12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204 |
- //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file describes the various pseudo instructions used by the compiler,
- // as well as Pat patterns used during instruction selection.
- //
- //===----------------------------------------------------------------------===//
- //===----------------------------------------------------------------------===//
- // Pattern Matching Support
- def GetLo32XForm : SDNodeXForm<imm, [{
- // Transformation function: get the low 32 bits.
- return getI32Imm((uint32_t)N->getZExtValue(), SDLoc(N));
- }]>;
- //===----------------------------------------------------------------------===//
- // Random Pseudo Instructions.
- // PIC base construction. This expands to code that looks like this:
- // call $next_inst
- // popl %destreg"
- let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP],
- SchedRW = [WriteJump] in
- def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
- "", []>;
- // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
- // a stack adjustment and the codegen must know that they may modify the stack
- // pointer before prolog-epilog rewriting occurs.
- // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
- // sub / add which can clobber EFLAGS.
- let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in {
- def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs),
- (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
- "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>;
- def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
- "#ADJCALLSTACKUP",
- [(X86callseq_end timm:$amt1, timm:$amt2)]>,
- Requires<[NotLP64]>;
- }
- def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
- (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>;
- // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
- // a stack adjustment and the codegen must know that they may modify the stack
- // pointer before prolog-epilog rewriting occurs.
- // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
- // sub / add which can clobber EFLAGS.
- let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in {
- def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs),
- (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
- "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>;
- def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
- "#ADJCALLSTACKUP",
- [(X86callseq_end timm:$amt1, timm:$amt2)]>,
- Requires<[IsLP64]>;
- }
- def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
- (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>;
- let SchedRW = [WriteSystem] in {
- // x86-64 va_start lowering magic.
- let hasSideEffects = 1, mayStore = 1, Defs = [EFLAGS] in {
- def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
- (outs),
- (ins GR8:$al, i8mem:$regsavefi, variable_ops),
- "#VASTART_SAVE_XMM_REGS $al, $regsavefi",
- [(X86vastart_save_xmm_regs GR8:$al, addr:$regsavefi),
- (implicit EFLAGS)]>;
- }
- let usesCustomInserter = 1, Defs = [EFLAGS] in {
- // The VAARG_64 and VAARG_X32 pseudo-instructions take the address of the
- // va_list, and place the address of the next argument into a register.
- let Defs = [EFLAGS] in {
- def VAARG_64 : I<0, Pseudo,
- (outs GR64:$dst),
- (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
- "#VAARG_64 $dst, $ap, $size, $mode, $align",
- [(set GR64:$dst,
- (X86vaarg64 addr:$ap, timm:$size, timm:$mode, timm:$align)),
- (implicit EFLAGS)]>, Requires<[In64BitMode, IsLP64]>;
- def VAARG_X32 : I<0, Pseudo,
- (outs GR32:$dst),
- (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
- "#VAARG_X32 $dst, $ap, $size, $mode, $align",
- [(set GR32:$dst,
- (X86vaargx32 addr:$ap, timm:$size, timm:$mode, timm:$align)),
- (implicit EFLAGS)]>, Requires<[In64BitMode, NotLP64]>;
- }
- // When using segmented stacks these are lowered into instructions which first
- // check if the current stacklet has enough free memory. If it does, memory is
- // allocated by bumping the stack pointer. Otherwise memory is allocated from
- // the heap.
- let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
- def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
- "# variable sized alloca for segmented stacks",
- [(set GR32:$dst,
- (X86SegAlloca GR32:$size))]>,
- Requires<[NotLP64]>;
- let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
- def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
- "# variable sized alloca for segmented stacks",
- [(set GR64:$dst,
- (X86SegAlloca GR64:$size))]>,
- Requires<[In64BitMode]>;
- // To protect against stack clash, dynamic allocation should perform a memory
- // probe at each page.
- let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
- def PROBED_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
- "# variable sized alloca with probing",
- [(set GR32:$dst,
- (X86ProbedAlloca GR32:$size))]>,
- Requires<[NotLP64]>;
- let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
- def PROBED_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
- "# variable sized alloca with probing",
- [(set GR64:$dst,
- (X86ProbedAlloca GR64:$size))]>,
- Requires<[In64BitMode]>;
- }
- let hasNoSchedulingInfo = 1 in
- def STACKALLOC_W_PROBING : I<0, Pseudo, (outs), (ins i64imm:$stacksize),
- "# fixed size alloca with probing",
- []>;
- // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
- // targets. These calls are needed to probe the stack when allocating more than
- // 4k bytes in one go. Touching the stack at 4K increments is necessary to
- // ensure that the guard pages used by the OS virtual memory manager are
- // allocated in correct sequence.
- // The main point of having separate instruction are extra unmodelled effects
- // (compared to ordinary calls) like stack pointer change.
- let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
- def DYN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
- "# dynamic stack allocation",
- [(X86DynAlloca GR32:$size)]>,
- Requires<[NotLP64]>;
- let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
- def DYN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
- "# dynamic stack allocation",
- [(X86DynAlloca GR64:$size)]>,
- Requires<[In64BitMode]>;
- } // SchedRW
- // These instructions XOR the frame pointer into a GPR. They are used in some
- // stack protection schemes. These are post-RA pseudos because we only know the
- // frame register after register allocation.
- let Constraints = "$src = $dst", isMoveImm = 1, isPseudo = 1, Defs = [EFLAGS] in {
- def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src),
- "xorl\t$$FP, $src", []>,
- Requires<[NotLP64]>, Sched<[WriteALU]>;
- def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src),
- "xorq\t$$FP $src", []>,
- Requires<[In64BitMode]>, Sched<[WriteALU]>;
- }
- //===----------------------------------------------------------------------===//
- // EH Pseudo Instructions
- //
- let SchedRW = [WriteSystem] in {
- let isTerminator = 1, isReturn = 1, isBarrier = 1,
- hasCtrlDep = 1, isCodeGenOnly = 1 in {
- def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
- "ret\t#eh_return, addr: $addr",
- [(X86ehret GR32:$addr)]>, Sched<[WriteJumpLd]>;
- }
- let isTerminator = 1, isReturn = 1, isBarrier = 1,
- hasCtrlDep = 1, isCodeGenOnly = 1 in {
- def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
- "ret\t#eh_return, addr: $addr",
- [(X86ehret GR64:$addr)]>, Sched<[WriteJumpLd]>;
- }
- let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
- isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1 in {
- def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
- // CATCHRET needs a custom inserter for SEH.
- let usesCustomInserter = 1 in
- def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
- "# CATCHRET",
- [(catchret bb:$dst, bb:$from)]>;
- }
- let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
- usesCustomInserter = 1 in {
- def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
- "#EH_SJLJ_SETJMP32",
- [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
- Requires<[Not64BitMode]>;
- def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
- "#EH_SJLJ_SETJMP64",
- [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
- Requires<[In64BitMode]>;
- let isTerminator = 1 in {
- def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
- "#EH_SJLJ_LONGJMP32",
- [(X86eh_sjlj_longjmp addr:$buf)]>,
- Requires<[Not64BitMode]>;
- def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
- "#EH_SJLJ_LONGJMP64",
- [(X86eh_sjlj_longjmp addr:$buf)]>,
- Requires<[In64BitMode]>;
- }
- }
- let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
- def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
- "#EH_SjLj_Setup\t$dst", []>;
- }
- } // SchedRW
- //===----------------------------------------------------------------------===//
- // Pseudo instructions used by unwind info.
- //
- let isPseudo = 1, SchedRW = [WriteSystem] in {
- def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
- "#SEH_PushReg $reg", []>;
- def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
- "#SEH_SaveReg $reg, $dst", []>;
- def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
- "#SEH_SaveXMM $reg, $dst", []>;
- def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
- "#SEH_StackAlloc $size", []>;
- def SEH_StackAlign : I<0, Pseudo, (outs), (ins i32imm:$align),
- "#SEH_StackAlign $align", []>;
- def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
- "#SEH_SetFrame $reg, $offset", []>;
- def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
- "#SEH_PushFrame $mode", []>;
- def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
- "#SEH_EndPrologue", []>;
- def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
- "#SEH_Epilogue", []>;
- }
- //===----------------------------------------------------------------------===//
- // Pseudo instructions used by address sanitizer.
- //===----------------------------------------------------------------------===//
- let
- Defs = [R10, R11, EFLAGS] in {
- def ASAN_CHECK_MEMACCESS : PseudoI<
- (outs), (ins GR64PLTSafe:$addr, i32imm:$accessinfo),
- [(int_asan_check_memaccess GR64PLTSafe:$addr, (i32 timm:$accessinfo))]>,
- Sched<[]>;
- }
- //===----------------------------------------------------------------------===//
- // Pseudo instructions used by segmented stacks.
- //
- // This is lowered into a RET instruction by MCInstLower. We need
- // this so that we don't have to have a MachineBasicBlock which ends
- // with a RET and also has successors.
- let isPseudo = 1, SchedRW = [WriteJumpLd] in {
- def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>;
- // This instruction is lowered to a RET followed by a MOV. The two
- // instructions are not generated on a higher level since then the
- // verifier sees a MachineBasicBlock ending with a non-terminator.
- def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>;
- }
- //===----------------------------------------------------------------------===//
- // Alias Instructions
- //===----------------------------------------------------------------------===//
- // Alias instruction mapping movr0 to xor.
- // FIXME: remove when we can teach regalloc that xor reg, reg is ok.
- let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
- isPseudo = 1, isMoveImm = 1, AddedComplexity = 10 in
- def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
- [(set GR32:$dst, 0)]>, Sched<[WriteZero]>;
- // Other widths can also make use of the 32-bit xor, which may have a smaller
- // encoding and avoid partial register updates.
- let AddedComplexity = 10 in {
- def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
- def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
- def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>;
- }
- let Predicates = [OptForSize, Not64BitMode],
- AddedComplexity = 10 in {
- let SchedRW = [WriteALU] in {
- // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
- // which only require 3 bytes compared to MOV32ri which requires 5.
