123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817 |
- //==-- X86LoadValueInjectionLoadHardening.cpp - LVI load hardening for x86 --=//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// Description: This pass finds Load Value Injection (LVI) gadgets consisting
- /// of a load from memory (i.e., SOURCE), and any operation that may transmit
- /// the value loaded from memory over a covert channel, or use the value loaded
- /// from memory to determine a branch/call target (i.e., SINK). After finding
- /// all such gadgets in a given function, the pass minimally inserts LFENCE
- /// instructions in such a manner that the following property is satisfied: for
- /// all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at
- /// least one LFENCE instruction. The algorithm that implements this minimal
- /// insertion is influenced by an academic paper that minimally inserts memory
- /// fences for high-performance concurrent programs:
- /// http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf
- /// The algorithm implemented in this pass is as follows:
- /// 1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the
- /// following components:
- /// - SOURCE instructions (also includes function arguments)
- /// - SINK instructions
- /// - Basic block entry points
- /// - Basic block terminators
- /// - LFENCE instructions
- /// 2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e.,
- /// gadgets) are already mitigated by existing LFENCEs. If all gadgets have been
- /// mitigated, go to step 6.
- /// 3. Use a heuristic or plugin to approximate minimal LFENCE insertion.
- /// 4. Insert one LFENCE along each CFG edge that was cut in step 3.
- /// 5. Go to step 2.
- /// 6. If any LFENCEs were inserted, return `true` from runOnMachineFunction()
- /// to tell LLVM that the function was modified.
- ///
- //===----------------------------------------------------------------------===//
- #include "ImmutableGraph.h"
- #include "X86.h"
- #include "X86Subtarget.h"
- #include "X86TargetMachine.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineDominanceFrontier.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/RDFGraph.h"
- #include "llvm/CodeGen/RDFLiveness.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/DOTGraphTraits.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/DynamicLibrary.h"
- #include "llvm/Support/GraphWriter.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- #define PASS_KEY "x86-lvi-load"
- #define DEBUG_TYPE PASS_KEY
- STATISTIC(NumFences, "Number of LFENCEs inserted for LVI mitigation");
- STATISTIC(NumFunctionsConsidered, "Number of functions analyzed");
- STATISTIC(NumFunctionsMitigated, "Number of functions for which mitigations "
- "were deployed");
- STATISTIC(NumGadgets, "Number of LVI gadgets detected during analysis");
- static cl::opt<std::string> OptimizePluginPath(
- PASS_KEY "-opt-plugin",
- cl::desc("Specify a plugin to optimize LFENCE insertion"), cl::Hidden);
- static cl::opt<bool> NoConditionalBranches(
- PASS_KEY "-no-cbranch",
- cl::desc("Don't treat conditional branches as disclosure gadgets. This "
- "may improve performance, at the cost of security."),
- cl::init(false), cl::Hidden);
- static cl::opt<bool> EmitDot(
- PASS_KEY "-dot",
- cl::desc(
- "For each function, emit a dot graph depicting potential LVI gadgets"),
- cl::init(false), cl::Hidden);
- static cl::opt<bool> EmitDotOnly(
- PASS_KEY "-dot-only",
- cl::desc("For each function, emit a dot graph depicting potential LVI "
- "gadgets, and do not insert any fences"),
- cl::init(false), cl::Hidden);
- static cl::opt<bool> EmitDotVerify(
- PASS_KEY "-dot-verify",
