1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049 |
- //===-- APInt.cpp - Implement APInt class ---------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a class to represent arbitrary precision integer
- // constant values and provide a variety of arithmetic operations on them.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/FoldingSet.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/bit.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cmath>
- #include <cstring>
- using namespace llvm;
- #define DEBUG_TYPE "apint"
- /// A utility function for allocating memory, checking for allocation failures,
- /// and ensuring the contents are zeroed.
- inline static uint64_t* getClearedMemory(unsigned numWords) {
- uint64_t *result = new uint64_t[numWords];
- memset(result, 0, numWords * sizeof(uint64_t));
- return result;
- }
- /// A utility function for allocating memory and checking for allocation
- /// failure. The content is not zeroed.
- inline static uint64_t* getMemory(unsigned numWords) {
- return new uint64_t[numWords];
- }
- /// A utility function that converts a character to a digit.
- inline static unsigned getDigit(char cdigit, uint8_t radix) {
- unsigned r;
- if (radix == 16 || radix == 36) {
- r = cdigit - '0';
- if (r <= 9)
- return r;
- r = cdigit - 'A';
- if (r <= radix - 11U)
- return r + 10;
- r = cdigit - 'a';
- if (r <= radix - 11U)
- return r + 10;
- radix = 10;
- }
- r = cdigit - '0';
- if (r < radix)
- return r;
- return -1U;
- }
- void APInt::initSlowCase(uint64_t val, bool isSigned) {
- U.pVal = getClearedMemory(getNumWords());
- U.pVal[0] = val;
- if (isSigned && int64_t(val) < 0)
- for (unsigned i = 1; i < getNumWords(); ++i)
- U.pVal[i] = WORDTYPE_MAX;
- clearUnusedBits();
- }
- void APInt::initSlowCase(const APInt& that) {
- U.pVal = getMemory(getNumWords());
- memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
- }
- void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
- assert(bigVal.data() && "Null pointer detected!");
- if (isSingleWord())
- U.VAL = bigVal[0];
- else {
- // Get memory, cleared to 0
- U.pVal = getClearedMemory(getNumWords());
- // Calculate the number of words to copy
- unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
- // Copy the words from bigVal to pVal
- memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
- }
- // Make sure unused high bits are cleared
- clearUnusedBits();
- }
- APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
- initFromArray(bigVal);
- }
- APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
- : BitWidth(numBits) {
- initFromArray(makeArrayRef(bigVal, numWords));
- }
- APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
- : BitWidth(numbits) {
- fromString(numbits, Str, radix);
- }
- void APInt::reallocate(unsigned NewBitWidth) {
- // If the number of words is the same we can just change the width and stop.
- if (getNumWords() == getNumWords(NewBitWidth)) {
- BitWidth = NewBitWidth;
- return;
- }
- // If we have an allocation, delete it.
- if (!isSingleWord())
- delete [] U.pVal;
- // Update BitWidth.
- BitWidth = NewBitWidth;
- // If we are supposed to have an allocation, create it.
- if (!isSingleWord())
- U.pVal = getMemory(getNumWords());
- }
- void APInt::assignSlowCase(const APInt &RHS) {
- // Don't do anything for X = X
- if (this == &RHS)
- return;
- // Adjust the bit width and handle allocations as necessary.
- reallocate(RHS.getBitWidth());
- // Copy the data.
- if (isSingleWord())
- U.VAL = RHS.U.VAL;
- else
- memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
- }
- /// This method 'profiles' an APInt for use with FoldingSet.
- void APInt::Profile(FoldingSetNodeID& ID) const {
- ID.AddInteger(BitWidth);
- if (isSingleWord()) {
- ID.AddInteger(U.VAL);
- return;
- }
- unsigned NumWords = getNumWords();
- for (unsigned i = 0; i < NumWords; ++i)
- ID.AddInteger(U.pVal[i]);
- }
- /// Prefix increment operator. Increments the APInt by one.
- APInt& APInt::operator++() {
- if (isSingleWord())
- ++U.VAL;
- else
- tcIncrement(U.pVal, getNumWords());
- return clearUnusedBits();
- }
- /// Prefix decrement operator. Decrements the APInt by one.
- APInt& APInt::operator--() {
- if (isSingleWord())
- --U.VAL;
- else
- tcDecrement(U.pVal, getNumWords());
- return clearUnusedBits();
- }
- /// Adds the RHS APInt to this APInt.
- /// @returns this, after addition of RHS.
- /// Addition assignment operator.
- APInt& APInt::operator+=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- U.VAL += RHS.U.VAL;
- else
- tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
- return clearUnusedBits();
- }
- APInt& APInt::operator+=(uint64_t RHS) {
- if (isSingleWord())
- U.VAL += RHS;
- else
- tcAddPart(U.pVal, RHS, getNumWords());
- return clearUnusedBits();
- }
- /// Subtracts the RHS APInt from this APInt
- /// @returns this, after subtraction
- /// Subtraction assignment operator.
- APInt& APInt::operator-=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- U.VAL -= RHS.U.VAL;
- else
- tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
- return clearUnusedBits();
- }
- APInt& APInt::operator-=(uint64_t RHS) {
- if (isSingleWord())
- U.VAL -= RHS;
- else
- tcSubtractPart(U.pVal, RHS, getNumWords());
- return clearUnusedBits();
- }
- APInt APInt::operator*(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return APInt(BitWidth, U.VAL * RHS.U.VAL);
- APInt Result(getMemory(getNumWords()), getBitWidth());
- tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
- Result.clearUnusedBits();
- return Result;
- }
- void APInt::andAssignSlowCase(const APInt &RHS) {
- WordType *dst = U.pVal, *rhs = RHS.U.pVal;
- for (size_t i = 0, e = getNumWords(); i != e; ++i)
- dst[i] &= rhs[i];
- }
- void APInt::orAssignSlowCase(const APInt &RHS) {
- WordType *dst = U.pVal, *rhs = RHS.U.pVal;
- for (size_t i = 0, e = getNumWords(); i != e; ++i)
- dst[i] |= rhs[i];
- }
- void APInt::xorAssignSlowCase(const APInt &RHS) {
- WordType *dst = U.pVal, *rhs = RHS.U.pVal;
- for (size_t i = 0, e = getNumWords(); i != e; ++i)
- dst[i] ^= rhs[i];
- }
- APInt &APInt::operator*=(const APInt &RHS) {
- *this = *this * RHS;
- return *this;
- }
- APInt& APInt::operator*=(uint64_t RHS) {
- if (isSingleWord()) {
- U.VAL *= RHS;
- } else {
- unsigned NumWords = getNumWords();
- tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
- }
- return clearUnusedBits();
- }
- bool APInt::equalSlowCase(const APInt &RHS) const {
- return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
- }
- int APInt::compare(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
- if (isSingleWord())
- return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
- return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
- }
- int APInt::compareSigned(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
- if (isSingleWord()) {
- int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
- int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
- return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
- }
- bool lhsNeg = isNegative();
- bool rhsNeg = RHS.isNegative();
- // If the sign bits don't match, then (LHS < RHS) if LHS is negative
- if (lhsNeg != rhsNeg)
- return lhsNeg ? -1 : 1;
- // Otherwise we can just use an unsigned comparison, because even negative
- // numbers compare correctly this way if both have the same signed-ness.
- return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
- }
- void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
- unsigned loWord = whichWord(loBit);
- unsigned hiWord = whichWord(hiBit);
- // Create an initial mask for the low word with zeros below loBit.
- uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
- // If hiBit is not aligned, we need a high mask.
- unsigned hiShiftAmt = whichBit(hiBit);
- if (hiShiftAmt != 0) {
- // Create a high mask with zeros above hiBit.
- uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
- // If loWord and hiWord are equal, then we combine the masks. Otherwise,
- // set the bits in hiWord.
- if (hiWord == loWord)
- loMask &= hiMask;
- else
- U.pVal[hiWord] |= hiMask;
- }
- // Apply the mask to the low word.
