123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381 |
- //===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- //
- // Arguments to kernel and device functions are passed via param space,
- // which imposes certain restrictions:
- // http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces
- //
- // Kernel parameters are read-only and accessible only via ld.param
- // instruction, directly or via a pointer. Pointers to kernel
- // arguments can't be converted to generic address space.
- //
- // Device function parameters are directly accessible via
- // ld.param/st.param, but taking the address of one returns a pointer
- // to a copy created in local space which *can't* be used with
- // ld.param/st.param.
- //
- // Copying a byval struct into local memory in IR allows us to enforce
- // the param space restrictions, gives the rest of IR a pointer w/o
- // param space restrictions, and gives us an opportunity to eliminate
- // the copy.
- //
- // Pointer arguments to kernel functions need more work to be lowered:
- //
- // 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the
- // global address space. This allows later optimizations to emit
- // ld.global.*/st.global.* for accessing these pointer arguments. For
- // example,
- //
- // define void @foo(float* %input) {
- // %v = load float, float* %input, align 4
- // ...
- // }
- //
- // becomes
- //
- // define void @foo(float* %input) {
- // %input2 = addrspacecast float* %input to float addrspace(1)*
- // %input3 = addrspacecast float addrspace(1)* %input2 to float*
- // %v = load float, float* %input3, align 4
- // ...
- // }
- //
- // Later, NVPTXInferAddressSpaces will optimize it to
- //
- // define void @foo(float* %input) {
- // %input2 = addrspacecast float* %input to float addrspace(1)*
- // %v = load float, float addrspace(1)* %input2, align 4
- // ...
- // }
- //
- // 2. Convert pointers in a byval kernel parameter to pointers in the global
- // address space. As #2, it allows NVPTX to emit more ld/st.global. E.g.,
- //
- // struct S {
- // int *x;
- // int *y;
- // };
- // __global__ void foo(S s) {
- // int *b = s.y;
- // // use b
- // }
- //
- // "b" points to the global address space. In the IR level,
- //
- // define void @foo({i32*, i32*}* byval %input) {
- // %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
- // %b = load i32*, i32** %b_ptr
- // ; use %b
- // }
- //
- // becomes
- //
- // define void @foo({i32*, i32*}* byval %input) {
- // %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
- // %b = load i32*, i32** %b_ptr
- // %b_global = addrspacecast i32* %b to i32 addrspace(1)*
- // %b_generic = addrspacecast i32 addrspace(1)* %b_global to i32*
- // ; use %b_generic
- // }
- //
- // TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't
- // cancel the addrspacecast pair this pass emits.
- //===----------------------------------------------------------------------===//
- #include "NVPTX.h"
- #include "NVPTXTargetMachine.h"
- #include "NVPTXUtilities.h"
- #include "MCTargetDesc/NVPTXBaseInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Pass.h"
- #define DEBUG_TYPE "nvptx-lower-args"
- using namespace llvm;
- namespace llvm {
- void initializeNVPTXLowerArgsPass(PassRegistry &);
- }
- namespace {
- class NVPTXLowerArgs : public FunctionPass {
- bool runOnFunction(Function &F) override;
- bool runOnKernelFunction(Function &F);
- bool runOnDeviceFunction(Function &F);
- // handle byval parameters
- void handleByValParam(Argument *Arg);
- // Knowing Ptr must point to the global address space, this function
- // addrspacecasts Ptr to global and then back to generic. This allows
- // NVPTXInferAddressSpaces to fold the global-to-generic cast into
- // loads/stores that appear later.
- void markPointerAsGlobal(Value *Ptr);
- public:
- static char ID; // Pass identification, replacement for typeid
- NVPTXLowerArgs(const NVPTXTargetMachine *TM = nullptr)
- : FunctionPass(ID), TM(TM) {}
- StringRef getPassName() const override {
- return "Lower pointer arguments of CUDA kernels";
- }
- private:
- const NVPTXTargetMachine *TM;
- };
- } // namespace
- char NVPTXLowerArgs::ID = 1;
- INITIALIZE_PASS(NVPTXLowerArgs, "nvptx-lower-args",
- "Lower arguments (NVPTX)", false, false)
- // =============================================================================
- // If the function had a byval struct ptr arg, say foo(%struct.x* byval %d),
- // and we can't guarantee that the only accesses are loads,
- // then add the following instructions to the first basic block:
- //
- // %temp = alloca %struct.x, align 8
- // %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)*
- // %tv = load %struct.x addrspace(101)* %tempd
- // store %struct.x %tv, %struct.x* %temp, align 8
- //
- // The above code allocates some space in the stack and copies the incoming
- // struct from param space to local space.
