123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428 |
- //===-- PPCScheduleP9.td - PPC P9 Scheduling Definitions ---*- tablegen -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the itinerary class data for the POWER9 processor.
- //
- //===----------------------------------------------------------------------===//
- def P9Model : SchedMachineModel {
- // The maximum number of instructions to be issued at the same time.
- // While a value of 8 is technically correct since 8 instructions can be
- // fetched from the instruction cache. However, only 6 instructions may be
- // actually dispatched at a time.
- let IssueWidth = 8;
- // Load latency is 4 or 5 cycles depending on the load. This latency assumes
- // that we have a cache hit. For a cache miss the load latency will be more.
- // There are two instructions (lxvl, lxvll) that have a latency of 6 cycles.
- // However it is not worth bumping this value up to 6 when the vast majority
- // of instructions are 4 or 5 cycles.
- let LoadLatency = 5;
- // A total of 16 cycles to recover from a branch mispredict.
- let MispredictPenalty = 16;
- // Try to make sure we have at least 10 dispatch groups in a loop.
- // A dispatch group is 6 instructions.
- let LoopMicroOpBufferSize = 60;
- // As iops are dispatched to a slice, they are held in an independent slice
- // issue queue until all register sources and other dependencies have been
- // resolved and they can be issued. Each of four execution slices has an
- // 11-entry iop issue queue.
- let MicroOpBufferSize = 44;
- let CompleteModel = 1;
- // Do not support SPE (Signal Processing Engine), prefixed instructions on
- // Power 9, paired vector mem ops, MMA, PC relative mem ops, or instructions
- // introduced in ISA 3.1.
- let UnsupportedFeatures = [HasSPE, PrefixInstrs, PairedVectorMemops, MMA,
- PCRelativeMemops, IsISA3_1];
- }
- let SchedModel = P9Model in {
- // ***************** Processor Resources *****************
- // Dispatcher slots:
- // x0, x1, x2, and x3 are the dedicated slice dispatch ports, where each
- // corresponds to one of the four execution slices.
- def DISPx02 : ProcResource<2>;
- def DISPx13 : ProcResource<2>;
- // The xa and xb ports can be used to send an iop to either of the two slices
- // of the superslice, but are restricted to iops with only two primary sources.
- def DISPxab : ProcResource<2>;
- // b0 and b1 are dedicated dispatch ports into the branch slice.
- def DISPb01 : ProcResource<2>;
- // Any non BR dispatch ports
- def DISP_NBR
- : ProcResGroup<[ DISPx02, DISPx13, DISPxab]>;
- def DISP_SS : ProcResGroup<[ DISPx02, DISPx13]>;
- // Issue Ports
- // An instruction can go down one of two issue queues.
- // Address Generation (AGEN) mainly for loads and stores.
- // Execution (EXEC) for most other instructions.
- // Some instructions cannot be run on just any issue queue and may require an
- // Even or an Odd queue. The EXECE represents the even queues and the EXECO
- // represents the odd queues.
- def IP_AGEN : ProcResource<4>;
- def IP_EXEC : ProcResource<4>;
- def IP_EXECE : ProcResource<2> {
- //Even Exec Ports
- let Super = IP_EXEC;
- }
- def IP_EXECO : ProcResource<2> {
- //Odd Exec Ports
- let Super = IP_EXEC;
- }
- // Pipeline Groups
- // Four ALU (Fixed Point Arithmetic) units in total. Two even, two Odd.
- def ALU : ProcResource<4>;
- def ALUE : ProcResource<2> {
- //Even ALU pipelines
- let Super = ALU;
- }
- def ALUO : ProcResource<2> {
- //Odd ALU pipelines
- let Super = ALU;
- }
- // Two DIV (Fixed Point Divide) units.
- def DIV : ProcResource<2>;
- // Four DP (Floating Point) units in total. Two even, two Odd.
- def DP : ProcResource<4>;
- def DPE : ProcResource<2> {
- //Even DP pipelines
- let Super = DP;
- }
- def DPO : ProcResource<2> {
- //Odd DP pipelines
- let Super = DP;
- }
- // Four LS (Load or Store) units.
- def LS : ProcResource<4>;
- // Two PM (Permute) units.
- def PM : ProcResource<2>;
- // Only one DFU (Decimal Floating Point and Quad Precision) unit.
- def DFU : ProcResource<1>;
- // Only one Branch unit.
- def BR : ProcResource<1> {
- let BufferSize = 16;
- }
- // Only one CY (Crypto) unit.
- def CY : ProcResource<1>;
- // ***************** SchedWriteRes Definitions *****************
- // Dispatcher
- // Dispatch Rules: '-' or 'V'
- // Vector ('V') - vector iops (128-bit operand) take only one decode and
- // dispatch slot but are dispatched to both the even and odd slices of a
- // superslice.
- def DISP_1C : SchedWriteRes<[DISP_NBR]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
- // Dispatch Rules: 'E'
- // Even slice ('E')- certain operations must be sent only to an even slice.