- let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
- def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
- [(set GR32:$dst, 1)]>;
- def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
- [(set GR32:$dst, -1)]>;
- }
- } // SchedRW
- // MOV16ri is 4 bytes, so the instructions above are smaller.
- def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
- def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
- }
- let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5,
- SchedRW = [WriteALU] in {
- // AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
- def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
- [(set GR32:$dst, i32immSExt8:$src)]>,
- Requires<[OptForMinSize, NotWin64WithoutFP]>;
- def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
- [(set GR64:$dst, i64immSExt8:$src)]>,
- Requires<[OptForMinSize, NotWin64WithoutFP]>;
- }
- // Materialize i64 constant where top 32-bits are zero. This could theoretically
- // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
- // that would make it more difficult to rematerialize.
- let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
- isPseudo = 1, SchedRW = [WriteMove] in
- def MOV32ri64 : I<0, Pseudo, (outs GR64:$dst), (ins i64i32imm:$src), "",
- [(set GR64:$dst, i64immZExt32:$src)]>;
- // This 64-bit pseudo-move can also be used for labels in the x86-64 small code
- // model.
- def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [X86Wrapper]>;
- def : Pat<(i64 mov64imm32:$src), (MOV32ri64 mov64imm32:$src)>;
- // Use sbb to materialize carry bit.
- let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteADC],
- hasSideEffects = 0 in {
- // FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
- // However, Pat<> can't replicate the destination reg into the inputs of the
- // result.
- def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", []>;
- def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", []>;
- } // isCodeGenOnly
- //===----------------------------------------------------------------------===//
- // String Pseudo Instructions
- //
- let SchedRW = [WriteMicrocoded] in {
- let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
- def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins),
- "{rep;movsb (%esi), %es:(%edi)|rep movsb es:[edi], [esi]}",
- [(X86rep_movs i8)]>, REP, AdSize32,
- Requires<[NotLP64]>;
- def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins),
- "{rep;movsw (%esi), %es:(%edi)|rep movsw es:[edi], [esi]}",
- [(X86rep_movs i16)]>, REP, AdSize32, OpSize16,
- Requires<[NotLP64]>;
- def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins),
- "{rep;movsl (%esi), %es:(%edi)|rep movsd es:[edi], [esi]}",
- [(X86rep_movs i32)]>, REP, AdSize32, OpSize32,
- Requires<[NotLP64]>;
- def REP_MOVSQ_32 : RI<0xA5, RawFrm, (outs), (ins),
- "{rep;movsq (%esi), %es:(%edi)|rep movsq es:[edi], [esi]}",
- [(X86rep_movs i64)]>, REP, AdSize32,
- Requires<[NotLP64, In64BitMode]>;
- }
- let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
- def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins),
- "{rep;movsb (%rsi), %es:(%rdi)|rep movsb es:[rdi], [rsi]}",
- [(X86rep_movs i8)]>, REP, AdSize64,
- Requires<[IsLP64]>;
- def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins),
- "{rep;movsw (%rsi), %es:(%rdi)|rep movsw es:[rdi], [rsi]}",
- [(X86rep_movs i16)]>, REP, AdSize64, OpSize16,
- Requires<[IsLP64]>;
- def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins),
- "{rep;movsl (%rsi), %es:(%rdi)|rep movsdi es:[rdi], [rsi]}",
- [(X86rep_movs i32)]>, REP, AdSize64, OpSize32,
- Requires<[IsLP64]>;
- def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins),
- "{rep;movsq (%rsi), %es:(%rdi)|rep movsq es:[rdi], [rsi]}",
- [(X86rep_movs i64)]>, REP, AdSize64,
- Requires<[IsLP64]>;
- }
- // FIXME: Should use "(X86rep_stos AL)" as the pattern.
- let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
- let Uses = [AL,ECX,EDI] in
- def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins),
- "{rep;stosb %al, %es:(%edi)|rep stosb es:[edi], al}",
- [(X86rep_stos i8)]>, REP, AdSize32,
- Requires<[NotLP64]>;
- let Uses = [AX,ECX,EDI] in
- def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins),
- "{rep;stosw %ax, %es:(%edi)|rep stosw es:[edi], ax}",
- [(X86rep_stos i16)]>, REP, AdSize32, OpSize16,
- Requires<[NotLP64]>;
- let Uses = [EAX,ECX,EDI] in
- def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins),
- "{rep;stosl %eax, %es:(%edi)|rep stosd es:[edi], eax}",
- [(X86rep_stos i32)]>, REP, AdSize32, OpSize32,
- Requires<[NotLP64]>;
- let Uses = [RAX,RCX,RDI] in
- def REP_STOSQ_32 : RI<0xAB, RawFrm, (outs), (ins),
- "{rep;stosq %rax, %es:(%edi)|rep stosq es:[edi], rax}",
- [(X86rep_stos i64)]>, REP, AdSize32,
- Requires<[NotLP64, In64BitMode]>;
- }
- let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
- let Uses = [AL,RCX,RDI] in
- def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins),
- "{rep;stosb %al, %es:(%rdi)|rep stosb es:[rdi], al}",
- [(X86rep_stos i8)]>, REP, AdSize64,
- Requires<[IsLP64]>;
- let Uses = [AX,RCX,RDI] in
- def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins),
- "{rep;stosw %ax, %es:(%rdi)|rep stosw es:[rdi], ax}",
- [(X86rep_stos i16)]>, REP, AdSize64, OpSize16,
- Requires<[IsLP64]>;
- let Uses = [RAX,RCX,RDI] in
- def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins),
- "{rep;stosl %eax, %es:(%rdi)|rep stosd es:[rdi], eax}",
- [(X86rep_stos i32)]>, REP, AdSize64, OpSize32,
- Requires<[IsLP64]>;
- let Uses = [RAX,RCX,RDI] in
- def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins),
- "{rep;stosq %rax, %es:(%rdi)|rep stosq es:[rdi], rax}",
- [(X86rep_stos i64)]>, REP, AdSize64,
- Requires<[IsLP64]>;
- }
- } // SchedRW
- //===----------------------------------------------------------------------===//
- // Thread Local Storage Instructions
- //
- let SchedRW = [WriteSystem] in {
- // ELF TLS Support
- // All calls clobber the non-callee saved registers. ESP is marked as
- // a use to prevent stack-pointer assignments that appear immediately
- // before calls from potentially appearing dead.
- let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
- ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
- MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
- XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
- XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
- usesCustomInserter = 1, Uses = [ESP, SSP] in {
- def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
- "# TLS_addr32",
- [(X86tlsaddr tls32addr:$sym)]>,
- Requires<[Not64BitMode]>;
- def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
- "# TLS_base_addr32",
- [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
- Requires<[Not64BitMode]>;
- }
- // All calls clobber the non-callee saved registers. RSP is marked as
- // a use to prevent stack-pointer assignments that appear immediately
- // before calls from potentially appearing dead.
- let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
- FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
- ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
- MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
- XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
- XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
- usesCustomInserter = 1, Uses = [RSP, SSP] in {
- def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
- "# TLS_addr64",
- [(X86tlsaddr tls64addr:$sym)]>,
- Requires<[In64BitMode, IsLP64]>;
- def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
- "# TLS_base_addr64",
- [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
- Requires<[In64BitMode, IsLP64]>;
- def TLS_addrX32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
- "# TLS_addrX32",
- [(X86tlsaddr tls32addr:$sym)]>,
- Requires<[In64BitMode, NotLP64]>;
- def TLS_base_addrX32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
- "# TLS_base_addrX32",
- [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
- Requires<[In64BitMode, NotLP64]>;
- }
- // Darwin TLS Support
- // For i386, the address of the thunk is passed on the stack, on return the
- // address of the variable is in %eax. %ecx is trashed during the function
- // call. All other registers are preserved.
- let Defs = [EAX, ECX, EFLAGS, DF],
- Uses = [ESP, SSP],
- usesCustomInserter = 1 in
- def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
- "# TLSCall_32",
- [(X86TLSCall addr:$sym)]>,
- Requires<[Not64BitMode]>;
- // For x86_64, the address of the thunk is passed in %rdi, but the
- // pseudo directly use the symbol, so do not add an implicit use of
- // %rdi. The lowering will do the right thing with RDI.
- // On return the address of the variable is in %rax. All other
- // registers are preserved.
- let Defs = [RAX, EFLAGS, DF],
- Uses = [RSP, SSP],
- usesCustomInserter = 1 in
- def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
- "# TLSCall_64",
- [(X86TLSCall addr:$sym)]>,
- Requires<[In64BitMode]>;
- } // SchedRW
- //===----------------------------------------------------------------------===//
- // Conditional Move Pseudo Instructions
- // CMOV* - Used to implement the SELECT DAG operation. Expanded after
- // instruction selection into a branch sequence.
- multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
- def CMOV#NAME : I<0, Pseudo,
- (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
- "#CMOV_"#NAME#" PSEUDO!",
- [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, timm:$cond,
- EFLAGS)))]>;
- }
- let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in {
- // X86 doesn't have 8-bit conditional moves. Use a customInserter to
- // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
- // however that requires promoting the operands, and can induce additional
- // i8 register pressure.
- defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
- let Predicates = [NoCMov] in {
- defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
- defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
- } // Predicates = [NoCMov]
- // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
- // SSE1/SSE2.
