1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762 |
- //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass performs a simple dominator tree walk that eliminates trivially
- // redundant instructions.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/EarlyCSE.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/ScopedHashTable.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/GuardUtils.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/AtomicOrdering.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/DebugCounter.h"
- #include "llvm/Support/RecyclingAllocator.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
- #include "llvm/Transforms/Utils/GuardUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <cassert>
- #include <deque>
- #include <memory>
- #include <utility>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "early-cse"
- STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
- STATISTIC(NumCSE, "Number of instructions CSE'd");
- STATISTIC(NumCSECVP, "Number of compare instructions CVP'd");
- STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
- STATISTIC(NumCSECall, "Number of call instructions CSE'd");
- STATISTIC(NumDSE, "Number of trivial dead stores removed");
- DEBUG_COUNTER(CSECounter, "early-cse",
- "Controls which instructions are removed");
- static cl::opt<unsigned> EarlyCSEMssaOptCap(
- "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
- cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
- "for faster compile. Caps the MemorySSA clobbering calls."));
- static cl::opt<bool> EarlyCSEDebugHash(
- "earlycse-debug-hash", cl::init(false), cl::Hidden,
- cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
- "function is well-behaved w.r.t. its isEqual predicate"));
- //===----------------------------------------------------------------------===//
- // SimpleValue
- //===----------------------------------------------------------------------===//
- namespace {
- /// Struct representing the available values in the scoped hash table.
- struct SimpleValue {
- Instruction *Inst;
- SimpleValue(Instruction *I) : Inst(I) {
- assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
- }
- bool isSentinel() const {
- return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
- Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
- }
- static bool canHandle(Instruction *Inst) {
- // This can only handle non-void readnone functions.
- // Also handled are constrained intrinsic that look like the types
- // of instruction handled below (UnaryOperator, etc.).
- if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
- if (Function *F = CI->getCalledFunction()) {
- switch ((Intrinsic::ID)F->getIntrinsicID()) {
- case Intrinsic::experimental_constrained_fadd:
- case Intrinsic::experimental_constrained_fsub:
- case Intrinsic::experimental_constrained_fmul:
- case Intrinsic::experimental_constrained_fdiv:
- case Intrinsic::experimental_constrained_frem:
- case Intrinsic::experimental_constrained_fptosi:
- case Intrinsic::experimental_constrained_sitofp:
- case Intrinsic::experimental_constrained_fptoui:
- case Intrinsic::experimental_constrained_uitofp:
- case Intrinsic::experimental_constrained_fcmp:
- case Intrinsic::experimental_constrained_fcmps: {
- auto *CFP = cast<ConstrainedFPIntrinsic>(CI);
- return CFP->isDefaultFPEnvironment();
- }
- }
- }
- return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
- }
- return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) ||
- isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
- isa<CmpInst>(Inst) || isa<SelectInst>(Inst) ||
- isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
- isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) ||
- isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst);
- }
- };
- } // end anonymous namespace
- namespace llvm {
- template <> struct DenseMapInfo<SimpleValue> {
- static inline SimpleValue getEmptyKey() {
- return DenseMapInfo<Instruction *>::getEmptyKey();
- }
- static inline SimpleValue getTombstoneKey() {
- return DenseMapInfo<Instruction *>::getTombstoneKey();
- }
- static unsigned getHashValue(SimpleValue Val);
- static bool isEqual(SimpleValue LHS, SimpleValue RHS);
- };
- } // end namespace llvm
- /// Match a 'select' including an optional 'not's of the condition.
- static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
- Value *&B,
- SelectPatternFlavor &Flavor) {
- // Return false if V is not even a select.
- if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
- return false;
- // Look through a 'not' of the condition operand by swapping A/B.
- Value *CondNot;
- if (match(Cond, m_Not(m_Value(CondNot)))) {
- Cond = CondNot;
- std::swap(A, B);
- }
- // Match canonical forms of min/max. We are not using ValueTracking's
- // more powerful matchSelectPattern() because it may rely on instruction flags
- // such as "nsw". That would be incompatible with the current hashing
- // mechanism that may remove flags to increase the likelihood of CSE.
- Flavor = SPF_UNKNOWN;
- CmpInst::Predicate Pred;
- if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) {
- // Check for commuted variants of min/max by swapping predicate.
- // If we do not match the standard or commuted patterns, this is not a
- // recognized form of min/max, but it is still a select, so return true.
- if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A))))
- return true;
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
- switch (Pred) {
- case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break;
- case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break;
- case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break;
- case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break;
- // Non-strict inequalities.
- case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break;
- case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break;
- case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break;
- case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break;
- default: break;
- }
- return true;
- }
- static unsigned getHashValueImpl(SimpleValue Val) {
- Instruction *Inst = Val.Inst;
- // Hash in all of the operands as pointers.
- if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
- Value *LHS = BinOp->getOperand(0);
- Value *RHS = BinOp->getOperand(1);
- if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
- std::swap(LHS, RHS);
- return hash_combine(BinOp->getOpcode(), LHS, RHS);
- }
- if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
- // Compares can be commuted by swapping the comparands and
- // updating the predicate. Choose the form that has the
- // comparands in sorted order, or in the case of a tie, the
- // one with the lower predicate.
- Value *LHS = CI->getOperand(0);
- Value *RHS = CI->getOperand(1);
- CmpInst::Predicate Pred = CI->getPredicate();
- CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
- if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
- std::swap(LHS, RHS);
- Pred = SwappedPred;
- }
- return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
- }
- // Hash general selects to allow matching commuted true/false operands.
- SelectPatternFlavor SPF;
- Value *Cond, *A, *B;
- if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
- // Hash min/max (cmp + select) to allow for commuted operands.
- // Min/max may also have non-canonical compare predicate (eg, the compare for
- // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
- // compare.
- // TODO: We should also detect FP min/max.
- if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
- SPF == SPF_UMIN || SPF == SPF_UMAX) {
- if (A > B)
- std::swap(A, B);
- return hash_combine(Inst->getOpcode(), SPF, A, B);
- }
- // Hash general selects to allow matching commuted true/false operands.
- // If we do not have a compare as the condition, just hash in the condition.
