123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578 |
- //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Eliminate conditions based on constraints collected from dominating
- // conditions.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/ConstraintElimination.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/ScopeExit.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/ConstraintSystem.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/DebugCounter.h"
- #include "llvm/Transforms/Scalar.h"
- #include <string>
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "constraint-elimination"
- STATISTIC(NumCondsRemoved, "Number of instructions removed");
- DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
- "Controls which conditions are eliminated");
- static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
- namespace {
- struct ConstraintTy {
- SmallVector<int64_t, 8> Coefficients;
- ConstraintTy(SmallVector<int64_t, 8> Coefficients)
- : Coefficients(Coefficients) {}
- unsigned size() const { return Coefficients.size(); }
- };
- /// Struct to manage a list of constraints.
- struct ConstraintListTy {
- SmallVector<ConstraintTy, 4> Constraints;
- ConstraintListTy() {}
- ConstraintListTy(const SmallVector<ConstraintTy, 4> &Constraints)
- : Constraints(Constraints) {}
- void mergeIn(const ConstraintListTy &Other) {
- append_range(Constraints, Other.Constraints);
- }
- unsigned size() const { return Constraints.size(); }
- unsigned empty() const { return Constraints.empty(); }
- /// Returns true if any constraint has a non-zero coefficient for any of the
- /// newly added indices. Zero coefficients for new indices are removed. If it
- /// returns true, no new variable need to be added to the system.
- bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) {
- assert(size() == 1);
- for (unsigned I = 0; I < NewIndices.size(); ++I) {
- int64_t Last = get(0).Coefficients.pop_back_val();
- if (Last != 0)
- return true;
- }
- return false;
- }
- ConstraintTy &get(unsigned I) { return Constraints[I]; }
- };
- } // namespace
- // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
- // sum of the pairs equals \p V. The first pair is the constant-factor and X
- // must be nullptr. If the expression cannot be decomposed, returns an empty
- // vector.
- static SmallVector<std::pair<int64_t, Value *>, 4> decompose(Value *V) {
- if (auto *CI = dyn_cast<ConstantInt>(V)) {
- if (CI->isNegative() || CI->uge(MaxConstraintValue))
- return {};
- return {{CI->getSExtValue(), nullptr}};
- }
- auto *GEP = dyn_cast<GetElementPtrInst>(V);
- if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
- Value *Op0, *Op1;
- ConstantInt *CI;
- // If the index is zero-extended, it is guaranteed to be positive.
- if (match(GEP->getOperand(GEP->getNumOperands() - 1),
- m_ZExt(m_Value(Op0)))) {
- if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))))
- return {{0, nullptr},
- {1, GEP->getPointerOperand()},
- {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
- if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))))
- return {{CI->getSExtValue(), nullptr},
- {1, GEP->getPointerOperand()},
- {1, Op1}};
- return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
- }
- if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
- !CI->isNegative())
- return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
- SmallVector<std::pair<int64_t, Value *>, 4> Result;
- if (match(GEP->getOperand(GEP->getNumOperands() - 1),
- m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))
- Result = {{0, nullptr},
- {1, GEP->getPointerOperand()},
- {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
- else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
- m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))))
- Result = {{CI->getSExtValue(), nullptr},
- {1, GEP->getPointerOperand()},
- {1, Op0}};
- else {
- Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
- Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
- }
- return Result;
- }
- Value *Op0;
- if (match(V, m_ZExt(m_Value(Op0))))
- V = Op0;
- Value *Op1;
- ConstantInt *CI;
- if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))))
- return {{CI->getSExtValue(), nullptr}, {1, Op0}};
- if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
- return {{0, nullptr}, {1, Op0}, {1, Op1}};
- if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))))
- return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
- if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
- return {{0, nullptr}, {1, Op0}, {-1, Op1}};
- return {{0, nullptr}, {1, V}};
- }
- /// Turn a condition \p CmpI into a vector of constraints, using indices from \p
- /// Value2Index. Additional indices for newly discovered values are added to \p
- /// NewIndices.
