123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 |
- //===----- DivisonByConstantInfo.cpp - division by constant -*- C++ -*-----===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// This file implements support for optimizing divisions by a constant
- ///
- //===----------------------------------------------------------------------===//
- #include "llvm/Support/DivisionByConstantInfo.h"
- using namespace llvm;
- /// Calculate the magic numbers required to implement a signed integer division
- /// by a constant as a sequence of multiplies, adds and shifts. Requires that
- /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
- /// Warren, Jr., Chapter 10.
- SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) {
- unsigned P;
- APInt AD, ANC, Delta, Q1, R1, Q2, R2, T;
- APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
- struct SignedDivisionByConstantInfo Retval;
- AD = D.abs();
- T = SignedMin + (D.lshr(D.getBitWidth() - 1));
- ANC = T - 1 - T.urem(AD); // absolute value of NC
- P = D.getBitWidth() - 1; // initialize P
- Q1 = SignedMin.udiv(ANC); // initialize Q1 = 2P/abs(NC)
- R1 = SignedMin - Q1 * ANC; // initialize R1 = rem(2P,abs(NC))
- Q2 = SignedMin.udiv(AD); // initialize Q2 = 2P/abs(D)
- R2 = SignedMin - Q2 * AD; // initialize R2 = rem(2P,abs(D))
- do {
- P = P + 1;
- Q1 = Q1 << 1; // update Q1 = 2P/abs(NC)
- R1 = R1 << 1; // update R1 = rem(2P/abs(NC))
- if (R1.uge(ANC)) { // must be unsigned comparison
- Q1 = Q1 + 1;
- R1 = R1 - ANC;
- }
- Q2 = Q2 << 1; // update Q2 = 2P/abs(D)
- R2 = R2 << 1; // update R2 = rem(2P/abs(D))
- if (R2.uge(AD)) { // must be unsigned comparison
- Q2 = Q2 + 1;
- R2 = R2 - AD;
- }
- Delta = AD - R2;
- } while (Q1.ult(Delta) || (Q1 == Delta && R1 == 0));
- Retval.Magic = Q2 + 1;
- if (D.isNegative())
- Retval.Magic = -Retval.Magic; // resulting magic number
- Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
- return Retval;
- }
- /// Calculate the magic numbers required to implement an unsigned integer
- /// division by a constant as a sequence of multiplies, adds and shifts.
- /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
- /// S. Warren, Jr., chapter 10.
- /// LeadingZeros can be used to simplify the calculation if the upper bits
- /// of the divided value are known zero.
- UnsignedDivisonByConstantInfo
- UnsignedDivisonByConstantInfo::get(const APInt &D, unsigned LeadingZeros) {
- unsigned P;
- APInt NC, Delta, Q1, R1, Q2, R2;
- struct UnsignedDivisonByConstantInfo Retval;
- Retval.IsAdd = false; // initialize "add" indicator
- APInt AllOnes = APInt::getAllOnes(D.getBitWidth()).lshr(LeadingZeros);
- APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
- APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth());
- NC = AllOnes - (AllOnes - D).urem(D);
- P = D.getBitWidth() - 1; // initialize P
- Q1 = SignedMin.udiv(NC); // initialize Q1 = 2P/NC
- R1 = SignedMin - Q1 * NC; // initialize R1 = rem(2P,NC)
- Q2 = SignedMax.udiv(D); // initialize Q2 = (2P-1)/D
- R2 = SignedMax - Q2 * D; // initialize R2 = rem((2P-1),D)
- do {
- P = P + 1;
- if (R1.uge(NC - R1)) {
- Q1 = Q1 + Q1 + 1; // update Q1
- R1 = R1 + R1 - NC; // update R1
- } else {
- Q1 = Q1 + Q1; // update Q1
- R1 = R1 + R1; // update R1
- }
- if ((R2 + 1).uge(D - R2)) {
- if (Q2.uge(SignedMax))
- Retval.IsAdd = true;
- Q2 = Q2 + Q2 + 1; // update Q2
- R2 = R2 + R2 + 1 - D; // update R2
- } else {
- if (Q2.uge(SignedMin))
- Retval.IsAdd = true;
- Q2 = Q2 + Q2; // update Q2
- R2 = R2 + R2 + 1; // update R2
- }
- Delta = D - 1 - R2;
- } while (P < D.getBitWidth() * 2 &&
- (Q1.ult(Delta) || (Q1 == Delta && R1 == 0)));
- Retval.Magic = Q2 + 1; // resulting magic number
- Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
- return Retval;
- }
|