- let Predicates = [FPStackf32] in
- defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
- let Predicates = [FPStackf64] in
- defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
- defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
- let Predicates = [HasMMX] in
- defm _VR64 : CMOVrr_PSEUDO<VR64, x86mmx>;
- defm _FR16X : CMOVrr_PSEUDO<FR16X, f16>;
- let Predicates = [HasSSE1,NoAVX512] in
- defm _FR32 : CMOVrr_PSEUDO<FR32, f32>;
- let Predicates = [HasSSE2,NoAVX512] in
- defm _FR64 : CMOVrr_PSEUDO<FR64, f64>;
- let Predicates = [HasAVX512] in {
- defm _FR32X : CMOVrr_PSEUDO<FR32X, f32>;
- defm _FR64X : CMOVrr_PSEUDO<FR64X, f64>;
- }
- let Predicates = [NoVLX] in {
- defm _VR128 : CMOVrr_PSEUDO<VR128, v2i64>;
- defm _VR256 : CMOVrr_PSEUDO<VR256, v4i64>;
- }
- let Predicates = [HasVLX] in {
- defm _VR128X : CMOVrr_PSEUDO<VR128X, v2i64>;
- defm _VR256X : CMOVrr_PSEUDO<VR256X, v4i64>;
- }
- defm _VR512 : CMOVrr_PSEUDO<VR512, v8i64>;
- defm _VK1 : CMOVrr_PSEUDO<VK1, v1i1>;
- defm _VK2 : CMOVrr_PSEUDO<VK2, v2i1>;
- defm _VK4 : CMOVrr_PSEUDO<VK4, v4i1>;
- defm _VK8 : CMOVrr_PSEUDO<VK8, v8i1>;
- defm _VK16 : CMOVrr_PSEUDO<VK16, v16i1>;
- defm _VK32 : CMOVrr_PSEUDO<VK32, v32i1>;
- defm _VK64 : CMOVrr_PSEUDO<VK64, v64i1>;
- } // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS]
- def : Pat<(f128 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
- (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
- let Predicates = [NoVLX] in {
- def : Pat<(v16i8 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
- (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
- def : Pat<(v8i16 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
- (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
- def : Pat<(v4i32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
- (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
- def : Pat<(v4f32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
- (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
- def : Pat<(v2f64 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
- (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
- def : Pat<(v32i8 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
- (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
- def : Pat<(v16i16 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
- (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
- def : Pat<(v8i32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
- (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
- def : Pat<(v8f32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
- (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
- def : Pat<(v4f64 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
- (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
- }
- let Predicates = [HasVLX] in {
- def : Pat<(v16i8 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
- (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
- def : Pat<(v8i16 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
- (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
- def : Pat<(v8f16 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
- (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
- def : Pat<(v4i32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
- (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
- def : Pat<(v4f32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
- (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
- def : Pat<(v2f64 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
- (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
- def : Pat<(v32i8 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
- (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
- def : Pat<(v16i16 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
- (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
- def : Pat<(v16f16 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
- (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
- def : Pat<(v8i32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
- (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
- def : Pat<(v8f32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
- (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
- def : Pat<(v4f64 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
- (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
- }
- def : Pat<(v64i8 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
- (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
- def : Pat<(v32i16 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
- (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
- def : Pat<(v32f16 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
- (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
- def : Pat<(v16i32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
- (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
- def : Pat<(v16f32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
- (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
- def : Pat<(v8f64 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
- (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
- //===----------------------------------------------------------------------===//
- // Normal-Instructions-With-Lock-Prefix Pseudo Instructions
- //===----------------------------------------------------------------------===//
- // FIXME: Use normal instructions and add lock prefix dynamically.
- // Memory barriers
- let isCodeGenOnly = 1, Defs = [EFLAGS] in
- def OR32mi8Locked : Ii8<0x83, MRM1m, (outs), (ins i32mem:$dst, i32i8imm:$zero),
- "or{l}\t{$zero, $dst|$dst, $zero}", []>,
- Requires<[Not64BitMode]>, OpSize32, LOCK,
- Sched<[WriteALURMW]>;
- let hasSideEffects = 1 in
- def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
- "#MEMBARRIER",
- [(X86MemBarrier)]>, Sched<[WriteLoad]>;
- // RegOpc corresponds to the mr version of the instruction
- // ImmOpc corresponds to the mi version of the instruction
- // ImmOpc8 corresponds to the mi8 version of the instruction
- // ImmMod corresponds to the instruction format of the mi and mi8 versions
- multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
- Format ImmMod, SDNode Op, string mnemonic> {
- let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
- SchedRW = [WriteALURMW] in {
- def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
- RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
- MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
- !strconcat(mnemonic, "{b}\t",
- "{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, GR8:$src2))]>, LOCK;
- def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
- RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
- MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
- !strconcat(mnemonic, "{w}\t",
- "{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, GR16:$src2))]>,
- OpSize16, LOCK;
- def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
- RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
- MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
- !strconcat(mnemonic, "{l}\t",
- "{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, GR32:$src2))]>,
- OpSize32, LOCK;
- def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
- RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
- MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
- !strconcat(mnemonic, "{q}\t",
- "{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, GR64:$src2))]>, LOCK;
- // NOTE: These are order specific, we want the mi8 forms to be listed
- // first so that they are slightly preferred to the mi forms.
- def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
- ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
- ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
- !strconcat(mnemonic, "{w}\t",
- "{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))]>,
- OpSize16, LOCK;
- def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
- ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
- ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
- !strconcat(mnemonic, "{l}\t",
- "{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))]>,
- OpSize32, LOCK;
- def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
- ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
- ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
- !strconcat(mnemonic, "{q}\t",
- "{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))]>,
- LOCK;
- def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
- ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
- ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
- !strconcat(mnemonic, "{b}\t",
- "{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))]>, LOCK;
- def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
- ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
- ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
- !strconcat(mnemonic, "{w}\t",
- "{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))]>,
- OpSize16, LOCK;
- def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
- ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
- ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
- !strconcat(mnemonic, "{l}\t",
- "{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))]>,
- OpSize32, LOCK;
- def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
- ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
- ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
- !strconcat(mnemonic, "{q}\t",
- "{$src2, $dst|$dst, $src2}"),
- [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))]>,
- LOCK;
- }
- }
- defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
- defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
- defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
- defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
- defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
- def X86lock_add_nocf : PatFrag<(ops node:$lhs, node:$rhs),
- (X86lock_add node:$lhs, node:$rhs), [{
- return hasNoCarryFlagUses(SDValue(N, 0));
- }]>;
- def X86lock_sub_nocf : PatFrag<(ops node:$lhs, node:$rhs),
- (X86lock_sub node:$lhs, node:$rhs), [{
- return hasNoCarryFlagUses(SDValue(N, 0));
- }]>;
- let Predicates = [UseIncDec] in {
- let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
- SchedRW = [WriteALURMW] in {
- def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
- "inc{b}\t$dst",
- [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i8 1)))]>,
- LOCK;
- def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
- "inc{w}\t$dst",
- [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i16 1)))]>,
- OpSize16, LOCK;
- def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
- "inc{l}\t$dst",
- [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i32 1)))]>,
- OpSize32, LOCK;
- def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
- "inc{q}\t$dst",
- [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i64 1)))]>,
- LOCK;
- def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
- "dec{b}\t$dst",
- [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i8 1)))]>,
- LOCK;
- def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
- "dec{w}\t$dst",
- [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i16 1)))]>,
- OpSize16, LOCK;
- def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
- "dec{l}\t$dst",
- [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i32 1)))]>,
- OpSize32, LOCK;
- def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
- "dec{q}\t$dst",
- [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i64 1)))]>,
- LOCK;
- }
- // Additional patterns for -1 constant.
- def : Pat<(X86lock_add addr:$dst, (i8 -1)), (LOCK_DEC8m addr:$dst)>;
- def : Pat<(X86lock_add addr:$dst, (i16 -1)), (LOCK_DEC16m addr:$dst)>;
- def : Pat<(X86lock_add addr:$dst, (i32 -1)), (LOCK_DEC32m addr:$dst)>;
- def : Pat<(X86lock_add addr:$dst, (i64 -1)), (LOCK_DEC64m addr:$dst)>;
- def : Pat<(X86lock_sub addr:$dst, (i8 -1)), (LOCK_INC8m addr:$dst)>;
- def : Pat<(X86lock_sub addr:$dst, (i16 -1)), (LOCK_INC16m addr:$dst)>;
- def : Pat<(X86lock_sub addr:$dst, (i32 -1)), (LOCK_INC32m addr:$dst)>;
- def : Pat<(X86lock_sub addr:$dst, (i64 -1)), (LOCK_INC64m addr:$dst)>;
- }
- // Atomic compare and swap.
- multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
- string mnemonic, SDPatternOperator frag> {
- let isCodeGenOnly = 1, SchedRW = [WriteCMPXCHGRMW] in {
- let Defs = [AL, EFLAGS], Uses = [AL] in
- def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
- !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
- [(frag addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
- let Defs = [AX, EFLAGS], Uses = [AX] in
- def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
- !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
- [(frag addr:$ptr, GR16:$swap, 2)]>, TB, OpSize16, LOCK;
- let Defs = [EAX, EFLAGS], Uses = [EAX] in
- def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
- !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
- [(frag addr:$ptr, GR32:$swap, 4)]>, TB, OpSize32, LOCK;
- let Defs = [RAX, EFLAGS], Uses = [RAX] in
- def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
- !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
- [(frag addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
- }
- }
- let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
- Predicates = [HasCmpxchg8b], SchedRW = [WriteCMPXCHGRMW],
- isCodeGenOnly = 1, usesCustomInserter = 1 in {
- def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
- "cmpxchg8b\t$ptr",
- [(X86cas8 addr:$ptr)]>, TB, LOCK;
- }
- let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
- Predicates = [HasCmpxchg16b,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
- isCodeGenOnly = 1, mayLoad = 1, mayStore = 1, hasSideEffects = 0 in {
- def LCMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$ptr),
- "cmpxchg16b\t$ptr",
- []>, TB, LOCK;
- }
- // This pseudo must be used when the frame uses RBX as
- // the base pointer. Indeed, in such situation RBX is a reserved
- // register and the register allocator will ignore any use/def of
- // it. In other words, the register will not fix the clobbering of
- // RBX that will happen when setting the arguments for the instrucion.
- //
- // Unlike the actual related instruction, we mark that this one
- // defines RBX (instead of using RBX).