- // Also consumes odd dispatch slice slot of the same superslice at dispatch
- def DISP_EVEN_1C : SchedWriteRes<[ DISPx02, DISPx13 ]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
- // Dispatch Rules: 'P'
- // Paired ('P') - certain cracked and expanded iops are paired such that they
- // must dispatch together to the same superslice.
- def DISP_PAIR_1C : SchedWriteRes<[ DISP_SS, DISP_SS]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
- // Tuple Restricted ('R') - certain iops preclude dispatching more than one
- // operation per slice for the super- slice to which they are dispatched
- def DISP_3SLOTS_1C : SchedWriteRes<[DISPx02, DISPx13, DISPxab]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
- // Each execution and branch slice can receive up to two iops per cycle
- def DISP_BR_1C : SchedWriteRes<[ DISPxab ]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
- // Issue Ports
- def IP_AGEN_1C : SchedWriteRes<[IP_AGEN]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
- def IP_EXEC_1C : SchedWriteRes<[IP_EXEC]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
- def IP_EXECE_1C : SchedWriteRes<[IP_EXECE]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
- def IP_EXECO_1C : SchedWriteRes<[IP_EXECO]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
- //Pipeline Groups
- // ALU Units
- // An ALU may take either 2 or 3 cycles to complete the operation.
- // However, the ALU unit is only ever busy for 1 cycle at a time and may
- // receive new instructions each cycle.
- def P9_ALU_2C : SchedWriteRes<[ALU]> {
- let Latency = 2;
- }
- def P9_ALUE_2C : SchedWriteRes<[ALUE]> {
- let Latency = 2;
- }
- def P9_ALUO_2C : SchedWriteRes<[ALUO]> {
- let Latency = 2;
- }
- def P9_ALU_3C : SchedWriteRes<[ALU]> {
- let Latency = 3;
- }
- def P9_ALUE_3C : SchedWriteRes<[ALUE]> {
- let Latency = 3;
- }
- def P9_ALUO_3C : SchedWriteRes<[ALUO]> {
- let Latency = 3;
- }
- // DIV Unit
- // A DIV unit may take from 5 to 40 cycles to complete.
- // Some DIV operations may keep the unit busy for up to 8 cycles.
- def P9_DIV_5C : SchedWriteRes<[DIV]> {
- let Latency = 5;
- }
- def P9_DIV_12C : SchedWriteRes<[DIV]> {
- let Latency = 12;
- }
- def P9_DIV_16C_8 : SchedWriteRes<[DIV]> {
- let ResourceCycles = [8];
- let Latency = 16;
- }
- def P9_DIV_24C_8 : SchedWriteRes<[DIV]> {
- let ResourceCycles = [8];
- let Latency = 24;
- }
- def P9_DIV_40C_8 : SchedWriteRes<[DIV]> {
- let ResourceCycles = [8];
- let Latency = 40;
- }
- // DP Unit
- // A DP unit may take from 2 to 36 cycles to complete.
- // Some DP operations keep the unit busy for up to 10 cycles.
- def P9_DP_5C : SchedWriteRes<[DP]> {
- let Latency = 5;
- }
- def P9_DP_7C : SchedWriteRes<[DP]> {
- let Latency = 7;
- }
- def P9_DPE_7C : SchedWriteRes<[DPE]> {
- let Latency = 7;
- }
- def P9_DPO_7C : SchedWriteRes<[DPO]> {
- let Latency = 7;
- }
- def P9_DP_22C_5 : SchedWriteRes<[DP]> {
- let ResourceCycles = [5];
- let Latency = 22;
- }
- def P9_DPO_24C_8 : SchedWriteRes<[DPO]> {
- let ResourceCycles = [8];
- let Latency = 24;
- }
- def P9_DPE_24C_8 : SchedWriteRes<[DPE]> {
- let ResourceCycles = [8];
- let Latency = 24;
- }
- def P9_DP_26C_5 : SchedWriteRes<[DP]> {
- let ResourceCycles = [5];
- let Latency = 22;
- }
- def P9_DPE_27C_10 : SchedWriteRes<[DP]> {
- let ResourceCycles = [10];
- let Latency = 27;
- }
- def P9_DPO_27C_10 : SchedWriteRes<[DP]> {
- let ResourceCycles = [10];
- let Latency = 27;
- }
- def P9_DP_33C_8 : SchedWriteRes<[DP]> {
- let ResourceCycles = [8];
- let Latency = 33;
- }
- def P9_DPE_33C_8 : SchedWriteRes<[DPE]> {
- let ResourceCycles = [8];
- let Latency = 33;
- }
- def P9_DPO_33C_8 : SchedWriteRes<[DPO]> {
- let ResourceCycles = [8];
- let Latency = 33;
- }
- def P9_DP_36C_10 : SchedWriteRes<[DP]> {
- let ResourceCycles = [10];
- let Latency = 36;
- }
- def P9_DPE_36C_10 : SchedWriteRes<[DP]> {
- let ResourceCycles = [10];
- let Latency = 36;
- }
- def P9_DPO_36C_10 : SchedWriteRes<[DP]> {
- let ResourceCycles = [10];
- let Latency = 36;
- }
- // PM Unit
- // Three cycle permute operations.
