123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470 |
- //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "PPCTargetTransformInfo.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/CodeGen/BasicTTIImpl.h"
- #include "llvm/CodeGen/CostTable.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/TargetSchedule.h"
- #include "llvm/IR/IntrinsicsPowerPC.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- #include "llvm/Transforms/Utils/Local.h"
- using namespace llvm;
- #define DEBUG_TYPE "ppctti"
- static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
- cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
- // This is currently only used for the data prefetch pass
- static cl::opt<unsigned>
- CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
- cl::desc("The loop prefetch cache line size"));
- static cl::opt<bool>
- EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
- cl::desc("Enable using coldcc calling conv for cold "
- "internal functions"));
- static cl::opt<bool>
- LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
- cl::desc("Do not add instruction count to lsr cost model"));
- // The latency of mtctr is only justified if there are more than 4
- // comparisons that will be removed as a result.
- static cl::opt<unsigned>
- SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
- cl::desc("Loops with a constant trip count smaller than "
- "this value will not use the count register."));
- //===----------------------------------------------------------------------===//
- //
- // PPC cost model.
- //
- //===----------------------------------------------------------------------===//
- TargetTransformInfo::PopcntSupportKind
- PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
- assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
- if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
- return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
- TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
- return TTI::PSK_Software;
- }
- Optional<Instruction *>
- PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
- Intrinsic::ID IID = II.getIntrinsicID();
- switch (IID) {
- default:
- break;
- case Intrinsic::ppc_altivec_lvx:
- case Intrinsic::ppc_altivec_lvxl:
- // Turn PPC lvx -> load if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(
- II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
- &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
- Value *Ptr = IC.Builder.CreateBitCast(
- II.getArgOperand(0), PointerType::getUnqual(II.getType()));
- return new LoadInst(II.getType(), Ptr, "", false, Align(16));
- }
- break;
- case Intrinsic::ppc_vsx_lxvw4x:
- case Intrinsic::ppc_vsx_lxvd2x: {
- // Turn PPC VSX loads into normal loads.
- Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0),
- PointerType::getUnqual(II.getType()));
- return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
- }
- case Intrinsic::ppc_altivec_stvx:
- case Intrinsic::ppc_altivec_stvxl:
- // Turn stvx -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(
- II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
- &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
- Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
- Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
- return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
- }
- break;
- case Intrinsic::ppc_vsx_stxvw4x:
- case Intrinsic::ppc_vsx_stxvd2x: {
- // Turn PPC VSX stores into normal stores.
- Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
- Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
- return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
- }
- case Intrinsic::ppc_altivec_vperm:
- // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
- // Note that ppc_altivec_vperm has a big-endian bias, so when creating
- // a vectorshuffle for little endian, we must undo the transformation
- // performed on vec_perm in altivec.h. That is, we must complement
- // the permutation mask with respect to 31 and reverse the order of
- // V1 and V2.
- if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
- assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
- "Bad type for intrinsic!");
- // Check that all of the elements are integer constants or undefs.
- bool AllEltsOk = true;
- for (unsigned i = 0; i != 16; ++i) {
- Constant *Elt = Mask->getAggregateElement(i);
- if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
- AllEltsOk = false;
- break;
- }
- }
- if (AllEltsOk) {
- // Cast the input vectors to byte vectors.
- Value *Op0 =
- IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
- Value *Op1 =
- IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
- Value *Result = UndefValue::get(Op0->getType());
- // Only extract each element once.
- Value *ExtractedElts[32];
- memset(ExtractedElts, 0, sizeof(ExtractedElts));
- for (unsigned i = 0; i != 16; ++i) {
- if (isa<UndefValue>(Mask->getAggregateElement(i)))
- continue;
- unsigned Idx =
- cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
- Idx &= 31; // Match the hardware behavior.
- if (DL.isLittleEndian())
- Idx = 31 - Idx;
- if (!ExtractedElts[Idx]) {
- Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
- Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
- ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
- Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
- }
- // Insert this value into the result vector.
- Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
- IC.Builder.getInt32(i));
- }
- return CastInst::Create(Instruction::BitCast, Result, II.getType());
- }
- }
- break;
- }
- return None;
- }
- InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
- TTI::TargetCostKind CostKind) {
- if (DisablePPCConstHoist)
- return BaseT::getIntImmCost(Imm, Ty, CostKind);
- assert(Ty->isIntegerTy());
- unsigned BitSize = Ty->getPrimitiveSizeInBits();
- if (BitSize == 0)
- return ~0U;
- if (Imm == 0)
- return TTI::TCC_Free;
- if (Imm.getBitWidth() <= 64) {
- if (isInt<16>(Imm.getSExtValue()))
- return TTI::TCC_Basic;
- if (isInt<32>(Imm.getSExtValue())) {
- // A constant that can be materialized using lis.