- cl::desc("For each function, emit a dot graph to stdout depicting "
- "potential LVI gadgets, used for testing purposes only"),
- cl::init(false), cl::Hidden);
- static llvm::sys::DynamicLibrary OptimizeDL;
- typedef int (*OptimizeCutT)(unsigned int *Nodes, unsigned int NodesSize,
- unsigned int *Edges, int *EdgeValues,
- int *CutEdges /* out */, unsigned int EdgesSize);
- static OptimizeCutT OptimizeCut = nullptr;
- namespace {
- struct MachineGadgetGraph : ImmutableGraph<MachineInstr *, int> {
- static constexpr int GadgetEdgeSentinel = -1;
- static constexpr MachineInstr *const ArgNodeSentinel = nullptr;
- using GraphT = ImmutableGraph<MachineInstr *, int>;
- using Node = typename GraphT::Node;
- using Edge = typename GraphT::Edge;
- using size_type = typename GraphT::size_type;
- MachineGadgetGraph(std::unique_ptr<Node[]> Nodes,
- std::unique_ptr<Edge[]> Edges, size_type NodesSize,
- size_type EdgesSize, int NumFences = 0, int NumGadgets = 0)
- : GraphT(std::move(Nodes), std::move(Edges), NodesSize, EdgesSize),
- NumFences(NumFences), NumGadgets(NumGadgets) {}
- static inline bool isCFGEdge(const Edge &E) {
- return E.getValue() != GadgetEdgeSentinel;
- }
- static inline bool isGadgetEdge(const Edge &E) {
- return E.getValue() == GadgetEdgeSentinel;
- }
- int NumFences;
- int NumGadgets;
- };
- class X86LoadValueInjectionLoadHardeningPass : public MachineFunctionPass {
- public:
- X86LoadValueInjectionLoadHardeningPass() : MachineFunctionPass(ID) {}
- StringRef getPassName() const override {
- return "X86 Load Value Injection (LVI) Load Hardening";
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- bool runOnMachineFunction(MachineFunction &MF) override;
- static char ID;
- private:
- using GraphBuilder = ImmutableGraphBuilder<MachineGadgetGraph>;
- using Edge = MachineGadgetGraph::Edge;
- using Node = MachineGadgetGraph::Node;
- using EdgeSet = MachineGadgetGraph::EdgeSet;
- using NodeSet = MachineGadgetGraph::NodeSet;
- const X86Subtarget *STI;
- const TargetInstrInfo *TII;
- const TargetRegisterInfo *TRI;
- std::unique_ptr<MachineGadgetGraph>
- getGadgetGraph(MachineFunction &MF, const MachineLoopInfo &MLI,
- const MachineDominatorTree &MDT,
- const MachineDominanceFrontier &MDF) const;
- int hardenLoadsWithPlugin(MachineFunction &MF,
- std::unique_ptr<MachineGadgetGraph> Graph) const;
- int hardenLoadsWithHeuristic(MachineFunction &MF,
- std::unique_ptr<MachineGadgetGraph> Graph) const;
- int elimMitigatedEdgesAndNodes(MachineGadgetGraph &G,
- EdgeSet &ElimEdges /* in, out */,
- NodeSet &ElimNodes /* in, out */) const;
- std::unique_ptr<MachineGadgetGraph>
- trimMitigatedEdges(std::unique_ptr<MachineGadgetGraph> Graph) const;
- int insertFences(MachineFunction &MF, MachineGadgetGraph &G,
- EdgeSet &CutEdges /* in, out */) const;
- bool instrUsesRegToAccessMemory(const MachineInstr &I, unsigned Reg) const;
- bool instrUsesRegToBranch(const MachineInstr &I, unsigned Reg) const;
- inline bool isFence(const MachineInstr *MI) const {
- return MI && (MI->getOpcode() == X86::LFENCE ||
- (STI->useLVIControlFlowIntegrity() && MI->isCall()));
- }
- };
- } // end anonymous namespace
- namespace llvm {
- template <>
- struct GraphTraits<MachineGadgetGraph *>
- : GraphTraits<ImmutableGraph<MachineInstr *, int> *> {};
- template <>
- struct DOTGraphTraits<MachineGadgetGraph *> : DefaultDOTGraphTraits {
- using GraphType = MachineGadgetGraph;
- using Traits = llvm::GraphTraits<GraphType *>;
- using NodeRef = typename Traits::NodeRef;
- using EdgeRef = typename Traits::EdgeRef;
- using ChildIteratorType = typename Traits::ChildIteratorType;
- using ChildEdgeIteratorType = typename Traits::ChildEdgeIteratorType;
- DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
- std::string getNodeLabel(NodeRef Node, GraphType *) {
- if (Node->getValue() == MachineGadgetGraph::ArgNodeSentinel)
- return "ARGS";
- std::string Str;
- raw_string_ostream OS(Str);
- OS << *Node->getValue();
- return OS.str();
- }
- static std::string getNodeAttributes(NodeRef Node, GraphType *) {
- MachineInstr *MI = Node->getValue();
- if (MI == MachineGadgetGraph::ArgNodeSentinel)
- return "color = blue";
- if (MI->getOpcode() == X86::LFENCE)
- return "color = green";
- return "";
- }
- static std::string getEdgeAttributes(NodeRef, ChildIteratorType E,
- GraphType *) {
- int EdgeVal = (*E.getCurrent()).getValue();
- return EdgeVal >= 0 ? "label = " + std::to_string(EdgeVal)
- : "color = red, style = \"dashed\"";
- }
- };
- } // end namespace llvm
- constexpr MachineInstr *MachineGadgetGraph::ArgNodeSentinel;
- constexpr int MachineGadgetGraph::GadgetEdgeSentinel;
- char X86LoadValueInjectionLoadHardeningPass::ID = 0;
- void X86LoadValueInjectionLoadHardeningPass::getAnalysisUsage(
- AnalysisUsage &AU) const {
- MachineFunctionPass::getAnalysisUsage(AU);
- AU.addRequired<MachineLoopInfo>();
- AU.addRequired<MachineDominatorTree>();
- AU.addRequired<MachineDominanceFrontier>();
- AU.setPreservesCFG();
- }
- static void writeGadgetGraph(raw_ostream &OS, MachineFunction &MF,
- MachineGadgetGraph *G) {
- WriteGraph(OS, G, /*ShortNames*/ false,
- "Speculative gadgets for \"" + MF.getName() + "\" function");
- }
- bool X86LoadValueInjectionLoadHardeningPass::runOnMachineFunction(
- MachineFunction &MF) {
- LLVM_DEBUG(dbgs() << "***** " << getPassName() << " : " << MF.getName()
- << " *****\n");
- STI = &MF.getSubtarget<X86Subtarget>();
- if (!STI->useLVILoadHardening())
- return false;
- // FIXME: support 32-bit
- if (!STI->is64Bit())
- report_fatal_error("LVI load hardening is only supported on 64-bit", false);
- // Don't skip functions with the "optnone" attr but participate in opt-bisect.
- const Function &F = MF.getFunction();
- if (!F.hasOptNone() && skipFunction(F))
- return false;
- ++NumFunctionsConsidered;
- TII = STI->getInstrInfo();
- TRI = STI->getRegisterInfo();
- LLVM_DEBUG(dbgs() << "Building gadget graph...\n");
- const auto &MLI = getAnalysis<MachineLoopInfo>();
- const auto &MDT = getAnalysis<MachineDominatorTree>();
- const auto &MDF = getAnalysis<MachineDominanceFrontier>();
- std::unique_ptr<MachineGadgetGraph> Graph = getGadgetGraph(MF, MLI, MDT, MDF);
- LLVM_DEBUG(dbgs() << "Building gadget graph... Done\n");
- if (Graph == nullptr)
- return false; // didn't find any gadgets
- if (EmitDotVerify) {
- writeGadgetGraph(outs(), MF, Graph.get());
- return false;
- }
- if (EmitDot || EmitDotOnly) {
- LLVM_DEBUG(dbgs() << "Emitting gadget graph...\n");
- std::error_code FileError;
- std::string FileName = "lvi.";
- FileName += MF.getName();
- FileName += ".dot";
- raw_fd_ostream FileOut(FileName, FileError);
- if (FileError)
- errs() << FileError.message();
- writeGadgetGraph(FileOut, MF, Graph.get());
- FileOut.close();
- LLVM_DEBUG(dbgs() << "Emitting gadget graph... Done\n");
- if (EmitDotOnly)
- return false;
- }
- int FencesInserted;
- if (!OptimizePluginPath.empty()) {
- if (!OptimizeDL.isValid()) {
- std::string ErrorMsg;
- OptimizeDL = llvm::sys::DynamicLibrary::getPermanentLibrary(
- OptimizePluginPath.c_str(), &ErrorMsg);
- if (!ErrorMsg.empty())
- report_fatal_error(Twine("Failed to load opt plugin: \"") + ErrorMsg +
- "\"");
- OptimizeCut = (OptimizeCutT)OptimizeDL.getAddressOfSymbol("optimize_cut");
- if (!OptimizeCut)
- report_fatal_error("Invalid optimization plugin");
- }
- FencesInserted = hardenLoadsWithPlugin(MF, std::move(Graph));