- def P9_PM_3C : SchedWriteRes<[PM]> {
- let Latency = 3;
- }
- // Load and Store Units
- // Loads can have 4, 5 or 6 cycles of latency.
- // Stores are listed as having a single cycle of latency. This is not
- // completely accurate since it takes more than 1 cycle to actually store
- // the value. However, since the store does not produce a result it can be
- // considered complete after one cycle.
- def P9_LS_1C : SchedWriteRes<[LS]> {
- let Latency = 1;
- }
- def P9_LS_4C : SchedWriteRes<[LS]> {
- let Latency = 4;
- }
- def P9_LS_5C : SchedWriteRes<[LS]> {
- let Latency = 5;
- }
- def P9_LS_6C : SchedWriteRes<[LS]> {
- let Latency = 6;
- }
- // DFU Unit
- // Some of the most expensive ops use the DFU.
- // Can take from 12 cycles to 76 cycles to obtain a result.
- // The unit may be busy for up to 62 cycles.
- def P9_DFU_12C : SchedWriteRes<[DFU]> {
- let Latency = 12;
- }
- def P9_DFU_23C : SchedWriteRes<[DFU]> {
- let Latency = 23;
- let ResourceCycles = [11];
- }
- def P9_DFU_24C : SchedWriteRes<[DFU]> {
- let Latency = 24;
- let ResourceCycles = [12];
- }
- def P9_DFU_37C : SchedWriteRes<[DFU]> {
- let Latency = 37;
- let ResourceCycles = [25];
- }
- def P9_DFU_58C : SchedWriteRes<[DFU]> {
- let Latency = 58;
- let ResourceCycles = [44];
- }
- def P9_DFU_76C : SchedWriteRes<[DFU]> {
- let Latency = 76;
- let ResourceCycles = [62];
- }
- // 2 or 5 cycle latencies for the branch unit.
- def P9_BR_2C : SchedWriteRes<[BR]> {
- let Latency = 2;
- }
- def P9_BR_5C : SchedWriteRes<[BR]> {
- let Latency = 5;
- }
- // 6 cycle latency for the crypto unit
- def P9_CY_6C : SchedWriteRes<[CY]> {
- let Latency = 6;
- }
- // ***************** WriteSeq Definitions *****************
- // These are combinations of the resources listed above.
- // The idea is that some cracked instructions cannot be done in parallel and
- // so the latencies for their resources must be added.
- def P9_LoadAndALUOp_6C : WriteSequence<[P9_LS_4C, P9_ALU_2C]>;
- def P9_LoadAndALUOp_7C : WriteSequence<[P9_LS_5C, P9_ALU_2C]>;
- def P9_LoadAndALU2Op_7C : WriteSequence<[P9_LS_4C, P9_ALU_3C]>;
- def P9_LoadAndALU2Op_8C : WriteSequence<[P9_LS_5C, P9_ALU_3C]>;
- def P9_LoadAndPMOp_8C : WriteSequence<[P9_LS_5C, P9_PM_3C]>;
- def P9_LoadAndLoadOp_8C : WriteSequence<[P9_LS_4C, P9_LS_4C]>;
- def P9_IntDivAndALUOp_18C_8 : WriteSequence<[P9_DIV_16C_8, P9_ALU_2C]>;
- def P9_IntDivAndALUOp_26C_8 : WriteSequence<[P9_DIV_24C_8, P9_ALU_2C]>;
- def P9_IntDivAndALUOp_42C_8 : WriteSequence<[P9_DIV_40C_8, P9_ALU_2C]>;
- def P9_StoreAndALUOp_3C : WriteSequence<[P9_LS_1C, P9_ALU_2C]>;
- def P9_ALUOpAndALUOp_4C : WriteSequence<[P9_ALU_2C, P9_ALU_2C]>;
- def P9_ALU2OpAndALU2Op_6C : WriteSequence<[P9_ALU_3C, P9_ALU_3C]>;
- def P9_ALUOpAndALUOpAndALUOp_6C :
- WriteSequence<[P9_ALU_2C, P9_ALU_2C, P9_ALU_2C]>;
- def P9_DPOpAndALUOp_7C : WriteSequence<[P9_DP_5C, P9_ALU_2C]>;
- def P9_DPOpAndALU2Op_10C : WriteSequence<[P9_DP_7C, P9_ALU_3C]>;
- def P9_DPOpAndALU2Op_25C_5 : WriteSequence<[P9_DP_22C_5, P9_ALU_3C]>;
- def P9_DPOpAndALU2Op_29C_5 : WriteSequence<[P9_DP_26C_5, P9_ALU_3C]>;
- def P9_DPOpAndALU2Op_36C_8 : WriteSequence<[P9_DP_33C_8, P9_ALU_3C]>;
- def P9_DPOpAndALU2Op_39C_10 : WriteSequence<[P9_DP_36C_10, P9_ALU_3C]>;
- def P9_BROpAndALUOp_7C : WriteSequence<[P9_BR_5C, P9_ALU_2C]>;
- // Include the resource requirements of individual instructions.
- include "P9InstrResources.td"
- }
|