- // The rationale is that we will define RBX during the expansion of
- // the pseudo. The argument feeding RBX is rbx_input.
- //
- // The additional argument, $rbx_save, is a temporary register used to
- // save the value of RBX across the actual instruction.
- //
- // To make sure the register assigned to $rbx_save does not interfere with
- // the definition of the actual instruction, we use a definition $dst which
- // is tied to $rbx_save. That way, the live-range of $rbx_save spans across
- // the instruction and we are sure we will have a valid register to restore
- // the value of RBX.
- let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
- Predicates = [HasCmpxchg16b,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
- isCodeGenOnly = 1, isPseudo = 1,
- mayLoad = 1, mayStore = 1, hasSideEffects = 0,
- Constraints = "$rbx_save = $dst" in {
- def LCMPXCHG16B_SAVE_RBX :
- I<0, Pseudo, (outs GR64:$dst),
- (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save), "", []>;
- }
- // Pseudo instruction that doesn't read/write RBX. Will be turned into either
- // LCMPXCHG16B_SAVE_RBX or LCMPXCHG16B via a custom inserter.
- let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RCX, RDX],
- Predicates = [HasCmpxchg16b,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
- isCodeGenOnly = 1, isPseudo = 1,
- mayLoad = 1, mayStore = 1, hasSideEffects = 0,
- usesCustomInserter = 1 in {
- def LCMPXCHG16B_NO_RBX :
- I<0, Pseudo, (outs), (ins i128mem:$ptr, GR64:$rbx_input), "",
- [(X86cas16 addr:$ptr, GR64:$rbx_input)]>;
- }
- // This pseudo must be used when the frame uses RBX/EBX as
- // the base pointer.
- // cf comment for LCMPXCHG16B_SAVE_RBX.
- let Defs = [EBX], Uses = [ECX, EAX],
- Predicates = [HasMWAITX], SchedRW = [WriteSystem],
- isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst" in {
- def MWAITX_SAVE_RBX :
- I<0, Pseudo, (outs GR64:$dst),
- (ins GR32:$ebx_input, GR64:$rbx_save),
- "mwaitx",
- []>;
- }
- // Pseudo mwaitx instruction to use for custom insertion.
- let Predicates = [HasMWAITX], SchedRW = [WriteSystem],
- isCodeGenOnly = 1, isPseudo = 1,
- usesCustomInserter = 1 in {
- def MWAITX :
- I<0, Pseudo, (outs), (ins GR32:$ecx, GR32:$eax, GR32:$ebx),
- "mwaitx",
- [(int_x86_mwaitx GR32:$ecx, GR32:$eax, GR32:$ebx)]>;
- }
- defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas>;
- // Atomic exchange and add
- multiclass ATOMIC_RMW_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
- string frag> {
- let Constraints = "$val = $dst", Defs = [EFLAGS], mayLoad = 1, mayStore = 1,
- isCodeGenOnly = 1, SchedRW = [WriteALURMW] in {
- def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
- (ins GR8:$val, i8mem:$ptr),
- !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
- [(set GR8:$dst,
- (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))]>;
- def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
- (ins GR16:$val, i16mem:$ptr),
- !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
- [(set
- GR16:$dst,
- (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))]>,
- OpSize16;
- def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
- (ins GR32:$val, i32mem:$ptr),
- !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
- [(set
- GR32:$dst,
- (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))]>,
- OpSize32;
- def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
- (ins GR64:$val, i64mem:$ptr),
- !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
- [(set
- GR64:$dst,
- (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))]>;
- }
- }
- defm LXADD : ATOMIC_RMW_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add">, TB, LOCK;
- /* The following multiclass tries to make sure that in code like
- * x.store (immediate op x.load(acquire), release)
- * and
- * x.store (register op x.load(acquire), release)
- * an operation directly on memory is generated instead of wasting a register.
- * It is not automatic as atomic_store/load are only lowered to MOV instructions
- * extremely late to prevent them from being accidentally reordered in the backend
- * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
- */
- multiclass RELEASE_BINOP_MI<string Name, SDNode op> {
- def : Pat<(atomic_store_8 addr:$dst,
- (op (atomic_load_8 addr:$dst), (i8 imm:$src))),
- (!cast<Instruction>(Name#"8mi") addr:$dst, imm:$src)>;
- def : Pat<(atomic_store_16 addr:$dst,
- (op (atomic_load_16 addr:$dst), (i16 imm:$src))),
- (!cast<Instruction>(Name#"16mi") addr:$dst, imm:$src)>;
- def : Pat<(atomic_store_32 addr:$dst,
- (op (atomic_load_32 addr:$dst), (i32 imm:$src))),
- (!cast<Instruction>(Name#"32mi") addr:$dst, imm:$src)>;
- def : Pat<(atomic_store_64 addr:$dst,
- (op (atomic_load_64 addr:$dst), (i64immSExt32:$src))),
- (!cast<Instruction>(Name#"64mi32") addr:$dst, (i64immSExt32:$src))>;
- def : Pat<(atomic_store_8 addr:$dst,
- (op (atomic_load_8 addr:$dst), (i8 GR8:$src))),
- (!cast<Instruction>(Name#"8mr") addr:$dst, GR8:$src)>;
- def : Pat<(atomic_store_16 addr:$dst,
- (op (atomic_load_16 addr:$dst), (i16 GR16:$src))),
- (!cast<Instruction>(Name#"16mr") addr:$dst, GR16:$src)>;
- def : Pat<(atomic_store_32 addr:$dst,
- (op (atomic_load_32 addr:$dst), (i32 GR32:$src))),
- (!cast<Instruction>(Name#"32mr") addr:$dst, GR32:$src)>;
- def : Pat<(atomic_store_64 addr:$dst,
- (op (atomic_load_64 addr:$dst), (i64 GR64:$src))),
- (!cast<Instruction>(Name#"64mr") addr:$dst, GR64:$src)>;
- }
- defm : RELEASE_BINOP_MI<"ADD", add>;
- defm : RELEASE_BINOP_MI<"AND", and>;
- defm : RELEASE_BINOP_MI<"OR", or>;
- defm : RELEASE_BINOP_MI<"XOR", xor>;
- defm : RELEASE_BINOP_MI<"SUB", sub>;
- // Atomic load + floating point patterns.
- // FIXME: This could also handle SIMD operations with *ps and *pd instructions.
- multiclass ATOMIC_LOAD_FP_BINOP_MI<string Name, SDNode op> {
- def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
- (!cast<Instruction>(Name#"SSrm") FR32:$src1, addr:$src2)>,
- Requires<[UseSSE1]>;
- def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
- (!cast<Instruction>("V"#Name#"SSrm") FR32:$src1, addr:$src2)>,
- Requires<[UseAVX]>;
- def : Pat<(op FR32X:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
- (!cast<Instruction>("V"#Name#"SSZrm") FR32X:$src1, addr:$src2)>,
- Requires<[HasAVX512]>;
- def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
- (!cast<Instruction>(Name#"SDrm") FR64:$src1, addr:$src2)>,
- Requires<[UseSSE1]>;
- def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
- (!cast<Instruction>("V"#Name#"SDrm") FR64:$src1, addr:$src2)>,
- Requires<[UseAVX]>;
- def : Pat<(op FR64X:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
- (!cast<Instruction>("V"#Name#"SDZrm") FR64X:$src1, addr:$src2)>,
- Requires<[HasAVX512]>;
- }
- defm : ATOMIC_LOAD_FP_BINOP_MI<"ADD", fadd>;
- // FIXME: Add fsub, fmul, fdiv, ...
- multiclass RELEASE_UNOP<string Name, dag dag8, dag dag16, dag dag32,
- dag dag64> {
- def : Pat<(atomic_store_8 addr:$dst, dag8),
- (!cast<Instruction>(Name#8m) addr:$dst)>;
- def : Pat<(atomic_store_16 addr:$dst, dag16),
- (!cast<Instruction>(Name#16m) addr:$dst)>;
- def : Pat<(atomic_store_32 addr:$dst, dag32),
- (!cast<Instruction>(Name#32m) addr:$dst)>;
- def : Pat<(atomic_store_64 addr:$dst, dag64),
- (!cast<Instruction>(Name#64m) addr:$dst)>;
- }
- let Predicates = [UseIncDec] in {
- defm : RELEASE_UNOP<"INC",
- (add (atomic_load_8 addr:$dst), (i8 1)),
- (add (atomic_load_16 addr:$dst), (i16 1)),
- (add (atomic_load_32 addr:$dst), (i32 1)),
- (add (atomic_load_64 addr:$dst), (i64 1))>;
- defm : RELEASE_UNOP<"DEC",
- (add (atomic_load_8 addr:$dst), (i8 -1)),
- (add (atomic_load_16 addr:$dst), (i16 -1)),
- (add (atomic_load_32 addr:$dst), (i32 -1)),
- (add (atomic_load_64 addr:$dst), (i64 -1))>;
- }
- defm : RELEASE_UNOP<"NEG",
- (ineg (i8 (atomic_load_8 addr:$dst))),
- (ineg (i16 (atomic_load_16 addr:$dst))),
- (ineg (i32 (atomic_load_32 addr:$dst))),
- (ineg (i64 (atomic_load_64 addr:$dst)))>;
- defm : RELEASE_UNOP<"NOT",
- (not (i8 (atomic_load_8 addr:$dst))),
- (not (i16 (atomic_load_16 addr:$dst))),
- (not (i32 (atomic_load_32 addr:$dst))),
- (not (i64 (atomic_load_64 addr:$dst)))>;
- def : Pat<(atomic_store_8 addr:$dst, (i8 imm:$src)),
- (MOV8mi addr:$dst, imm:$src)>;
- def : Pat<(atomic_store_16 addr:$dst, (i16 imm:$src)),
- (MOV16mi addr:$dst, imm:$src)>;
- def : Pat<(atomic_store_32 addr:$dst, (i32 imm:$src)),
- (MOV32mi addr:$dst, imm:$src)>;
- def : Pat<(atomic_store_64 addr:$dst, (i64immSExt32:$src)),
- (MOV64mi32 addr:$dst, i64immSExt32:$src)>;
- def : Pat<(atomic_store_8 addr:$dst, GR8:$src),
- (MOV8mr addr:$dst, GR8:$src)>;
- def : Pat<(atomic_store_16 addr:$dst, GR16:$src),
- (MOV16mr addr:$dst, GR16:$src)>;
- def : Pat<(atomic_store_32 addr:$dst, GR32:$src),
- (MOV32mr addr:$dst, GR32:$src)>;
- def : Pat<(atomic_store_64 addr:$dst, GR64:$src),
- (MOV64mr addr:$dst, GR64:$src)>;
- def : Pat<(i8 (atomic_load_8 addr:$src)), (MOV8rm addr:$src)>;
- def : Pat<(i16 (atomic_load_16 addr:$src)), (MOV16rm addr:$src)>;
- def : Pat<(i32 (atomic_load_32 addr:$src)), (MOV32rm addr:$src)>;
- def : Pat<(i64 (atomic_load_64 addr:$src)), (MOV64rm addr:$src)>;
- // Floating point loads/stores.