- if ((Imm.getZExtValue() & 0xFFFF) == 0)
- return TTI::TCC_Basic;
- return 2 * TTI::TCC_Basic;
- }
- }
- return 4 * TTI::TCC_Basic;
- }
- InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
- const APInt &Imm, Type *Ty,
- TTI::TargetCostKind CostKind) {
- if (DisablePPCConstHoist)
- return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
- assert(Ty->isIntegerTy());
- unsigned BitSize = Ty->getPrimitiveSizeInBits();
- if (BitSize == 0)
- return ~0U;
- switch (IID) {
- default:
- return TTI::TCC_Free;
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
- return TTI::TCC_Free;
- break;
- case Intrinsic::experimental_stackmap:
- if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
- return TTI::TCC_Free;
- break;
- case Intrinsic::experimental_patchpoint_void:
- case Intrinsic::experimental_patchpoint_i64:
- if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
- return TTI::TCC_Free;
- break;
- }
- return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
- }
- InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
- const APInt &Imm, Type *Ty,
- TTI::TargetCostKind CostKind,
- Instruction *Inst) {
- if (DisablePPCConstHoist)
- return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
- assert(Ty->isIntegerTy());
- unsigned BitSize = Ty->getPrimitiveSizeInBits();
- if (BitSize == 0)
- return ~0U;
- unsigned ImmIdx = ~0U;
- bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
- ZeroFree = false;
- switch (Opcode) {
- default:
- return TTI::TCC_Free;
- case Instruction::GetElementPtr:
- // Always hoist the base address of a GetElementPtr. This prevents the
- // creation of new constants for every base constant that gets constant
- // folded with the offset.
- if (Idx == 0)
- return 2 * TTI::TCC_Basic;
- return TTI::TCC_Free;
- case Instruction::And:
- RunFree = true; // (for the rotate-and-mask instructions)
- LLVM_FALLTHROUGH;
- case Instruction::Add:
- case Instruction::Or:
- case Instruction::Xor:
- ShiftedFree = true;
- LLVM_FALLTHROUGH;
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- ImmIdx = 1;
- break;
- case Instruction::ICmp:
- UnsignedFree = true;
- ImmIdx = 1;
- // Zero comparisons can use record-form instructions.
- LLVM_FALLTHROUGH;
- case Instruction::Select:
- ZeroFree = true;
- break;
- case Instruction::PHI:
- case Instruction::Call:
- case Instruction::Ret:
- case Instruction::Load:
- case Instruction::Store:
- break;
- }
- if (ZeroFree && Imm == 0)
- return TTI::TCC_Free;
- if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
- if (isInt<16>(Imm.getSExtValue()))
- return TTI::TCC_Free;
- if (RunFree) {
- if (Imm.getBitWidth() <= 32 &&
- (isShiftedMask_32(Imm.getZExtValue()) ||
- isShiftedMask_32(~Imm.getZExtValue())))
- return TTI::TCC_Free;
- if (ST->isPPC64() &&
- (isShiftedMask_64(Imm.getZExtValue()) ||
- isShiftedMask_64(~Imm.getZExtValue())))
- return TTI::TCC_Free;
- }
- if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
- return TTI::TCC_Free;
- if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
- return TTI::TCC_Free;
- }
- return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
- }
- // Check if the current Type is an MMA vector type. Valid MMA types are
- // v256i1 and v512i1 respectively.
- static bool isMMAType(Type *Ty) {
- return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) &&
- (Ty->getPrimitiveSizeInBits() > 128);
- }
- InstructionCost PPCTTIImpl::getUserCost(const User *U,
- ArrayRef<const Value *> Operands,
- TTI::TargetCostKind CostKind) {
- // We already implement getCastInstrCost and getMemoryOpCost where we perform
- // the vector adjustment there.
- if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
- return BaseT::getUserCost(U, Operands, CostKind);
- if (U->getType()->isVectorTy()) {
- // Instructions that need to be split should cost more.
- std::pair<InstructionCost, MVT> LT =
- TLI->getTypeLegalizationCost(DL, U->getType());
- return LT.first * BaseT::getUserCost(U, Operands, CostKind);
- }
- return BaseT::getUserCost(U, Operands, CostKind);
- }
- // Determining the address of a TLS variable results in a function call in
- // certain TLS models.
- static bool memAddrUsesCTR(const Value *MemAddr, const PPCTargetMachine &TM,
- SmallPtrSetImpl<const Value *> &Visited) {
- // No need to traverse again if we already checked this operand.
- if (!Visited.insert(MemAddr).second)
- return false;
- const auto *GV = dyn_cast<GlobalValue>(MemAddr);
- if (!GV) {
- // Recurse to check for constants that refer to TLS global variables.
- if (const auto *CV = dyn_cast<Constant>(MemAddr))
- for (const auto &CO : CV->operands())
- if (memAddrUsesCTR(CO, TM, Visited))
- return true;
- return false;
- }
- if (!GV->isThreadLocal())
- return false;
- TLSModel::Model Model = TM.getTLSModel(GV);
- return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic;
- }
- bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo,
- SmallPtrSetImpl<const Value *> &Visited) {
- const PPCTargetMachine &TM = ST->getTargetMachine();
- // Loop through the inline asm constraints and look for something that
- // clobbers ctr.
- auto asmClobbersCTR = [](InlineAsm *IA) {
- InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
- for (const InlineAsm::ConstraintInfo &C : CIV) {
- if (C.Type != InlineAsm::isInput)
- for (const auto &Code : C.Codes)
- if (StringRef(Code).equals_insensitive("{ctr}"))
- return true;
- }
- return false;
- };
- auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) {
- if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
- return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
- return false;
- };
- auto supportedHalfPrecisionOp = [](Instruction *Inst) {
- switch (Inst->getOpcode()) {
- default:
- return false;
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::Load:
- case Instruction::Store:
- case Instruction::FPToUI:
- case Instruction::UIToFP:
- case Instruction::FPToSI:
- case Instruction::SIToFP:
- return true;
- }
- };
- for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
- J != JE; ++J) {
- // There are no direct operations on half precision so assume that
- // anything with that type requires a call except for a few select
- // operations with Power9.
