tag;
- Result.Header = cast<BasicBlock>(Map(Header));
- Result.Latch = cast<BasicBlock>(Map(Latch));
- Result.LatchBr = cast<BranchInst>(Map(LatchBr));
- Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
- Result.LatchBrExitIdx = LatchBrExitIdx;
- Result.IndVarBase = Map(IndVarBase);
- Result.IndVarStart = Map(IndVarStart);
- Result.IndVarStep = Map(IndVarStep);
- Result.LoopExitAt = Map(LoopExitAt);
- Result.IndVarIncreasing = IndVarIncreasing;
- Result.IsSignedPredicate = IsSignedPredicate;
- return Result;
- }
- static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, Loop &,
- const char *&);
- };
- /// This class is used to constrain loops to run within a given iteration space.
- /// The algorithm this class implements is given a Loop and a range [Begin,
- /// End). The algorithm then tries to break out a "main loop" out of the loop
- /// it is given in a way that the "main loop" runs with the induction variable
- /// in a subset of [Begin, End). The algorithm emits appropriate pre and post
- /// loops to run any remaining iterations. The pre loop runs any iterations in
- /// which the induction variable is < Begin, and the post loop runs any
- /// iterations in which the induction variable is >= End.
- class LoopConstrainer {
- // The representation of a clone of the original loop we started out with.
- struct ClonedLoop {
- // The cloned blocks
- std::vector<BasicBlock *> Blocks;
- // `Map` maps values in the clonee into values in the cloned version
- ValueToValueMapTy Map;
- // An instance of `LoopStructure` for the cloned loop
- LoopStructure Structure;
- };
- // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
- // more details on what these fields mean.
- struct RewrittenRangeInfo {
- BasicBlock *PseudoExit = nullptr;
- BasicBlock *ExitSelector = nullptr;
- std::vector<PHINode *> PHIValuesAtPseudoExit;
- PHINode *IndVarEnd = nullptr;
- RewrittenRangeInfo() = default;
- };
- // Calculated subranges we restrict the iteration space of the main loop to.
- // See the implementation of `calculateSubRanges' for more details on how
- // these fields are computed. `LowLimit` is None if there is no restriction
- // on low end of the restricted iteration space of the main loop. `HighLimit`
- // is None if there is no restriction on high end of the restricted iteration
- // space of the main loop.
- struct SubRanges {
- Optional<const SCEV *> LowLimit;
- Optional<const SCEV *> HighLimit;
- };
- // Compute a safe set of limits for the main loop to run in -- effectively the
- // intersection of `Range' and the iteration space of the original loop.
- // Return None if unable to compute the set of subranges.
- Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
- // Clone `OriginalLoop' and return the result in CLResult. The IR after
- // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
- // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
- // but there is no such edge.
- void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
- // Create the appropriate loop structure needed to describe a cloned copy of
- // `Original`. The clone is described by `VM`.
- Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
- ValueToValueMapTy &VM, bool IsSubloop);
- // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
- // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
- // iteration space is not changed. `ExitLoopAt' is assumed to be slt
- // `OriginalHeaderCount'.
- //
- // If there are iterations left to execute, control is made to jump to
- // `ContinuationBlock', otherwise they take the normal loop exit. The
- // returned `RewrittenRangeInfo' object is populated as follows:
- //
- // .PseudoExit is a basic block that unconditionally branches to
- // `ContinuationBlock'.
- //
- // .ExitSelector is a basic block that decides, on exit from the loop,
- // whether to branch to the "true" exit or to `PseudoExit'.
- //
- // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
- // for each PHINode in the loop header on taking the pseudo exit.
- //
- // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
- // preheader because it is made to branch to the loop header only
- // conditionally.
- RewrittenRangeInfo
- changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
- Value *ExitLoopAt,
- BasicBlock *ContinuationBlock) const;
- // The loop denoted by `LS' has `OldPreheader' as its preheader. This
- // function creates a new preheader for `LS' and returns it.
- BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
- const char *Tag) const;
- // `ContinuationBlockAndPreheader' was the continuation block for some call to
- // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
- // This function rewrites the PHI nodes in `LS.Header' to start with the
- // correct value.
- void rewriteIncomingValuesForPHIs(
- LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
- const LoopConstrainer::RewrittenRangeInfo &RRI) const;
- // Even though we do not preserve any passes at this time, we at least need to
- // keep the parent loop structure consistent. The `LPPassManager' seems to
- // verify this after running a loop pass. This function adds the list of
- // blocks denoted by BBs to this loops parent loop if required.
- void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
- // Some global state.
- Function &F;
- LLVMContext &Ctx;
- ScalarEvolution &SE;
- DominatorTree &DT;
- LoopInfo &LI;
- function_ref<void(Loop *, bool)> LPMAddNewLoop;
- // Information about the original loop we started out with.
- Loop &OriginalLoop;
- const SCEV *LatchTakenCount = nullptr;
- BasicBlock *OriginalPreheader = nullptr;
- // The preheader of the main loop. This may or may not be different from
- // `OriginalPreheader'.
- BasicBlock *MainLoopPreheader = nullptr;
- // The range we need to run the main loop in.