- U.pVal[loWord] |= loMask;
- // Fill any words between loWord and hiWord with all ones.
- for (unsigned word = loWord + 1; word < hiWord; ++word)
- U.pVal[word] = WORDTYPE_MAX;
- }
- // Complement a bignum in-place.
- static void tcComplement(APInt::WordType *dst, unsigned parts) {
- for (unsigned i = 0; i < parts; i++)
- dst[i] = ~dst[i];
- }
- /// Toggle every bit to its opposite value.
- void APInt::flipAllBitsSlowCase() {
- tcComplement(U.pVal, getNumWords());
- clearUnusedBits();
- }
- /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is
- /// equivalent to:
- /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
- /// In the slow case, we know the result is large.
- APInt APInt::concatSlowCase(const APInt &NewLSB) const {
- unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
- APInt Result = NewLSB.zextOrSelf(NewWidth);
- Result.insertBits(*this, NewLSB.getBitWidth());
- return Result;
- }
- /// Toggle a given bit to its opposite value whose position is given
- /// as "bitPosition".
- /// Toggles a given bit to its opposite value.
- void APInt::flipBit(unsigned bitPosition) {
- assert(bitPosition < BitWidth && "Out of the bit-width range!");
- setBitVal(bitPosition, !(*this)[bitPosition]);
- }
- void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
- unsigned subBitWidth = subBits.getBitWidth();
- assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
- // inserting no bits is a noop.
- if (subBitWidth == 0)
- return;
- // Insertion is a direct copy.
- if (subBitWidth == BitWidth) {
- *this = subBits;
- return;
- }
- // Single word result can be done as a direct bitmask.
- if (isSingleWord()) {
- uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
- U.VAL &= ~(mask << bitPosition);
- U.VAL |= (subBits.U.VAL << bitPosition);
- return;
- }
- unsigned loBit = whichBit(bitPosition);
- unsigned loWord = whichWord(bitPosition);
- unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
- // Insertion within a single word can be done as a direct bitmask.
- if (loWord == hi1Word) {
- uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
- U.pVal[loWord] &= ~(mask << loBit);
- U.pVal[loWord] |= (subBits.U.VAL << loBit);
- return;
- }
- // Insert on word boundaries.
- if (loBit == 0) {
- // Direct copy whole words.
- unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
- memcpy(U.pVal + loWord, subBits.getRawData(),
- numWholeSubWords * APINT_WORD_SIZE);
- // Mask+insert remaining bits.
- unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
- if (remainingBits != 0) {
- uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
- U.pVal[hi1Word] &= ~mask;
- U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
- }
- return;
- }
- // General case - set/clear individual bits in dst based on src.
- // TODO - there is scope for optimization here, but at the moment this code
- // path is barely used so prefer readability over performance.
- for (unsigned i = 0; i != subBitWidth; ++i)
- setBitVal(bitPosition + i, subBits[i]);
- }
- void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
- uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
- subBits &= maskBits;
- if (isSingleWord()) {
- U.VAL &= ~(maskBits << bitPosition);
- U.VAL |= subBits << bitPosition;
- return;
- }
- unsigned loBit = whichBit(bitPosition);
- unsigned loWord = whichWord(bitPosition);
- unsigned hiWord = whichWord(bitPosition + numBits - 1);
- if (loWord == hiWord) {
- U.pVal[loWord] &= ~(maskBits << loBit);
- U.pVal[loWord] |= subBits << loBit;
- return;
- }
- static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
- unsigned wordBits = 8 * sizeof(WordType);
- U.pVal[loWord] &= ~(maskBits << loBit);
- U.pVal[loWord] |= subBits << loBit;
- U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
- U.pVal[hiWord] |= subBits >> (wordBits - loBit);
- }
- APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
- assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
- "Illegal bit extraction");
- if (isSingleWord())
- return APInt(numBits, U.VAL >> bitPosition);
- unsigned loBit = whichBit(bitPosition);
- unsigned loWord = whichWord(bitPosition);
- unsigned hiWord = whichWord(bitPosition + numBits - 1);
- // Single word result extracting bits from a single word source.
- if (loWord == hiWord)
- return APInt(numBits, U.pVal[loWord] >> loBit);
- // Extracting bits that start on a source word boundary can be done
- // as a fast memory copy.
- if (loBit == 0)
- return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
- // General case - shift + copy source words directly into place.
- APInt Result(numBits, 0);
- unsigned NumSrcWords = getNumWords();
- unsigned NumDstWords = Result.getNumWords();
- uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
- for (unsigned word = 0; word < NumDstWords; ++word) {
- uint64_t w0 = U.pVal[loWord + word];
- uint64_t w1 =
- (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
- DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
- }
- return Result.clearUnusedBits();
- }
- uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
- unsigned bitPosition) const {
- assert(numBits > 0 && "Can't extract zero bits");
- assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
- "Illegal bit extraction");
- assert(numBits <= 64 && "Illegal bit extraction");
- uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
- if (isSingleWord())
- return (U.VAL >> bitPosition) & maskBits;
- unsigned loBit = whichBit(bitPosition);
- unsigned loWord = whichWord(bitPosition);
- unsigned hiWord = whichWord(bitPosition + numBits - 1);
- if (loWord == hiWord)
- return (U.pVal[loWord] >> loBit) & maskBits;
- static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
- unsigned wordBits = 8 * sizeof(WordType);
- uint64_t retBits = U.pVal[loWord] >> loBit;
- retBits |= U.pVal[hiWord] << (wordBits - loBit);
- retBits &= maskBits;
- return retBits;
- }
- unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
- assert(!str.empty() && "Invalid string length");
- assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
- radix == 36) &&
- "Radix should be 2, 8, 10, 16, or 36!");
- size_t slen = str.size();
- // Each computation below needs to know if it's negative.
- StringRef::iterator p = str.begin();
- unsigned isNegative = *p == '-';
- if (*p == '-' || *p == '+') {
- p++;
- slen--;
- assert(slen && "String is only a sign, needs a value.");
- }
- // For radixes of power-of-two values, the bits required is accurately and
- // easily computed
- if (radix == 2)
- return slen + isNegative;
- if (radix == 8)
- return slen * 3 + isNegative;
- if (radix == 16)
- return slen * 4 + isNegative;
- // FIXME: base 36
- // This is grossly inefficient but accurate. We could probably do something
- // with a computation of roughly slen*64/20 and then adjust by the value of
- // the first few digits. But, I'm not sure how accurate that could be.
- // Compute a sufficient number of bits that is always large enough but might
- // be too large. This avoids the assertion in the constructor. This
- // calculation doesn't work appropriately for the numbers 0-9, so just use 4
- // bits in that case.
- unsigned sufficient
- = radix == 10? (slen == 1 ? 4 : slen * 64/18)
- : (slen == 1 ? 7 : slen * 16/3);
- // Convert to the actual binary value.
- APInt tmp(sufficient, StringRef(p, slen), radix);
- // Compute how many bits are required. If the log is infinite, assume we need
- // just bit. If the log is exact and value is negative, then the value is
- // MinSignedValue with (log + 1) bits.
- unsigned log = tmp.logBase2();
- if (log == (unsigned)-1) {
- return isNegative + 1;
- } else if (isNegative && tmp.isPowerOf2()) {
- return isNegative + log;
- } else {
- return isNegative + log + 1;
- }
- }
- hash_code llvm::hash_value(const APInt &Arg) {
- if (Arg.isSingleWord())
- return hash_combine(Arg.BitWidth, Arg.U.VAL);
- return hash_combine(
- Arg.BitWidth,
- hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
- }
- unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
- return static_cast<unsigned>(hash_value(Key));
- }
- bool APInt::isSplat(unsigned SplatSizeInBits) const {
- assert(getBitWidth() % SplatSizeInBits == 0 &&
- "SplatSizeInBits must divide width!");
- // We can check that all parts of an integer are equal by making use of a
- // little trick: rotate and check if it's still the same value.