- if (Instruction *CurrInst = dyn_cast<Instruction>(J)) {
- for (const auto &Op : CurrInst->operands()) {
- if (Op->getType()->getScalarType()->isHalfTy() ||
- CurrInst->getType()->getScalarType()->isHalfTy())
- return !(ST->isISA3_0() && supportedHalfPrecisionOp(CurrInst));
- }
- }
- if (CallInst *CI = dyn_cast<CallInst>(J)) {
- // Inline ASM is okay, unless it clobbers the ctr register.
- if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) {
- if (asmClobbersCTR(IA))
- return true;
- continue;
- }
- if (Function *F = CI->getCalledFunction()) {
- // Most intrinsics don't become function calls, but some might.
- // sin, cos, exp and log are always calls.
- unsigned Opcode = 0;
- if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
- switch (F->getIntrinsicID()) {
- default: continue;
- // If we have a call to loop_decrement or set_loop_iterations,
- // we're definitely using CTR.
- case Intrinsic::set_loop_iterations:
- case Intrinsic::loop_decrement:
- return true;
- // Binary operations on 128-bit value will use CTR.
- case Intrinsic::experimental_constrained_fadd:
- case Intrinsic::experimental_constrained_fsub:
- case Intrinsic::experimental_constrained_fmul:
- case Intrinsic::experimental_constrained_fdiv:
- case Intrinsic::experimental_constrained_frem:
- if (F->getType()->getScalarType()->isFP128Ty() ||
- F->getType()->getScalarType()->isPPC_FP128Ty())
- return true;
- break;
- case Intrinsic::experimental_constrained_fptosi:
- case Intrinsic::experimental_constrained_fptoui:
- case Intrinsic::experimental_constrained_sitofp:
- case Intrinsic::experimental_constrained_uitofp: {
- Type *SrcType = CI->getArgOperand(0)->getType()->getScalarType();
- Type *DstType = CI->getType()->getScalarType();
- if (SrcType->isPPC_FP128Ty() || DstType->isPPC_FP128Ty() ||
- isLargeIntegerTy(!TM.isPPC64(), SrcType) ||
- isLargeIntegerTy(!TM.isPPC64(), DstType))
- return true;
- break;
- }
- // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
- // because, although it does clobber the counter register, the
- // control can't then return to inside the loop unless there is also
- // an eh_sjlj_setjmp.
- case Intrinsic::eh_sjlj_setjmp:
- case Intrinsic::memcpy:
- case Intrinsic::memmove:
- case Intrinsic::memset:
- case Intrinsic::powi:
- case Intrinsic::log:
- case Intrinsic::log2:
- case Intrinsic::log10:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::pow:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::experimental_constrained_powi:
- case Intrinsic::experimental_constrained_log:
- case Intrinsic::experimental_constrained_log2:
- case Intrinsic::experimental_constrained_log10:
- case Intrinsic::experimental_constrained_exp:
- case Intrinsic::experimental_constrained_exp2:
- case Intrinsic::experimental_constrained_pow:
- case Intrinsic::experimental_constrained_sin:
- case Intrinsic::experimental_constrained_cos:
- return true;
- case Intrinsic::copysign:
- if (CI->getArgOperand(0)->getType()->getScalarType()->
- isPPC_FP128Ty())
- return true;
- else
- continue; // ISD::FCOPYSIGN is never a library call.
- case Intrinsic::fmuladd:
- case Intrinsic::fma: Opcode = ISD::FMA; break;
- case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
- case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
- case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
- case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
- case Intrinsic::rint: Opcode = ISD::FRINT; break;
- case Intrinsic::lrint: Opcode = ISD::LRINT; break;
- case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
- case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
- case Intrinsic::round: Opcode = ISD::FROUND; break;
- case Intrinsic::lround: Opcode = ISD::LROUND; break;
- case Intrinsic::llround: Opcode = ISD::LLROUND; break;
- case Intrinsic::minnum: Opcode = ISD::FMINNUM; break;
- case Intrinsic::maxnum: Opcode = ISD::FMAXNUM; break;
- case Intrinsic::experimental_constrained_fcmp:
- Opcode = ISD::STRICT_FSETCC;
- break;
- case Intrinsic::experimental_constrained_fcmps:
- Opcode = ISD::STRICT_FSETCCS;
- break;
- case Intrinsic::experimental_constrained_fma:
- Opcode = ISD::STRICT_FMA;
- break;
- case Intrinsic::experimental_constrained_sqrt:
- Opcode = ISD::STRICT_FSQRT;
- break;
- case Intrinsic::experimental_constrained_floor:
- Opcode = ISD::STRICT_FFLOOR;
- break;
- case Intrinsic::experimental_constrained_ceil:
- Opcode = ISD::STRICT_FCEIL;
- break;
- case Intrinsic::experimental_constrained_trunc:
- Opcode = ISD::STRICT_FTRUNC;
- break;
- case Intrinsic::experimental_constrained_rint:
- Opcode = ISD::STRICT_FRINT;
- break;
- case Intrinsic::experimental_constrained_lrint:
- Opcode = ISD::STRICT_LRINT;
- break;
- case Intrinsic::experimental_constrained_llrint:
- Opcode = ISD::STRICT_LLRINT;
- break;
- case Intrinsic::experimental_constrained_nearbyint:
- Opcode = ISD::STRICT_FNEARBYINT;
- break;
- case Intrinsic::experimental_constrained_round:
- Opcode = ISD::STRICT_FROUND;
- break;
- case Intrinsic::experimental_constrained_lround:
- Opcode = ISD::STRICT_LROUND;
- break;
- case Intrinsic::experimental_constrained_llround:
- Opcode = ISD::STRICT_LLROUND;
- break;
- case Intrinsic::experimental_constrained_minnum:
- Opcode = ISD::STRICT_FMINNUM;
- break;
- case Intrinsic::experimental_constrained_maxnum:
- Opcode = ISD::STRICT_FMAXNUM;
- break;
- case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO; break;
- case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO; break;
- }
- }
- // PowerPC does not use [US]DIVREM or other library calls for
- // operations on regular types which are not otherwise library calls
- // (i.e. soft float or atomics). If adapting for targets that do,
- // additional care is required here.