- def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
- (MOVSSmr addr:$dst, FR32:$src)>, Requires<[UseSSE1]>;
- def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
- (VMOVSSmr addr:$dst, FR32:$src)>, Requires<[UseAVX]>;
- def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
- (VMOVSSZmr addr:$dst, FR32:$src)>, Requires<[HasAVX512]>;
- def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
- (MOVSDmr addr:$dst, FR64:$src)>, Requires<[UseSSE2]>;
- def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
- (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[UseAVX]>;
- def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
- (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[HasAVX512]>;
- def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
- (MOVSSrm_alt addr:$src)>, Requires<[UseSSE1]>;
- def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
- (VMOVSSrm_alt addr:$src)>, Requires<[UseAVX]>;
- def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
- (VMOVSSZrm_alt addr:$src)>, Requires<[HasAVX512]>;
- def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
- (MOVSDrm_alt addr:$src)>, Requires<[UseSSE2]>;
- def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
- (VMOVSDrm_alt addr:$src)>, Requires<[UseAVX]>;
- def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
- (VMOVSDZrm_alt addr:$src)>, Requires<[HasAVX512]>;
- //===----------------------------------------------------------------------===//
- // DAG Pattern Matching Rules
- //===----------------------------------------------------------------------===//
- // Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
- // binary size compared to a regular MOV, but it introduces an unnecessary
- // load, so is not suitable for regular or optsize functions.
- let Predicates = [OptForMinSize] in {
- def : Pat<(simple_store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
- def : Pat<(simple_store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
- def : Pat<(simple_store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
- def : Pat<(simple_store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
- def : Pat<(simple_store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
- def : Pat<(simple_store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
- }
- // In kernel code model, we can get the address of a label
- // into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
- // the MOV64ri32 should accept these.
- def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
- (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
- def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
- (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
- def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
- (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
- def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
- (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
- def : Pat<(i64 (X86Wrapper mcsym:$dst)),
- (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
- def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
- (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
- // If we have small model and -static mode, it is safe to store global addresses
- // directly as immediates. FIXME: This is really a hack, the 'imm' predicate
- // for MOV64mi32 should handle this sort of thing.
- def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
- (MOV64mi32 addr:$dst, tconstpool:$src)>,
- Requires<[NearData, IsNotPIC]>;
- def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
- (MOV64mi32 addr:$dst, tjumptable:$src)>,
- Requires<[NearData, IsNotPIC]>;
- def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
- (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
- Requires<[NearData, IsNotPIC]>;
- def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
- (MOV64mi32 addr:$dst, texternalsym:$src)>,
- Requires<[NearData, IsNotPIC]>;
- def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
- (MOV64mi32 addr:$dst, mcsym:$src)>,
- Requires<[NearData, IsNotPIC]>;
- def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
- (MOV64mi32 addr:$dst, tblockaddress:$src)>,
- Requires<[NearData, IsNotPIC]>;
- def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
- def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
- // Calls
- // tls has some funny stuff here...
- // This corresponds to movabs $foo@tpoff, %rax
- def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
- (MOV64ri32 tglobaltlsaddr :$dst)>;
- // This corresponds to add $foo@tpoff, %rax
- def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
- (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
- // Direct PC relative function call for small code model. 32-bit displacement
- // sign extended to 64-bit.
- def : Pat<(X86call (i64 tglobaladdr:$dst)),
- (CALL64pcrel32 tglobaladdr:$dst)>;
- def : Pat<(X86call (i64 texternalsym:$dst)),
- (CALL64pcrel32 texternalsym:$dst)>;
- def : Pat<(X86call_rvmarker (i64 tglobaladdr:$rvfunc), (i64 texternalsym:$dst)),
- (CALL64pcrel32_RVMARKER tglobaladdr:$rvfunc, texternalsym:$dst)>;
- def : Pat<(X86call_rvmarker (i64 tglobaladdr:$rvfunc), (i64 tglobaladdr:$dst)),
- (CALL64pcrel32_RVMARKER tglobaladdr:$rvfunc, tglobaladdr:$dst)>;
- // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
- // can never use callee-saved registers. That is the purpose of the GR64_TC
- // register classes.
- //
- // The only volatile register that is never used by the calling convention is
- // %r11. This happens when calling a vararg function with 6 arguments.
- //
- // Match an X86tcret that uses less than 7 volatile registers.
- def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
- (X86tcret node:$ptr, node:$off), [{
- // X86tcret args: (*chain, ptr, imm, regs..., glue)
- unsigned NumRegs = 0;
- for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
- if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
- return false;
- return true;
- }]>;
- def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
- (TCRETURNri ptr_rc_tailcall:$dst, timm:$off)>,
- Requires<[Not64BitMode, NotUseIndirectThunkCalls]>;
- // FIXME: This is disabled for 32-bit PIC mode because the global base
- // register which is part of the address mode may be assigned a
- // callee-saved register.
- def : Pat<(X86tcret (load addr:$dst), timm:$off),
- (TCRETURNmi addr:$dst, timm:$off)>,
- Requires<[Not64BitMode, IsNotPIC, NotUseIndirectThunkCalls]>;
- def : Pat<(X86tcret (i32 tglobaladdr:$dst), timm:$off),
- (TCRETURNdi tglobaladdr:$dst, timm:$off)>,
- Requires<[NotLP64]>;
- def : Pat<(X86tcret (i32 texternalsym:$dst), timm:$off),
- (TCRETURNdi texternalsym:$dst, timm:$off)>,
- Requires<[NotLP64]>;
- def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
- (TCRETURNri64 ptr_rc_tailcall:$dst, timm:$off)>,
- Requires<[In64BitMode, NotUseIndirectThunkCalls]>;
- // Don't fold loads into X86tcret requiring more than 6 regs.
- // There wouldn't be enough scratch registers for base+index.
- def : Pat<(X86tcret_6regs (load addr:$dst), timm:$off),
- (TCRETURNmi64 addr:$dst, timm:$off)>,
- Requires<[In64BitMode, NotUseIndirectThunkCalls]>;
- def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
- (INDIRECT_THUNK_TCRETURN64 ptr_rc_tailcall:$dst, timm:$off)>,
- Requires<[In64BitMode, UseIndirectThunkCalls]>;
- def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
- (INDIRECT_THUNK_TCRETURN32 ptr_rc_tailcall:$dst, timm:$off)>,
- Requires<[Not64BitMode, UseIndirectThunkCalls]>;
- def : Pat<(X86tcret (i64 tglobaladdr:$dst), timm:$off),
- (TCRETURNdi64 tglobaladdr:$dst, timm:$off)>,
- Requires<[IsLP64]>;
- def : Pat<(X86tcret (i64 texternalsym:$dst), timm:$off),
- (TCRETURNdi64 texternalsym:$dst, timm:$off)>,
- Requires<[IsLP64]>;
- // Normal calls, with various flavors of addresses.
- def : Pat<(X86call (i32 tglobaladdr:$dst)),
- (CALLpcrel32 tglobaladdr:$dst)>;
- def : Pat<(X86call (i32 texternalsym:$dst)),
- (CALLpcrel32 texternalsym:$dst)>;
- def : Pat<(X86call (i32 imm:$dst)),
- (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
- // Comparisons.
- // TEST R,R is smaller than CMP R,0
- def : Pat<(X86cmp GR8:$src1, 0),
- (TEST8rr GR8:$src1, GR8:$src1)>;
- def : Pat<(X86cmp GR16:$src1, 0),
- (TEST16rr GR16:$src1, GR16:$src1)>;
- def : Pat<(X86cmp GR32:$src1, 0),
- (TEST32rr GR32:$src1, GR32:$src1)>;
- def : Pat<(X86cmp GR64:$src1, 0),
- (TEST64rr GR64:$src1, GR64:$src1)>;
- // zextload bool -> zextload byte
- // i1 stored in one byte in zero-extended form.
- // Upper bits cleanup should be executed before Store.
- def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
- def : Pat<(zextloadi16i1 addr:$src),
- (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
- def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
- def : Pat<(zextloadi64i1 addr:$src),
- (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
- // extload bool -> extload byte
- // When extloading from 16-bit and smaller memory locations into 64-bit
- // registers, use zero-extending loads so that the entire 64-bit register is
- // defined, avoiding partial-register updates.
- def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
- def : Pat<(extloadi16i1 addr:$src),
- (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
- def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
- def : Pat<(extloadi16i8 addr:$src),
- (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
- def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
- def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
- // For other extloads, use subregs, since the high contents of the register are
- // defined after an extload.
- // NOTE: The extloadi64i32 pattern needs to be first as it will try to form
- // 32-bit loads for 4 byte aligned i8/i16 loads.