- return *this == rotl(SplatSizeInBits);
- }
- /// This function returns the high "numBits" bits of this APInt.
- APInt APInt::getHiBits(unsigned numBits) const {
- return this->lshr(BitWidth - numBits);
- }
- /// This function returns the low "numBits" bits of this APInt.
- APInt APInt::getLoBits(unsigned numBits) const {
- APInt Result(getLowBitsSet(BitWidth, numBits));
- Result &= *this;
- return Result;
- }
- /// Return a value containing V broadcasted over NewLen bits.
- APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
- assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
- APInt Val = V.zextOrSelf(NewLen);
- for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
- Val |= Val << I;
- return Val;
- }
- unsigned APInt::countLeadingZerosSlowCase() const {
- unsigned Count = 0;
- for (int i = getNumWords()-1; i >= 0; --i) {
- uint64_t V = U.pVal[i];
- if (V == 0)
- Count += APINT_BITS_PER_WORD;
- else {
- Count += llvm::countLeadingZeros(V);
- break;
- }
- }
- // Adjust for unused bits in the most significant word (they are zero).
- unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
- Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
- return Count;
- }
- unsigned APInt::countLeadingOnesSlowCase() const {
- unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
- unsigned shift;
- if (!highWordBits) {
- highWordBits = APINT_BITS_PER_WORD;
- shift = 0;
- } else {
- shift = APINT_BITS_PER_WORD - highWordBits;
- }
- int i = getNumWords() - 1;
- unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
- if (Count == highWordBits) {
- for (i--; i >= 0; --i) {
- if (U.pVal[i] == WORDTYPE_MAX)
- Count += APINT_BITS_PER_WORD;
- else {
- Count += llvm::countLeadingOnes(U.pVal[i]);
- break;
- }
- }
- }
- return Count;
- }
- unsigned APInt::countTrailingZerosSlowCase() const {
- unsigned Count = 0;
- unsigned i = 0;
- for (; i < getNumWords() && U.pVal[i] == 0; ++i)
- Count += APINT_BITS_PER_WORD;
- if (i < getNumWords())
- Count += llvm::countTrailingZeros(U.pVal[i]);
- return std::min(Count, BitWidth);
- }
- unsigned APInt::countTrailingOnesSlowCase() const {
- unsigned Count = 0;
- unsigned i = 0;
- for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
- Count += APINT_BITS_PER_WORD;
- if (i < getNumWords())
- Count += llvm::countTrailingOnes(U.pVal[i]);
- assert(Count <= BitWidth);
- return Count;
- }
- unsigned APInt::countPopulationSlowCase() const {
- unsigned Count = 0;
- for (unsigned i = 0; i < getNumWords(); ++i)
- Count += llvm::countPopulation(U.pVal[i]);
- return Count;
- }
- bool APInt::intersectsSlowCase(const APInt &RHS) const {
- for (unsigned i = 0, e = getNumWords(); i != e; ++i)
- if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
- return true;
- return false;
- }
- bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
- for (unsigned i = 0, e = getNumWords(); i != e; ++i)
- if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
- return false;
- return true;
- }
- APInt APInt::byteSwap() const {
- assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
- if (BitWidth == 16)
- return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
- if (BitWidth == 32)
- return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
- if (BitWidth <= 64) {
- uint64_t Tmp1 = ByteSwap_64(U.VAL);
- Tmp1 >>= (64 - BitWidth);
- return APInt(BitWidth, Tmp1);
- }
- APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
- for (unsigned I = 0, N = getNumWords(); I != N; ++I)
- Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
- if (Result.BitWidth != BitWidth) {
- Result.lshrInPlace(Result.BitWidth - BitWidth);
- Result.BitWidth = BitWidth;
- }
- return Result;
- }
- APInt APInt::reverseBits() const {
- switch (BitWidth) {
- case 64:
- return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
- case 32:
- return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
- case 16:
- return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
- case 8:
- return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
- case 0:
- return *this;
- default:
- break;
- }
- APInt Val(*this);
- APInt Reversed(BitWidth, 0);
- unsigned S = BitWidth;
- for (; Val != 0; Val.lshrInPlace(1)) {
- Reversed <<= 1;
- Reversed |= Val[0];
- --S;
- }
- Reversed <<= S;
- return Reversed;
- }
- APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
- // Fast-path a common case.
- if (A == B) return A;
- // Corner cases: if either operand is zero, the other is the gcd.
- if (!A) return B;
- if (!B) return A;
- // Count common powers of 2 and remove all other powers of 2.
- unsigned Pow2;
- {
- unsigned Pow2_A = A.countTrailingZeros();
- unsigned Pow2_B = B.countTrailingZeros();
- if (Pow2_A > Pow2_B) {
- A.lshrInPlace(Pow2_A - Pow2_B);
- Pow2 = Pow2_B;
- } else if (Pow2_B > Pow2_A) {
- B.lshrInPlace(Pow2_B - Pow2_A);
- Pow2 = Pow2_A;
- } else {
- Pow2 = Pow2_A;
- }
- }
- // Both operands are odd multiples of 2^Pow_2:
- //
- // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
- //
- // This is a modified version of Stein's algorithm, taking advantage of
- // efficient countTrailingZeros().
- while (A != B) {
- if (A.ugt(B)) {
- A -= B;
- A.lshrInPlace(A.countTrailingZeros() - Pow2);
- } else {
- B -= A;
- B.lshrInPlace(B.countTrailingZeros() - Pow2);
- }
- }
- return A;
- }
- APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
- uint64_t I = bit_cast<uint64_t>(Double);
- // Get the sign bit from the highest order bit
- bool isNeg = I >> 63;
- // Get the 11-bit exponent and adjust for the 1023 bit bias
- int64_t exp = ((I >> 52) & 0x7ff) - 1023;
- // If the exponent is negative, the value is < 0 so just return 0.
- if (exp < 0)
- return APInt(width, 0u);
- // Extract the mantissa by clearing the top 12 bits (sign + exponent).
- uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
- // If the exponent doesn't shift all bits out of the mantissa
- if (exp < 52)
- return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
- APInt(width, mantissa >> (52 - exp));
- // If the client didn't provide enough bits for us to shift the mantissa into
- // then the result is undefined, just return 0
- if (width <= exp - 52)
- return APInt(width, 0);
- // Otherwise, we have to shift the mantissa bits up to the right location
- APInt Tmp(width, mantissa);
- Tmp <<= (unsigned)exp - 52;
- return isNeg ? -Tmp : Tmp;
- }
- /// This function converts this APInt to a double.
- /// The layout for double is as following (IEEE Standard 754):
- /// --------------------------------------
- /// | Sign Exponent Fraction Bias |
- /// |-------------------------------------- |
- /// | 1[63] 11[62-52] 52[51-00] 1023 |
- /// --------------------------------------
- double APInt::roundToDouble(bool isSigned) const {
- // Handle the simple case where the value is contained in one uint64_t.
- // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
- if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
- if (isSigned) {
- int64_t sext = SignExtend64(getWord(0), BitWidth);
- return double(sext);
- } else
- return double(getWord(0));
- }
- // Determine if the value is negative.
- bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
- // Construct the absolute value if we're negative.
- APInt Tmp(isNeg ? -(*this) : (*this));
- // Figure out how many bits we're using.
- unsigned n = Tmp.getActiveBits();
- // The exponent (without bias normalization) is just the number of bits
- // we are using. Note that the sign bit is gone since we constructed the
- // absolute value.
- uint64_t exp = n;
- // Return infinity for exponent overflow
- if (exp > 1023) {
- if (!isSigned || !isNeg)
- return std::numeric_limits<double>::infinity();
- else
- return -std::numeric_limits<double>::infinity();
- }
- exp += 1023; // Increment for 1023 bias
- // Number of bits in mantissa is 52. To obtain the mantissa value, we must
- // extract the high 52 bits from the correct words in pVal.