- LibFunc Func;
- if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
- LibInfo->getLibFunc(F->getName(), Func) &&
- LibInfo->hasOptimizedCodeGen(Func)) {
- // Non-read-only functions are never treated as intrinsics.
- if (!CI->onlyReadsMemory())
- return true;
- // Conversion happens only for FP calls.
- if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
- return true;
- switch (Func) {
- default: return true;
- case LibFunc_copysign:
- case LibFunc_copysignf:
- continue; // ISD::FCOPYSIGN is never a library call.
- case LibFunc_copysignl:
- return true;
- case LibFunc_fabs:
- case LibFunc_fabsf:
- case LibFunc_fabsl:
- continue; // ISD::FABS is never a library call.
- case LibFunc_sqrt:
- case LibFunc_sqrtf:
- case LibFunc_sqrtl:
- Opcode = ISD::FSQRT; break;
- case LibFunc_floor:
- case LibFunc_floorf:
- case LibFunc_floorl:
- Opcode = ISD::FFLOOR; break;
- case LibFunc_nearbyint:
- case LibFunc_nearbyintf:
- case LibFunc_nearbyintl:
- Opcode = ISD::FNEARBYINT; break;
- case LibFunc_ceil:
- case LibFunc_ceilf:
- case LibFunc_ceill:
- Opcode = ISD::FCEIL; break;
- case LibFunc_rint:
- case LibFunc_rintf:
- case LibFunc_rintl:
- Opcode = ISD::FRINT; break;
- case LibFunc_round:
- case LibFunc_roundf:
- case LibFunc_roundl:
- Opcode = ISD::FROUND; break;
- case LibFunc_trunc:
- case LibFunc_truncf:
- case LibFunc_truncl:
- Opcode = ISD::FTRUNC; break;
- case LibFunc_fmin:
- case LibFunc_fminf:
- case LibFunc_fminl:
- Opcode = ISD::FMINNUM; break;
- case LibFunc_fmax:
- case LibFunc_fmaxf:
- case LibFunc_fmaxl:
- Opcode = ISD::FMAXNUM; break;
- }
- }
- if (Opcode) {
- EVT EVTy =
- TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true);
- if (EVTy == MVT::Other)
- return true;
- if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
- continue;
- else if (EVTy.isVector() &&
- TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
- continue;
- return true;
- }
- }
- return true;
- } else if ((J->getType()->getScalarType()->isFP128Ty() ||
- J->getType()->getScalarType()->isPPC_FP128Ty())) {
- // Most operations on f128 or ppc_f128 values become calls.
- return true;
- } else if (isa<FCmpInst>(J) &&
- J->getOperand(0)->getType()->getScalarType()->isFP128Ty()) {
- return true;
- } else if ((isa<FPTruncInst>(J) || isa<FPExtInst>(J)) &&
- (cast<CastInst>(J)->getSrcTy()->getScalarType()->isFP128Ty() ||
- cast<CastInst>(J)->getDestTy()->getScalarType()->isFP128Ty())) {
- return true;
- } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
- isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
- CastInst *CI = cast<CastInst>(J);
- if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
- CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
- isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) ||
- isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType()))
- return true;
- } else if (isLargeIntegerTy(!TM.isPPC64(),
- J->getType()->getScalarType()) &&
- (J->getOpcode() == Instruction::UDiv ||
- J->getOpcode() == Instruction::SDiv ||
- J->getOpcode() == Instruction::URem ||
- J->getOpcode() == Instruction::SRem)) {
- return true;
- } else if (!TM.isPPC64() &&
- isLargeIntegerTy(false, J->getType()->getScalarType()) &&
- (J->getOpcode() == Instruction::Shl ||
- J->getOpcode() == Instruction::AShr ||
- J->getOpcode() == Instruction::LShr)) {
- // Only on PPC32, for 128-bit integers (specifically not 64-bit
- // integers), these might be runtime calls.
- return true;
- } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
- // On PowerPC, indirect jumps use the counter register.
- return true;
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
- if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
- return true;
- }
- // FREM is always a call.
- if (J->getOpcode() == Instruction::FRem)
- return true;
- if (ST->useSoftFloat()) {
- switch(J->getOpcode()) {
- case Instruction::FAdd:
- case Instruction::FSub:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FCmp:
- return true;
- }
- }
- for (Value *Operand : J->operands())
- if (memAddrUsesCTR(Operand, TM, Visited))
- return true;
- }
- return false;
- }
- bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
- AssumptionCache &AC,
- TargetLibraryInfo *LibInfo,
- HardwareLoopInfo &HWLoopInfo) {
- const PPCTargetMachine &TM = ST->getTargetMachine();
- TargetSchedModel SchedModel;
- SchedModel.init(ST);
- // Do not convert small short loops to CTR loop.
- unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
- if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
- SmallPtrSet<const Value *, 32> EphValues;
- CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
- CodeMetrics Metrics;
- for (BasicBlock *BB : L->blocks())
- Metrics.analyzeBasicBlock(BB, *this, EphValues);
- // 6 is an approximate latency for the mtctr instruction.