- def : Pat<(extloadi64i32 addr:$src),
- (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
- def : Pat<(extloadi64i1 addr:$src),
- (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
- def : Pat<(extloadi64i8 addr:$src),
- (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
- def : Pat<(extloadi64i16 addr:$src),
- (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
- // anyext. Define these to do an explicit zero-extend to
- // avoid partial-register updates.
- def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
- (MOVZX32rr8 GR8 :$src), sub_16bit)>;
- def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
- // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
- def : Pat<(i32 (anyext GR16:$src)),
- (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
- def : Pat<(i64 (anyext GR8 :$src)),
- (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
- def : Pat<(i64 (anyext GR16:$src)),
- (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
- def : Pat<(i64 (anyext GR32:$src)),
- (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>;
- // If this is an anyext of the remainder of an 8-bit sdivrem, use a MOVSX
- // instead of a MOVZX. The sdivrem lowering will emit emit a MOVSX to move
- // %ah to the lower byte of a register. By using a MOVSX here we allow a
- // post-isel peephole to merge the two MOVSX instructions into one.
- def anyext_sdiv : PatFrag<(ops node:$lhs), (anyext node:$lhs),[{
- return (N->getOperand(0).getOpcode() == ISD::SDIVREM &&
- N->getOperand(0).getResNo() == 1);
- }]>;
- def : Pat<(i32 (anyext_sdiv GR8:$src)), (MOVSX32rr8 GR8:$src)>;
- // Any instruction that defines a 32-bit result leaves the high half of the
- // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
- // be copying from a truncate. AssertSext/AssertZext/AssertAlign aren't saying
- // anything about the upper 32 bits, they're probably just qualifying a
- // CopyFromReg. FREEZE may be coming from a a truncate. Any other 32-bit
- // operation will zero-extend up to 64 bits.
- def def32 : PatLeaf<(i32 GR32:$src), [{
- return N->getOpcode() != ISD::TRUNCATE &&
- N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
- N->getOpcode() != ISD::CopyFromReg &&
- N->getOpcode() != ISD::AssertSext &&
- N->getOpcode() != ISD::AssertZext &&
- N->getOpcode() != ISD::AssertAlign &&
- N->getOpcode() != ISD::FREEZE;
- }]>;
- // In the case of a 32-bit def that is known to implicitly zero-extend,
- // we can use a SUBREG_TO_REG.
- def : Pat<(i64 (zext def32:$src)),
- (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
- def : Pat<(i64 (and (anyext def32:$src), 0x00000000FFFFFFFF)),
- (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
- //===----------------------------------------------------------------------===//
- // Pattern match OR as ADD
- //===----------------------------------------------------------------------===//
- // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
- // 3-addressified into an LEA instruction to avoid copies. However, we also
- // want to finally emit these instructions as an or at the end of the code
- // generator to make the generated code easier to read. To do this, we select
- // into "disjoint bits" pseudo ops.
- // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
- def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
- return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
- KnownBits Known0 = CurDAG->computeKnownBits(N->getOperand(0), 0);
- KnownBits Known1 = CurDAG->computeKnownBits(N->getOperand(1), 0);
- return (~Known0.Zero & ~Known1.Zero) == 0;
- }]>;
- // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
- // Try this before the selecting to OR.
- let SchedRW = [WriteALU] in {
- let isConvertibleToThreeAddress = 1, isPseudo = 1,
- Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
- let isCommutable = 1 in {
- def ADD8rr_DB : I<0, Pseudo, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
- "", // orb/addb REG, REG
- [(set GR8:$dst, (or_is_add GR8:$src1, GR8:$src2))]>;
- def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
- "", // orw/addw REG, REG
- [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
- def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
- "", // orl/addl REG, REG
- [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
- def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
- "", // orq/addq REG, REG
- [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
- } // isCommutable
- // NOTE: These are order specific, we want the ri8 forms to be listed
- // first so that they are slightly preferred to the ri forms.
- def ADD8ri_DB : I<0, Pseudo,
- (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
- "", // orb/addb REG, imm8
- [(set GR8:$dst, (or_is_add GR8:$src1, imm:$src2))]>;
- def ADD16ri8_DB : I<0, Pseudo,
- (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
- "", // orw/addw REG, imm8
- [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
- def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
- "", // orw/addw REG, imm
- [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
- def ADD32ri8_DB : I<0, Pseudo,
- (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
- "", // orl/addl REG, imm8
- [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
- def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
- "", // orl/addl REG, imm
- [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
- def ADD64ri8_DB : I<0, Pseudo,
- (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
- "", // orq/addq REG, imm8
- [(set GR64:$dst, (or_is_add GR64:$src1,
- i64immSExt8:$src2))]>;
- def ADD64ri32_DB : I<0, Pseudo,
- (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
- "", // orq/addq REG, imm
- [(set GR64:$dst, (or_is_add GR64:$src1,
- i64immSExt32:$src2))]>;
- }
- } // AddedComplexity, SchedRW
- //===----------------------------------------------------------------------===//
- // Pattern match SUB as XOR
- //===----------------------------------------------------------------------===//
- // An immediate in the LHS of a subtract can't be encoded in the instruction.
- // If there is no possibility of a borrow we can use an XOR instead of a SUB
- // to enable the immediate to be folded.
- // TODO: Move this to a DAG combine?
- def sub_is_xor : PatFrag<(ops node:$lhs, node:$rhs), (sub node:$lhs, node:$rhs),[{
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
- KnownBits Known = CurDAG->computeKnownBits(N->getOperand(1));
- // If all possible ones in the RHS are set in the LHS then there can't be
- // a borrow and we can use xor.
- return (~Known.Zero).isSubsetOf(CN->getAPIntValue());
- }
- return false;
- }]>;
- let AddedComplexity = 5 in {
- def : Pat<(sub_is_xor imm:$src2, GR8:$src1),
- (XOR8ri GR8:$src1, imm:$src2)>;
- def : Pat<(sub_is_xor i16immSExt8:$src2, GR16:$src1),
- (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
- def : Pat<(sub_is_xor imm:$src2, GR16:$src1),
- (XOR16ri GR16:$src1, imm:$src2)>;
- def : Pat<(sub_is_xor i32immSExt8:$src2, GR32:$src1),
- (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
- def : Pat<(sub_is_xor imm:$src2, GR32:$src1),
- (XOR32ri GR32:$src1, imm:$src2)>;
- def : Pat<(sub_is_xor i64immSExt8:$src2, GR64:$src1),
- (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
- def : Pat<(sub_is_xor i64immSExt32:$src2, GR64:$src1),
- (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
- }
- //===----------------------------------------------------------------------===//
- // Some peepholes
- //===----------------------------------------------------------------------===//
- // Odd encoding trick: -128 fits into an 8-bit immediate field while
- // +128 doesn't, so in this special case use a sub instead of an add.
- def : Pat<(add GR16:$src1, 128),
- (SUB16ri8 GR16:$src1, -128)>;
- def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
- (SUB16mi8 addr:$dst, -128)>;
- def : Pat<(add GR32:$src1, 128),
- (SUB32ri8 GR32:$src1, -128)>;
- def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
- (SUB32mi8 addr:$dst, -128)>;
- def : Pat<(add GR64:$src1, 128),
- (SUB64ri8 GR64:$src1, -128)>;
- def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
- (SUB64mi8 addr:$dst, -128)>;
- def : Pat<(X86add_flag_nocf GR16:$src1, 128),
- (SUB16ri8 GR16:$src1, -128)>;
- def : Pat<(X86add_flag_nocf GR32:$src1, 128),
- (SUB32ri8 GR32:$src1, -128)>;
- def : Pat<(X86add_flag_nocf GR64:$src1, 128),
- (SUB64ri8 GR64:$src1, -128)>;
- // The same trick applies for 32-bit immediate fields in 64-bit
- // instructions.
- def : Pat<(add GR64:$src1, 0x0000000080000000),
- (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
- def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
- (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
- def : Pat<(X86add_flag_nocf GR64:$src1, 0x0000000080000000),
- (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
- // To avoid needing to materialize an immediate in a register, use a 32-bit and
- // with implicit zero-extension instead of a 64-bit and if the immediate has at
- // least 32 bits of leading zeros. If in addition the last 32 bits can be
- // represented with a sign extension of a 8 bit constant, use that.
- // This can also reduce instruction size by eliminating the need for the REX
- // prefix.
- // AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
- let AddedComplexity = 1 in {
- def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
- (SUBREG_TO_REG
- (i64 0),
- (AND32ri8
- (EXTRACT_SUBREG GR64:$src, sub_32bit),
- (i32 (GetLo32XForm imm:$imm))),
- sub_32bit)>;
- def : Pat<(and GR64:$src, i64immZExt32:$imm),
- (SUBREG_TO_REG
- (i64 0),
- (AND32ri
- (EXTRACT_SUBREG GR64:$src, sub_32bit),
- (i32 (GetLo32XForm imm:$imm))),
- sub_32bit)>;
- } // AddedComplexity = 1
- // AddedComplexity is needed due to the increased complexity on the
- // i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
- // the MOVZX patterns keeps thems together in DAGIsel tables.
- let AddedComplexity = 1 in {
- // r & (2^16-1) ==> movz
- def : Pat<(and GR32:$src1, 0xffff),
- (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
- // r & (2^8-1) ==> movz
- def : Pat<(and GR32:$src1, 0xff),
- (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>;
- // r & (2^8-1) ==> movz
- def : Pat<(and GR16:$src1, 0xff),
- (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)),
- sub_16bit)>;
- // r & (2^32-1) ==> movz
- def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
- (SUBREG_TO_REG (i64 0),
- (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
- sub_32bit)>;
- // r & (2^16-1) ==> movz
- def : Pat<(and GR64:$src, 0xffff),
- (SUBREG_TO_REG (i64 0),
- (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
- sub_32bit)>;
- // r & (2^8-1) ==> movz
- def : Pat<(and GR64:$src, 0xff),
- (SUBREG_TO_REG (i64 0),
- (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
- sub_32bit)>;
- } // AddedComplexity = 1
- // Try to use BTS/BTR/BTC for single bit operations on the upper 32-bits.