- } else { // Use the default greedy heuristic
- FencesInserted = hardenLoadsWithHeuristic(MF, std::move(Graph));
- }
- if (FencesInserted > 0)
- ++NumFunctionsMitigated;
- NumFences += FencesInserted;
- return (FencesInserted > 0);
- }
- std::unique_ptr<MachineGadgetGraph>
- X86LoadValueInjectionLoadHardeningPass::getGadgetGraph(
- MachineFunction &MF, const MachineLoopInfo &MLI,
- const MachineDominatorTree &MDT,
- const MachineDominanceFrontier &MDF) const {
- using namespace rdf;
- // Build the Register Dataflow Graph using the RDF framework
- TargetOperandInfo TOI{*TII};
- DataFlowGraph DFG{MF, *TII, *TRI, MDT, MDF, TOI};
- DFG.build();
- Liveness L{MF.getRegInfo(), DFG};
- L.computePhiInfo();
- GraphBuilder Builder;
- using GraphIter = typename GraphBuilder::BuilderNodeRef;
- DenseMap<MachineInstr *, GraphIter> NodeMap;
- int FenceCount = 0, GadgetCount = 0;
- auto MaybeAddNode = [&NodeMap, &Builder](MachineInstr *MI) {
- auto Ref = NodeMap.find(MI);
- if (Ref == NodeMap.end()) {
- auto I = Builder.addVertex(MI);
- NodeMap[MI] = I;
- return std::pair<GraphIter, bool>{I, true};
- }
- return std::pair<GraphIter, bool>{Ref->getSecond(), false};
- };
- // The `Transmitters` map memoizes transmitters found for each def. If a def
- // has not yet been analyzed, then it will not appear in the map. If a def
- // has been analyzed and was determined not to have any transmitters, then
- // its list of transmitters will be empty.
- DenseMap<NodeId, std::vector<NodeId>> Transmitters;
- // Analyze all machine instructions to find gadgets and LFENCEs, adding
- // each interesting value to `Nodes`
- auto AnalyzeDef = [&](NodeAddr<DefNode *> SourceDef) {
- SmallSet<NodeId, 8> UsesVisited, DefsVisited;
- std::function<void(NodeAddr<DefNode *>)> AnalyzeDefUseChain =
- [&](NodeAddr<DefNode *> Def) {
- if (Transmitters.find(Def.Id) != Transmitters.end())
- return; // Already analyzed `Def`
- // Use RDF to find all the uses of `Def`
- rdf::NodeSet Uses;
- RegisterRef DefReg = Def.Addr->getRegRef(DFG);
- for (auto UseID : L.getAllReachedUses(DefReg, Def)) {
- auto Use = DFG.addr<UseNode *>(UseID);
- if (Use.Addr->getFlags() & NodeAttrs::PhiRef) { // phi node
- NodeAddr<PhiNode *> Phi = Use.Addr->getOwner(DFG);
- for (const auto& I : L.getRealUses(Phi.Id)) {
- if (DFG.getPRI().alias(RegisterRef(I.first), DefReg)) {
- for (const auto &UA : I.second)
- Uses.emplace(UA.first);
- }
- }
- } else { // not a phi node
- Uses.emplace(UseID);
- }
- }
- // For each use of `Def`, we want to know whether:
- // (1) The use can leak the Def'ed value,
- // (2) The use can further propagate the Def'ed value to more defs
- for (auto UseID : Uses) {
- if (!UsesVisited.insert(UseID).second)
- continue; // Already visited this use of `Def`
- auto Use = DFG.addr<UseNode *>(UseID);
- assert(!(Use.Addr->getFlags() & NodeAttrs::PhiRef));
- MachineOperand &UseMO = Use.Addr->getOp();
- MachineInstr &UseMI = *UseMO.getParent();
- assert(UseMO.isReg());
- // We naively assume that an instruction propagates any loaded
- // uses to all defs unless the instruction is a call, in which
- // case all arguments will be treated as gadget sources during
- // analysis of the callee function.
- if (UseMI.isCall())
- continue;
- // Check whether this use can transmit (leak) its value.
- if (instrUsesRegToAccessMemory(UseMI, UseMO.getReg()) ||
- (!NoConditionalBranches &&
- instrUsesRegToBranch(UseMI, UseMO.getReg()))) {
- Transmitters[Def.Id].push_back(Use.Addr->getOwner(DFG).Id);
- if (UseMI.mayLoad())
- continue; // Found a transmitting load -- no need to continue
- // traversing its defs (i.e., this load will become
- // a new gadget source anyways).