- uint64_t mantissa;
- unsigned hiWord = whichWord(n-1);
- if (hiWord == 0) {
- mantissa = Tmp.U.pVal[0];
- if (n > 52)
- mantissa >>= n - 52; // shift down, we want the top 52 bits.
- } else {
- assert(hiWord > 0 && "huh?");
- uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
- uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
- mantissa = hibits | lobits;
- }
- // The leading bit of mantissa is implicit, so get rid of it.
- uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
- uint64_t I = sign | (exp << 52) | mantissa;
- return bit_cast<double>(I);
- }
- // Truncate to new width.
- APInt APInt::trunc(unsigned width) const {
- assert(width < BitWidth && "Invalid APInt Truncate request");
- if (width <= APINT_BITS_PER_WORD)
- return APInt(width, getRawData()[0]);
- APInt Result(getMemory(getNumWords(width)), width);
- // Copy full words.
- unsigned i;
- for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
- Result.U.pVal[i] = U.pVal[i];
- // Truncate and copy any partial word.
- unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
- if (bits != 0)
- Result.U.pVal[i] = U.pVal[i] << bits >> bits;
- return Result;
- }
- // Truncate to new width with unsigned saturation.
- APInt APInt::truncUSat(unsigned width) const {
- assert(width < BitWidth && "Invalid APInt Truncate request");
- // Can we just losslessly truncate it?
- if (isIntN(width))
- return trunc(width);
- // If not, then just return the new limit.
- return APInt::getMaxValue(width);
- }
- // Truncate to new width with signed saturation.
- APInt APInt::truncSSat(unsigned width) const {
- assert(width < BitWidth && "Invalid APInt Truncate request");
- // Can we just losslessly truncate it?
- if (isSignedIntN(width))
- return trunc(width);
- // If not, then just return the new limits.
- return isNegative() ? APInt::getSignedMinValue(width)
- : APInt::getSignedMaxValue(width);
- }
- // Sign extend to a new width.
- APInt APInt::sext(unsigned Width) const {
- assert(Width > BitWidth && "Invalid APInt SignExtend request");
- if (Width <= APINT_BITS_PER_WORD)
- return APInt(Width, SignExtend64(U.VAL, BitWidth));
- APInt Result(getMemory(getNumWords(Width)), Width);
- // Copy words.
- std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
- // Sign extend the last word since there may be unused bits in the input.
- Result.U.pVal[getNumWords() - 1] =
- SignExtend64(Result.U.pVal[getNumWords() - 1],
- ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
- // Fill with sign bits.
- std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
- (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
- Result.clearUnusedBits();
- return Result;
- }
- // Zero extend to a new width.
- APInt APInt::zext(unsigned width) const {
- assert(width > BitWidth && "Invalid APInt ZeroExtend request");
- if (width <= APINT_BITS_PER_WORD)
- return APInt(width, U.VAL);
- APInt Result(getMemory(getNumWords(width)), width);
- // Copy words.
- std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
- // Zero remaining words.
- std::memset(Result.U.pVal + getNumWords(), 0,
- (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
- return Result;
- }
- APInt APInt::zextOrTrunc(unsigned width) const {
- if (BitWidth < width)
- return zext(width);
- if (BitWidth > width)
- return trunc(width);
- return *this;
- }
- APInt APInt::sextOrTrunc(unsigned width) const {
- if (BitWidth < width)
- return sext(width);
- if (BitWidth > width)
- return trunc(width);
- return *this;
- }
- APInt APInt::truncOrSelf(unsigned width) const {
- if (BitWidth > width)
- return trunc(width);
- return *this;
- }
- APInt APInt::zextOrSelf(unsigned width) const {
- if (BitWidth < width)
- return zext(width);
- return *this;
- }
- APInt APInt::sextOrSelf(unsigned width) const {
- if (BitWidth < width)
- return sext(width);
- return *this;
- }
- /// Arithmetic right-shift this APInt by shiftAmt.
- /// Arithmetic right-shift function.
- void APInt::ashrInPlace(const APInt &shiftAmt) {
- ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
- }
- /// Arithmetic right-shift this APInt by shiftAmt.
- /// Arithmetic right-shift function.
- void APInt::ashrSlowCase(unsigned ShiftAmt) {
- // Don't bother performing a no-op shift.
- if (!ShiftAmt)
- return;
- // Save the original sign bit for later.
- bool Negative = isNegative();
- // WordShift is the inter-part shift; BitShift is intra-part shift.
- unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
- unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
- unsigned WordsToMove = getNumWords() - WordShift;
- if (WordsToMove != 0) {
- // Sign extend the last word to fill in the unused bits.
- U.pVal[getNumWords() - 1] = SignExtend64(
- U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
- // Fastpath for moving by whole words.
- if (BitShift == 0) {
- std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
- } else {
- // Move the words containing significant bits.
- for (unsigned i = 0; i != WordsToMove - 1; ++i)
- U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
- (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
- // Handle the last word which has no high bits to copy.
- U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
- // Sign extend one more time.
- U.pVal[WordsToMove - 1] =
- SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
- }
- }
- // Fill in the remainder based on the original sign.
- std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
- WordShift * APINT_WORD_SIZE);
- clearUnusedBits();
- }
- /// Logical right-shift this APInt by shiftAmt.
- /// Logical right-shift function.
- void APInt::lshrInPlace(const APInt &shiftAmt) {
- lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
- }
- /// Logical right-shift this APInt by shiftAmt.
- /// Logical right-shift function.
- void APInt::lshrSlowCase(unsigned ShiftAmt) {
- tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
- }
- /// Left-shift this APInt by shiftAmt.
- /// Left-shift function.
- APInt &APInt::operator<<=(const APInt &shiftAmt) {
- // It's undefined behavior in C to shift by BitWidth or greater.
- *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
- return *this;
- }
- void APInt::shlSlowCase(unsigned ShiftAmt) {
- tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
- clearUnusedBits();
- }
- // Calculate the rotate amount modulo the bit width.
- static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
- if (LLVM_UNLIKELY(BitWidth == 0))
- return 0;
- unsigned rotBitWidth = rotateAmt.getBitWidth();
- APInt rot = rotateAmt;
- if (rotBitWidth < BitWidth) {
- // Extend the rotate APInt, so that the urem doesn't divide by 0.
- // e.g. APInt(1, 32) would give APInt(1, 0).
- rot = rotateAmt.zext(BitWidth);
- }
- rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
- return rot.getLimitedValue(BitWidth);
- }
- APInt APInt::rotl(const APInt &rotateAmt) const {
- return rotl(rotateModulo(BitWidth, rotateAmt));
- }
- APInt APInt::rotl(unsigned rotateAmt) const {
- if (LLVM_UNLIKELY(BitWidth == 0))
- return *this;
- rotateAmt %= BitWidth;
- if (rotateAmt == 0)
- return *this;
- return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
- }
- APInt APInt::rotr(const APInt &rotateAmt) const {
- return rotr(rotateModulo(BitWidth, rotateAmt));
- }
- APInt APInt::rotr(unsigned rotateAmt) const {
- if (BitWidth == 0)
- return *this;
- rotateAmt %= BitWidth;
- if (rotateAmt == 0)
- return *this;
- return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
- }
- /// \returns the nearest log base 2 of this APInt. Ties round up.
- ///
- /// NOTE: When we have a BitWidth of 1, we define:
- ///
- /// log2(0) = UINT32_MAX
- /// log2(1) = 0
- ///
- /// to get around any mathematical concerns resulting from
- /// referencing 2 in a space where 2 does no exist.
- unsigned APInt::nearestLogBase2() const {
- // Special case when we have a bitwidth of 1. If VAL is 1, then we
- // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
- // UINT32_MAX.
- if (BitWidth == 1)
- return U.VAL - 1;
- // Handle the zero case.