- def BTRXForm : SDNodeXForm<imm, [{
- // Transformation function: Find the lowest 0.
- return getI64Imm((uint8_t)N->getAPIntValue().countTrailingOnes(), SDLoc(N));
- }]>;
- def BTCBTSXForm : SDNodeXForm<imm, [{
- // Transformation function: Find the lowest 1.
- return getI64Imm((uint8_t)N->getAPIntValue().countTrailingZeros(), SDLoc(N));
- }]>;
- def BTRMask64 : ImmLeaf<i64, [{
- return !isUInt<32>(Imm) && !isInt<32>(Imm) && isPowerOf2_64(~Imm);
- }]>;
- def BTCBTSMask64 : ImmLeaf<i64, [{
- return !isInt<32>(Imm) && isPowerOf2_64(Imm);
- }]>;
- // For now only do this for optsize.
- let AddedComplexity = 1, Predicates=[OptForSize] in {
- def : Pat<(and GR64:$src1, BTRMask64:$mask),
- (BTR64ri8 GR64:$src1, (BTRXForm imm:$mask))>;
- def : Pat<(or GR64:$src1, BTCBTSMask64:$mask),
- (BTS64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
- def : Pat<(xor GR64:$src1, BTCBTSMask64:$mask),
- (BTC64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
- }
- // sext_inreg patterns
- def : Pat<(sext_inreg GR32:$src, i16),
- (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
- def : Pat<(sext_inreg GR32:$src, i8),
- (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>;
- def : Pat<(sext_inreg GR16:$src, i8),
- (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)),
- sub_16bit)>;
- def : Pat<(sext_inreg GR64:$src, i32),
- (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
- def : Pat<(sext_inreg GR64:$src, i16),
- (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
- def : Pat<(sext_inreg GR64:$src, i8),
- (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
- // sext, sext_load, zext, zext_load
- def: Pat<(i16 (sext GR8:$src)),
- (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
- def: Pat<(sextloadi16i8 addr:$src),
- (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
- def: Pat<(i16 (zext GR8:$src)),
- (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
- def: Pat<(zextloadi16i8 addr:$src),
- (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
- // trunc patterns
- def : Pat<(i16 (trunc GR32:$src)),
- (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
- def : Pat<(i8 (trunc GR32:$src)),
- (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
- sub_8bit)>,
- Requires<[Not64BitMode]>;
- def : Pat<(i8 (trunc GR16:$src)),
- (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
- sub_8bit)>,
- Requires<[Not64BitMode]>;
- def : Pat<(i32 (trunc GR64:$src)),
- (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
- def : Pat<(i16 (trunc GR64:$src)),
- (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
- def : Pat<(i8 (trunc GR64:$src)),
- (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
- def : Pat<(i8 (trunc GR32:$src)),
- (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
- Requires<[In64BitMode]>;
- def : Pat<(i8 (trunc GR16:$src)),
- (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
- Requires<[In64BitMode]>;
- def immff00_ffff : ImmLeaf<i32, [{
- return Imm >= 0xff00 && Imm <= 0xffff;
- }]>;
- // h-register tricks
- def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
- (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
- Requires<[Not64BitMode]>;
- def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
- (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
- Requires<[Not64BitMode]>;
- def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
- (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>,
- Requires<[Not64BitMode]>;
- def : Pat<(srl GR16:$src, (i8 8)),
- (EXTRACT_SUBREG
- (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
- sub_16bit)>;
- def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
- (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
- def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
- (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
- def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
- (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
- def : Pat<(srl (and_su GR32:$src, immff00_ffff), (i8 8)),
- (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
- // h-register tricks.
- // For now, be conservative on x86-64 and use an h-register extract only if the
- // value is immediately zero-extended or stored, which are somewhat common
- // cases. This uses a bunch of code to prevent a register requiring a REX prefix
- // from being allocated in the same instruction as the h register, as there's
- // currently no way to describe this requirement to the register allocator.
- // h-register extract and zero-extend.
- def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
- (SUBREG_TO_REG
- (i64 0),
- (MOVZX32rr8_NOREX
- (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)),
- sub_32bit)>;
- def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
- (SUBREG_TO_REG
- (i64 0),
- (MOVZX32rr8_NOREX
- (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
- sub_32bit)>;
- def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
- (SUBREG_TO_REG
- (i64 0),
- (MOVZX32rr8_NOREX
- (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
- sub_32bit)>;
- // h-register extract and store.
- def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
- (MOV8mr_NOREX
- addr:$dst,
- (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>;
- def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
- (MOV8mr_NOREX
- addr:$dst,
- (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>,
- Requires<[In64BitMode]>;
- def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
- (MOV8mr_NOREX
- addr:$dst,
- (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>,
- Requires<[In64BitMode]>;
- // Special pattern to catch the last step of __builtin_parity handling. Our
- // goal is to use an xor of an h-register with the corresponding l-register.
- // The above patterns would handle this on non 64-bit targets, but for 64-bit
- // we need to be more careful. We're using a NOREX instruction here in case
- // register allocation fails to keep the two registers together. So we need to
- // make sure we can't accidentally mix R8-R15 with an h-register.
- def : Pat<(X86xor_flag (i8 (trunc GR32:$src)),
- (i8 (trunc (srl_su GR32:$src, (i8 8))))),
- (XOR8rr_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit),
- (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
- // (shl x, 1) ==> (add x, x)
- // Note that if x is undef (immediate or otherwise), we could theoretically
- // end up with the two uses of x getting different values, producing a result
- // where the least significant bit is not 0. However, the probability of this
- // happening is considered low enough that this is officially not a
- // "real problem".
- def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
- def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
- def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
- def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
- def shiftMask8 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
- return isUnneededShiftMask(N, 3);
- }]>;
- def shiftMask16 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
- return isUnneededShiftMask(N, 4);
- }]>;
- def shiftMask32 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
- return isUnneededShiftMask(N, 5);
- }]>;
- def shiftMask64 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
- return isUnneededShiftMask(N, 6);
- }]>;
- // Shift amount is implicitly masked.
- multiclass MaskedShiftAmountPats<SDNode frag, string name> {
- // (shift x (and y, 31)) ==> (shift x, y)
- def : Pat<(frag GR8:$src1, (shiftMask32 CL)),
- (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
- def : Pat<(frag GR16:$src1, (shiftMask32 CL)),
- (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
- def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
- (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
- def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask32 CL)), addr:$dst),
- (!cast<Instruction>(name # "8mCL") addr:$dst)>;
- def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask32 CL)), addr:$dst),
- (!cast<Instruction>(name # "16mCL") addr:$dst)>;
- def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
- (!cast<Instruction>(name # "32mCL") addr:$dst)>;
- // (shift x (and y, 63)) ==> (shift x, y)
- def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
- (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
- def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
- (!cast<Instruction>(name # "64mCL") addr:$dst)>;
- }
- defm : MaskedShiftAmountPats<shl, "SHL">;
- defm : MaskedShiftAmountPats<srl, "SHR">;
- defm : MaskedShiftAmountPats<sra, "SAR">;
- // ROL/ROR instructions allow a stronger mask optimization than shift for 8- and
- // 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount
- // because over-rotating produces the same result. This is noted in the Intel
- // docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation
- // amount could affect EFLAGS results, but that does not matter because we are
- // not tracking flags for these nodes.
- multiclass MaskedRotateAmountPats<SDNode frag, string name> {
- // (rot x (and y, BitWidth - 1)) ==> (rot x, y)
- def : Pat<(frag GR8:$src1, (shiftMask8 CL)),
- (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
- def : Pat<(frag GR16:$src1, (shiftMask16 CL)),
- (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
- def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
- (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
- def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask8 CL)), addr:$dst),
- (!cast<Instruction>(name # "8mCL") addr:$dst)>;
- def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask16 CL)), addr:$dst),
- (!cast<Instruction>(name # "16mCL") addr:$dst)>;
- def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
- (!cast<Instruction>(name # "32mCL") addr:$dst)>;
- // (rot x (and y, 63)) ==> (rot x, y)
- def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
- (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
- def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
- (!cast<Instruction>(name # "64mCL") addr:$dst)>;
- }
- defm : MaskedRotateAmountPats<rotl, "ROL">;
- defm : MaskedRotateAmountPats<rotr, "ROR">;
- // Double "funnel" shift amount is implicitly masked.
- // (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y) (NOTE: modulo32)
- def : Pat<(X86fshl GR16:$src1, GR16:$src2, (shiftMask32 CL)),
- (SHLD16rrCL GR16:$src1, GR16:$src2)>;
- def : Pat<(X86fshr GR16:$src2, GR16:$src1, (shiftMask32 CL)),
- (SHRD16rrCL GR16:$src1, GR16:$src2)>;
- // (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y)
- def : Pat<(fshl GR32:$src1, GR32:$src2, (shiftMask32 CL)),
- (SHLD32rrCL GR32:$src1, GR32:$src2)>;
- def : Pat<(fshr GR32:$src2, GR32:$src1, (shiftMask32 CL)),
- (SHRD32rrCL GR32:$src1, GR32:$src2)>;
- // (fshl/fshr x (and y, 63)) ==> (fshl/fshr x, y)
- def : Pat<(fshl GR64:$src1, GR64:$src2, (shiftMask64 CL)),
- (SHLD64rrCL GR64:$src1, GR64:$src2)>;
- def : Pat<(fshr GR64:$src2, GR64:$src1, (shiftMask64 CL)),
- (SHRD64rrCL GR64:$src1, GR64:$src2)>;
- let Predicates = [HasBMI2] in {
- let AddedComplexity = 1 in {
- def : Pat<(sra GR32:$src1, (shiftMask32 GR8:$src2)),
- (SARX32rr GR32:$src1,
- (INSERT_SUBREG
- (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(sra GR64:$src1, (shiftMask64 GR8:$src2)),
- (SARX64rr GR64:$src1,
- (INSERT_SUBREG
- (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(srl GR32:$src1, (shiftMask32 GR8:$src2)),
- (SHRX32rr GR32:$src1,
- (INSERT_SUBREG
- (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(srl GR64:$src1, (shiftMask64 GR8:$src2)),
- (SHRX64rr GR64:$src1,
- (INSERT_SUBREG
- (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(shl GR32:$src1, (shiftMask32 GR8:$src2)),
- (SHLX32rr GR32:$src1,
- (INSERT_SUBREG
- (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(shl GR64:$src1, (shiftMask64 GR8:$src2)),
- (SHLX64rr GR64:$src1,
- (INSERT_SUBREG
- (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- }
- def : Pat<(sra (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
- (SARX32rm addr:$src1,
- (INSERT_SUBREG
- (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(sra (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
- (SARX64rm addr:$src1,
- (INSERT_SUBREG
- (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(srl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
- (SHRX32rm addr:$src1,
- (INSERT_SUBREG
- (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(srl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
- (SHRX64rm addr:$src1,
- (INSERT_SUBREG
- (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(shl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
- (SHLX32rm addr:$src1,
- (INSERT_SUBREG
- (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(shl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
- (SHLX64rm addr:$src1,
- (INSERT_SUBREG
- (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- }
- // Use BTR/BTS/BTC for clearing/setting/toggling a bit in a variable location.