- InductiveRangeCheck::Range Range;
- // The structure of the main loop (see comment at the beginning of this class
- // for a definition)
- LoopStructure MainLoopStructure;
- public:
- LoopConstrainer(Loop &L, LoopInfo &LI,
- function_ref<void(Loop *, bool)> LPMAddNewLoop,
- const LoopStructure &LS, ScalarEvolution &SE,
- DominatorTree &DT, InductiveRangeCheck::Range R)
- : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
- SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
- Range(R), MainLoopStructure(LS) {}
- // Entry point for the algorithm. Returns true on success.
- bool run();
- };
- } // end anonymous namespace
- /// Given a loop with an deccreasing induction variable, is it possible to
- /// safely calculate the bounds of a new loop using the given Predicate.
- static bool isSafeDecreasingBound(const SCEV *Start,
- const SCEV *BoundSCEV, const SCEV *Step,
- ICmpInst::Predicate Pred,
- unsigned LatchBrExitIdx,
- Loop *L, ScalarEvolution &SE) {
- if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
- Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
- return false;
- if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
- return false;
- assert(SE.isKnownNegative(Step) && "expecting negative step");
- LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
- LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
- LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
- LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
- LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
- << "\n");
- LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
- bool IsSigned = ICmpInst::isSigned(Pred);
- // The predicate that we need to check that the induction variable lies
- // within bounds.
- ICmpInst::Predicate BoundPred =
- IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
- if (LatchBrExitIdx == 1)
- return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
- assert(LatchBrExitIdx == 0 &&
- "LatchBrExitIdx should be either 0 or 1");
- const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
- unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
- APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
- APInt::getMinValue(BitWidth);
- const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
- const SCEV *MinusOne =
- SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
- return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
- SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
- }
- /// Given a loop with an increasing induction variable, is it possible to
- /// safely calculate the bounds of a new loop using the given Predicate.
- static bool isSafeIncreasingBound(const SCEV *Start,
- const SCEV *BoundSCEV, const SCEV *Step,
- ICmpInst::Predicate Pred,
- unsigned LatchBrExitIdx,
- Loop *L, ScalarEvolution &SE) {
- if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
- Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
- return false;
- if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
- return false;
- LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
- LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
- LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
- LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
- LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
- << "\n");
- LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
- bool IsSigned = ICmpInst::isSigned(Pred);
- // The predicate that we need to check that the induction variable lies
- // within bounds.
- ICmpInst::Predicate BoundPred =
- IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
- if (LatchBrExitIdx == 1)
- return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
- assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
- const SCEV *StepMinusOne =
- SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
- unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
- APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
- APInt::getMaxValue(BitWidth);
- const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
- return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
- SE.getAddExpr(BoundSCEV, Step)) &&
- SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
- }
- Optional<LoopStructure>
- LoopStructure::parseLoopStructure(ScalarEvolution &SE, Loop &L,
- const char *&FailureReason) {
- if (!L.isLoopSimplifyForm()) {
- FailureReason = "loop not in LoopSimplify form";
- return None;
- }
- BasicBlock *Latch = L.getLoopLatch();
- assert(Latch && "Simplified loops only have one latch!");
- if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
- FailureReason = "loop has already been cloned";
- return None;
- }
- if (!L.isLoopExiting(Latch)) {
- FailureReason = "no loop latch";
- return None;
- }
- BasicBlock *Header = L.getHeader();
- BasicBlock *Preheader = L.getLoopPreheader();
- if (!Preheader) {
- FailureReason = "no preheader";
- return None;
- }
- BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
- if (!LatchBr || LatchBr->isUnconditional()) {
- FailureReason = "latch terminator not conditional branch";
- return None;
- }
- unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
- ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
- if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
- FailureReason = "latch terminator branch not conditional on integral icmp";
- return None;
- }
- const SCEV *LatchCount = SE.getExitCount(&L, Latch);
- if (isa<SCEVCouldNotCompute>(LatchCount)) {
- FailureReason = "could not compute latch count";
- return None;
- }
- ICmpInst::Predicate Pred = ICI->getPredicate();
- Value *LeftValue = ICI->getOperand(0);
- const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
- IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
- Value *RightValue = ICI->getOperand(1);
- const SCEV *RightSCEV = SE.getSCEV(RightValue);
- // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
- if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
- if (isa<SCEVAddRecExpr>(RightSCEV)) {
- std::swap(LeftSCEV, RightSCEV);
- std::swap(LeftValue, RightValue);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- } else {
- FailureReason = "no add recurrences in the icmp";
- return None;
- }
- }
- auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
- if (AR->getNoWrapFlags(SCEV::FlagNSW))
- return true;
- IntegerType *Ty = cast<IntegerType>(AR->getType());
- IntegerType *WideTy =
- IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
- const SCEVAddRecExpr *ExtendAfterOp =
- dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
- if (ExtendAfterOp) {
- const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
- const SCEV *ExtendedStep =
- SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
- bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
- ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
- if (NoSignedWrap)
- return true;
- }
- // We may have proved this when computing the sign extension above.
- return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
- };
- // `ICI` is interpreted as taking the backedge if the *next* value of the
- // induction variable satisfies some constraint.
- const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
- if (!IndVarBase->isAffine()) {
- FailureReason = "LHS in icmp not induction variable";
- return None;
- }
- const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
- if (!isa<SCEVConstant>(StepRec)) {
- FailureReason = "LHS in icmp not induction variable";
- return None;
- }
- ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
- if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
- FailureReason = "LHS in icmp needs nsw for equality predicates";
- return None;
- }
- assert(!StepCI->isZero() && "Zero step?");
- bool IsIncreasing = !StepCI->isNegative();
- bool IsSignedPredicate;
- const SCEV *StartNext = IndVarBase->getStart();
- const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
- const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
- const SCEV *Step = SE.getSCEV(StepCI);
- const SCEV *FixedRightSCEV = nullptr;
- // If RightValue resides within loop (but still being loop invariant),
- // regenerate it as preheader.