- static ConstraintListTy
- getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
- const DenseMap<Value *, unsigned> &Value2Index,
- DenseMap<Value *, unsigned> &NewIndices) {
- int64_t Offset1 = 0;
- int64_t Offset2 = 0;
- // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
- // new entry to NewIndices.
- auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
- auto V2I = Value2Index.find(V);
- if (V2I != Value2Index.end())
- return V2I->second;
- auto NewI = NewIndices.find(V);
- if (NewI != NewIndices.end())
- return NewI->second;
- auto Insert =
- NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
- return Insert.first->second;
- };
- if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE)
- return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0,
- Value2Index, NewIndices);
- if (Pred == CmpInst::ICMP_EQ) {
- if (match(Op1, m_Zero()))
- return getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index,
- NewIndices);
- auto A =
- getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices);
- auto B =
- getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices);
- A.mergeIn(B);
- return A;
- }
- if (Pred == CmpInst::ICMP_NE && match(Op1, m_Zero())) {
- return getConstraint(CmpInst::ICMP_UGT, Op0, Op1, Value2Index, NewIndices);
- }
- // Only ULE and ULT predicates are supported at the moment.
- if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT)
- return {};
- auto ADec = decompose(Op0->stripPointerCastsSameRepresentation());
- auto BDec = decompose(Op1->stripPointerCastsSameRepresentation());
- // Skip if decomposing either of the values failed.
- if (ADec.empty() || BDec.empty())
- return {};
- // Skip trivial constraints without any variables.
- if (ADec.size() == 1 && BDec.size() == 1)
- return {};
- Offset1 = ADec[0].first;
- Offset2 = BDec[0].first;
- Offset1 *= -1;
- // Create iterator ranges that skip the constant-factor.
- auto VariablesA = llvm::drop_begin(ADec);
- auto VariablesB = llvm::drop_begin(BDec);
- // Make sure all variables have entries in Value2Index or NewIndices.
- for (const auto &KV :
- concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
- GetOrAddIndex(KV.second);
- // Build result constraint, by first adding all coefficients from A and then
- // subtracting all coefficients from B.
- SmallVector<int64_t, 8> R(Value2Index.size() + NewIndices.size() + 1, 0);
- for (const auto &KV : VariablesA)
- R[GetOrAddIndex(KV.second)] += KV.first;
- for (const auto &KV : VariablesB)
- R[GetOrAddIndex(KV.second)] -= KV.first;
- R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0);
- return {{R}};
- }
- static ConstraintListTy
- getConstraint(CmpInst *Cmp, const DenseMap<Value *, unsigned> &Value2Index,
- DenseMap<Value *, unsigned> &NewIndices) {
- return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
- Cmp->getOperand(1), Value2Index, NewIndices);
- }
- namespace {
- /// Represents either a condition that holds on entry to a block or a basic
- /// block, with their respective Dominator DFS in and out numbers.
- struct ConstraintOrBlock {
- unsigned NumIn;
- unsigned NumOut;
- bool IsBlock;
- bool Not;
- union {
- BasicBlock *BB;
- CmpInst *Condition;
- };
- ConstraintOrBlock(DomTreeNode *DTN)
- : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
- BB(DTN->getBlock()) {}
- ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
- : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
- Not(Not), Condition(Condition) {}
- };
- struct StackEntry {
- unsigned NumIn;
- unsigned NumOut;
- CmpInst *Condition;
- bool IsNot;
- StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot)
- : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {}
- };
- } // namespace
- #ifndef NDEBUG
- static void dumpWithNames(ConstraintTy &C,
- DenseMap<Value *, unsigned> &Value2Index) {
- SmallVector<std::string> Names(Value2Index.size(), "");
- for (auto &KV : Value2Index) {
- Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
- }
- ConstraintSystem CS;
- CS.addVariableRowFill(C.Coefficients);
- CS.dump(Names);
- }
- #endif
- static bool eliminateConstraints(Function &F, DominatorTree &DT) {
- bool Changed = false;
- DT.updateDFSNumbers();
- ConstraintSystem CS;
- SmallVector<ConstraintOrBlock, 64> WorkList;
- // First, collect conditions implied by branches and blocks with their
- // Dominator DFS in and out numbers.