- CmpInst::Predicate Pred;
- Value *X, *Y;
- if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
- return hash_combine(Inst->getOpcode(), Cond, A, B);
- // Similar to cmp normalization (above) - canonicalize the predicate value:
- // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A
- if (CmpInst::getInversePredicate(Pred) < Pred) {
- Pred = CmpInst::getInversePredicate(Pred);
- std::swap(A, B);
- }
- return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
- }
- if (CastInst *CI = dyn_cast<CastInst>(Inst))
- return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
- if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst))
- return hash_combine(FI->getOpcode(), FI->getOperand(0));
- if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
- return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
- hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
- if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
- return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
- IVI->getOperand(1),
- hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
- assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) ||
- isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
- isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) ||
- isa<FreezeInst>(Inst)) &&
- "Invalid/unknown instruction");
- // Handle intrinsics with commutative operands.
- // TODO: Extend this to handle intrinsics with >2 operands where the 1st
- // 2 operands are commutative.
- auto *II = dyn_cast<IntrinsicInst>(Inst);
- if (II && II->isCommutative() && II->arg_size() == 2) {
- Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
- if (LHS > RHS)
- std::swap(LHS, RHS);
- return hash_combine(II->getOpcode(), LHS, RHS);
- }
- // gc.relocate is 'special' call: its second and third operands are
- // not real values, but indices into statepoint's argument list.
- // Get values they point to.
- if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst))
- return hash_combine(GCR->getOpcode(), GCR->getOperand(0),
- GCR->getBasePtr(), GCR->getDerivedPtr());
- // Mix in the opcode.
- return hash_combine(
- Inst->getOpcode(),
- hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
- }
- unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
- #ifndef NDEBUG
- // If -earlycse-debug-hash was specified, return a constant -- this
- // will force all hashing to collide, so we'll exhaustively search
- // the table for a match, and the assertion in isEqual will fire if
- // there's a bug causing equal keys to hash differently.
- if (EarlyCSEDebugHash)
- return 0;
- #endif
- return getHashValueImpl(Val);
- }
- static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
- Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
- if (LHS.isSentinel() || RHS.isSentinel())
- return LHSI == RHSI;
- if (LHSI->getOpcode() != RHSI->getOpcode())
- return false;
- if (LHSI->isIdenticalToWhenDefined(RHSI))
- return true;
- // If we're not strictly identical, we still might be a commutable instruction
- if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
- if (!LHSBinOp->isCommutative())
- return false;
- assert(isa<BinaryOperator>(RHSI) &&
- "same opcode, but different instruction type?");
- BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
- // Commuted equality
- return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
- LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
- }
- if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
- assert(isa<CmpInst>(RHSI) &&
- "same opcode, but different instruction type?");
- CmpInst *RHSCmp = cast<CmpInst>(RHSI);
- // Commuted equality
- return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
- LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
- LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
- }
- // TODO: Extend this for >2 args by matching the trailing N-2 args.
- auto *LII = dyn_cast<IntrinsicInst>(LHSI);
- auto *RII = dyn_cast<IntrinsicInst>(RHSI);
- if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() &&
- LII->isCommutative() && LII->arg_size() == 2) {
- return LII->getArgOperand(0) == RII->getArgOperand(1) &&
- LII->getArgOperand(1) == RII->getArgOperand(0);
- }
- // See comment above in `getHashValue()`.
- if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI))
- if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI))
- return GCR1->getOperand(0) == GCR2->getOperand(0) &&
- GCR1->getBasePtr() == GCR2->getBasePtr() &&
- GCR1->getDerivedPtr() == GCR2->getDerivedPtr();
- // Min/max can occur with commuted operands, non-canonical predicates,
- // and/or non-canonical operands.
- // Selects can be non-trivially equivalent via inverted conditions and swaps.
- SelectPatternFlavor LSPF, RSPF;
- Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
- if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
- matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
- if (LSPF == RSPF) {
- // TODO: We should also detect FP min/max.
- if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
- LSPF == SPF_UMIN || LSPF == SPF_UMAX)
- return ((LHSA == RHSA && LHSB == RHSB) ||
- (LHSA == RHSB && LHSB == RHSA));
- // select Cond, A, B <--> select not(Cond), B, A
- if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
- return true;
- }
- // If the true/false operands are swapped and the conditions are compares
- // with inverted predicates, the selects are equal:
- // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A
- //
- // This also handles patterns with a double-negation in the sense of not +
- // inverse, because we looked through a 'not' in the matching function and
- // swapped A/B:
- // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A
- //
- // This intentionally does NOT handle patterns with a double-negation in
- // the sense of not + not, because doing so could result in values
- // comparing
- // as equal that hash differently in the min/max cases like:
- // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y
- // ^ hashes as min ^ would not hash as min
- // In the context of the EarlyCSE pass, however, such cases never reach
- // this code, as we simplify the double-negation before hashing the second
- // select (and so still succeed at CSEing them).
- if (LHSA == RHSB && LHSB == RHSA) {
- CmpInst::Predicate PredL, PredR;
- Value *X, *Y;
- if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
- match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
- CmpInst::getInversePredicate(PredL) == PredR)
- return true;
- }
- }
- return false;
- }
- bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
- // These comparisons are nontrivial, so assert that equality implies
- // hash equality (DenseMap demands this as an invariant).
- bool Result = isEqualImpl(LHS, RHS);
- assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
- getHashValueImpl(LHS) == getHashValueImpl(RHS));
- return Result;
- }
- //===----------------------------------------------------------------------===//
- // CallValue
- //===----------------------------------------------------------------------===//
- namespace {
- /// Struct representing the available call values in the scoped hash
- /// table.
- struct CallValue {
- Instruction *Inst;
- CallValue(Instruction *I) : Inst(I) {
- assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
- }
- bool isSentinel() const {
- return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
- Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
- }
- static bool canHandle(Instruction *Inst) {
- // Don't value number anything that returns void.
- if (Inst->getType()->isVoidTy())
- return false;
- CallInst *CI = dyn_cast<CallInst>(Inst);
- if (!CI || !CI->onlyReadsMemory())
- return false;
- return true;
- }
- };
- } // end anonymous namespace
- namespace llvm {
- template <> struct DenseMapInfo<CallValue> {
- static inline CallValue getEmptyKey() {
- return DenseMapInfo<Instruction *>::getEmptyKey();
- }
- static inline CallValue getTombstoneKey() {
- return DenseMapInfo<Instruction *>::getTombstoneKey();
- }
- static unsigned getHashValue(CallValue Val);
- static bool isEqual(CallValue LHS, CallValue RHS);
- };
- } // end namespace llvm
- unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
- Instruction *Inst = Val.Inst;
- // Hash all of the operands as pointers and mix in the opcode.