- }
- // Check whether the use propagates to more defs.
- NodeAddr<InstrNode *> Owner{Use.Addr->getOwner(DFG)};
- rdf::NodeList AnalyzedChildDefs;
- for (const auto &ChildDef :
- Owner.Addr->members_if(DataFlowGraph::IsDef, DFG)) {
- if (!DefsVisited.insert(ChildDef.Id).second)
- continue; // Already visited this def
- if (Def.Addr->getAttrs() & NodeAttrs::Dead)
- continue;
- if (Def.Id == ChildDef.Id)
- continue; // `Def` uses itself (e.g., increment loop counter)
- AnalyzeDefUseChain(ChildDef);
- // `Def` inherits all of its child defs' transmitters.
- for (auto TransmitterId : Transmitters[ChildDef.Id])
- Transmitters[Def.Id].push_back(TransmitterId);
- }
- }
- // Note that this statement adds `Def.Id` to the map if no
- // transmitters were found for `Def`.
- auto &DefTransmitters = Transmitters[Def.Id];
- // Remove duplicate transmitters
- llvm::sort(DefTransmitters);
- DefTransmitters.erase(
- std::unique(DefTransmitters.begin(), DefTransmitters.end()),
- DefTransmitters.end());
- };
- // Find all of the transmitters
- AnalyzeDefUseChain(SourceDef);
- auto &SourceDefTransmitters = Transmitters[SourceDef.Id];
- if (SourceDefTransmitters.empty())
- return; // No transmitters for `SourceDef`
- MachineInstr *Source = SourceDef.Addr->getFlags() & NodeAttrs::PhiRef
- ? MachineGadgetGraph::ArgNodeSentinel
- : SourceDef.Addr->getOp().getParent();
- auto GadgetSource = MaybeAddNode(Source);
- // Each transmitter is a sink for `SourceDef`.
- for (auto TransmitterId : SourceDefTransmitters) {
- MachineInstr *Sink = DFG.addr<StmtNode *>(TransmitterId).Addr->getCode();
- auto GadgetSink = MaybeAddNode(Sink);
- // Add the gadget edge to the graph.
- Builder.addEdge(MachineGadgetGraph::GadgetEdgeSentinel,
- GadgetSource.first, GadgetSink.first);
- ++GadgetCount;
- }
- };
- LLVM_DEBUG(dbgs() << "Analyzing def-use chains to find gadgets\n");
- // Analyze function arguments
- NodeAddr<BlockNode *> EntryBlock = DFG.getFunc().Addr->getEntryBlock(DFG);
- for (NodeAddr<PhiNode *> ArgPhi :
- EntryBlock.Addr->members_if(DataFlowGraph::IsPhi, DFG)) {
- NodeList Defs = ArgPhi.Addr->members_if(DataFlowGraph::IsDef, DFG);
- llvm::for_each(Defs, AnalyzeDef);
- }
- // Analyze every instruction in MF
- for (NodeAddr<BlockNode *> BA : DFG.getFunc().Addr->members(DFG)) {
- for (NodeAddr<StmtNode *> SA :
- BA.Addr->members_if(DataFlowGraph::IsCode<NodeAttrs::Stmt>, DFG)) {
- MachineInstr *MI = SA.Addr->getCode();
- if (isFence(MI)) {
- MaybeAddNode(MI);
- ++FenceCount;
- } else if (MI->mayLoad()) {
- NodeList Defs = SA.Addr->members_if(DataFlowGraph::IsDef, DFG);
- llvm::for_each(Defs, AnalyzeDef);
- }
- }
- }
- LLVM_DEBUG(dbgs() << "Found " << FenceCount << " fences\n");
- LLVM_DEBUG(dbgs() << "Found " << GadgetCount << " gadgets\n");
- if (GadgetCount == 0)
- return nullptr;
- NumGadgets += GadgetCount;
- // Traverse CFG to build the rest of the graph
- SmallSet<MachineBasicBlock *, 8> BlocksVisited;
- std::function<void(MachineBasicBlock *, GraphIter, unsigned)> TraverseCFG =
- [&](MachineBasicBlock *MBB, GraphIter GI, unsigned ParentDepth) {
- unsigned LoopDepth = MLI.getLoopDepth(MBB);
- if (!MBB->empty()) {
- // Always add the first instruction in each block
- auto NI = MBB->begin();
- auto BeginBB = MaybeAddNode(&*NI);
