123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 |
- //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the X86 specific subclass of TargetSubtargetInfo.
- //
- //===----------------------------------------------------------------------===//
- #include "X86Subtarget.h"
- #include "MCTargetDesc/X86BaseInfo.h"
- #include "X86.h"
- #include "X86CallLowering.h"
- #include "X86LegalizerInfo.h"
- #include "X86MacroFusion.h"
- #include "X86RegisterBankInfo.h"
- #include "X86TargetMachine.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/CodeGen/GlobalISel/CallLowering.h"
- #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CodeGen.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetMachine.h"
- #if defined(_MSC_VER)
- #include <intrin.h>
- #endif
- using namespace llvm;
- #define DEBUG_TYPE "subtarget"
- #define GET_SUBTARGETINFO_TARGET_DESC
- #define GET_SUBTARGETINFO_CTOR
- #include "X86GenSubtargetInfo.inc"
- // Temporary option to control early if-conversion for x86 while adding machine
- // models.
- static cl::opt<bool>
- X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
- cl::desc("Enable early if-conversion on X86"));
- /// Classify a blockaddress reference for the current subtarget according to how
- /// we should reference it in a non-pcrel context.
- unsigned char X86Subtarget::classifyBlockAddressReference() const {
- return classifyLocalReference(nullptr);
- }
- /// Classify a global variable reference for the current subtarget according to
- /// how we should reference it in a non-pcrel context.
- unsigned char
- X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
- return classifyGlobalReference(GV, *GV->getParent());
- }
- unsigned char
- X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
- // Tagged globals have non-zero upper bits, which makes direct references
- // require a 64-bit immediate. On the small code model this causes relocation
- // errors, so we go through the GOT instead.
- if (AllowTaggedGlobals && TM.getCodeModel() == CodeModel::Small && GV &&
- !isa<Function>(GV))
- return X86II::MO_GOTPCREL_NORELAX;
- // If we're not PIC, it's not very interesting.
- if (!isPositionIndependent())
- return X86II::MO_NO_FLAG;
- if (is64Bit()) {
- // 64-bit ELF PIC local references may use GOTOFF relocations.
- if (isTargetELF()) {
- switch (TM.getCodeModel()) {
- // 64-bit small code model is simple: All rip-relative.
- case CodeModel::Tiny:
- llvm_unreachable("Tiny codesize model not supported on X86");
- case CodeModel::Small:
- case CodeModel::Kernel:
- return X86II::MO_NO_FLAG;
- // The large PIC code model uses GOTOFF.
- case CodeModel::Large:
- return X86II::MO_GOTOFF;
- // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data.
- case CodeModel::Medium:
- // Constant pool and jump table handling pass a nullptr to this
- // function so we need to use isa_and_nonnull.
- if (isa_and_nonnull<Function>(GV))
- return X86II::MO_NO_FLAG; // All code is RIP-relative
- return X86II::MO_GOTOFF; // Local symbols use GOTOFF.
- }
- llvm_unreachable("invalid code model");
- }
- // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
- // both of which use MO_NO_FLAG.
- return X86II::MO_NO_FLAG;
- }
- // The COFF dynamic linker just patches the executable sections.
- if (isTargetCOFF())
- return X86II::MO_NO_FLAG;
- if (isTargetDarwin()) {
- // 32 bit macho has no relocation for a-b if a is undefined, even if
- // b is in the section that is being relocated.
- // This means we have to use o load even for GVs that are known to be
- // local to the dso.
- if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
- return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
- return X86II::MO_PIC_BASE_OFFSET;
- }
- return X86II::MO_GOTOFF;
- }
- unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
- const Module &M) const {
- // The static large model never uses stubs.
- if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent())
- return X86II::MO_NO_FLAG;
- // Absolute symbols can be referenced directly.
- if (GV) {
- if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
- // See if we can use the 8-bit immediate form. Note that some instructions
- // will sign extend the immediate operand, so to be conservative we only
- // accept the range [0,128).