- if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
- return false;
- }
- // We don't want to spill/restore the counter register, and so we don't
- // want to use the counter register if the loop contains calls.
- SmallPtrSet<const Value *, 4> Visited;
- for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
- I != IE; ++I)
- if (mightUseCTR(*I, LibInfo, Visited))
- return false;
- SmallVector<BasicBlock*, 4> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- // If there is an exit edge known to be frequently taken,
- // we should not transform this loop.
- for (auto &BB : ExitingBlocks) {
- Instruction *TI = BB->getTerminator();
- if (!TI) continue;
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- uint64_t TrueWeight = 0, FalseWeight = 0;
- if (!BI->isConditional() ||
- !BI->extractProfMetadata(TrueWeight, FalseWeight))
- continue;
- // If the exit path is more frequent than the loop path,
- // we return here without further analysis for this loop.
- bool TrueIsExit = !L->contains(BI->getSuccessor(0));
- if (( TrueIsExit && FalseWeight < TrueWeight) ||
- (!TrueIsExit && FalseWeight > TrueWeight))
- return false;
- }
- }
- // If an exit block has a PHI that accesses a TLS variable as one of the
- // incoming values from the loop, we cannot produce a CTR loop because the
- // address for that value will be computed in the loop.
- SmallVector<BasicBlock *, 4> ExitBlocks;
- L->getExitBlocks(ExitBlocks);
- for (auto &BB : ExitBlocks) {
- for (auto &PHI : BB->phis()) {
- for (int Idx = 0, EndIdx = PHI.getNumIncomingValues(); Idx < EndIdx;
- Idx++) {
- const BasicBlock *IncomingBB = PHI.getIncomingBlock(Idx);
- const Value *IncomingValue = PHI.getIncomingValue(Idx);
- if (L->contains(IncomingBB) &&
- memAddrUsesCTR(IncomingValue, TM, Visited))
- return false;
- }
- }
- }
- LLVMContext &C = L->getHeader()->getContext();
- HWLoopInfo.CountType = TM.isPPC64() ?
- Type::getInt64Ty(C) : Type::getInt32Ty(C);
- HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
- return true;
- }
- void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
- TTI::UnrollingPreferences &UP,
- OptimizationRemarkEmitter *ORE) {
- if (ST->getCPUDirective() == PPC::DIR_A2) {
- // The A2 is in-order with a deep pipeline, and concatenation unrolling
- // helps expose latency-hiding opportunities to the instruction scheduler.
- UP.Partial = UP.Runtime = true;
- // We unroll a lot on the A2 (hundreds of instructions), and the benefits
- // often outweigh the cost of a division to compute the trip count.
- UP.AllowExpensiveTripCount = true;
- }
- BaseT::getUnrollingPreferences(L, SE, UP, ORE);
- }
- void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
- TTI::PeelingPreferences &PP) {
- BaseT::getPeelingPreferences(L, SE, PP);
- }
- // This function returns true to allow using coldcc calling convention.
- // Returning true results in coldcc being used for functions which are cold at
- // all call sites when the callers of the functions are not calling any other
- // non coldcc functions.
- bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
- return EnablePPCColdCC;
- }
- bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
- // On the A2, always unroll aggressively.
- if (ST->getCPUDirective() == PPC::DIR_A2)
- return true;
- return LoopHasReductions;
- }
- PPCTTIImpl::TTI::MemCmpExpansionOptions
- PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
- TTI::MemCmpExpansionOptions Options;
- Options.LoadSizes = {8, 4, 2, 1};
- Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
- return Options;
- }
- bool PPCTTIImpl::enableInterleavedAccessVectorization() {
- return true;
- }
- unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
- assert(ClassID == GPRRC || ClassID == FPRRC ||
- ClassID == VRRC || ClassID == VSXRC);
- if (ST->hasVSX()) {
- assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
- return ClassID == VSXRC ? 64 : 32;
- }
- assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
- return 32;
- }
- unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
- if (Vector)
- return ST->hasVSX() ? VSXRC : VRRC;
- else if (Ty && (Ty->getScalarType()->isFloatTy() ||
- Ty->getScalarType()->isDoubleTy()))
- return ST->hasVSX() ? VSXRC : FPRRC;
- else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
- Ty->getScalarType()->isPPC_FP128Ty()))
- return VRRC;
- else if (Ty && Ty->getScalarType()->isHalfTy())
- return VSXRC;
- else
- return GPRRC;
- }
- const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
- switch (ClassID) {
- default:
- llvm_unreachable("unknown register class");
- return "PPC::unknown register class";
- case GPRRC: return "PPC::GPRRC";
- case FPRRC: return "PPC::FPRRC";
- case VRRC: return "PPC::VRRC";
- case VSXRC: return "PPC::VSXRC";
- }
- }
- TypeSize
- PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
- switch (K) {
- case TargetTransformInfo::RGK_Scalar:
- return TypeSize::getFixed(ST->isPPC64() ? 64 : 32);
- case TargetTransformInfo::RGK_FixedWidthVector:
- return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0);
- case TargetTransformInfo::RGK_ScalableVector:
- return TypeSize::getScalable(0);
- }
- llvm_unreachable("Unsupported register kind");
- }
- unsigned PPCTTIImpl::getCacheLineSize() const {
- // Check first if the user specified a custom line size.
- if (CacheLineSize.getNumOccurrences() > 0)
- return CacheLineSize;
- // Starting with P7 we have a cache line size of 128.
- unsigned Directive = ST->getCPUDirective();
- // Assume that Future CPU has the same cache line size as the others.