- if (isZero())
- return UINT32_MAX;
- // The non-zero case is handled by computing:
- //
- // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
- //
- // where x[i] is referring to the value of the ith bit of x.
- unsigned lg = logBase2();
- return lg + unsigned((*this)[lg - 1]);
- }
- // Square Root - this method computes and returns the square root of "this".
- // Three mechanisms are used for computation. For small values (<= 5 bits),
- // a table lookup is done. This gets some performance for common cases. For
- // values using less than 52 bits, the value is converted to double and then
- // the libc sqrt function is called. The result is rounded and then converted
- // back to a uint64_t which is then used to construct the result. Finally,
- // the Babylonian method for computing square roots is used.
- APInt APInt::sqrt() const {
- // Determine the magnitude of the value.
- unsigned magnitude = getActiveBits();
- // Use a fast table for some small values. This also gets rid of some
- // rounding errors in libc sqrt for small values.
- if (magnitude <= 5) {
- static const uint8_t results[32] = {
- /* 0 */ 0,
- /* 1- 2 */ 1, 1,
- /* 3- 6 */ 2, 2, 2, 2,
- /* 7-12 */ 3, 3, 3, 3, 3, 3,
- /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
- /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- /* 31 */ 6
- };
- return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
- }
- // If the magnitude of the value fits in less than 52 bits (the precision of
- // an IEEE double precision floating point value), then we can use the
- // libc sqrt function which will probably use a hardware sqrt computation.
- // This should be faster than the algorithm below.
- if (magnitude < 52) {
- return APInt(BitWidth,
- uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
- : U.pVal[0])))));
- }
- // Okay, all the short cuts are exhausted. We must compute it. The following
- // is a classical Babylonian method for computing the square root. This code
- // was adapted to APInt from a wikipedia article on such computations.
- // See http://www.wikipedia.org/ and go to the page named
- // Calculate_an_integer_square_root.
- unsigned nbits = BitWidth, i = 4;
- APInt testy(BitWidth, 16);
- APInt x_old(BitWidth, 1);
- APInt x_new(BitWidth, 0);
- APInt two(BitWidth, 2);
- // Select a good starting value using binary logarithms.
- for (;; i += 2, testy = testy.shl(2))
- if (i >= nbits || this->ule(testy)) {
- x_old = x_old.shl(i / 2);
- break;
- }
- // Use the Babylonian method to arrive at the integer square root:
- for (;;) {
- x_new = (this->udiv(x_old) + x_old).udiv(two);
- if (x_old.ule(x_new))
- break;
- x_old = x_new;
- }
- // Make sure we return the closest approximation
- // NOTE: The rounding calculation below is correct. It will produce an
- // off-by-one discrepancy with results from pari/gp. That discrepancy has been
- // determined to be a rounding issue with pari/gp as it begins to use a
- // floating point representation after 192 bits. There are no discrepancies
- // between this algorithm and pari/gp for bit widths < 192 bits.
- APInt square(x_old * x_old);
- APInt nextSquare((x_old + 1) * (x_old +1));
- if (this->ult(square))
- return x_old;
- assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
- APInt midpoint((nextSquare - square).udiv(two));
- APInt offset(*this - square);
- if (offset.ult(midpoint))
- return x_old;
- return x_old + 1;
- }
- /// Computes the multiplicative inverse of this APInt for a given modulo. The
- /// iterative extended Euclidean algorithm is used to solve for this value,
- /// however we simplify it to speed up calculating only the inverse, and take
- /// advantage of div+rem calculations. We also use some tricks to avoid copying
- /// (potentially large) APInts around.
- /// WARNING: a value of '0' may be returned,
- /// signifying that no multiplicative inverse exists!
- APInt APInt::multiplicativeInverse(const APInt& modulo) const {
- assert(ult(modulo) && "This APInt must be smaller than the modulo");
- // Using the properties listed at the following web page (accessed 06/21/08):
- // http://www.numbertheory.org/php/euclid.html
- // (especially the properties numbered 3, 4 and 9) it can be proved that
- // BitWidth bits suffice for all the computations in the algorithm implemented
- // below. More precisely, this number of bits suffice if the multiplicative
- // inverse exists, but may not suffice for the general extended Euclidean
- // algorithm.
- APInt r[2] = { modulo, *this };
- APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
- APInt q(BitWidth, 0);
- unsigned i;
- for (i = 0; r[i^1] != 0; i ^= 1) {
- // An overview of the math without the confusing bit-flipping:
- // q = r[i-2] / r[i-1]
- // r[i] = r[i-2] % r[i-1]
- // t[i] = t[i-2] - t[i-1] * q
- udivrem(r[i], r[i^1], q, r[i]);
- t[i] -= t[i^1] * q;
- }
- // If this APInt and the modulo are not coprime, there is no multiplicative
- // inverse, so return 0. We check this by looking at the next-to-last
- // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
- // algorithm.
- if (r[i] != 1)
- return APInt(BitWidth, 0);
- // The next-to-last t is the multiplicative inverse. However, we are
- // interested in a positive inverse. Calculate a positive one from a negative
- // one if necessary. A simple addition of the modulo suffices because
- // abs(t[i]) is known to be less than *this/2 (see the link above).
- if (t[i].isNegative())
- t[i] += modulo;
- return std::move(t[i]);
- }
- /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
- /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
- /// variables here have the same names as in the algorithm. Comments explain
- /// the algorithm and any deviation from it.
- static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
- unsigned m, unsigned n) {
- assert(u && "Must provide dividend");
- assert(v && "Must provide divisor");
- assert(q && "Must provide quotient");
- assert(u != v && u != q && v != q && "Must use different memory");
- assert(n>1 && "n must be > 1");
- // b denotes the base of the number system. In our case b is 2^32.
- const uint64_t b = uint64_t(1) << 32;
- // The DEBUG macros here tend to be spam in the debug output if you're not
- // debugging this code. Disable them unless KNUTH_DEBUG is defined.
- #ifdef KNUTH_DEBUG
- #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
- #else
- #define DEBUG_KNUTH(X) do {} while(false)
- #endif
- DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
- DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
- DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
- DEBUG_KNUTH(dbgs() << " by");
- DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
- DEBUG_KNUTH(dbgs() << '\n');
- // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
- // u and v by d. Note that we have taken Knuth's advice here to use a power
- // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
- // 2 allows us to shift instead of multiply and it is easy to determine the
- // shift amount from the leading zeros. We are basically normalizing the u
- // and v so that its high bits are shifted to the top of v's range without
- // overflow. Note that this can require an extra word in u so that u must
- // be of length m+n+1.
- unsigned shift = countLeadingZeros(v[n-1]);
- uint32_t v_carry = 0;
- uint32_t u_carry = 0;
- if (shift) {
- for (unsigned i = 0; i < m+n; ++i) {
- uint32_t u_tmp = u[i] >> (32 - shift);
- u[i] = (u[i] << shift) | u_carry;
- u_carry = u_tmp;
- }
- for (unsigned i = 0; i < n; ++i) {
- uint32_t v_tmp = v[i] >> (32 - shift);
- v[i] = (v[i] << shift) | v_carry;
- v_carry = v_tmp;
- }
- }
- u[m+n] = u_carry;
- DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:");
- DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
- DEBUG_KNUTH(dbgs() << " by");
- DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
- DEBUG_KNUTH(dbgs() << '\n');
- // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
- int j = m;
- do {
- DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
- // D3. [Calculate q'.].
- // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
- // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
- // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
- // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
- // on v[n-2] determines at high speed most of the cases in which the trial
- // value qp is one too large, and it eliminates all cases where qp is two
- // too large.
- uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
- DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
- uint64_t qp = dividend / v[n-1];
- uint64_t rp = dividend % v[n-1];
- if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
- qp--;
- rp += v[n-1];
- if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
- qp--;
- }
- DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
- // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
- // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
- // consists of a simple multiplication by a one-place number, combined with
- // a subtraction.