- return hash_combine(
- Inst->getOpcode(),
- hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
- }
- bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
- Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
- if (LHS.isSentinel() || RHS.isSentinel())
- return LHSI == RHSI;
- return LHSI->isIdenticalTo(RHSI);
- }
- //===----------------------------------------------------------------------===//
- // EarlyCSE implementation
- //===----------------------------------------------------------------------===//
- namespace {
- /// A simple and fast domtree-based CSE pass.
- ///
- /// This pass does a simple depth-first walk over the dominator tree,
- /// eliminating trivially redundant instructions and using instsimplify to
- /// canonicalize things as it goes. It is intended to be fast and catch obvious
- /// cases so that instcombine and other passes are more effective. It is
- /// expected that a later pass of GVN will catch the interesting/hard cases.
- class EarlyCSE {
- public:
- const TargetLibraryInfo &TLI;
- const TargetTransformInfo &TTI;
- DominatorTree &DT;
- AssumptionCache &AC;
- const SimplifyQuery SQ;
- MemorySSA *MSSA;
- std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
- using AllocatorTy =
- RecyclingAllocator<BumpPtrAllocator,
- ScopedHashTableVal<SimpleValue, Value *>>;
- using ScopedHTType =
- ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
- AllocatorTy>;
- /// A scoped hash table of the current values of all of our simple
- /// scalar expressions.
- ///
- /// As we walk down the domtree, we look to see if instructions are in this:
- /// if so, we replace them with what we find, otherwise we insert them so
- /// that dominated values can succeed in their lookup.
- ScopedHTType AvailableValues;
- /// A scoped hash table of the current values of previously encountered
- /// memory locations.
- ///
- /// This allows us to get efficient access to dominating loads or stores when
- /// we have a fully redundant load. In addition to the most recent load, we
- /// keep track of a generation count of the read, which is compared against
- /// the current generation count. The current generation count is incremented
- /// after every possibly writing memory operation, which ensures that we only
- /// CSE loads with other loads that have no intervening store. Ordering
- /// events (such as fences or atomic instructions) increment the generation
- /// count as well; essentially, we model these as writes to all possible
- /// locations. Note that atomic and/or volatile loads and stores can be
- /// present the table; it is the responsibility of the consumer to inspect
- /// the atomicity/volatility if needed.
- struct LoadValue {
- Instruction *DefInst = nullptr;
- unsigned Generation = 0;
- int MatchingId = -1;
- bool IsAtomic = false;
- LoadValue() = default;
- LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
- bool IsAtomic)
- : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
- IsAtomic(IsAtomic) {}
- };
- using LoadMapAllocator =
- RecyclingAllocator<BumpPtrAllocator,
- ScopedHashTableVal<Value *, LoadValue>>;
- using LoadHTType =
- ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
- LoadMapAllocator>;
- LoadHTType AvailableLoads;
- // A scoped hash table mapping memory locations (represented as typed
- // addresses) to generation numbers at which that memory location became
- // (henceforth indefinitely) invariant.
- using InvariantMapAllocator =
- RecyclingAllocator<BumpPtrAllocator,
- ScopedHashTableVal<MemoryLocation, unsigned>>;
- using InvariantHTType =
- ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
- InvariantMapAllocator>;
- InvariantHTType AvailableInvariants;
- /// A scoped hash table of the current values of read-only call
- /// values.
- ///
- /// It uses the same generation count as loads.
- using CallHTType =
- ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
- CallHTType AvailableCalls;
- /// This is the current generation of the memory value.
- unsigned CurrentGeneration = 0;
- /// Set up the EarlyCSE runner for a particular function.
- EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
- const TargetTransformInfo &TTI, DominatorTree &DT,
- AssumptionCache &AC, MemorySSA *MSSA)
- : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
- MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
- bool run();
- private:
- unsigned ClobberCounter = 0;
- // Almost a POD, but needs to call the constructors for the scoped hash
- // tables so that a new scope gets pushed on. These are RAII so that the
- // scope gets popped when the NodeScope is destroyed.
- class NodeScope {
- public:
- NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
- InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
- : Scope(AvailableValues), LoadScope(AvailableLoads),
- InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
- NodeScope(const NodeScope &) = delete;
- NodeScope &operator=(const NodeScope &) = delete;
- private:
- ScopedHTType::ScopeTy Scope;
- LoadHTType::ScopeTy LoadScope;
- InvariantHTType::ScopeTy InvariantScope;
- CallHTType::ScopeTy CallScope;
- };
- // Contains all the needed information to create a stack for doing a depth
- // first traversal of the tree. This includes scopes for values, loads, and
- // calls as well as the generation. There is a child iterator so that the
- // children do not need to be store separately.
- class StackNode {
- public:
- StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
- InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
- unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child,
- DomTreeNode::const_iterator end)
- : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
- EndIter(end),
- Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
- AvailableCalls)
- {}
- StackNode(const StackNode &) = delete;
- StackNode &operator=(const StackNode &) = delete;
- // Accessors.
- unsigned currentGeneration() const { return CurrentGeneration; }
- unsigned childGeneration() const { return ChildGeneration; }
- void childGeneration(unsigned generation) { ChildGeneration = generation; }
- DomTreeNode *node() { return Node; }
- DomTreeNode::const_iterator childIter() const { return ChildIter; }
- DomTreeNode *nextChild() {
- DomTreeNode *child = *ChildIter;
- ++ChildIter;
- return child;
- }
- DomTreeNode::const_iterator end() const { return EndIter; }
- bool isProcessed() const { return Processed; }
- void process() { Processed = true; }
- private:
- unsigned CurrentGeneration;
- unsigned ChildGeneration;
- DomTreeNode *Node;
- DomTreeNode::const_iterator ChildIter;
- DomTreeNode::const_iterator EndIter;
- NodeScope Scopes;
- bool Processed = false;
- };
- /// Wrapper class to handle memory instructions, including loads,
- /// stores and intrinsic loads and stores defined by the target.