- if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
- Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
- Directive == PPC::DIR_PWR_FUTURE)
- return 128;
- // On other processors return a default of 64 bytes.
- return 64;
- }
- unsigned PPCTTIImpl::getPrefetchDistance() const {
- return 300;
- }
- unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
- unsigned Directive = ST->getCPUDirective();
- // The 440 has no SIMD support, but floating-point instructions
- // have a 5-cycle latency, so unroll by 5x for latency hiding.
- if (Directive == PPC::DIR_440)
- return 5;
- // The A2 has no SIMD support, but floating-point instructions
- // have a 6-cycle latency, so unroll by 6x for latency hiding.
- if (Directive == PPC::DIR_A2)
- return 6;
- // FIXME: For lack of any better information, do no harm...
- if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
- return 1;
- // For P7 and P8, floating-point instructions have a 6-cycle latency and
- // there are two execution units, so unroll by 12x for latency hiding.
- // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
- // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
- // Assume that future is the same as the others.
- if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
- Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
- Directive == PPC::DIR_PWR_FUTURE)
- return 12;
- // For most things, modern systems have two execution units (and
- // out-of-order execution).
- return 2;
- }
- // Returns a cost adjustment factor to adjust the cost of vector instructions
- // on targets which there is overlap between the vector and scalar units,
- // thereby reducing the overall throughput of vector code wrt. scalar code.
- // An invalid instruction cost is returned if the type is an MMA vector type.
- InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode,
- Type *Ty1, Type *Ty2) {
- // If the vector type is of an MMA type (v256i1, v512i1), an invalid
- // instruction cost is returned. This is to signify to other cost computing
- // functions to return the maximum instruction cost in order to prevent any
- // opportunities for the optimizer to produce MMA types within the IR.
- if (isMMAType(Ty1))
- return InstructionCost::getInvalid();
- if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
- return InstructionCost(1);
- std::pair<InstructionCost, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
- // If type legalization involves splitting the vector, we don't want to
- // double the cost at every step - only the last step.
- if (LT1.first != 1 || !LT1.second.isVector())
- return InstructionCost(1);
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- if (TLI->isOperationExpand(ISD, LT1.second))
- return InstructionCost(1);
- if (Ty2) {
- std::pair<InstructionCost, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
- if (LT2.first != 1 || !LT2.second.isVector())
- return InstructionCost(1);
- }
- return InstructionCost(2);
- }
- InstructionCost PPCTTIImpl::getArithmeticInstrCost(
- unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
- TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
- TTI::OperandValueProperties Opd1PropInfo,
- TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
- const Instruction *CxtI) {
- assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
- InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr);
- if (!CostFactor.isValid())
- return InstructionCost::getMax();
- // TODO: Handle more cost kinds.
- if (CostKind != TTI::TCK_RecipThroughput)
- return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
- Op2Info, Opd1PropInfo,
- Opd2PropInfo, Args, CxtI);
- // Fallback to the default implementation.
- InstructionCost Cost = BaseT::getArithmeticInstrCost(
- Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
- return Cost * CostFactor;
- }
- InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
- ArrayRef<int> Mask, int Index,
- Type *SubTp) {
- InstructionCost CostFactor =
- vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr);
- if (!CostFactor.isValid())
- return InstructionCost::getMax();
- // Legalize the type.
- std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
- // PPC, for both Altivec/VSX, support cheap arbitrary permutations
- // (at least in the sense that there need only be one non-loop-invariant
- // instruction). We need one such shuffle instruction for each actual
- // register (this is not true for arbitrary shuffles, but is true for the
- // structured types of shuffles covered by TTI::ShuffleKind).
- return LT.first * CostFactor;
- }
- InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- if (CostKind != TTI::TCK_RecipThroughput)
- return Opcode == Instruction::PHI ? 0 : 1;
- // Branches are assumed to be predicted.
- return 0;
- }
- InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
- Type *Src,
- TTI::CastContextHint CCH,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
- InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src);
- if (!CostFactor.isValid())
- return InstructionCost::getMax();
- InstructionCost Cost =
- BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
- Cost *= CostFactor;
- // TODO: Allow non-throughput costs that aren't binary.
- if (CostKind != TTI::TCK_RecipThroughput)
- return Cost == 0 ? 0 : 1;
- return Cost;
- }
- InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy,
- CmpInst::Predicate VecPred,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- InstructionCost CostFactor =
- vectorCostAdjustmentFactor(Opcode, ValTy, nullptr);
- if (!CostFactor.isValid())
- return InstructionCost::getMax();
- InstructionCost Cost =
- BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
- // TODO: Handle other cost kinds.
- if (CostKind != TTI::TCK_RecipThroughput)
- return Cost;
- return Cost * CostFactor;
- }
- InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index) {
- assert(Val->isVectorTy() && "This must be a vector type");
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr);
- if (!CostFactor.isValid())
- return InstructionCost::getMax();
- InstructionCost Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
- Cost *= CostFactor;
- if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
- // Double-precision scalars are already located in index #0 (or #1 if LE).
- if (ISD == ISD::EXTRACT_VECTOR_ELT &&
- Index == (ST->isLittleEndian() ? 1 : 0))
- return 0;
- return Cost;
- } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
- if (ST->hasP9Altivec()) {
- if (ISD == ISD::INSERT_VECTOR_ELT)
- // A move-to VSR and a permute/insert. Assume vector operation cost
- // for both (cost will be 2x on P9).
- return 2 * CostFactor;
- // It's an extract. Maybe we can do a cheap move-from VSR.