- if (auto *I = dyn_cast<Instruction>(RightValue))
- if (L.contains(I->getParent()))
- FixedRightSCEV = RightSCEV;
- if (IsIncreasing) {
- bool DecreasedRightValueByOne = false;
- if (StepCI->isOne()) {
- // Try to turn eq/ne predicates to those we can work with.
- if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
- // while (++i != len) { while (++i < len) {
- // ... ---> ...
- // } }
- // If both parts are known non-negative, it is profitable to use
- // unsigned comparison in increasing loop. This allows us to make the
- // comparison check against "RightSCEV + 1" more optimistic.
- if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
- isKnownNonNegativeInLoop(RightSCEV, &L, SE))
- Pred = ICmpInst::ICMP_ULT;
- else
- Pred = ICmpInst::ICMP_SLT;
- else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
- // while (true) { while (true) {
- // if (++i == len) ---> if (++i > len - 1)
- // break; break;
- // ... ...
- // } }
- if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
- cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
- Pred = ICmpInst::ICMP_UGT;
- RightSCEV = SE.getMinusSCEV(RightSCEV,
- SE.getOne(RightSCEV->getType()));
- DecreasedRightValueByOne = true;
- } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
- Pred = ICmpInst::ICMP_SGT;
- RightSCEV = SE.getMinusSCEV(RightSCEV,
- SE.getOne(RightSCEV->getType()));
- DecreasedRightValueByOne = true;
- }
- }
- }
- bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
- bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
- bool FoundExpectedPred =
- (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
- if (!FoundExpectedPred) {
- FailureReason = "expected icmp slt semantically, found something else";
- return None;
- }
- IsSignedPredicate = ICmpInst::isSigned(Pred);
- if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
- FailureReason = "unsigned latch conditions are explicitly prohibited";
- return None;
- }
- if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
- LatchBrExitIdx, &L, SE)) {
- FailureReason = "Unsafe loop bounds";
- return None;
- }
- if (LatchBrExitIdx == 0) {
- // We need to increase the right value unless we have already decreased
- // it virtually when we replaced EQ with SGT.
- if (!DecreasedRightValueByOne)
- FixedRightSCEV =
- SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
- } else {
- assert(!DecreasedRightValueByOne &&
- "Right value can be decreased only for LatchBrExitIdx == 0!");
- }
- } else {
- bool IncreasedRightValueByOne = false;
- if (StepCI->isMinusOne()) {
- // Try to turn eq/ne predicates to those we can work with.
- if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
- // while (--i != len) { while (--i > len) {
- // ... ---> ...
- // } }
- // We intentionally don't turn the predicate into UGT even if we know
- // that both operands are non-negative, because it will only pessimize
- // our check against "RightSCEV - 1".
- Pred = ICmpInst::ICMP_SGT;
- else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
- // while (true) { while (true) {
- // if (--i == len) ---> if (--i < len + 1)
- // break; break;
- // ... ...
- // } }
- if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
- cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
- Pred = ICmpInst::ICMP_ULT;
- RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
- IncreasedRightValueByOne = true;
- } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
- Pred = ICmpInst::ICMP_SLT;
- RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
- IncreasedRightValueByOne = true;
- }
- }
- }
- bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
- bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
- bool FoundExpectedPred =
- (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
- if (!FoundExpectedPred) {
- FailureReason = "expected icmp sgt semantically, found something else";
- return None;
- }
- IsSignedPredicate =
- Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
- if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
- FailureReason = "unsigned latch conditions are explicitly prohibited";
- return None;
- }
- if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
- LatchBrExitIdx, &L, SE)) {
- FailureReason = "Unsafe bounds";
- return None;
- }
- if (LatchBrExitIdx == 0) {
- // We need to decrease the right value unless we have already increased
- // it virtually when we replaced EQ with SLT.
- if (!IncreasedRightValueByOne)
- FixedRightSCEV =
- SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
- } else {
- assert(!IncreasedRightValueByOne &&
- "Right value can be increased only for LatchBrExitIdx == 0!");
- }
- }
- BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
- assert(SE.getLoopDisposition(LatchCount, &L) ==
- ScalarEvolution::LoopInvariant &&
- "loop variant exit count doesn't make sense!");
- assert(!L.contains(LatchExit) && "expected an exit block!");
- const DataLayout &DL = Preheader->getModule()->getDataLayout();
- SCEVExpander Expander(SE, DL, "irce");
- Instruction *Ins = Preheader->getTerminator();
- if (FixedRightSCEV)
- RightValue =
- Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins);
- Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins);
- IndVarStartV->setName("indvar.start");
- LoopStructure Result;
- Result.Tag = "main";
- Result.Header = Header;
- Result.Latch = Latch;
- Result.LatchBr = LatchBr;
- Result.LatchExit = LatchExit;
- Result.LatchBrExitIdx = LatchBrExitIdx;
- Result.IndVarStart = IndVarStartV;
- Result.IndVarStep = StepCI;
- Result.IndVarBase = LeftValue;
- Result.IndVarIncreasing = IsIncreasing;
- Result.LoopExitAt = RightValue;
- Result.IsSignedPredicate = IsSignedPredicate;
- FailureReason = nullptr;
- return Result;
- }
- /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
- /// signed or unsigned extension of \p S to type \p Ty.