- // Then replace all occurrences of %d by %temp.
- //
- // In case we know that all users are GEPs or Loads, replace them with the same
- // ones in parameter AS, so we can access them using ld.param.
- // =============================================================================
- // Replaces the \p OldUser instruction with the same in parameter AS.
- // Only Load and GEP are supported.
- static void convertToParamAS(Value *OldUser, Value *Param) {
- Instruction *I = dyn_cast<Instruction>(OldUser);
- assert(I && "OldUser must be an instruction");
- struct IP {
- Instruction *OldInstruction;
- Value *NewParam;
- };
- SmallVector<IP> ItemsToConvert = {{I, Param}};
- SmallVector<Instruction *> InstructionsToDelete;
- auto CloneInstInParamAS = [](const IP &I) -> Value * {
- if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) {
- LI->setOperand(0, I.NewParam);
- return LI;
- }
- if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) {
- SmallVector<Value *, 4> Indices(GEP->indices());
- auto *NewGEP = GetElementPtrInst::Create(GEP->getSourceElementType(),
- I.NewParam, Indices,
- GEP->getName(), GEP);
- NewGEP->setIsInBounds(GEP->isInBounds());
- return NewGEP;
- }
- if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) {
- auto *NewBCType = PointerType::getWithSamePointeeType(
- cast<PointerType>(BC->getType()), ADDRESS_SPACE_PARAM);
- return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType,
- BC->getName(), BC);
- }
- if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) {
- assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM);
- (void)ASC;
- // Just pass through the argument, the old ASC is no longer needed.
- return I.NewParam;
- }
- llvm_unreachable("Unsupported instruction");
- };
- while (!ItemsToConvert.empty()) {
- IP I = ItemsToConvert.pop_back_val();
- Value *NewInst = CloneInstInParamAS(I);
- if (NewInst && NewInst != I.OldInstruction) {
- // We've created a new instruction. Queue users of the old instruction to
- // be converted and the instruction itself to be deleted. We can't delete
- // the old instruction yet, because it's still in use by a load somewhere.
- llvm::for_each(
- I.OldInstruction->users(), [NewInst, &ItemsToConvert](Value *V) {
- ItemsToConvert.push_back({cast<Instruction>(V), NewInst});
- });
- InstructionsToDelete.push_back(I.OldInstruction);
- }
- }
- // Now we know that all argument loads are using addresses in parameter space
- // and we can finally remove the old instructions in generic AS. Instructions
- // scheduled for removal should be processed in reverse order so the ones
- // closest to the load are deleted first. Otherwise they may still be in use.
- // E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will
- // have {GEP,BitCast}. GEP can't be deleted first, because it's still used by
- // the BitCast.
- llvm::for_each(reverse(InstructionsToDelete),
- [](Instruction *I) { I->eraseFromParent(); });
- }
- void NVPTXLowerArgs::handleByValParam(Argument *Arg) {
- Function *Func = Arg->getParent();
- Instruction *FirstInst = &(Func->getEntryBlock().front());
- PointerType *PType = dyn_cast<PointerType>(Arg->getType());
- assert(PType && "Expecting pointer type in handleByValParam");
- Type *StructType = PType->getPointerElementType();
- auto IsALoadChain = [&](Value *Start) {
- SmallVector<Value *, 16> ValuesToCheck = {Start};
- auto IsALoadChainInstr = [](Value *V) -> bool {
- if (isa<GetElementPtrInst>(V) || isa<BitCastInst>(V) || isa<LoadInst>(V))
- return true;
- // ASC to param space are OK, too -- we'll just strip them.
- if (auto *ASC = dyn_cast<AddrSpaceCastInst>(V)) {
- if (ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM)
- return true;
- }
- return false;
- };
- while (!ValuesToCheck.empty()) {
- Value *V = ValuesToCheck.pop_back_val();
- if (!IsALoadChainInstr(V)) {
- LLVM_DEBUG(dbgs() << "Need a copy of " << *Arg << " because of " << *V
- << "\n");
- (void)Arg;
- return false;
- }
- if (!isa<LoadInst>(V))
- llvm::append_range(ValuesToCheck, V->users());
- }
- return true;
- };
- if (llvm::all_of(Arg->users(), IsALoadChain)) {
- // Convert all loads and intermediate operations to use parameter AS and
- // skip creation of a local copy of the argument.