- unsigned EltSize = Val->getScalarSizeInBits();
- if (EltSize == 64) {
- unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
- if (Index == MfvsrdIndex)
- return 1;
- } else if (EltSize == 32) {
- unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
- if (Index == MfvsrwzIndex)
- return 1;
- }
- // We need a vector extract (or mfvsrld). Assume vector operation cost.
- // The cost of the load constant for a vector extract is disregarded
- // (invariant, easily schedulable).
- return CostFactor;
- } else if (ST->hasDirectMove())
- // Assume permute has standard cost.
- // Assume move-to/move-from VSR have 2x standard cost.
- return 3;
- }
- // Estimated cost of a load-hit-store delay. This was obtained
- // experimentally as a minimum needed to prevent unprofitable
- // vectorization for the paq8p benchmark. It may need to be
- // raised further if other unprofitable cases remain.
- unsigned LHSPenalty = 2;
- if (ISD == ISD::INSERT_VECTOR_ELT)
- LHSPenalty += 7;
- // Vector element insert/extract with Altivec is very expensive,
- // because they require store and reload with the attendant
- // processor stall for load-hit-store. Until VSX is available,
- // these need to be estimated as very costly.
- if (ISD == ISD::EXTRACT_VECTOR_ELT ||
- ISD == ISD::INSERT_VECTOR_ELT)
- return LHSPenalty + Cost;
- return Cost;
- }
- InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
- MaybeAlign Alignment,
- unsigned AddressSpace,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr);
- if (!CostFactor.isValid())
- return InstructionCost::getMax();
- if (TLI->getValueType(DL, Src, true) == MVT::Other)
- return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
- CostKind);
- // Legalize the type.
- std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
- assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
- "Invalid Opcode");
- InstructionCost Cost =
- BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
- // TODO: Handle other cost kinds.
- if (CostKind != TTI::TCK_RecipThroughput)
- return Cost;
- Cost *= CostFactor;
- bool IsAltivecType = ST->hasAltivec() &&
- (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
- LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
- bool IsVSXType = ST->hasVSX() &&
- (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
- // VSX has 32b/64b load instructions. Legalization can handle loading of
- // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
- // PPCTargetLowering can't compute the cost appropriately. So here we
- // explicitly check this case.
- unsigned MemBytes = Src->getPrimitiveSizeInBits();
- if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
- (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
- return 1;
- // Aligned loads and stores are easy.
- unsigned SrcBytes = LT.second.getStoreSize();
- if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
- return Cost;
- // If we can use the permutation-based load sequence, then this is also
- // relatively cheap (not counting loop-invariant instructions): one load plus
- // one permute (the last load in a series has extra cost, but we're
- // neglecting that here). Note that on the P7, we could do unaligned loads
- // for Altivec types using the VSX instructions, but that's more expensive
- // than using the permutation-based load sequence. On the P8, that's no
- // longer true.
- if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
- *Alignment >= LT.second.getScalarType().getStoreSize())
- return Cost + LT.first; // Add the cost of the permutations.
- // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
- // P7, unaligned vector loads are more expensive than the permutation-based
- // load sequence, so that might be used instead, but regardless, the net cost
- // is about the same (not counting loop-invariant instructions).
- if (IsVSXType || (ST->hasVSX() && IsAltivecType))
- return Cost;
- // Newer PPC supports unaligned memory access.
- if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
- return Cost;
- // PPC in general does not support unaligned loads and stores. They'll need
- // to be decomposed based on the alignment factor.
- // Add the cost of each scalar load or store.
- assert(Alignment);
- Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
- // For a vector type, there is also scalarization overhead (only for
- // stores, loads are expanded using the vector-load + permutation sequence,
- // which is much less expensive).
- if (Src->isVectorTy() && Opcode == Instruction::Store)
- for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
- ++i)
- Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
- return Cost;
- }
- InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost(
- unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
- Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
- bool UseMaskForCond, bool UseMaskForGaps) {
- InstructionCost CostFactor =
- vectorCostAdjustmentFactor(Opcode, VecTy, nullptr);
- if (!CostFactor.isValid())
- return InstructionCost::getMax();
- if (UseMaskForCond || UseMaskForGaps)
- return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
- Alignment, AddressSpace, CostKind,
- UseMaskForCond, UseMaskForGaps);
- assert(isa<VectorType>(VecTy) &&
- "Expect a vector type for interleaved memory op");
- // Legalize the type.
- std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
- // Firstly, the cost of load/store operation.
- InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment),
- AddressSpace, CostKind);
- // PPC, for both Altivec/VSX, support cheap arbitrary permutations
- // (at least in the sense that there need only be one non-loop-invariant
- // instruction). For each result vector, we need one shuffle per incoming
- // vector (except that the first shuffle can take two incoming vectors
- // because it does not need to take itself).
- Cost += Factor*(LT.first-1);
- return Cost;
- }
- InstructionCost
- PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
- TTI::TargetCostKind CostKind) {
- return BaseT::getIntrinsicInstrCost(ICA, CostKind);
- }
- bool PPCTTIImpl::areTypesABICompatible(const Function *Caller,
- const Function *Callee,
- const ArrayRef<Type *> &Types) const {
- // We need to ensure that argument promotion does not
- // attempt to promote pointers to MMA types (__vector_pair
- // and __vector_quad) since these types explicitly cannot be
- // passed as arguments. Both of these types are larger than
- // the 128-bit Altivec vectors and have a scalar size of 1 bit.
- if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
- return false;
- return llvm::none_of(Types, [](Type *Ty) {
- if (Ty->isSized())
- return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128;
- return false;
- });
- }
- bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
- LoopInfo *LI, DominatorTree *DT,
- AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
- // Process nested loops first.