- if (CR->getUnsignedMax().ult(128))
- return X86II::MO_ABS8;
- else
- return X86II::MO_NO_FLAG;
- }
- }
- if (TM.shouldAssumeDSOLocal(M, GV))
- return classifyLocalReference(GV);
- if (isTargetCOFF()) {
- // ExternalSymbolSDNode like _tls_index.
- if (!GV)
- return X86II::MO_NO_FLAG;
- if (GV->hasDLLImportStorageClass())
- return X86II::MO_DLLIMPORT;
- return X86II::MO_COFFSTUB;
- }
- // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables.
- if (isOSWindows())
- return X86II::MO_NO_FLAG;
- if (is64Bit()) {
- // ELF supports a large, truly PIC code model with non-PC relative GOT
- // references. Other object file formats do not. Use the no-flag, 64-bit
- // reference for them.
- if (TM.getCodeModel() == CodeModel::Large)
- return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG;
- // Tagged globals have non-zero upper bits, which makes direct references
- // require a 64-bit immediate. So we can't let the linker relax the
- // relocation to a 32-bit RIP-relative direct reference.
- if (AllowTaggedGlobals && GV && !isa<Function>(GV))
- return X86II::MO_GOTPCREL_NORELAX;
- return X86II::MO_GOTPCREL;
- }
- if (isTargetDarwin()) {
- if (!isPositionIndependent())
- return X86II::MO_DARWIN_NONLAZY;
- return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
- }
- // 32-bit ELF references GlobalAddress directly in static relocation model.
- // We cannot use MO_GOT because EBX may not be set up.
- if (TM.getRelocationModel() == Reloc::Static)
- return X86II::MO_NO_FLAG;
- return X86II::MO_GOT;
- }
- unsigned char
- X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
- return classifyGlobalFunctionReference(GV, *GV->getParent());
- }
- unsigned char
- X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
- const Module &M) const {
- if (TM.shouldAssumeDSOLocal(M, GV))
- return X86II::MO_NO_FLAG;
- // Functions on COFF can be non-DSO local for three reasons:
- // - They are intrinsic functions (!GV)
- // - They are marked dllimport
- // - They are extern_weak, and a stub is needed
- if (isTargetCOFF()) {
- if (!GV)
- return X86II::MO_NO_FLAG;
- if (GV->hasDLLImportStorageClass())
- return X86II::MO_DLLIMPORT;
- return X86II::MO_COFFSTUB;
- }
- const Function *F = dyn_cast_or_null<Function>(GV);
- if (isTargetELF()) {
- if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
- // According to psABI, PLT stub clobbers XMM8-XMM15.
- // In Regcall calling convention those registers are used for passing
- // parameters. Thus we need to prevent lazy binding in Regcall.
- return X86II::MO_GOTPCREL;
- // If PLT must be avoided then the call should be via GOTPCREL.
- if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
- (!F && M.getRtLibUseGOT())) &&
- is64Bit())
- return X86II::MO_GOTPCREL;
- // Reference ExternalSymbol directly in static relocation model.
- if (!is64Bit() && !GV && TM.getRelocationModel() == Reloc::Static)
- return X86II::MO_NO_FLAG;
- return X86II::MO_PLT;
- }
- if (is64Bit()) {
- if (F && F->hasFnAttribute(Attribute::NonLazyBind))
- // If the function is marked as non-lazy, generate an indirect call
- // which loads from the GOT directly. This avoids runtime overhead
- // at the cost of eager binding (and one extra byte of encoding).
- return X86II::MO_GOTPCREL;
- return X86II::MO_NO_FLAG;
- }
- return X86II::MO_NO_FLAG;
- }
- /// Return true if the subtarget allows calls to immediate address.
- bool X86Subtarget::isLegalToCallImmediateAddr() const {
- // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
- // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
- // the following check for Win32 should be removed.