- for (BasicBlock &BB : F) {
- if (!DT.getNode(&BB))
- continue;
- WorkList.emplace_back(DT.getNode(&BB));
- // True as long as long as the current instruction is guaranteed to execute.
- bool GuaranteedToExecute = true;
- // Scan BB for assume calls.
- // TODO: also use this scan to queue conditions to simplify, so we can
- // interleave facts from assumes and conditions to simplify in a single
- // basic block. And to skip another traversal of each basic block when
- // simplifying.
- for (Instruction &I : BB) {
- Value *Cond;
- // For now, just handle assumes with a single compare as condition.
- if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
- isa<CmpInst>(Cond)) {
- if (GuaranteedToExecute) {
- // The assume is guaranteed to execute when BB is entered, hence Cond
- // holds on entry to BB.
- WorkList.emplace_back(DT.getNode(&BB), cast<CmpInst>(Cond), false);
- } else {
- // Otherwise the condition only holds in the successors.
- for (BasicBlock *Succ : successors(&BB))
- WorkList.emplace_back(DT.getNode(Succ), cast<CmpInst>(Cond), false);
- }
- }
- GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
- }
- auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
- if (!Br || !Br->isConditional())
- continue;
- // Returns true if we can add a known condition from BB to its successor
- // block Succ. Each predecessor of Succ can either be BB or be dominated by
- // Succ (e.g. the case when adding a condition from a pre-header to a loop
- // header).
- auto CanAdd = [&BB, &DT](BasicBlock *Succ) {
- return all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) {
- return Pred == &BB || DT.dominates(Succ, Pred);
- });
- };
- // If the condition is an OR of 2 compares and the false successor only has
- // the current block as predecessor, queue both negated conditions for the
- // false successor.
- Value *Op0, *Op1;
- if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
- match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
- BasicBlock *FalseSuccessor = Br->getSuccessor(1);
- if (CanAdd(FalseSuccessor)) {
- WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0),
- true);
- WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1),
- true);
- }
- continue;
- }
- // If the condition is an AND of 2 compares and the true successor only has
- // the current block as predecessor, queue both conditions for the true
- // successor.
- if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
- match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
- BasicBlock *TrueSuccessor = Br->getSuccessor(0);
- if (CanAdd(TrueSuccessor)) {
- WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0),
- false);
- WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1),
- false);
- }
- continue;
- }
- auto *CmpI = dyn_cast<CmpInst>(Br->getCondition());
- if (!CmpI)
- continue;
- if (CanAdd(Br->getSuccessor(0)))
- WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
- if (CanAdd(Br->getSuccessor(1)))
- WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
- }
- // Next, sort worklist by dominance, so that dominating blocks and conditions
- // come before blocks and conditions dominated by them. If a block and a
- // condition have the same numbers, the condition comes before the block, as
- // it holds on entry to the block.
- sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
- return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
- });
- // Finally, process ordered worklist and eliminate implied conditions.
- SmallVector<StackEntry, 16> DFSInStack;
- DenseMap<Value *, unsigned> Value2Index;
- for (ConstraintOrBlock &CB : WorkList) {
- // First, pop entries from the stack that are out-of-scope for CB. Remove
- // the corresponding entry from the constraint system.
- while (!DFSInStack.empty()) {
- auto &E = DFSInStack.back();
- LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
- << "\n");
- LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
- assert(E.NumIn <= CB.NumIn);
- if (CB.NumOut <= E.NumOut)
- break;
- LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
- << "\n");
- DFSInStack.pop_back();
- CS.popLastConstraint();
- }
- LLVM_DEBUG({
- dbgs() << "Processing ";
- if (CB.IsBlock)
- dbgs() << *CB.BB;
- else
- dbgs() << *CB.Condition;
- dbgs() << "\n";
- });
- // For a block, check if any CmpInsts become known based on the current set
- // of constraints.