- static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
- bool Signed) {
- return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
- }
- Optional<LoopConstrainer::SubRanges>
- LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
- IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
- auto *RTy = cast<IntegerType>(Range.getType());
- // We only support wide range checks and narrow latches.
- if (!AllowNarrowLatchCondition && RTy != Ty)
- return None;
- if (RTy->getBitWidth() < Ty->getBitWidth())
- return None;
- LoopConstrainer::SubRanges Result;
- // I think we can be more aggressive here and make this nuw / nsw if the
- // addition that feeds into the icmp for the latch's terminating branch is nuw
- // / nsw. In any case, a wrapping 2's complement addition is safe.
- const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
- RTy, SE, IsSignedPredicate);
- const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
- SE, IsSignedPredicate);
- bool Increasing = MainLoopStructure.IndVarIncreasing;
- // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
- // [Smallest, GreatestSeen] is the range of values the induction variable
- // takes.
- const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
- const SCEV *One = SE.getOne(RTy);
- if (Increasing) {
- Smallest = Start;
- Greatest = End;
- // No overflow, because the range [Smallest, GreatestSeen] is not empty.
- GreatestSeen = SE.getMinusSCEV(End, One);
- } else {
- // These two computations may sign-overflow. Here is why that is okay:
- //
- // We know that the induction variable does not sign-overflow on any
- // iteration except the last one, and it starts at `Start` and ends at
- // `End`, decrementing by one every time.
- //
- // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
- // induction variable is decreasing we know that that the smallest value
- // the loop body is actually executed with is `INT_SMIN` == `Smallest`.
- //
- // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
- // that case, `Clamp` will always return `Smallest` and
- // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
- // will be an empty range. Returning an empty range is always safe.
- Smallest = SE.getAddExpr(End, One);
- Greatest = SE.getAddExpr(Start, One);
- GreatestSeen = Start;
- }
- auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
- return IsSignedPredicate
- ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
- : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
- };
- // In some cases we can prove that we don't need a pre or post loop.
- ICmpInst::Predicate PredLE =
- IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
- ICmpInst::Predicate PredLT =
- IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
- bool ProvablyNoPreloop =
- SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
- if (!ProvablyNoPreloop)
- Result.LowLimit = Clamp(Range.getBegin());
- bool ProvablyNoPostLoop =
- SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
- if (!ProvablyNoPostLoop)
- Result.HighLimit = Clamp(Range.getEnd());
- return Result;
- }
- void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
- const char *Tag) const {
- for (BasicBlock *BB : OriginalLoop.getBlocks()) {
- BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
- Result.Blocks.push_back(Clone);
- Result.Map[BB] = Clone;
- }
- auto GetClonedValue = [&Result](Value *V) {
- assert(V && "null values not in domain!");
- auto It = Result.Map.find(V);
- if (It == Result.Map.end())
- return V;
- return static_cast<Value *>(It->second);
- };
- auto *ClonedLatch =
- cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
- ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
- MDNode::get(Ctx, {}));
- Result.Structure = MainLoopStructure.map(GetClonedValue);
- Result.Structure.Tag = Tag;
- for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
- BasicBlock *ClonedBB = Result.Blocks[i];
- BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
- assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
- for (Instruction &I : *ClonedBB)
- RemapInstruction(&I, Result.Map,
- RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
- // Exit blocks will now have one more predecessor and their PHI nodes need
- // to be edited to reflect that. No phi nodes need to be introduced because
- // the loop is in LCSSA.
- for (auto *SBB : successors(OriginalBB)) {
- if (OriginalLoop.contains(SBB))
- continue; // not an exit block
- for (PHINode &PN : SBB->phis()) {
- Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
- PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
- }
- }
- }
- }
- LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
- const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
- BasicBlock *ContinuationBlock) const {
- // We start with a loop with a single latch:
- //
- // +--------------------+
- // | |
- // | preheader |
- // | |
- // +--------+-----------+
- // | ----------------\
- // | / |
- // +--------v----v------+ |
- // | | |
- // | header | |
- // | | |
- // +--------------------+ |
- // |
- // ..... |
- // |
- // +--------------------+ |
- // | | |
- // | latch >----------/
- // | |
- // +-------v------------+
- // |
- // |
- // | +--------------------+
- // | | |
- // +---> original exit |
- // | |
- // +--------------------+
- //
- // We change the control flow to look like
- //
- //
- // +--------------------+
- // | |
- // | preheader >-------------------------+
- // | | |
- // +--------v-----------+ |
- // | /-------------+ |
- // | / | |
- // +--------v--v--------+ | |
- // | | | |
- // | header | | +--------+ |
- // | | | | | |
- // +--------------------+ | | +-----v-----v-----------+
- // | | | |
- // | | | .pseudo.exit |
- // | | | |
- // | | +-----------v-----------+
- // | | |
- // ..... | | |
- // | | +--------v-------------+
- // +--------------------+ | | | |
- // | | | | | ContinuationBlock |
- // | latch >------+ | | |
- // | | | +----------------------+
- // +---------v----------+ |
- // | |
- // | |
- // | +---------------^-----+
- // | | |
- // +-----> .exit.selector |
- // | |
- // +----------v----------+
- // |
- // +--------------------+ |
- // | | |
- // | original exit <----+
- // | |
- // +--------------------+
- RewrittenRangeInfo RRI;
- BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
- RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
- &F, BBInsertLocation);
- RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
- BBInsertLocation);
- BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
- bool Increasing = LS.IndVarIncreasing;
- bool IsSignedPredicate = LS.IsSignedPredicate;
- IRBuilder<> B(PreheaderJump);
- auto *RangeTy = Range.getBegin()->getType();
- auto NoopOrExt = [&](Value *V) {
- if (V->getType() == RangeTy)
- return V;
- return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
- : B.CreateZExt(V, RangeTy, "wide." + V->getName());
- };
- // EnterLoopCond - is it okay to start executing this `LS'?