- multiclass one_bit_patterns<RegisterClass RC, ValueType VT, Instruction BTR,
- Instruction BTS, Instruction BTC,
- PatFrag ShiftMask> {
- def : Pat<(and RC:$src1, (rotl -2, GR8:$src2)),
- (BTR RC:$src1,
- (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(or RC:$src1, (shl 1, GR8:$src2)),
- (BTS RC:$src1,
- (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(xor RC:$src1, (shl 1, GR8:$src2)),
- (BTC RC:$src1,
- (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- // Similar to above, but removing unneeded masking of the shift amount.
- def : Pat<(and RC:$src1, (rotl -2, (ShiftMask GR8:$src2))),
- (BTR RC:$src1,
- (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(or RC:$src1, (shl 1, (ShiftMask GR8:$src2))),
- (BTS RC:$src1,
- (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- def : Pat<(xor RC:$src1, (shl 1, (ShiftMask GR8:$src2))),
- (BTC RC:$src1,
- (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
- }
- defm : one_bit_patterns<GR16, i16, BTR16rr, BTS16rr, BTC16rr, shiftMask16>;
- defm : one_bit_patterns<GR32, i32, BTR32rr, BTS32rr, BTC32rr, shiftMask32>;
- defm : one_bit_patterns<GR64, i64, BTR64rr, BTS64rr, BTC64rr, shiftMask64>;
- //===----------------------------------------------------------------------===//
- // EFLAGS-defining Patterns
- //===----------------------------------------------------------------------===//
- // add reg, reg
- def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
- def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
- def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
- def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>;
- // add reg, mem
- def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
- (ADD8rm GR8:$src1, addr:$src2)>;
- def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
- (ADD16rm GR16:$src1, addr:$src2)>;
- def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
- (ADD32rm GR32:$src1, addr:$src2)>;
- def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
- (ADD64rm GR64:$src1, addr:$src2)>;
- // add reg, imm
- def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
- def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
- def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
- def : Pat<(add GR16:$src1, i16immSExt8:$src2),
- (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
- def : Pat<(add GR32:$src1, i32immSExt8:$src2),
- (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
- def : Pat<(add GR64:$src1, i64immSExt8:$src2),
- (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
- def : Pat<(add GR64:$src1, i64immSExt32:$src2),
- (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
- // sub reg, reg
- def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
- def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
- def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
- def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>;
- // sub reg, mem
- def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
- (SUB8rm GR8:$src1, addr:$src2)>;
- def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
- (SUB16rm GR16:$src1, addr:$src2)>;
- def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
- (SUB32rm GR32:$src1, addr:$src2)>;
- def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
- (SUB64rm GR64:$src1, addr:$src2)>;
- // sub reg, imm
- def : Pat<(sub GR8:$src1, imm:$src2),
- (SUB8ri GR8:$src1, imm:$src2)>;
- def : Pat<(sub GR16:$src1, imm:$src2),
- (SUB16ri GR16:$src1, imm:$src2)>;
- def : Pat<(sub GR32:$src1, imm:$src2),
- (SUB32ri GR32:$src1, imm:$src2)>;
- def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
- (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
- def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
- (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
- def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
- (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
- def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
- (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
- // sub 0, reg
- def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
- def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
- def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
- def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
- // mul reg, reg
- def : Pat<(mul GR16:$src1, GR16:$src2),
- (IMUL16rr GR16:$src1, GR16:$src2)>;
- def : Pat<(mul GR32:$src1, GR32:$src2),
- (IMUL32rr GR32:$src1, GR32:$src2)>;
- def : Pat<(mul GR64:$src1, GR64:$src2),
- (IMUL64rr GR64:$src1, GR64:$src2)>;
- // mul reg, mem
- def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
- (IMUL16rm GR16:$src1, addr:$src2)>;
- def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
- (IMUL32rm GR32:$src1, addr:$src2)>;
- def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
- (IMUL64rm GR64:$src1, addr:$src2)>;
- // mul reg, imm
- def : Pat<(mul GR16:$src1, imm:$src2),
- (IMUL16rri GR16:$src1, imm:$src2)>;
- def : Pat<(mul GR32:$src1, imm:$src2),
- (IMUL32rri GR32:$src1, imm:$src2)>;
- def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
- (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
- def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
- (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
- def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
- (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
- def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
- (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
- // reg = mul mem, imm
- def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
- (IMUL16rmi addr:$src1, imm:$src2)>;
- def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
- (IMUL32rmi addr:$src1, imm:$src2)>;
- def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
- (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
- def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
- (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
- def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
- (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
- def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
- (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
- // Increment/Decrement reg.
- // Do not make INC/DEC if it is slow
- let Predicates = [UseIncDec] in {
- def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
- def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
- def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
- def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
- def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
- def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
- def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
- def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
- def : Pat<(X86add_flag_nocf GR8:$src, -1), (DEC8r GR8:$src)>;
- def : Pat<(X86add_flag_nocf GR16:$src, -1), (DEC16r GR16:$src)>;
- def : Pat<(X86add_flag_nocf GR32:$src, -1), (DEC32r GR32:$src)>;
- def : Pat<(X86add_flag_nocf GR64:$src, -1), (DEC64r GR64:$src)>;
- def : Pat<(X86sub_flag_nocf GR8:$src, -1), (INC8r GR8:$src)>;
- def : Pat<(X86sub_flag_nocf GR16:$src, -1), (INC16r GR16:$src)>;
- def : Pat<(X86sub_flag_nocf GR32:$src, -1), (INC32r GR32:$src)>;
- def : Pat<(X86sub_flag_nocf GR64:$src, -1), (INC64r GR64:$src)>;
- }
- // or reg/reg.
- def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
- def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
- def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
- def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
- // or reg/mem
- def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
- (OR8rm GR8:$src1, addr:$src2)>;
- def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
- (OR16rm GR16:$src1, addr:$src2)>;
- def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
- (OR32rm GR32:$src1, addr:$src2)>;
- def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
- (OR64rm GR64:$src1, addr:$src2)>;
- // or reg/imm
- def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
- def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
- def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
- def : Pat<(or GR16:$src1, i16immSExt8:$src2),
- (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
- def : Pat<(or GR32:$src1, i32immSExt8:$src2),
- (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
- def : Pat<(or GR64:$src1, i64immSExt8:$src2),
- (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
- def : Pat<(or GR64:$src1, i64immSExt32:$src2),
- (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
- // xor reg/reg
- def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
- def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
- def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
- def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
- // xor reg/mem
- def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
- (XOR8rm GR8:$src1, addr:$src2)>;
- def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
- (XOR16rm GR16:$src1, addr:$src2)>;
- def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
- (XOR32rm GR32:$src1, addr:$src2)>;
- def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
- (XOR64rm GR64:$src1, addr:$src2)>;
- // xor reg/imm
- def : Pat<(xor GR8:$src1, imm:$src2),
- (XOR8ri GR8:$src1, imm:$src2)>;
- def : Pat<(xor GR16:$src1, imm:$src2),
- (XOR16ri GR16:$src1, imm:$src2)>;
- def : Pat<(xor GR32:$src1, imm:$src2),
- (XOR32ri GR32:$src1, imm:$src2)>;
- def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
- (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
- def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
- (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
- def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
- (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
- def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
- (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
- // and reg/reg
- def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
- def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
- def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
- def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
- // and reg/mem
- def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
- (AND8rm GR8:$src1, addr:$src2)>;
- def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
- (AND16rm GR16:$src1, addr:$src2)>;
- def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
- (AND32rm GR32:$src1, addr:$src2)>;
- def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
- (AND64rm GR64:$src1, addr:$src2)>;
- // and reg/imm
- def : Pat<(and GR8:$src1, imm:$src2),
- (AND8ri GR8:$src1, imm:$src2)>;
- def : Pat<(and GR16:$src1, imm:$src2),
- (AND16ri GR16:$src1, imm:$src2)>;
- def : Pat<(and GR32:$src1, imm:$src2),
- (AND32ri GR32:$src1, imm:$src2)>;
- def : Pat<(and GR16:$src1, i16immSExt8:$src2),
- (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
- def : Pat<(and GR32:$src1, i32immSExt8:$src2),
- (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
- def : Pat<(and GR64:$src1, i64immSExt8:$src2),
- (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
- def : Pat<(and GR64:$src1, i64immSExt32:$src2),
- (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
- // Bit scan instruction patterns to match explicit zero-undef behavior.
- def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
- def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
- def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
- def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
- def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
- def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
- // When HasMOVBE is enabled it is possible to get a non-legalized
- // register-register 16 bit bswap. This maps it to a ROL instruction.
- let Predicates = [HasMOVBE] in {
- def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
- }
|