- Builder.addEdge(ParentDepth, GI, BeginBB.first);
- if (!BlocksVisited.insert(MBB).second)
- return;
- // Add any instructions within the block that are gadget components
- GI = BeginBB.first;
- while (++NI != MBB->end()) {
- auto Ref = NodeMap.find(&*NI);
- if (Ref != NodeMap.end()) {
- Builder.addEdge(LoopDepth, GI, Ref->getSecond());
- GI = Ref->getSecond();
- }
- }
- // Always add the terminator instruction, if one exists
- auto T = MBB->getFirstTerminator();
- if (T != MBB->end()) {
- auto EndBB = MaybeAddNode(&*T);
- if (EndBB.second)
- Builder.addEdge(LoopDepth, GI, EndBB.first);
- GI = EndBB.first;
- }
- }
- for (MachineBasicBlock *Succ : MBB->successors())
- TraverseCFG(Succ, GI, LoopDepth);
- };
- // ArgNodeSentinel is a pseudo-instruction that represents MF args in the
- // GadgetGraph
- GraphIter ArgNode = MaybeAddNode(MachineGadgetGraph::ArgNodeSentinel).first;
- TraverseCFG(&MF.front(), ArgNode, 0);
- std::unique_ptr<MachineGadgetGraph> G{Builder.get(FenceCount, GadgetCount)};
- LLVM_DEBUG(dbgs() << "Found " << G->nodes_size() << " nodes\n");
- return G;
- }
- // Returns the number of remaining gadget edges that could not be eliminated
- int X86LoadValueInjectionLoadHardeningPass::elimMitigatedEdgesAndNodes(
- MachineGadgetGraph &G, EdgeSet &ElimEdges /* in, out */,
- NodeSet &ElimNodes /* in, out */) const {
- if (G.NumFences > 0) {
- // Eliminate fences and CFG edges that ingress and egress the fence, as
- // they are trivially mitigated.
- for (const Edge &E : G.edges()) {
- const Node *Dest = E.getDest();
- if (isFence(Dest->getValue())) {
- ElimNodes.insert(*Dest);
- ElimEdges.insert(E);
- for (const Edge &DE : Dest->edges())
- ElimEdges.insert(DE);
- }
- }
- }
- // Find and eliminate gadget edges that have been mitigated.
- int MitigatedGadgets = 0, RemainingGadgets = 0;
- NodeSet ReachableNodes{G};
- for (const Node &RootN : G.nodes()) {
- if (llvm::none_of(RootN.edges(), MachineGadgetGraph::isGadgetEdge))
- continue; // skip this node if it isn't a gadget source
- // Find all of the nodes that are CFG-reachable from RootN using DFS
- ReachableNodes.clear();
- std::function<void(const Node *, bool)> FindReachableNodes =
- [&](const Node *N, bool FirstNode) {
- if (!FirstNode)
- ReachableNodes.insert(*N);
- for (const Edge &E : N->edges()) {
- const Node *Dest = E.getDest();
- if (MachineGadgetGraph::isCFGEdge(E) && !ElimEdges.contains(E) &&
- !ReachableNodes.contains(*Dest))
- FindReachableNodes(Dest, false);
- }
- };
- FindReachableNodes(&RootN, true);
- // Any gadget whose sink is unreachable has been mitigated
- for (const Edge &E : RootN.edges()) {
- if (MachineGadgetGraph::isGadgetEdge(E)) {
- if (ReachableNodes.contains(*E.getDest())) {
- // This gadget's sink is reachable
- ++RemainingGadgets;
- } else { // This gadget's sink is unreachable, and therefore mitigated
- ++MitigatedGadgets;
- ElimEdges.insert(E);
- }
- }
- }
- }
- return RemainingGadgets;
- }
- std::unique_ptr<MachineGadgetGraph>
- X86LoadValueInjectionLoadHardeningPass::trimMitigatedEdges(
- std::unique_ptr<MachineGadgetGraph> Graph) const {
- NodeSet ElimNodes{*Graph};
- EdgeSet ElimEdges{*Graph};
- int RemainingGadgets =
- elimMitigatedEdgesAndNodes(*Graph, ElimEdges, ElimNodes);