- Value *EnterLoopCond = nullptr;
- auto Pred =
- Increasing
- ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
- : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
- Value *IndVarStart = NoopOrExt(LS.IndVarStart);
- EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
- B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
- PreheaderJump->eraseFromParent();
- LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
- B.SetInsertPoint(LS.LatchBr);
- Value *IndVarBase = NoopOrExt(LS.IndVarBase);
- Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
- Value *CondForBranch = LS.LatchBrExitIdx == 1
- ? TakeBackedgeLoopCond
- : B.CreateNot(TakeBackedgeLoopCond);
- LS.LatchBr->setCondition(CondForBranch);
- B.SetInsertPoint(RRI.ExitSelector);
- // IterationsLeft - are there any more iterations left, given the original
- // upper bound on the induction variable? If not, we branch to the "real"
- // exit.
- Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
- Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
- B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
- BranchInst *BranchToContinuation =
- BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
- // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
- // each of the PHI nodes in the loop header. This feeds into the initial
- // value of the same PHI nodes if/when we continue execution.
- for (PHINode &PN : LS.Header->phis()) {
- PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
- BranchToContinuation);
- NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
- NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
- RRI.ExitSelector);
- RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
- }
- RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
- BranchToContinuation);
- RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
- RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
- // The latch exit now has a branch from `RRI.ExitSelector' instead of
- // `LS.Latch'. The PHI nodes need to be updated to reflect that.
- LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector);
- return RRI;
- }
- void LoopConstrainer::rewriteIncomingValuesForPHIs(
- LoopStructure &LS, BasicBlock *ContinuationBlock,
- const LoopConstrainer::RewrittenRangeInfo &RRI) const {
- unsigned PHIIndex = 0;
- for (PHINode &PN : LS.Header->phis())
- PN.setIncomingValueForBlock(ContinuationBlock,
- RRI.PHIValuesAtPseudoExit[PHIIndex++]);
- LS.IndVarStart = RRI.IndVarEnd;
- }
- BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
- BasicBlock *OldPreheader,
- const char *Tag) const {
- BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
- BranchInst::Create(LS.Header, Preheader);
- LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
- return Preheader;
- }
- void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
- Loop *ParentLoop = OriginalLoop.getParentLoop();
- if (!ParentLoop)
- return;
- for (BasicBlock *BB : BBs)
- ParentLoop->addBasicBlockToLoop(BB, LI);
- }
- Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
- ValueToValueMapTy &VM,
- bool IsSubloop) {
- Loop &New = *LI.AllocateLoop();
- if (Parent)
- Parent->addChildLoop(&New);
- else
- LI.addTopLevelLoop(&New);
- LPMAddNewLoop(&New, IsSubloop);
- // Add all of the blocks in Original to the new loop.
- for (auto *BB : Original->blocks())
- if (LI.getLoopFor(BB) == Original)
- New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
- // Add all of the subloops to the new loop.
- for (Loop *SubLoop : *Original)
- createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
- return &New;
- }
- bool LoopConstrainer::run() {
- BasicBlock *Preheader = nullptr;
- LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
- Preheader = OriginalLoop.getLoopPreheader();
- assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
- "preconditions!");
- OriginalPreheader = Preheader;
- MainLoopPreheader = Preheader;
- bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
- Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
- if (!MaybeSR.hasValue()) {
- LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
- return false;
- }
- SubRanges SR = MaybeSR.getValue();
- bool Increasing = MainLoopStructure.IndVarIncreasing;
- IntegerType *IVTy =
- cast<IntegerType>(Range.getBegin()->getType());
- SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
- Instruction *InsertPt = OriginalPreheader->getTerminator();
- // It would have been better to make `PreLoop' and `PostLoop'
- // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
- // constructor.