- class ParseMemoryInst {
- public:
- ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
- : Inst(Inst) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- IntrID = II->getIntrinsicID();
- if (TTI.getTgtMemIntrinsic(II, Info))
- return;
- if (isHandledNonTargetIntrinsic(IntrID)) {
- switch (IntrID) {
- case Intrinsic::masked_load:
- Info.PtrVal = Inst->getOperand(0);
- Info.MatchingId = Intrinsic::masked_load;
- Info.ReadMem = true;
- Info.WriteMem = false;
- Info.IsVolatile = false;
- break;
- case Intrinsic::masked_store:
- Info.PtrVal = Inst->getOperand(1);
- // Use the ID of masked load as the "matching id". This will
- // prevent matching non-masked loads/stores with masked ones
- // (which could be done), but at the moment, the code here
- // does not support matching intrinsics with non-intrinsics,
- // so keep the MatchingIds specific to masked instructions
- // for now (TODO).
- Info.MatchingId = Intrinsic::masked_load;
- Info.ReadMem = false;
- Info.WriteMem = true;
- Info.IsVolatile = false;
- break;
- }
- }
- }
- }
- Instruction *get() { return Inst; }
- const Instruction *get() const { return Inst; }
- bool isLoad() const {
- if (IntrID != 0)
- return Info.ReadMem;
- return isa<LoadInst>(Inst);
- }
- bool isStore() const {
- if (IntrID != 0)
- return Info.WriteMem;
- return isa<StoreInst>(Inst);
- }
- bool isAtomic() const {
- if (IntrID != 0)
- return Info.Ordering != AtomicOrdering::NotAtomic;
- return Inst->isAtomic();
- }
- bool isUnordered() const {
- if (IntrID != 0)
- return Info.isUnordered();
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- return LI->isUnordered();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- return SI->isUnordered();
- }
- // Conservative answer
- return !Inst->isAtomic();
- }
- bool isVolatile() const {
- if (IntrID != 0)
- return Info.IsVolatile;
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- return LI->isVolatile();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- return SI->isVolatile();
- }
- // Conservative answer
- return true;
- }
- bool isInvariantLoad() const {
- if (auto *LI = dyn_cast<LoadInst>(Inst))
- return LI->hasMetadata(LLVMContext::MD_invariant_load);
- return false;
- }
- bool isValid() const { return getPointerOperand() != nullptr; }
- // For regular (non-intrinsic) loads/stores, this is set to -1. For
- // intrinsic loads/stores, the id is retrieved from the corresponding
- // field in the MemIntrinsicInfo structure. That field contains
- // non-negative values only.
- int getMatchingId() const {
- if (IntrID != 0)
- return Info.MatchingId;
- return -1;
- }
- Value *getPointerOperand() const {
- if (IntrID != 0)
- return Info.PtrVal;
- return getLoadStorePointerOperand(Inst);
- }
- bool mayReadFromMemory() const {
- if (IntrID != 0)
- return Info.ReadMem;
- return Inst->mayReadFromMemory();
- }
- bool mayWriteToMemory() const {
- if (IntrID != 0)
- return Info.WriteMem;
- return Inst->mayWriteToMemory();
- }
- private:
- Intrinsic::ID IntrID = 0;
- MemIntrinsicInfo Info;
- Instruction *Inst;
- };
- // This function is to prevent accidentally passing a non-target
- // intrinsic ID to TargetTransformInfo.
- static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) {
- switch (ID) {
- case Intrinsic::masked_load:
- case Intrinsic::masked_store:
- return true;
- }
- return false;
- }
- static bool isHandledNonTargetIntrinsic(const Value *V) {
- if (auto *II = dyn_cast<IntrinsicInst>(V))
- return isHandledNonTargetIntrinsic(II->getIntrinsicID());
- return false;
- }
- bool processNode(DomTreeNode *Node);
- bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
- const BasicBlock *BB, const BasicBlock *Pred);
- Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
- unsigned CurrentGeneration);
- bool overridingStores(const ParseMemoryInst &Earlier,
- const ParseMemoryInst &Later);
- Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
- // TODO: We could insert relevant casts on type mismatch here.
- if (auto *LI = dyn_cast<LoadInst>(Inst))
- return LI->getType() == ExpectedType ? LI : nullptr;
- else if (auto *SI = dyn_cast<StoreInst>(Inst)) {
- Value *V = SI->getValueOperand();
- return V->getType() == ExpectedType ? V : nullptr;
- }
- assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
- auto *II = cast<IntrinsicInst>(Inst);
- if (isHandledNonTargetIntrinsic(II->getIntrinsicID()))
- return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType);
- return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType);
- }
- Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II,
- Type *ExpectedType) const {
- switch (II->getIntrinsicID()) {
- case Intrinsic::masked_load:
- return II;
- case Intrinsic::masked_store:
- return II->getOperand(0);
- }
- return nullptr;
- }
- /// Return true if the instruction is known to only operate on memory
- /// provably invariant in the given "generation".
- bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
- bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
- Instruction *EarlierInst, Instruction *LaterInst);
- bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier,
- const IntrinsicInst *Later) {
- auto IsSubmask = [](const Value *Mask0, const Value *Mask1) {
- // Is Mask0 a submask of Mask1?
- if (Mask0 == Mask1)
- return true;
- if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1))
- return false;
- auto *Vec0 = dyn_cast<ConstantVector>(Mask0);
- auto *Vec1 = dyn_cast<ConstantVector>(Mask1);
- if (!Vec0 || !Vec1)
- return false;
- assert(Vec0->getType() == Vec1->getType() &&
- "Masks should have the same type");
- for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) {
- Constant *Elem0 = Vec0->getOperand(i);
- Constant *Elem1 = Vec1->getOperand(i);
- auto *Int0 = dyn_cast<ConstantInt>(Elem0);
- if (Int0 && Int0->isZero())
- continue;
- auto *Int1 = dyn_cast<ConstantInt>(Elem1);
- if (Int1 && !Int1->isZero())
- continue;
- if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1))
- return false;
- if (Elem0 == Elem1)
- continue;
- return false;
- }
- return true;
- };
- auto PtrOp = [](const IntrinsicInst *II) {
- if (II->getIntrinsicID() == Intrinsic::masked_load)
- return II->getOperand(0);
- if (II->getIntrinsicID() == Intrinsic::masked_store)
- return II->getOperand(1);
- llvm_unreachable("Unexpected IntrinsicInst");
- };
- auto MaskOp = [](const IntrinsicInst *II) {
- if (II->getIntrinsicID() == Intrinsic::masked_load)
- return II->getOperand(2);
- if (II->getIntrinsicID() == Intrinsic::masked_store)
- return II->getOperand(3);
- llvm_unreachable("Unexpected IntrinsicInst");
- };
- auto ThruOp = [](const IntrinsicInst *II) {
- if (II->getIntrinsicID() == Intrinsic::masked_load)
- return II->getOperand(3);
- llvm_unreachable("Unexpected IntrinsicInst");
- };
- if (PtrOp(Earlier) != PtrOp(Later))
- return false;
- Intrinsic::ID IDE = Earlier->getIntrinsicID();
- Intrinsic::ID IDL = Later->getIntrinsicID();
- // We could really use specific intrinsic classes for masked loads
- // and stores in IntrinsicInst.h.