- // The digits (u[j+n]...u[j]) should be kept positive; if the result of
- // this step is actually negative, (u[j+n]...u[j]) should be left as the
- // true value plus b**(n+1), namely as the b's complement of
- // the true value, and a "borrow" to the left should be remembered.
- int64_t borrow = 0;
- for (unsigned i = 0; i < n; ++i) {
- uint64_t p = uint64_t(qp) * uint64_t(v[i]);
- int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
- u[j+i] = Lo_32(subres);
- borrow = Hi_32(p) - Hi_32(subres);
- DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
- << ", borrow = " << borrow << '\n');
- }
- bool isNeg = u[j+n] < borrow;
- u[j+n] -= Lo_32(borrow);
- DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
- DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
- DEBUG_KNUTH(dbgs() << '\n');
- // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
- // negative, go to step D6; otherwise go on to step D7.
- q[j] = Lo_32(qp);
- if (isNeg) {
- // D6. [Add back]. The probability that this step is necessary is very
- // small, on the order of only 2/b. Make sure that test data accounts for
- // this possibility. Decrease q[j] by 1
- q[j]--;
- // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
- // A carry will occur to the left of u[j+n], and it should be ignored
- // since it cancels with the borrow that occurred in D4.
- bool carry = false;
- for (unsigned i = 0; i < n; i++) {
- uint32_t limit = std::min(u[j+i],v[i]);
- u[j+i] += v[i] + carry;
- carry = u[j+i] < limit || (carry && u[j+i] == limit);
- }
- u[j+n] += carry;
- }
- DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
- DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
- DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
- // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
- } while (--j >= 0);
- DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
- DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
- DEBUG_KNUTH(dbgs() << '\n');
- // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
- // remainder may be obtained by dividing u[...] by d. If r is non-null we
- // compute the remainder (urem uses this).
- if (r) {
- // The value d is expressed by the "shift" value above since we avoided
- // multiplication by d by using a shift left. So, all we have to do is
- // shift right here.
- if (shift) {
- uint32_t carry = 0;
- DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
- for (int i = n-1; i >= 0; i--) {
- r[i] = (u[i] >> shift) | carry;
- carry = u[i] << (32 - shift);
- DEBUG_KNUTH(dbgs() << " " << r[i]);
- }
- } else {
- for (int i = n-1; i >= 0; i--) {
- r[i] = u[i];
- DEBUG_KNUTH(dbgs() << " " << r[i]);
- }
- }
- DEBUG_KNUTH(dbgs() << '\n');
- }
- DEBUG_KNUTH(dbgs() << '\n');
- }
- void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
- unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
- assert(lhsWords >= rhsWords && "Fractional result");
- // First, compose the values into an array of 32-bit words instead of
- // 64-bit words. This is a necessity of both the "short division" algorithm
- // and the Knuth "classical algorithm" which requires there to be native
- // operations for +, -, and * on an m bit value with an m*2 bit result. We
- // can't use 64-bit operands here because we don't have native results of
- // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
- // work on large-endian machines.
- unsigned n = rhsWords * 2;
- unsigned m = (lhsWords * 2) - n;
- // Allocate space for the temporary values we need either on the stack, if
- // it will fit, or on the heap if it won't.
- uint32_t SPACE[128];
- uint32_t *U = nullptr;
- uint32_t *V = nullptr;
- uint32_t *Q = nullptr;
- uint32_t *R = nullptr;
- if ((Remainder?4:3)*n+2*m+1 <= 128) {
- U = &SPACE[0];
- V = &SPACE[m+n+1];
- Q = &SPACE[(m+n+1) + n];
- if (Remainder)
- R = &SPACE[(m+n+1) + n + (m+n)];
- } else {
- U = new uint32_t[m + n + 1];
- V = new uint32_t[n];
- Q = new uint32_t[m+n];
- if (Remainder)
- R = new uint32_t[n];
- }
- // Initialize the dividend
- memset(U, 0, (m+n+1)*sizeof(uint32_t));
- for (unsigned i = 0; i < lhsWords; ++i) {
- uint64_t tmp = LHS[i];
- U[i * 2] = Lo_32(tmp);
- U[i * 2 + 1] = Hi_32(tmp);
- }
- U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
- // Initialize the divisor
- memset(V, 0, (n)*sizeof(uint32_t));
- for (unsigned i = 0; i < rhsWords; ++i) {
- uint64_t tmp = RHS[i];
- V[i * 2] = Lo_32(tmp);
- V[i * 2 + 1] = Hi_32(tmp);
- }
- // initialize the quotient and remainder
- memset(Q, 0, (m+n) * sizeof(uint32_t));
- if (Remainder)
- memset(R, 0, n * sizeof(uint32_t));
- // Now, adjust m and n for the Knuth division. n is the number of words in
- // the divisor. m is the number of words by which the dividend exceeds the
- // divisor (i.e. m+n is the length of the dividend). These sizes must not
- // contain any zero words or the Knuth algorithm fails.
- for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
- n--;
- m++;
- }
- for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
- m--;
- // If we're left with only a single word for the divisor, Knuth doesn't work
- // so we implement the short division algorithm here. This is much simpler
- // and faster because we are certain that we can divide a 64-bit quantity
- // by a 32-bit quantity at hardware speed and short division is simply a
- // series of such operations. This is just like doing short division but we
- // are using base 2^32 instead of base 10.
- assert(n != 0 && "Divide by zero?");
- if (n == 1) {
- uint32_t divisor = V[0];
- uint32_t remainder = 0;
- for (int i = m; i >= 0; i--) {
- uint64_t partial_dividend = Make_64(remainder, U[i]);
- if (partial_dividend == 0) {
- Q[i] = 0;
- remainder = 0;
- } else if (partial_dividend < divisor) {
- Q[i] = 0;
- remainder = Lo_32(partial_dividend);
- } else if (partial_dividend == divisor) {
- Q[i] = 1;
- remainder = 0;
- } else {
- Q[i] = Lo_32(partial_dividend / divisor);
- remainder = Lo_32(partial_dividend - (Q[i] * divisor));
- }
- }
- if (R)
- R[0] = remainder;
- } else {
- // Now we're ready to invoke the Knuth classical divide algorithm. In this
- // case n > 1.
- KnuthDiv(U, V, Q, R, m, n);
- }
- // If the caller wants the quotient
- if (Quotient) {
- for (unsigned i = 0; i < lhsWords; ++i)
- Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
- }
- // If the caller wants the remainder
- if (Remainder) {
- for (unsigned i = 0; i < rhsWords; ++i)
- Remainder[i] = Make_64(R[i*2+1], R[i*2]);
- }
- // Clean up the memory we allocated.
- if (U != &SPACE[0]) {
- delete [] U;
- delete [] V;
- delete [] Q;
- delete [] R;
- }
- }
- APInt APInt::udiv(const APInt &RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- // First, deal with the easy case
- if (isSingleWord()) {
- assert(RHS.U.VAL != 0 && "Divide by zero?");
- return APInt(BitWidth, U.VAL / RHS.U.VAL);
- }
- // Get some facts about the LHS and RHS number of bits and words
- unsigned lhsWords = getNumWords(getActiveBits());
- unsigned rhsBits = RHS.getActiveBits();
- unsigned rhsWords = getNumWords(rhsBits);
- assert(rhsWords && "Divided by zero???");
- // Deal with some degenerate cases
- if (!lhsWords)
- // 0 / X ===> 0
- return APInt(BitWidth, 0);
- if (rhsBits == 1)
- // X / 1 ===> X
- return *this;
- if (lhsWords < rhsWords || this->ult(RHS))
- // X / Y ===> 0, iff X < Y
- return APInt(BitWidth, 0);
- if (*this == RHS)
- // X / X ===> 1
- return APInt(BitWidth, 1);
- if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
- // All high words are zero, just use native divide
- return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
- // We have to compute it the hard way. Invoke the Knuth divide algorithm.
- APInt Quotient(BitWidth, 0); // to hold result.
- divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
- return Quotient;
- }
- APInt APInt::udiv(uint64_t RHS) const {
- assert(RHS != 0 && "Divide by zero?");
- // First, deal with the easy case
- if (isSingleWord())
- return APInt(BitWidth, U.VAL / RHS);
- // Get some facts about the LHS words.
- unsigned lhsWords = getNumWords(getActiveBits());
- // Deal with some degenerate cases
- if (!lhsWords)
- // 0 / X ===> 0
- return APInt(BitWidth, 0);
- if (RHS == 1)
- // X / 1 ===> X
- return *this;
- if (this->ult(RHS))
- // X / Y ===> 0, iff X < Y
- return APInt(BitWidth, 0);
- if (*this == RHS)
- // X / X ===> 1
- return APInt(BitWidth, 1);
- if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
- // All high words are zero, just use native divide
- return APInt(BitWidth, this->U.pVal[0] / RHS);
- // We have to compute it the hard way. Invoke the Knuth divide algorithm.
- APInt Quotient(BitWidth, 0); // to hold result.
- divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
- return Quotient;
- }
- APInt APInt::sdiv(const APInt &RHS) const {
- if (isNegative()) {
- if (RHS.isNegative())
- return (-(*this)).udiv(-RHS);
- return -((-(*this)).udiv(RHS));
- }
- if (RHS.isNegative())
- return -(this->udiv(-RHS));
- return this->udiv(RHS);
- }
- APInt APInt::sdiv(int64_t RHS) const {
- if (isNegative()) {
- if (RHS < 0)
- return (-(*this)).udiv(-RHS);
- return -((-(*this)).udiv(RHS));
- }
- if (RHS < 0)
- return -(this->udiv(-RHS));
- return this->udiv(RHS);
- }
- APInt APInt::urem(const APInt &RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord()) {
- assert(RHS.U.VAL != 0 && "Remainder by zero?");
- return APInt(BitWidth, U.VAL % RHS.U.VAL);
- }
- // Get some facts about the LHS
- unsigned lhsWords = getNumWords(getActiveBits());
- // Get some facts about the RHS
- unsigned rhsBits = RHS.getActiveBits();
- unsigned rhsWords = getNumWords(rhsBits);
- assert(rhsWords && "Performing remainder operation by zero ???");
- // Check the degenerate cases
- if (lhsWords == 0)
- // 0 % Y ===> 0
- return APInt(BitWidth, 0);
- if (rhsBits == 1)
- // X % 1 ===> 0
- return APInt(BitWidth, 0);
- if (lhsWords < rhsWords || this->ult(RHS))
- // X % Y ===> X, iff X < Y
- return *this;
- if (*this == RHS)
- // X % X == 0;
- return APInt(BitWidth, 0);
- if (lhsWords == 1)
- // All high words are zero, just use native remainder
- return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
- // We have to compute it the hard way. Invoke the Knuth divide algorithm.
- APInt Remainder(BitWidth, 0);
- divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
- return Remainder;
- }
- uint64_t APInt::urem(uint64_t RHS) const {
- assert(RHS != 0 && "Remainder by zero?");
- if (isSingleWord())
- return U.VAL % RHS;
- // Get some facts about the LHS
- unsigned lhsWords = getNumWords(getActiveBits());
- // Check the degenerate cases
- if (lhsWords == 0)
- // 0 % Y ===> 0
- return 0;
- if (RHS == 1)
- // X % 1 ===> 0
- return 0;
- if (this->ult(RHS))
- // X % Y ===> X, iff X < Y
- return getZExtValue();
- if (*this == RHS)
- // X % X == 0;
- return 0;
- if (lhsWords == 1)
- // All high words are zero, just use native remainder
- return U.pVal[0] % RHS;
- // We have to compute it the hard way. Invoke the Knuth divide algorithm.
- uint64_t Remainder;
- divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
- return Remainder;
- }
- APInt APInt::srem(const APInt &RHS) const {
- if (isNegative()) {
- if (RHS.isNegative())
- return -((-(*this)).urem(-RHS));
- return -((-(*this)).urem(RHS));
- }
- if (RHS.isNegative())
- return this->urem(-RHS);
- return this->urem(RHS);
- }
- int64_t APInt::srem(int64_t RHS) const {
- if (isNegative()) {
- if (RHS < 0)
- return -((-(*this)).urem(-RHS));
- return -((-(*this)).urem(RHS));
- }
- if (RHS < 0)
- return this->urem(-RHS);
- return this->urem(RHS);
- }
- void APInt::udivrem(const APInt &LHS, const APInt &RHS,
- APInt &Quotient, APInt &Remainder) {
- assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
- unsigned BitWidth = LHS.BitWidth;
- // First, deal with the easy case
- if (LHS.isSingleWord()) {
- assert(RHS.U.VAL != 0 && "Divide by zero?");
- uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
- uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
- Quotient = APInt(BitWidth, QuotVal);
- Remainder = APInt(BitWidth, RemVal);
- return;
- }
- // Get some size facts about the dividend and divisor
- unsigned lhsWords = getNumWords(LHS.getActiveBits());
- unsigned rhsBits = RHS.getActiveBits();
- unsigned rhsWords = getNumWords(rhsBits);
- assert(rhsWords && "Performing divrem operation by zero ???");
- // Check the degenerate cases
- if (lhsWords == 0) {
- Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
- Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0
- return;
- }
- if (rhsBits == 1) {
- Quotient = LHS; // X / 1 ===> X
- Remainder = APInt(BitWidth, 0); // X % 1 ===> 0
- }
- if (lhsWords < rhsWords || LHS.ult(RHS)) {
- Remainder = LHS; // X % Y ===> X, iff X < Y
- Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
- return;
- }
- if (LHS == RHS) {
- Quotient = APInt(BitWidth, 1); // X / X ===> 1
- Remainder = APInt(BitWidth, 0); // X % X ===> 0;
- return;
- }
- // Make sure there is enough space to hold the results.
- // NOTE: This assumes that reallocate won't affect any bits if it doesn't
- // change the size. This is necessary if Quotient or Remainder is aliased
- // with LHS or RHS.
- Quotient.reallocate(BitWidth);
- Remainder.reallocate(BitWidth);
- if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
- // There is only one word to consider so use the native versions.
- uint64_t lhsValue = LHS.U.pVal[0];
- uint64_t rhsValue = RHS.U.pVal[0];
- Quotient = lhsValue / rhsValue;
- Remainder = lhsValue % rhsValue;
- return;
- }
- // Okay, lets do it the long way
- divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
- Remainder.U.pVal);
- // Clear the rest of the Quotient and Remainder.
- std::memset(Quotient.U.pVal + lhsWords, 0,
- (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
- std::memset(Remainder.U.pVal + rhsWords, 0,
- (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
- }
- void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
- uint64_t &Remainder) {
- assert(RHS != 0 && "Divide by zero?");
- unsigned BitWidth = LHS.BitWidth;
- // First, deal with the easy case
- if (LHS.isSingleWord()) {
- uint64_t QuotVal = LHS.U.VAL / RHS;
- Remainder = LHS.U.VAL % RHS;
- Quotient = APInt(BitWidth, QuotVal);
- return;
- }
- // Get some size facts about the dividend and divisor
- unsigned lhsWords = getNumWords(LHS.getActiveBits());
- // Check the degenerate cases
- if (lhsWords == 0) {
- Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
- Remainder = 0; // 0 % Y ===> 0
- return;
- }
- if (RHS == 1) {
- Quotient = LHS; // X / 1 ===> X
- Remainder = 0; // X % 1 ===> 0
- return;
- }
- if (LHS.ult(RHS)) {
- Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y
- Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
- return;
- }
- if (LHS == RHS) {
- Quotient = APInt(BitWidth, 1); // X / X ===> 1
- Remainder = 0; // X % X ===> 0;
- return;
- }
- // Make sure there is enough space to hold the results.