- if (CB.IsBlock) {
- for (Instruction &I : *CB.BB) {
- auto *Cmp = dyn_cast<CmpInst>(&I);
- if (!Cmp)
- continue;
- DenseMap<Value *, unsigned> NewIndices;
- auto R = getConstraint(Cmp, Value2Index, NewIndices);
- if (R.size() != 1)
- continue;
- if (R.needsNewIndices(NewIndices))
- continue;
- if (CS.isConditionImplied(R.get(0).Coefficients)) {
- if (!DebugCounter::shouldExecute(EliminatedCounter))
- continue;
- LLVM_DEBUG(dbgs() << "Condition " << *Cmp
- << " implied by dominating constraints\n");
- LLVM_DEBUG({
- for (auto &E : reverse(DFSInStack))
- dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n";
- });
- Cmp->replaceUsesWithIf(
- ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
- // Conditions in an assume trivially simplify to true. Skip uses
- // in assume calls to not destroy the available information.
- auto *II = dyn_cast<IntrinsicInst>(U.getUser());
- return !II || II->getIntrinsicID() != Intrinsic::assume;
- });
- NumCondsRemoved++;
- Changed = true;
- }
- if (CS.isConditionImplied(
- ConstraintSystem::negate(R.get(0).Coefficients))) {
- if (!DebugCounter::shouldExecute(EliminatedCounter))
- continue;
- LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
- << " implied by dominating constraints\n");
- LLVM_DEBUG({
- for (auto &E : reverse(DFSInStack))
- dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n";
- });
- Cmp->replaceAllUsesWith(
- ConstantInt::getFalse(F.getParent()->getContext()));
- NumCondsRemoved++;
- Changed = true;
- }
- }
- continue;
- }
- // Set up a function to restore the predicate at the end of the scope if it
- // has been negated. Negate the predicate in-place, if required.
- auto *CI = dyn_cast<CmpInst>(CB.Condition);
- auto PredicateRestorer = make_scope_exit([CI, &CB]() {
- if (CB.Not && CI)
- CI->setPredicate(CI->getInversePredicate());
- });
- if (CB.Not) {
- if (CI) {
- CI->setPredicate(CI->getInversePredicate());
- } else {
- LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
- continue;
- }
- }
- // Otherwise, add the condition to the system and stack, if we can transform
- // it into a constraint.
- DenseMap<Value *, unsigned> NewIndices;
- auto R = getConstraint(CB.Condition, Value2Index, NewIndices);
- if (R.empty())
- continue;
- for (auto &KV : NewIndices)
- Value2Index.insert(KV);
- LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
- bool Added = false;
- for (auto &C : R.Constraints) {
- auto Coeffs = C.Coefficients;
- LLVM_DEBUG({
- dbgs() << " constraint: ";
- dumpWithNames(C, Value2Index);
- });
- Added |= CS.addVariableRowFill(Coeffs);
- // If R has been added to the system, queue it for removal once it goes
- // out-of-scope.
- if (Added)
- DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not);
- }
- }
- assert(CS.size() == DFSInStack.size() &&
- "updates to CS and DFSInStack are out of sync");
- return Changed;
- }
- PreservedAnalyses ConstraintEliminationPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- if (!eliminateConstraints(F, DT))
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserveSet<CFGAnalyses>();
- return PA;
- }
- namespace {
- class ConstraintElimination : public FunctionPass {
- public:
- static char ID;
- ConstraintElimination() : FunctionPass(ID) {
- initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override {
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- return eliminateConstraints(F, DT);
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- }
- };
- } // end anonymous namespace
- char ConstraintElimination::ID = 0;
- INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
- "Constraint Elimination", false, false)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
- INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
- "Constraint Elimination", false, false)
- FunctionPass *llvm::createConstraintEliminationPass() {
- return new ConstraintElimination();
- }
|