- if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) {
- // Trying to replace later masked load with the earlier one.
- // Check that the pointers are the same, and
- // - masks and pass-throughs are the same, or
- // - replacee's pass-through is "undef" and replacer's mask is a
- // super-set of the replacee's mask.
- if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later))
- return true;
- if (!isa<UndefValue>(ThruOp(Later)))
- return false;
- return IsSubmask(MaskOp(Later), MaskOp(Earlier));
- }
- if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) {
- // Trying to replace a load of a stored value with the store's value.
- // Check that the pointers are the same, and
- // - load's mask is a subset of store's mask, and
- // - load's pass-through is "undef".
- if (!IsSubmask(MaskOp(Later), MaskOp(Earlier)))
- return false;
- return isa<UndefValue>(ThruOp(Later));
- }
- if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) {
- // Trying to remove a store of the loaded value.
- // Check that the pointers are the same, and
- // - store's mask is a subset of the load's mask.
- return IsSubmask(MaskOp(Later), MaskOp(Earlier));
- }
- if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) {
- // Trying to remove a dead store (earlier).
- // Check that the pointers are the same,
- // - the to-be-removed store's mask is a subset of the other store's
- // mask.
- return IsSubmask(MaskOp(Earlier), MaskOp(Later));
- }
- return false;
- }
- void removeMSSA(Instruction &Inst) {
- if (!MSSA)
- return;
- if (VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- // Removing a store here can leave MemorySSA in an unoptimized state by
- // creating MemoryPhis that have identical arguments and by creating
- // MemoryUses whose defining access is not an actual clobber. The phi case
- // is handled by MemorySSA when passing OptimizePhis = true to
- // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated
- // by MemorySSA's getClobberingMemoryAccess.
- MSSAUpdater->removeMemoryAccess(&Inst, true);
- }
- };
- } // end anonymous namespace
- /// Determine if the memory referenced by LaterInst is from the same heap
- /// version as EarlierInst.
- /// This is currently called in two scenarios:
- ///
- /// load p
- /// ...
- /// load p
- ///
- /// and
- ///
- /// x = load p
- /// ...
- /// store x, p
- ///
- /// in both cases we want to verify that there are no possible writes to the
- /// memory referenced by p between the earlier and later instruction.
- bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
- unsigned LaterGeneration,
- Instruction *EarlierInst,
- Instruction *LaterInst) {
- // Check the simple memory generation tracking first.
- if (EarlierGeneration == LaterGeneration)
- return true;
- if (!MSSA)
- return false;
- // If MemorySSA has determined that one of EarlierInst or LaterInst does not
- // read/write memory, then we can safely return true here.
- // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
- // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
- // by also checking the MemorySSA MemoryAccess on the instruction. Initial
- // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
- // with the default optimization pipeline.
- auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
- if (!EarlierMA)
- return true;
- auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
- if (!LaterMA)
- return true;
- // Since we know LaterDef dominates LaterInst and EarlierInst dominates
- // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
- // EarlierInst and LaterInst and neither can any other write that potentially
- // clobbers LaterInst.
- MemoryAccess *LaterDef;
- if (ClobberCounter < EarlyCSEMssaOptCap) {
- LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
- ClobberCounter++;
- } else
- LaterDef = LaterMA->getDefiningAccess();
- return MSSA->dominates(LaterDef, EarlierMA);
- }
- bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
- // A location loaded from with an invariant_load is assumed to *never* change
- // within the visible scope of the compilation.
- if (auto *LI = dyn_cast<LoadInst>(I))
- if (LI->hasMetadata(LLVMContext::MD_invariant_load))
- return true;
- auto MemLocOpt = MemoryLocation::getOrNone(I);
- if (!MemLocOpt)
- // "target" intrinsic forms of loads aren't currently known to
- // MemoryLocation::get. TODO
- return false;
- MemoryLocation MemLoc = *MemLocOpt;
- if (!AvailableInvariants.count(MemLoc))
- return false;
- // Is the generation at which this became invariant older than the
- // current one?
- return AvailableInvariants.lookup(MemLoc) <= GenAt;
- }
- bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
- const BranchInst *BI, const BasicBlock *BB,
- const BasicBlock *Pred) {
- assert(BI->isConditional() && "Should be a conditional branch!");
- assert(BI->getCondition() == CondInst && "Wrong condition?");
- assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
- auto *TorF = (BI->getSuccessor(0) == BB)
- ? ConstantInt::getTrue(BB->getContext())
- : ConstantInt::getFalse(BB->getContext());
- auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS,
- Value *&RHS) {
- if (Opcode == Instruction::And &&
- match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS))))
- return true;
- else if (Opcode == Instruction::Or &&
- match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS))))
- return true;
- return false;
- };
- // If the condition is AND operation, we can propagate its operands into the
- // true branch. If it is OR operation, we can propagate them into the false
- // branch.
- unsigned PropagateOpcode =
- (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
- bool MadeChanges = false;
- SmallVector<Instruction *, 4> WorkList;
- SmallPtrSet<Instruction *, 4> Visited;
- WorkList.push_back(CondInst);
- while (!WorkList.empty()) {
- Instruction *Curr = WorkList.pop_back_val();
- AvailableValues.insert(Curr, TorF);
- LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
- << Curr->getName() << "' as " << *TorF << " in "
- << BB->getName() << "\n");
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- } else {
- // Replace all dominated uses with the known value.
- if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
- BasicBlockEdge(Pred, BB))) {
- NumCSECVP += Count;
- MadeChanges = true;
- }
- }
- Value *LHS, *RHS;
- if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS))
- for (auto &Op : { LHS, RHS })
- if (Instruction *OPI = dyn_cast<Instruction>(Op))
- if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
- WorkList.push_back(OPI);
- }
- return MadeChanges;
- }
- Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
- unsigned CurrentGeneration) {
- if (InVal.DefInst == nullptr)
- return nullptr;
- if (InVal.MatchingId != MemInst.getMatchingId())
- return nullptr;
- // We don't yet handle removing loads with ordering of any kind.