- if (In64BitMode || isTargetWin32())
- return false;
- return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
- }
- void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef TuneCPU,
- StringRef FS) {
- if (CPU.empty())
- CPU = "generic";
- if (TuneCPU.empty())
- TuneCPU = "i586"; // FIXME: "generic" is more modern than llc tests expect.
- std::string FullFS = X86_MC::ParseX86Triple(TargetTriple);
- assert(!FullFS.empty() && "Failed to parse X86 triple");
- if (!FS.empty())
- FullFS = (Twine(FullFS) + "," + FS).str();
- // Parse features string and set the CPU.
- ParseSubtargetFeatures(CPU, TuneCPU, FullFS);
- // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
- // 16-bytes and under that are reasonably fast. These features were
- // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
- // micro-architectures respectively.
- if (hasSSE42() || hasSSE4A())
- IsUAMem16Slow = false;
- LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
- << ", 3DNowLevel " << X863DNowLevel << ", 64bit "
- << HasX86_64 << "\n");
- if (In64BitMode && !HasX86_64)
- report_fatal_error("64-bit code requested on a subtarget that doesn't "
- "support it!");
- // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD, NaCl, and for all
- // 64-bit targets. On Solaris (32-bit), stack alignment is 4 bytes
- // following the i386 psABI, while on Illumos it is always 16 bytes.
- if (StackAlignOverride)
- stackAlignment = *StackAlignOverride;
- else if (isTargetDarwin() || isTargetLinux() || isTargetKFreeBSD() ||
- isTargetNaCl() || In64BitMode)
- stackAlignment = Align(16);
- // Consume the vector width attribute or apply any target specific limit.
- if (PreferVectorWidthOverride)
- PreferVectorWidth = PreferVectorWidthOverride;
- else if (Prefer128Bit)
- PreferVectorWidth = 128;
- else if (Prefer256Bit)
- PreferVectorWidth = 256;
- }
- X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
- StringRef TuneCPU,
- StringRef FS) {
- initSubtargetFeatures(CPU, TuneCPU, FS);
- return *this;
- }
- X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU,
- StringRef FS, const X86TargetMachine &TM,
- MaybeAlign StackAlignOverride,
- unsigned PreferVectorWidthOverride,
- unsigned RequiredVectorWidth)
- : X86GenSubtargetInfo(TT, CPU, TuneCPU, FS),
- PICStyle(PICStyles::Style::None), TM(TM), TargetTriple(TT),
- StackAlignOverride(StackAlignOverride),
- PreferVectorWidthOverride(PreferVectorWidthOverride),
- RequiredVectorWidth(RequiredVectorWidth),
- InstrInfo(initializeSubtargetDependencies(CPU, TuneCPU, FS)),
- TLInfo(TM, *this), FrameLowering(*this, getStackAlignment()) {
- // Determine the PICStyle based on the target selected.
- if (!isPositionIndependent())
- setPICStyle(PICStyles::Style::None);
- else if (is64Bit())
- setPICStyle(PICStyles::Style::RIPRel);
- else if (isTargetCOFF())
- setPICStyle(PICStyles::Style::None);
- else if (isTargetDarwin())
- setPICStyle(PICStyles::Style::StubPIC);
- else if (isTargetELF())
- setPICStyle(PICStyles::Style::GOT);
- CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
- Legalizer.reset(new X86LegalizerInfo(*this, TM));
- auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
- RegBankInfo.reset(RBI);
- InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
- }
- const CallLowering *X86Subtarget::getCallLowering() const {
- return CallLoweringInfo.get();
- }
- InstructionSelector *X86Subtarget::getInstructionSelector() const {
- return InstSelector.get();
- }
- const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
- return Legalizer.get();
- }
- const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
- return RegBankInfo.get();
- }
- bool X86Subtarget::enableEarlyIfConversion() const {
- return hasCMov() && X86EarlyIfConv;
- }
- void X86Subtarget::getPostRAMutations(
- std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
- Mutations.push_back(createX86MacroFusionDAGMutation());
- }
- bool X86Subtarget::isPositionIndependent() const {
- return TM.isPositionIndependent();
- }
|