- if (ElimEdges.empty() && ElimNodes.empty()) {
- Graph->NumFences = 0;
- Graph->NumGadgets = RemainingGadgets;
- } else {
- Graph = GraphBuilder::trim(*Graph, ElimNodes, ElimEdges, 0 /* NumFences */,
- RemainingGadgets);
- }
- return Graph;
- }
- int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithPlugin(
- MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
- int FencesInserted = 0;
- do {
- LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
- Graph = trimMitigatedEdges(std::move(Graph));
- LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
- if (Graph->NumGadgets == 0)
- break;
- LLVM_DEBUG(dbgs() << "Cutting edges...\n");
- EdgeSet CutEdges{*Graph};
- auto Nodes = std::make_unique<unsigned int[]>(Graph->nodes_size() +
- 1 /* terminator node */);
- auto Edges = std::make_unique<unsigned int[]>(Graph->edges_size());
- auto EdgeCuts = std::make_unique<int[]>(Graph->edges_size());
- auto EdgeValues = std::make_unique<int[]>(Graph->edges_size());
- for (const Node &N : Graph->nodes()) {
- Nodes[Graph->getNodeIndex(N)] = Graph->getEdgeIndex(*N.edges_begin());
- }
- Nodes[Graph->nodes_size()] = Graph->edges_size(); // terminator node
- for (const Edge &E : Graph->edges()) {
- Edges[Graph->getEdgeIndex(E)] = Graph->getNodeIndex(*E.getDest());
- EdgeValues[Graph->getEdgeIndex(E)] = E.getValue();
- }
- OptimizeCut(Nodes.get(), Graph->nodes_size(), Edges.get(), EdgeValues.get(),
- EdgeCuts.get(), Graph->edges_size());
- for (int I = 0; I < Graph->edges_size(); ++I)
- if (EdgeCuts[I])
- CutEdges.set(I);
- LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
- LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
- LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
- FencesInserted += insertFences(MF, *Graph, CutEdges);
- LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
- LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
- Graph = GraphBuilder::trim(*Graph, NodeSet{*Graph}, CutEdges);
- } while (true);
- return FencesInserted;
- }
- int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithHeuristic(
- MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
- // If `MF` does not have any fences, then no gadgets would have been
- // mitigated at this point.
- if (Graph->NumFences > 0) {
- LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
- Graph = trimMitigatedEdges(std::move(Graph));
- LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
- }
- if (Graph->NumGadgets == 0)
- return 0;
- LLVM_DEBUG(dbgs() << "Cutting edges...\n");
- EdgeSet CutEdges{*Graph};
- // Begin by collecting all ingress CFG edges for each node
- DenseMap<const Node *, SmallVector<const Edge *, 2>> IngressEdgeMap;
- for (const Edge &E : Graph->edges())
- if (MachineGadgetGraph::isCFGEdge(E))
- IngressEdgeMap[E.getDest()].push_back(&E);
- // For each gadget edge, make cuts that guarantee the gadget will be
- // mitigated. A computationally efficient way to achieve this is to either:
- // (a) cut all egress CFG edges from the gadget source, or
- // (b) cut all ingress CFG edges to the gadget sink.
- //
- // Moreover, the algorithm tries not to make a cut into a loop by preferring
- // to make a (b)-type cut if the gadget source resides at a greater loop depth
- // than the gadget sink, or an (a)-type cut otherwise.