- if (MemInst.isVolatile() || !MemInst.isUnordered())
- return nullptr;
- // We can't replace an atomic load with one which isn't also atomic.
- if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic())
- return nullptr;
- // The value V returned from this function is used differently depending
- // on whether MemInst is a load or a store. If it's a load, we will replace
- // MemInst with V, if it's a store, we will check if V is the same as the
- // available value.
- bool MemInstMatching = !MemInst.isLoad();
- Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst;
- Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get();
- // For stores check the result values before checking memory generation
- // (otherwise isSameMemGeneration may crash).
- Value *Result = MemInst.isStore()
- ? getOrCreateResult(Matching, Other->getType())
- : nullptr;
- if (MemInst.isStore() && InVal.DefInst != Result)
- return nullptr;
- // Deal with non-target memory intrinsics.
- bool MatchingNTI = isHandledNonTargetIntrinsic(Matching);
- bool OtherNTI = isHandledNonTargetIntrinsic(Other);
- if (OtherNTI != MatchingNTI)
- return nullptr;
- if (OtherNTI && MatchingNTI) {
- if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst),
- cast<IntrinsicInst>(MemInst.get())))
- return nullptr;
- }
- if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) &&
- !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst,
- MemInst.get()))
- return nullptr;
- if (!Result)
- Result = getOrCreateResult(Matching, Other->getType());
- return Result;
- }
- bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier,
- const ParseMemoryInst &Later) {
- // Can we remove Earlier store because of Later store?
- assert(Earlier.isUnordered() && !Earlier.isVolatile() &&
- "Violated invariant");
- if (Earlier.getPointerOperand() != Later.getPointerOperand())
- return false;
- if (Earlier.getMatchingId() != Later.getMatchingId())
- return false;
- // At the moment, we don't remove ordered stores, but do remove
- // unordered atomic stores. There's no special requirement (for
- // unordered atomics) about removing atomic stores only in favor of
- // other atomic stores since we were going to execute the non-atomic
- // one anyway and the atomic one might never have become visible.
- if (!Earlier.isUnordered() || !Later.isUnordered())
- return false;
- // Deal with non-target memory intrinsics.
- bool ENTI = isHandledNonTargetIntrinsic(Earlier.get());
- bool LNTI = isHandledNonTargetIntrinsic(Later.get());
- if (ENTI && LNTI)
- return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()),
- cast<IntrinsicInst>(Later.get()));
- // Because of the check above, at least one of them is false.
- // For now disallow matching intrinsics with non-intrinsics,
- // so assume that the stores match if neither is an intrinsic.
- return ENTI == LNTI;
- }
- bool EarlyCSE::processNode(DomTreeNode *Node) {
- bool Changed = false;
- BasicBlock *BB = Node->getBlock();
- // If this block has a single predecessor, then the predecessor is the parent
- // of the domtree node and all of the live out memory values are still current
- // in this block. If this block has multiple predecessors, then they could
- // have invalidated the live-out memory values of our parent value. For now,
- // just be conservative and invalidate memory if this block has multiple
- // predecessors.
- if (!BB->getSinglePredecessor())
- ++CurrentGeneration;
- // If this node has a single predecessor which ends in a conditional branch,
- // we can infer the value of the branch condition given that we took this
- // path. We need the single predecessor to ensure there's not another path
- // which reaches this block where the condition might hold a different
- // value. Since we're adding this to the scoped hash table (like any other
- // def), it will have been popped if we encounter a future merge block.
- if (BasicBlock *Pred = BB->getSinglePredecessor()) {
- auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
- if (BI && BI->isConditional()) {
- auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
- if (CondInst && SimpleValue::canHandle(CondInst))
- Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
- }
- }
- /// LastStore - Keep track of the last non-volatile store that we saw... for
- /// as long as there in no instruction that reads memory. If we see a store
- /// to the same location, we delete the dead store. This zaps trivial dead
- /// stores which can occur in bitfield code among other things.
- Instruction *LastStore = nullptr;
- // See if any instructions in the block can be eliminated. If so, do it. If
- // not, add them to AvailableValues.
- for (Instruction &Inst : make_early_inc_range(BB->getInstList())) {
- // Dead instructions should just be removed.
- if (isInstructionTriviallyDead(&Inst, &TLI)) {
- LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- continue;
- }
- salvageKnowledge(&Inst, &AC);
- salvageDebugInfo(Inst);
- removeMSSA(Inst);
- Inst.eraseFromParent();
- Changed = true;
- ++NumSimplify;
- continue;
- }
- // Skip assume intrinsics, they don't really have side effects (although
- // they're marked as such to ensure preservation of control dependencies),
- // and this pass will not bother with its removal. However, we should mark
- // its condition as true for all dominated blocks.
- if (auto *Assume = dyn_cast<AssumeInst>(&Inst)) {
- auto *CondI = dyn_cast<Instruction>(Assume->getArgOperand(0));
- if (CondI && SimpleValue::canHandle(CondI)) {
- LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst
- << '\n');
- AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
- } else
- LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n');
- continue;
- }
- // Likewise, noalias intrinsics don't actually write.
- if (match(&Inst,
- m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) {
- LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst
- << '\n');
- continue;
- }
- // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
- if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
- LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n');
- continue;
- }
- // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics.
- if (match(&Inst, m_Intrinsic<Intrinsic::pseudoprobe>())) {
- LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n');
- continue;
- }
- // We can skip all invariant.start intrinsics since they only read memory,
- // and we can forward values across it. For invariant starts without
- // invariant ends, we can use the fact that the invariantness never ends to
- // start a scope in the current generaton which is true for all future
- // generations. Also, we dont need to consume the last store since the
- // semantics of invariant.start allow us to perform DSE of the last
- // store, if there was a store following invariant.start. Consider:
- //
- // store 30, i8* p
- // invariant.start(p)
- // store 40, i8* p
- // We can DSE the store to 30, since the store 40 to invariant location p
- // causes undefined behaviour.
- if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
- // If there are any uses, the scope might end.