- ClonedLoop PreLoop, PostLoop;
- bool NeedsPreLoop =
- Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
- bool NeedsPostLoop =
- Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
- Value *ExitPreLoopAt = nullptr;
- Value *ExitMainLoopAt = nullptr;
- const SCEVConstant *MinusOneS =
- cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
- if (NeedsPreLoop) {
- const SCEV *ExitPreLoopAtSCEV = nullptr;
- if (Increasing)
- ExitPreLoopAtSCEV = *SR.LowLimit;
- else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
- IsSignedPredicate))
- ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
- else {
- LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
- << "preloop exit limit. HighLimit = "
- << *(*SR.HighLimit) << "\n");
- return false;
- }
- if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
- LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
- << " preloop exit limit " << *ExitPreLoopAtSCEV
- << " at block " << InsertPt->getParent()->getName()
- << "\n");
- return false;
- }
- ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
- ExitPreLoopAt->setName("exit.preloop.at");
- }
- if (NeedsPostLoop) {
- const SCEV *ExitMainLoopAtSCEV = nullptr;
- if (Increasing)
- ExitMainLoopAtSCEV = *SR.HighLimit;
- else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
- IsSignedPredicate))
- ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
- else {
- LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
- << "mainloop exit limit. LowLimit = "
- << *(*SR.LowLimit) << "\n");
- return false;
- }
- if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
- LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
- << " main loop exit limit " << *ExitMainLoopAtSCEV
- << " at block " << InsertPt->getParent()->getName()
- << "\n");
- return false;
- }
- ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
- ExitMainLoopAt->setName("exit.mainloop.at");
- }
- // We clone these ahead of time so that we don't have to deal with changing
- // and temporarily invalid IR as we transform the loops.
- if (NeedsPreLoop)
- cloneLoop(PreLoop, "preloop");
- if (NeedsPostLoop)
- cloneLoop(PostLoop, "postloop");
- RewrittenRangeInfo PreLoopRRI;
- if (NeedsPreLoop) {
- Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
- PreLoop.Structure.Header);
- MainLoopPreheader =
- createPreheader(MainLoopStructure, Preheader, "mainloop");
- PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
- ExitPreLoopAt, MainLoopPreheader);
- rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
- PreLoopRRI);
- }
- BasicBlock *PostLoopPreheader = nullptr;
- RewrittenRangeInfo PostLoopRRI;
- if (NeedsPostLoop) {
- PostLoopPreheader =
- createPreheader(PostLoop.Structure, Preheader, "postloop");
- PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
- ExitMainLoopAt, PostLoopPreheader);
- rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
- PostLoopRRI);
- }
- BasicBlock *NewMainLoopPreheader =
- MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
- BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
- PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
- PostLoopRRI.ExitSelector, NewMainLoopPreheader};
- // Some of the above may be nullptr, filter them out before passing to
- // addToParentLoopIfNeeded.
- auto NewBlocksEnd =
- std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
- addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
- DT.recalculate(F);
- // We need to first add all the pre and post loop blocks into the loop
- // structures (as part of createClonedLoopStructure), and then update the
- // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
- // LI when LoopSimplifyForm is generated.
- Loop *PreL = nullptr, *PostL = nullptr;
- if (!PreLoop.Blocks.empty()) {
- PreL = createClonedLoopStructure(&OriginalLoop,
- OriginalLoop.getParentLoop(), PreLoop.Map,
- /* IsSubLoop */ false);
- }
- if (!PostLoop.Blocks.empty()) {
- PostL =
- createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
- PostLoop.Map, /* IsSubLoop */ false);
- }
- // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
- auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
- formLCSSARecursively(*L, DT, &LI, &SE);
- simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true);
- // Pre/post loops are slow paths, we do not need to perform any loop
- // optimizations on them.
- if (!IsOriginalLoop)
- DisableAllLoopOptsOnLoop(*L);
- };
- if (PreL)
- CanonicalizeLoop(PreL, false);
- if (PostL)
- CanonicalizeLoop(PostL, false);
- CanonicalizeLoop(&OriginalLoop, true);
- return true;
- }
- /// Computes and returns a range of values for the induction variable (IndVar)
- /// in which the range check can be safely elided. If it cannot compute such a
- /// range, returns None.
- Optional<InductiveRangeCheck::Range>
- InductiveRangeCheck::computeSafeIterationSpace(
- ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
- bool IsLatchSigned) const {
- // We can deal when types of latch check and range checks don't match in case
- // if latch check is more narrow.
- auto *IVType = cast<IntegerType>(IndVar->getType());
- auto *RCType = cast<IntegerType>(getBegin()->getType());
- if (IVType->getBitWidth() > RCType->getBitWidth())
- return None;
- // IndVar is of the form "A + B * I" (where "I" is the canonical induction
- // variable, that may or may not exist as a real llvm::Value in the loop) and
- // this inductive range check is a range check on the "C + D * I" ("C" is
- // getBegin() and "D" is getStep()). We rewrite the value being range
- // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
- //
- // The actual inequalities we solve are of the form
- //
- // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
- //
- // Here L stands for upper limit of the safe iteration space.
- // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
- // overflows when calculating (0 - M) and (L - M) we, depending on type of
- // IV's iteration space, limit the calculations by borders of the iteration
- // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
- // If we figured out that "anything greater than (-M) is safe", we strengthen
- // this to "everything greater than 0 is safe", assuming that values between
- // -M and 0 just do not exist in unsigned iteration space, and we don't want
- // to deal with overflown values.
- if (!IndVar->isAffine())
- return None;
- const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
- const SCEVConstant *B = dyn_cast<SCEVConstant>(
- NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
- if (!B)
- return None;
- assert(!B->isZero() && "Recurrence with zero step?");
- const SCEV *C = getBegin();
- const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
- if (D != B)
- return None;
- assert(!D->getValue()->isZero() && "Recurrence with zero step?");
- unsigned BitWidth = RCType->getBitWidth();
- const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
- // Subtract Y from X so that it does not go through border of the IV
- // iteration space. Mathematically, it is equivalent to:
- //
- // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1]
- //
- // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
- // any width of bit grid). But after we take min/max, the result is
- // guaranteed to be within [INT_MIN, INT_MAX].