- for (Loop *I : *L)
- if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo))
- return false; // Stop search.
- HardwareLoopInfo HWLoopInfo(L);
- if (!HWLoopInfo.canAnalyze(*LI))
- return false;
- if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
- return false;
- if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
- return false;
- *BI = HWLoopInfo.ExitBranch;
- return true;
- }
- bool PPCTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
- TargetTransformInfo::LSRCost &C2) {
- // PowerPC default behaviour here is "instruction number 1st priority".
- // If LsrNoInsnsCost is set, call default implementation.
- if (!LsrNoInsnsCost)
- return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
- C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
- std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
- C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
- else
- return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
- }
- bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
- return false;
- }
- bool PPCTTIImpl::shouldBuildRelLookupTables() const {
- const PPCTargetMachine &TM = ST->getTargetMachine();
- // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now.
- if (!TM.isELFv2ABI())
- return false;
- return BaseT::shouldBuildRelLookupTables();
- }
- bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
- MemIntrinsicInfo &Info) {
- switch (Inst->getIntrinsicID()) {
- case Intrinsic::ppc_altivec_lvx:
- case Intrinsic::ppc_altivec_lvxl:
- case Intrinsic::ppc_altivec_lvebx:
- case Intrinsic::ppc_altivec_lvehx:
- case Intrinsic::ppc_altivec_lvewx:
- case Intrinsic::ppc_vsx_lxvd2x:
- case Intrinsic::ppc_vsx_lxvw4x:
- case Intrinsic::ppc_vsx_lxvd2x_be:
- case Intrinsic::ppc_vsx_lxvw4x_be:
- case Intrinsic::ppc_vsx_lxvl:
- case Intrinsic::ppc_vsx_lxvll:
- case Intrinsic::ppc_vsx_lxvp: {
- Info.PtrVal = Inst->getArgOperand(0);
- Info.ReadMem = true;
- Info.WriteMem = false;
- return true;
- }
- case Intrinsic::ppc_altivec_stvx:
- case Intrinsic::ppc_altivec_stvxl:
- case Intrinsic::ppc_altivec_stvebx:
- case Intrinsic::ppc_altivec_stvehx:
- case Intrinsic::ppc_altivec_stvewx:
- case Intrinsic::ppc_vsx_stxvd2x:
- case Intrinsic::ppc_vsx_stxvw4x:
- case Intrinsic::ppc_vsx_stxvd2x_be:
- case Intrinsic::ppc_vsx_stxvw4x_be:
- case Intrinsic::ppc_vsx_stxvl:
- case Intrinsic::ppc_vsx_stxvll:
- case Intrinsic::ppc_vsx_stxvp: {
- Info.PtrVal = Inst->getArgOperand(1);
- Info.ReadMem = false;
- Info.WriteMem = true;
- return true;
- }
- default:
- break;
- }
- return false;
- }
- bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType,
- Align Alignment) const {
- // Only load and stores instructions can have variable vector length on Power.
- if (Opcode != Instruction::Load && Opcode != Instruction::Store)
- return false;
- // Loads/stores with length instructions use bits 0-7 of the GPR operand and
- // therefore cannot be used in 32-bit mode.
- if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64())
- return false;
- if (isa<FixedVectorType>(DataType)) {
- unsigned VecWidth = DataType->getPrimitiveSizeInBits();
- return VecWidth == 128;
- }
- Type *ScalarTy = DataType->getScalarType();
- if (ScalarTy->isPointerTy())
- return true;
- if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
- return true;
- if (!ScalarTy->isIntegerTy())
- return false;
- unsigned IntWidth = ScalarTy->getIntegerBitWidth();
- return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64;
- }
- InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src,
- Align Alignment,
- unsigned AddressSpace,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment,
- AddressSpace, CostKind, I);
- if (TLI->getValueType(DL, Src, true) == MVT::Other)
- return Cost;
- // TODO: Handle other cost kinds.
- if (CostKind != TTI::TCK_RecipThroughput)
- return Cost;
- assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
- "Invalid Opcode");
- auto *SrcVTy = dyn_cast<FixedVectorType>(Src);
- assert(SrcVTy && "Expected a vector type for VP memory operations");
- if (hasActiveVectorLength(Opcode, Src, Alignment)) {
- std::pair<InstructionCost, MVT> LT =
- TLI->getTypeLegalizationCost(DL, SrcVTy);
- InstructionCost CostFactor =
- vectorCostAdjustmentFactor(Opcode, Src, nullptr);
- if (!CostFactor.isValid())
- return InstructionCost::getMax();
- InstructionCost Cost = LT.first * CostFactor;
- assert(Cost.isValid() && "Expected valid cost");
- // On P9 but not on P10, if the op is misaligned then it will cause a
- // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked
- // ones.
- const Align DesiredAlignment(16);
- if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9)
- return Cost;
- // Since alignment may be under estimated, we try to compute the probability
- // that the actual address is aligned to the desired boundary. For example
- // an 8-byte aligned load is assumed to be actually 16-byte aligned half the
- // time, while a 4-byte aligned load has a 25% chance of being 16-byte
- // aligned.
- float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value();
- float MisalignmentProb = 1.0 - AlignmentProb;
- return (MisalignmentProb * P9PipelineFlushEstimate) +
- (AlignmentProb * *Cost.getValue());
- }
- // Usually we should not get to this point, but the following is an attempt to
- // model the cost of legalization. Currently we can only lower intrinsics with
- // evl but no mask, on Power 9/10. Otherwise, we must scalarize.
- return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
- }
|