- for (const Node &N : Graph->nodes()) {
- for (const Edge &E : N.edges()) {
- if (!MachineGadgetGraph::isGadgetEdge(E))
- continue;
- SmallVector<const Edge *, 2> EgressEdges;
- SmallVector<const Edge *, 2> &IngressEdges = IngressEdgeMap[E.getDest()];
- for (const Edge &EgressEdge : N.edges())
- if (MachineGadgetGraph::isCFGEdge(EgressEdge))
- EgressEdges.push_back(&EgressEdge);
- int EgressCutCost = 0, IngressCutCost = 0;
- for (const Edge *EgressEdge : EgressEdges)
- if (!CutEdges.contains(*EgressEdge))
- EgressCutCost += EgressEdge->getValue();
- for (const Edge *IngressEdge : IngressEdges)
- if (!CutEdges.contains(*IngressEdge))
- IngressCutCost += IngressEdge->getValue();
- auto &EdgesToCut =
- IngressCutCost < EgressCutCost ? IngressEdges : EgressEdges;
- for (const Edge *E : EdgesToCut)
- CutEdges.insert(*E);
- }
- }
- LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
- LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
- LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
- int FencesInserted = insertFences(MF, *Graph, CutEdges);
- LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
- LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
- return FencesInserted;
- }
- int X86LoadValueInjectionLoadHardeningPass::insertFences(
- MachineFunction &MF, MachineGadgetGraph &G,
- EdgeSet &CutEdges /* in, out */) const {
- int FencesInserted = 0;
- for (const Node &N : G.nodes()) {
- for (const Edge &E : N.edges()) {
- if (CutEdges.contains(E)) {
- MachineInstr *MI = N.getValue(), *Prev;
- MachineBasicBlock *MBB; // Insert an LFENCE in this MBB
- MachineBasicBlock::iterator InsertionPt; // ...at this point
- if (MI == MachineGadgetGraph::ArgNodeSentinel) {
- // insert LFENCE at beginning of entry block
- MBB = &MF.front();
- InsertionPt = MBB->begin();
- Prev = nullptr;
- } else if (MI->isBranch()) { // insert the LFENCE before the branch
- MBB = MI->getParent();
- InsertionPt = MI;
- Prev = MI->getPrevNode();
- // Remove all egress CFG edges from this branch because the inserted
- // LFENCE prevents gadgets from crossing the branch.
- for (const Edge &E : N.edges()) {
- if (MachineGadgetGraph::isCFGEdge(E))
- CutEdges.insert(E);
- }
- } else { // insert the LFENCE after the instruction
- MBB = MI->getParent();
- InsertionPt = MI->getNextNode() ? MI->getNextNode() : MBB->end();
- Prev = InsertionPt == MBB->end()
- ? (MBB->empty() ? nullptr : &MBB->back())
- : InsertionPt->getPrevNode();
- }
- // Ensure this insertion is not redundant (two LFENCEs in sequence).
- if ((InsertionPt == MBB->end() || !isFence(&*InsertionPt)) &&
- (!Prev || !isFence(Prev))) {
- BuildMI(*MBB, InsertionPt, DebugLoc(), TII->get(X86::LFENCE));
- ++FencesInserted;
- }
- }
- }
- }
- return FencesInserted;
- }
- bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToAccessMemory(
- const MachineInstr &MI, unsigned Reg) const {
- if (!MI.mayLoadOrStore() || MI.getOpcode() == X86::MFENCE ||
- MI.getOpcode() == X86::SFENCE || MI.getOpcode() == X86::LFENCE)
- return false;
- // FIXME: This does not handle pseudo loading instruction like TCRETURN*
- const MCInstrDesc &Desc = MI.getDesc();
- int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
- if (MemRefBeginIdx < 0) {
- LLVM_DEBUG(dbgs() << "Warning: unable to obtain memory operand for loading "
- "instruction:\n";
- MI.print(dbgs()); dbgs() << '\n';);
- return false;
- }
- MemRefBeginIdx += X86II::getOperandBias(Desc);
- const MachineOperand &BaseMO =
- MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
- const MachineOperand &IndexMO =
- MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
- return (BaseMO.isReg() && BaseMO.getReg() != X86::NoRegister &&
- TRI->regsOverlap(BaseMO.getReg(), Reg)) ||
- (IndexMO.isReg() && IndexMO.getReg() != X86::NoRegister &&
- TRI->regsOverlap(IndexMO.getReg(), Reg));
- }
- bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToBranch(
- const MachineInstr &MI, unsigned Reg) const {
- if (!MI.isConditionalBranch())
- return false;
- for (const MachineOperand &Use : MI.uses())
- if (Use.isReg() && Use.getReg() == Reg)
- return true;
- return false;
- }
- INITIALIZE_PASS_BEGIN(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
- "X86 LVI load hardening", false, false)
- INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
- INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
- INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier)
- INITIALIZE_PASS_END(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
- "X86 LVI load hardening", false, false)
- FunctionPass *llvm::createX86LoadValueInjectionLoadHardeningPass() {
- return new X86LoadValueInjectionLoadHardeningPass();
- }
|