- if (!Inst.use_empty())
- continue;
- MemoryLocation MemLoc =
- MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI);
- // Don't start a scope if we already have a better one pushed
- if (!AvailableInvariants.count(MemLoc))
- AvailableInvariants.insert(MemLoc, CurrentGeneration);
- continue;
- }
- if (isGuard(&Inst)) {
- if (auto *CondI =
- dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) {
- if (SimpleValue::canHandle(CondI)) {
- // Do we already know the actual value of this condition?
- if (auto *KnownCond = AvailableValues.lookup(CondI)) {
- // Is the condition known to be true?
- if (isa<ConstantInt>(KnownCond) &&
- cast<ConstantInt>(KnownCond)->isOne()) {
- LLVM_DEBUG(dbgs()
- << "EarlyCSE removing guard: " << Inst << '\n');
- salvageKnowledge(&Inst, &AC);
- removeMSSA(Inst);
- Inst.eraseFromParent();
- Changed = true;
- continue;
- } else
- // Use the known value if it wasn't true.
- cast<CallInst>(Inst).setArgOperand(0, KnownCond);
- }
- // The condition we're on guarding here is true for all dominated
- // locations.
- AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
- }
- }
- // Guard intrinsics read all memory, but don't write any memory.
- // Accordingly, don't update the generation but consume the last store (to
- // avoid an incorrect DSE).
- LastStore = nullptr;
- continue;
- }
- // If the instruction can be simplified (e.g. X+0 = X) then replace it with
- // its simpler value.
- if (Value *V = SimplifyInstruction(&Inst, SQ)) {
- LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V
- << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- } else {
- bool Killed = false;
- if (!Inst.use_empty()) {
- Inst.replaceAllUsesWith(V);
- Changed = true;
- }
- if (isInstructionTriviallyDead(&Inst, &TLI)) {
- salvageKnowledge(&Inst, &AC);
- removeMSSA(Inst);
- Inst.eraseFromParent();
- Changed = true;
- Killed = true;
- }
- if (Changed)
- ++NumSimplify;
- if (Killed)
- continue;
- }
- }
- // If this is a simple instruction that we can value number, process it.
- if (SimpleValue::canHandle(&Inst)) {
- // See if the instruction has an available value. If so, use it.
- if (Value *V = AvailableValues.lookup(&Inst)) {
- LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V
- << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- continue;
- }
- if (auto *I = dyn_cast<Instruction>(V)) {
- // If I being poison triggers UB, there is no need to drop those
- // flags. Otherwise, only retain flags present on both I and Inst.
- // TODO: Currently some fast-math flags are not treated as
- // poison-generating even though they should. Until this is fixed,
- // always retain flags present on both I and Inst for floating point
- // instructions.
- if (isa<FPMathOperator>(I) || (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I)))
- I->andIRFlags(&Inst);
- }
- Inst.replaceAllUsesWith(V);
- salvageKnowledge(&Inst, &AC);
- removeMSSA(Inst);
- Inst.eraseFromParent();
- Changed = true;
- ++NumCSE;
- continue;
- }
- // Otherwise, just remember that this value is available.
- AvailableValues.insert(&Inst, &Inst);
- continue;
- }
- ParseMemoryInst MemInst(&Inst, TTI);
- // If this is a non-volatile load, process it.
- if (MemInst.isValid() && MemInst.isLoad()) {
- // (conservatively) we can't peak past the ordering implied by this
- // operation, but we can add this load to our set of available values
- if (MemInst.isVolatile() || !MemInst.isUnordered()) {
- LastStore = nullptr;
- ++CurrentGeneration;
- }
- if (MemInst.isInvariantLoad()) {
- // If we pass an invariant load, we know that memory location is
- // indefinitely constant from the moment of first dereferenceability.
- // We conservatively treat the invariant_load as that moment. If we
- // pass a invariant load after already establishing a scope, don't
- // restart it since we want to preserve the earliest point seen.
- auto MemLoc = MemoryLocation::get(&Inst);
- if (!AvailableInvariants.count(MemLoc))
- AvailableInvariants.insert(MemLoc, CurrentGeneration);
- }
- // If we have an available version of this load, and if it is the right
- // generation or the load is known to be from an invariant location,
- // replace this instruction.
- //
- // If either the dominating load or the current load are invariant, then
- // we can assume the current load loads the same value as the dominating
- // load.
- LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
- if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) {
- LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst
- << " to: " << *InVal.DefInst << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- continue;
- }
- if (!Inst.use_empty())
- Inst.replaceAllUsesWith(Op);
- salvageKnowledge(&Inst, &AC);
- removeMSSA(Inst);
- Inst.eraseFromParent();
- Changed = true;
- ++NumCSELoad;
- continue;
- }
- // Otherwise, remember that we have this instruction.
- AvailableLoads.insert(MemInst.getPointerOperand(),
- LoadValue(&Inst, CurrentGeneration,
- MemInst.getMatchingId(),
- MemInst.isAtomic()));
- LastStore = nullptr;
- continue;
- }
- // If this instruction may read from memory or throw (and potentially read
- // from memory in the exception handler), forget LastStore. Load/store
- // intrinsics will indicate both a read and a write to memory. The target
- // may override this (e.g. so that a store intrinsic does not read from
- // memory, and thus will be treated the same as a regular store for
- // commoning purposes).
- if ((Inst.mayReadFromMemory() || Inst.mayThrow()) &&
- !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
- LastStore = nullptr;
- // If this is a read-only call, process it.
- if (CallValue::canHandle(&Inst)) {
- // If we have an available version of this call, and if it is the right
- // generation, replace this instruction.
- std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst);
- if (InVal.first != nullptr &&
- isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
- &Inst)) {
- LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst
- << " to: " << *InVal.first << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- continue;
- }
- if (!Inst.use_empty())
- Inst.replaceAllUsesWith(InVal.first);
- salvageKnowledge(&Inst, &AC);
- removeMSSA(Inst);
- Inst.eraseFromParent();
- Changed = true;
- ++NumCSECall;
- continue;
- }
- // Otherwise, remember that we have this instruction.
- AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration));
- continue;
- }
- // A release fence requires that all stores complete before it, but does
- // not prevent the reordering of following loads 'before' the fence. As a
- // result, we don't need to consider it as writing to memory and don't need
- // to advance the generation. We do need to prevent DSE across the fence,
- // but that's handled above.