- //
- // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
- // values, depending on type of latch condition that defines IV iteration
- // space.
- auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
- // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
- // This is required to ensure that SINT_MAX - X does not overflow signed and
- // that X - Y does not overflow unsigned if Y is negative. Can we lift this
- // restriction and make it work for negative X either?
- if (IsLatchSigned) {
- // X is a number from signed range, Y is interpreted as signed.
- // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
- // thing we should care about is that we didn't cross SINT_MAX.
- // So, if Y is positive, we subtract Y safely.
- // Rule 1: Y > 0 ---> Y.
- // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
- // Rule 2: Y >=s (X - SINT_MAX) ---> Y.
- // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
- // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
- // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
- const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
- return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
- SCEV::FlagNSW);
- } else
- // X is a number from unsigned range, Y is interpreted as signed.
- // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
- // thing we should care about is that we didn't cross zero.
- // So, if Y is negative, we subtract Y safely.
- // Rule 1: Y <s 0 ---> Y.
- // If 0 <= Y <= X, we subtract Y safely.
- // Rule 2: Y <=s X ---> Y.
- // If 0 <= X < Y, we should stop at 0 and can only subtract X.
- // Rule 3: Y >s X ---> X.
- // It gives us smin(X, Y) to subtract in all cases.
- return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
- };
- const SCEV *M = SE.getMinusSCEV(C, A);
- const SCEV *Zero = SE.getZero(M->getType());
- // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
- auto SCEVCheckNonNegative = [&](const SCEV *X) {
- const Loop *L = IndVar->getLoop();
- const SCEV *One = SE.getOne(X->getType());
- // Can we trivially prove that X is a non-negative or negative value?
- if (isKnownNonNegativeInLoop(X, L, SE))
- return One;
- else if (isKnownNegativeInLoop(X, L, SE))
- return Zero;
- // If not, we will have to figure it out during the execution.
- // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
- const SCEV *NegOne = SE.getNegativeSCEV(One);
- return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
- };
- // FIXME: Current implementation of ClampedSubtract implicitly assumes that
- // X is non-negative (in sense of a signed value). We need to re-implement
- // this function in a way that it will correctly handle negative X as well.
- // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
- // end up with a negative X and produce wrong results. So currently we ensure
- // that if getEnd() is negative then both ends of the safe range are zero.
- // Note that this may pessimize elimination of unsigned range checks against
- // negative values.
- const SCEV *REnd = getEnd();
- const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
- const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
- const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
- return InductiveRangeCheck::Range(Begin, End);
- }
- static Optional<InductiveRangeCheck::Range>
- IntersectSignedRange(ScalarEvolution &SE,
- const Optional<InductiveRangeCheck::Range> &R1,
- const InductiveRangeCheck::Range &R2) {
- if (R2.isEmpty(SE, /* IsSigned */ true))
- return None;
- if (!R1.hasValue())
- return R2;
- auto &R1Value = R1.getValue();
- // We never return empty ranges from this function, and R1 is supposed to be
- // a result of intersection. Thus, R1 is never empty.
- assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
- "We should never have empty R1!");
- // TODO: we could widen the smaller range and have this work; but for now we
- // bail out to keep things simple.
- if (R1Value.getType() != R2.getType())
- return None;
- const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
- const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
- // If the resulting range is empty, just return None.
- auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
- if (Ret.isEmpty(SE, /* IsSigned */ true))
- return None;
- return Ret;
- }
- static Optional<InductiveRangeCheck::Range>
- IntersectUnsignedRange(ScalarEvolution &SE,
- const Optional<InductiveRangeCheck::Range> &R1,
- const InductiveRangeCheck::Range &R2) {
- if (R2.isEmpty(SE, /* IsSigned */ false))
- return None;
- if (!R1.hasValue())
- return R2;
- auto &R1Value = R1.getValue();
- // We never return empty ranges from this function, and R1 is supposed to be
- // a result of intersection. Thus, R1 is never empty.
- assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
- "We should never have empty R1!");
- // TODO: we could widen the smaller range and have this work; but for now we
- // bail out to keep things simple.
- if (R1Value.getType() != R2.getType())
- return None;
- const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
- const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
- // If the resulting range is empty, just return None.
- auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
- if (Ret.isEmpty(SE, /* IsSigned */ false))
- return None;
- return Ret;
- }
- PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
- auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
- LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
- // Get BFI analysis result on demand. Please note that modification of
- // CFG invalidates this analysis and we should handle it.
- auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & {
- return AM.getResult<BlockFrequencyAnalysis>(F);
- };
- InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI });
- bool Changed = false;
- {
- bool CFGChanged = false;
- for (const auto &L : LI) {
- CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
- /*PreserveLCSSA=*/false);
- Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
- }
- Changed |= CFGChanged;
- if (CFGChanged && !SkipProfitabilityChecks) {
- PreservedAnalyses PA = PreservedAnalyses::all();
- PA.abandon<BlockFrequencyAnalysis>();
- AM.invalidate(F, PA);
- }
- }
- SmallPriorityWorklist<Loop *, 4> Worklist;
- appendLoopsToWorklist(LI, Worklist);
- auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
- if (!IsSubloop)
- appendLoopsToWorklist(*NL, Worklist);
- };
- while (!Worklist.empty()) {
- Loop *L = Worklist.pop_back_val();
- if (IRCE.run(L, LPMAddNewLoop)) {
- Changed = true;
- if (!SkipProfitabilityChecks) {
- PreservedAnalyses PA = PreservedAnalyses::all();
- PA.abandon<BlockFrequencyAnalysis>();
- AM.invalidate(F, PA);
- }
- }
- }
- if (!Changed)
- return PreservedAnalyses::all();
- return getLoopPassPreservedAnalyses();
- }
- bool IRCELegacyPass::runOnFunction(Function &F) {
- if (skipFunction(F))
- return false;
- ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- BranchProbabilityInfo &BPI =
- getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
- bool Changed = false;
- for (const auto &L : LI) {
- Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
- /*PreserveLCSSA=*/false);
- Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
- }
- SmallPriorityWorklist<Loop *, 4> Worklist;
- appendLoopsToWorklist(LI, Worklist);
- auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) {
- if (!IsSubloop)
- appendLoopsToWorklist(*NL, Worklist);
- };
- while (!Worklist.empty()) {
- Loop *L = Worklist.pop_back_val();
- Changed |= IRCE.run(L, LPMAddNewLoop);
- }
- return Changed;
- }
- bool
- InductiveRangeCheckElimination::isProfitableToTransform(const Loop &L,
- LoopStructure &LS) {
- if (SkipProfitabilityChecks)
- return true;
- if (GetBFI.hasValue()) {
- BlockFrequencyInfo &BFI = (*GetBFI)();
- uint64_t hFreq = BFI.getBlockFreq(LS.Header).getFrequency();
- uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency();
- if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) {
- LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
- << "the estimated number of iterations basing on "
- "frequency info is " << (hFreq / phFreq) << "\n";);
- return false;
- }
- return true;
- }
- if (!BPI)
- return true;
- BranchProbability ExitProbability =
- BPI->getEdgeProbability(LS.Latch, LS.LatchBrExitIdx);
- if (ExitProbability > BranchProbability(1, MinRuntimeIterations)) {
- LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
- << "the exit probability is too big " << ExitProbability
- << "\n";);
- return false;
- }
- return true;
- }
- bool InductiveRangeCheckElimination::run(
- Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
- if (L->getBlocks().size() >= LoopSizeCutoff) {
- LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
- return false;
- }
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) {
- LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
- return false;
- }
- LLVMContext &Context = Preheader->getContext();
- SmallVector<InductiveRangeCheck, 16> RangeChecks;
- for (auto BBI : L->getBlocks())
- if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
- InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
- RangeChecks);
- if (RangeChecks.empty())
- return false;
- auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
- OS << "irce: looking at loop "; L->print(OS);
- OS << "irce: loop has " << RangeChecks.size()
- << " inductive range checks: \n";
- for (InductiveRangeCheck &IRC : RangeChecks)
- IRC.print(OS);
- };
- LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
- if (PrintRangeChecks)
- PrintRecognizedRangeChecks(errs());
- const char *FailureReason = nullptr;
- Optional<LoopStructure> MaybeLoopStructure =
- LoopStructure::parseLoopStructure(SE, *L, FailureReason);
- if (!MaybeLoopStructure.hasValue()) {
- LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
- << FailureReason << "\n";);
- return false;
- }
- LoopStructure LS = MaybeLoopStructure.getValue();
- if (!isProfitableToTransform(*L, LS))
- return false;
- const SCEVAddRecExpr *IndVar =
- cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
- Optional<InductiveRangeCheck::Range> SafeIterRange;
- Instruction *ExprInsertPt = Preheader->getTerminator();
- SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
- // Basing on the type of latch predicate, we interpret the IV iteration range
- // as signed or unsigned range. We use different min/max functions (signed or
- // unsigned) when intersecting this range with safe iteration ranges implied
- // by range checks.
- auto IntersectRange =
- LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
- IRBuilder<> B(ExprInsertPt);
- for (InductiveRangeCheck &IRC : RangeChecks) {
- auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
- LS.IsSignedPredicate);
- if (Result.hasValue()) {
- auto MaybeSafeIterRange =
- IntersectRange(SE, SafeIterRange, Result.getValue());
- if (MaybeSafeIterRange.hasValue()) {
- assert(
- !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
- "We should never return empty ranges!");
- RangeChecksToEliminate.push_back(IRC);
- SafeIterRange = MaybeSafeIterRange.getValue();
- }
- }
- }
- if (!SafeIterRange.hasValue())
- return false;
- LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
- SafeIterRange.getValue());
- bool Changed = LC.run();
- if (Changed) {
- auto PrintConstrainedLoopInfo = [L]() {
- dbgs() << "irce: in function ";
- dbgs() << L->getHeader()->getParent()->getName() << ": ";
- dbgs() << "constrained ";
- L->print(dbgs());
- };
- LLVM_DEBUG(PrintConstrainedLoopInfo());
- if (PrintChangedLoops)
- PrintConstrainedLoopInfo();
- // Optimize away the now-redundant range checks.
- for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
- ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
- ? ConstantInt::getTrue(Context)
- : ConstantInt::getFalse(Context);
- IRC.getCheckUse()->set(FoldedRangeCheck);
- }
- }
- return Changed;
- }
- Pass *llvm::createInductiveRangeCheckEliminationPass() {
- return new IRCELegacyPass();
- }
|