- SmallVector<User *, 16> UsersToUpdate(Arg->users());
- Value *ArgInParamAS = new AddrSpaceCastInst(
- Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
- FirstInst);
- llvm::for_each(UsersToUpdate, [ArgInParamAS](Value *V) {
- convertToParamAS(V, ArgInParamAS);
- });
- LLVM_DEBUG(dbgs() << "No need to copy " << *Arg << "\n");
- return;
- }
- // Otherwise we have to create a temporary copy.
- const DataLayout &DL = Func->getParent()->getDataLayout();
- unsigned AS = DL.getAllocaAddrSpace();
- AllocaInst *AllocA = new AllocaInst(StructType, AS, Arg->getName(), FirstInst);
- // Set the alignment to alignment of the byval parameter. This is because,
- // later load/stores assume that alignment, and we are going to replace
- // the use of the byval parameter with this alloca instruction.
- AllocA->setAlignment(Func->getParamAlign(Arg->getArgNo())
- .getValueOr(DL.getPrefTypeAlign(StructType)));
- Arg->replaceAllUsesWith(AllocA);
- Value *ArgInParam = new AddrSpaceCastInst(
- Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
- FirstInst);
- // Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX
- // addrspacecast preserves alignment. Since params are constant, this load is
- // definitely not volatile.
- LoadInst *LI =
- new LoadInst(StructType, ArgInParam, Arg->getName(),
- /*isVolatile=*/false, AllocA->getAlign(), FirstInst);
- new StoreInst(LI, AllocA, FirstInst);
- }
- void NVPTXLowerArgs::markPointerAsGlobal(Value *Ptr) {
- if (Ptr->getType()->getPointerAddressSpace() == ADDRESS_SPACE_GLOBAL)
- return;
- // Deciding where to emit the addrspacecast pair.
- BasicBlock::iterator InsertPt;
- if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
- // Insert at the functon entry if Ptr is an argument.
- InsertPt = Arg->getParent()->getEntryBlock().begin();
- } else {
- // Insert right after Ptr if Ptr is an instruction.
- InsertPt = ++cast<Instruction>(Ptr)->getIterator();
- assert(InsertPt != InsertPt->getParent()->end() &&
- "We don't call this function with Ptr being a terminator.");
- }
- Instruction *PtrInGlobal = new AddrSpaceCastInst(
- Ptr,
- PointerType::getWithSamePointeeType(cast<PointerType>(Ptr->getType()),
- ADDRESS_SPACE_GLOBAL),
- Ptr->getName(), &*InsertPt);
- Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(),
- Ptr->getName(), &*InsertPt);
- // Replace with PtrInGeneric all uses of Ptr except PtrInGlobal.
- Ptr->replaceAllUsesWith(PtrInGeneric);
- PtrInGlobal->setOperand(0, Ptr);
- }
- // =============================================================================
- // Main function for this pass.
- // =============================================================================
- bool NVPTXLowerArgs::runOnKernelFunction(Function &F) {
- if (TM && TM->getDrvInterface() == NVPTX::CUDA) {
- // Mark pointers in byval structs as global.
- for (auto &B : F) {
- for (auto &I : B) {
- if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
- if (LI->getType()->isPointerTy()) {
- Value *UO = getUnderlyingObject(LI->getPointerOperand());
- if (Argument *Arg = dyn_cast<Argument>(UO)) {
- if (Arg->hasByValAttr()) {
- // LI is a load from a pointer within a byval kernel parameter.
- markPointerAsGlobal(LI);
- }
- }
- }
- }
- }
- }
- }
- LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n");
- for (Argument &Arg : F.args()) {
- if (Arg.getType()->isPointerTy()) {
- if (Arg.hasByValAttr())
- handleByValParam(&Arg);
- else if (TM && TM->getDrvInterface() == NVPTX::CUDA)
- markPointerAsGlobal(&Arg);
- }
- }
- return true;
- }
- // Device functions only need to copy byval args into local memory.
- bool NVPTXLowerArgs::runOnDeviceFunction(Function &F) {
- LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n");
- for (Argument &Arg : F.args())
- if (Arg.getType()->isPointerTy() && Arg.hasByValAttr())
- handleByValParam(&Arg);
- return true;
- }
- bool NVPTXLowerArgs::runOnFunction(Function &F) {
- return isKernelFunction(F) ? runOnKernelFunction(F) : runOnDeviceFunction(F);
- }
- FunctionPass *
- llvm::createNVPTXLowerArgsPass(const NVPTXTargetMachine *TM) {
- return new NVPTXLowerArgs(TM);
- }
|