- if (auto *FI = dyn_cast<FenceInst>(&Inst))
- if (FI->getOrdering() == AtomicOrdering::Release) {
- assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above");
- continue;
- }
- // write back DSE - If we write back the same value we just loaded from
- // the same location and haven't passed any intervening writes or ordering
- // operations, we can remove the write. The primary benefit is in allowing
- // the available load table to remain valid and value forward past where
- // the store originally was.
- if (MemInst.isValid() && MemInst.isStore()) {
- LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
- if (InVal.DefInst &&
- InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) {
- // It is okay to have a LastStore to a different pointer here if MemorySSA
- // tells us that the load and store are from the same memory generation.
- // In that case, LastStore should keep its present value since we're
- // removing the current store.
- assert((!LastStore ||
- ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
- MemInst.getPointerOperand() ||
- MSSA) &&
- "can't have an intervening store if not using MemorySSA!");
- LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- continue;
- }
- salvageKnowledge(&Inst, &AC);
- removeMSSA(Inst);
- Inst.eraseFromParent();
- Changed = true;
- ++NumDSE;
- // We can avoid incrementing the generation count since we were able
- // to eliminate this store.
- continue;
- }
- }
- // Okay, this isn't something we can CSE at all. Check to see if it is
- // something that could modify memory. If so, our available memory values
- // cannot be used so bump the generation count.
- if (Inst.mayWriteToMemory()) {
- ++CurrentGeneration;
- if (MemInst.isValid() && MemInst.isStore()) {
- // We do a trivial form of DSE if there are two stores to the same
- // location with no intervening loads. Delete the earlier store.
- if (LastStore) {
- if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) {
- LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
- << " due to: " << Inst << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- } else {
- salvageKnowledge(&Inst, &AC);
- removeMSSA(*LastStore);
- LastStore->eraseFromParent();
- Changed = true;
- ++NumDSE;
- LastStore = nullptr;
- }
- }
- // fallthrough - we can exploit information about this store
- }
- // Okay, we just invalidated anything we knew about loaded values. Try
- // to salvage *something* by remembering that the stored value is a live
- // version of the pointer. It is safe to forward from volatile stores
- // to non-volatile loads, so we don't have to check for volatility of
- // the store.
- AvailableLoads.insert(MemInst.getPointerOperand(),
- LoadValue(&Inst, CurrentGeneration,
- MemInst.getMatchingId(),
- MemInst.isAtomic()));
- // Remember that this was the last unordered store we saw for DSE. We
- // don't yet handle DSE on ordered or volatile stores since we don't
- // have a good way to model the ordering requirement for following
- // passes once the store is removed. We could insert a fence, but
- // since fences are slightly stronger than stores in their ordering,
- // it's not clear this is a profitable transform. Another option would
- // be to merge the ordering with that of the post dominating store.
- if (MemInst.isUnordered() && !MemInst.isVolatile())
- LastStore = &Inst;
- else
- LastStore = nullptr;
- }
- }
- }
- return Changed;
- }
- bool EarlyCSE::run() {
- // Note, deque is being used here because there is significant performance
- // gains over vector when the container becomes very large due to the
- // specific access patterns. For more information see the mailing list
- // discussion on this:
- // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
- std::deque<StackNode *> nodesToProcess;
- bool Changed = false;
- // Process the root node.
- nodesToProcess.push_back(new StackNode(
- AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
- CurrentGeneration, DT.getRootNode(),
- DT.getRootNode()->begin(), DT.getRootNode()->end()));
- assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");
- // Process the stack.
- while (!nodesToProcess.empty()) {
- // Grab the first item off the stack. Set the current generation, remove
- // the node from the stack, and process it.
- StackNode *NodeToProcess = nodesToProcess.back();
- // Initialize class members.
- CurrentGeneration = NodeToProcess->currentGeneration();
- // Check if the node needs to be processed.
- if (!NodeToProcess->isProcessed()) {
- // Process the node.
- Changed |= processNode(NodeToProcess->node());
- NodeToProcess->childGeneration(CurrentGeneration);
- NodeToProcess->process();
- } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
- // Push the next child onto the stack.
- DomTreeNode *child = NodeToProcess->nextChild();
- nodesToProcess.push_back(
- new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
- AvailableCalls, NodeToProcess->childGeneration(),
- child, child->begin(), child->end()));
- } else {
- // It has been processed, and there are no more children to process,
- // so delete it and pop it off the stack.
- delete NodeToProcess;
- nodesToProcess.pop_back();
- }
- } // while (!nodes...)
- return Changed;
- }
- PreservedAnalyses EarlyCSEPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &TTI = AM.getResult<TargetIRAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto *MSSA =
- UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
- EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
- if (!CSE.run())
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- if (UseMemorySSA)
- PA.preserve<MemorySSAAnalysis>();
- return PA;
- }
- void EarlyCSEPass::printPipeline(
- raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
- static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline(
- OS, MapClassName2PassName);
- OS << "<";
- if (UseMemorySSA)
- OS << "memssa";
- OS << ">";
- }
- namespace {
- /// A simple and fast domtree-based CSE pass.
- ///
- /// This pass does a simple depth-first walk over the dominator tree,
- /// eliminating trivially redundant instructions and using instsimplify to
- /// canonicalize things as it goes. It is intended to be fast and catch obvious
- /// cases so that instcombine and other passes are more effective. It is
- /// expected that a later pass of GVN will catch the interesting/hard cases.
- template<bool UseMemorySSA>
- class EarlyCSELegacyCommonPass : public FunctionPass {
- public:
- static char ID;
- EarlyCSELegacyCommonPass() : FunctionPass(ID) {
- if (UseMemorySSA)
- initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
- else
- initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
- auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto *MSSA =
- UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
- EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
- return CSE.run();
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- if (UseMemorySSA) {
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<MemorySSAWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- }
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addPreserved<AAResultsWrapperPass>();
- AU.setPreservesCFG();
- }
- };
- } // end anonymous namespace
- using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
- template<>
- char EarlyCSELegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
- false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
- using EarlyCSEMemSSALegacyPass =
- EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
- template<>
- char EarlyCSEMemSSALegacyPass::ID = 0;
- FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
- if (UseMemorySSA)
- return new EarlyCSEMemSSALegacyPass();
- else
- return new EarlyCSELegacyPass();
- }
- INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
- "Early CSE w/ MemorySSA", false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
- INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
- "Early CSE w/ MemorySSA", false, false)
|