- // NOTE: This assumes that reallocate won't affect any bits if it doesn't
- // change the size. This is necessary if Quotient is aliased with LHS.
- Quotient.reallocate(BitWidth);
- if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
- // There is only one word to consider so use the native versions.
- uint64_t lhsValue = LHS.U.pVal[0];
- Quotient = lhsValue / RHS;
- Remainder = lhsValue % RHS;
- return;
- }
- // Okay, lets do it the long way
- divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
- // Clear the rest of the Quotient.
- std::memset(Quotient.U.pVal + lhsWords, 0,
- (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
- }
- void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
- APInt &Quotient, APInt &Remainder) {
- if (LHS.isNegative()) {
- if (RHS.isNegative())
- APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
- else {
- APInt::udivrem(-LHS, RHS, Quotient, Remainder);
- Quotient.negate();
- }
- Remainder.negate();
- } else if (RHS.isNegative()) {
- APInt::udivrem(LHS, -RHS, Quotient, Remainder);
- Quotient.negate();
- } else {
- APInt::udivrem(LHS, RHS, Quotient, Remainder);
- }
- }
- void APInt::sdivrem(const APInt &LHS, int64_t RHS,
- APInt &Quotient, int64_t &Remainder) {
- uint64_t R = Remainder;
- if (LHS.isNegative()) {
- if (RHS < 0)
- APInt::udivrem(-LHS, -RHS, Quotient, R);
- else {
- APInt::udivrem(-LHS, RHS, Quotient, R);
- Quotient.negate();
- }
- R = -R;
- } else if (RHS < 0) {
- APInt::udivrem(LHS, -RHS, Quotient, R);
- Quotient.negate();
- } else {
- APInt::udivrem(LHS, RHS, Quotient, R);
- }
- Remainder = R;
- }
- APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
- APInt Res = *this+RHS;
- Overflow = isNonNegative() == RHS.isNonNegative() &&
- Res.isNonNegative() != isNonNegative();
- return Res;
- }
- APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
- APInt Res = *this+RHS;
- Overflow = Res.ult(RHS);
- return Res;
- }
- APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
- APInt Res = *this - RHS;
- Overflow = isNonNegative() != RHS.isNonNegative() &&
- Res.isNonNegative() != isNonNegative();
- return Res;
- }
- APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
- APInt Res = *this-RHS;
- Overflow = Res.ugt(*this);
- return Res;
- }
- APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
- // MININT/-1 --> overflow.
- Overflow = isMinSignedValue() && RHS.isAllOnes();
- return sdiv(RHS);
- }
- APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
- APInt Res = *this * RHS;
- if (RHS != 0)
- Overflow = Res.sdiv(RHS) != *this ||
- (isMinSignedValue() && RHS.isAllOnes());
- else
- Overflow = false;
- return Res;
- }
- APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
- if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
- Overflow = true;
- return *this * RHS;
- }
- APInt Res = lshr(1) * RHS;
- Overflow = Res.isNegative();
- Res <<= 1;
- if ((*this)[0]) {
- Res += RHS;
- if (Res.ult(RHS))
- Overflow = true;
- }
- return Res;
- }
- APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
- Overflow = ShAmt.uge(getBitWidth());
- if (Overflow)
- return APInt(BitWidth, 0);
- if (isNonNegative()) // Don't allow sign change.
- Overflow = ShAmt.uge(countLeadingZeros());
- else
- Overflow = ShAmt.uge(countLeadingOnes());
- return *this << ShAmt;
- }
- APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
- Overflow = ShAmt.uge(getBitWidth());
- if (Overflow)
- return APInt(BitWidth, 0);
- Overflow = ShAmt.ugt(countLeadingZeros());
- return *this << ShAmt;
- }
- APInt APInt::sadd_sat(const APInt &RHS) const {
- bool Overflow;
- APInt Res = sadd_ov(RHS, Overflow);
- if (!Overflow)
- return Res;
- return isNegative() ? APInt::getSignedMinValue(BitWidth)
- : APInt::getSignedMaxValue(BitWidth);
- }
- APInt APInt::uadd_sat(const APInt &RHS) const {
- bool Overflow;
- APInt Res = uadd_ov(RHS, Overflow);
- if (!Overflow)
- return Res;
- return APInt::getMaxValue(BitWidth);
- }
- APInt APInt::ssub_sat(const APInt &RHS) const {
- bool Overflow;
- APInt Res = ssub_ov(RHS, Overflow);
- if (!Overflow)
- return Res;
- return isNegative() ? APInt::getSignedMinValue(BitWidth)
- : APInt::getSignedMaxValue(BitWidth);
- }
- APInt APInt::usub_sat(const APInt &RHS) const {
- bool Overflow;
- APInt Res = usub_ov(RHS, Overflow);
- if (!Overflow)
- return Res;
- return APInt(BitWidth, 0);
- }
- APInt APInt::smul_sat(const APInt &RHS) const {
- bool Overflow;
- APInt Res = smul_ov(RHS, Overflow);
- if (!Overflow)
- return Res;
- // The result is negative if one and only one of inputs is negative.
- bool ResIsNegative = isNegative() ^ RHS.isNegative();
- return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
- : APInt::getSignedMaxValue(BitWidth);
- }
- APInt APInt::umul_sat(const APInt &RHS) const {
- bool Overflow;
- APInt Res = umul_ov(RHS, Overflow);
- if (!Overflow)
- return Res;
- return APInt::getMaxValue(BitWidth);
- }
- APInt APInt::sshl_sat(const APInt &RHS) const {
- bool Overflow;
- APInt Res = sshl_ov(RHS, Overflow);
- if (!Overflow)
- return Res;
- return isNegative() ? APInt::getSignedMinValue(BitWidth)
- : APInt::getSignedMaxValue(BitWidth);
- }
- APInt APInt::ushl_sat(const APInt &RHS) const {
- bool Overflow;
- APInt Res = ushl_ov(RHS, Overflow);
- if (!Overflow)
- return Res;
- return APInt::getMaxValue(BitWidth);
- }
- void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
- // Check our assumptions here
- assert(!str.empty() && "Invalid string length");
- assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
- radix == 36) &&
- "Radix should be 2, 8, 10, 16, or 36!");
- StringRef::iterator p = str.begin();
- size_t slen = str.size();
- bool isNeg = *p == '-';
- if (*p == '-' || *p == '+') {
- p++;
- slen--;
- assert(slen && "String is only a sign, needs a value.");
- }
- assert((slen <= numbits || radix != 2) && "Insufficient bit width");
- assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
- assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
- assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
- "Insufficient bit width");
- // Allocate memory if needed
- if (isSingleWord())
- U.VAL = 0;
- else
- U.pVal = getClearedMemory(getNumWords());
- // Figure out if we can shift instead of multiply
- unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
- // Enter digit traversal loop
- for (StringRef::iterator e = str.end(); p != e; ++p) {
- unsigned digit = getDigit(*p, radix);
- assert(digit < radix && "Invalid character in digit string");
- // Shift or multiply the value by the radix
- if (slen > 1) {
- if (shift)
- *this <<= shift;
- else
- *this *= radix;
- }
- // Add in the digit we just interpreted
- *this += digit;
- }
- // If its negative, put it in two's complement form
- if (isNeg)
- this->negate();
- }
- void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
- bool Signed, bool formatAsCLiteral) const {
- assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
- Radix == 36) &&
- "Radix should be 2, 8, 10, 16, or 36!");
- const char *Prefix = "";
- if (formatAsCLiteral) {
- switch (Radix) {
- case 2:
- // Binary literals are a non-standard extension added in gcc 4.3:
- // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
- Prefix = "0b";
- break;
- case 8:
- Prefix = "0";
- break;
- case 10:
- break; // No prefix
- case 16:
- Prefix = "0x";
- break;
- default:
- llvm_unreachable("Invalid radix!");
- }
- }
- // First, check for a zero value and just short circuit the logic below.
- if (isZero()) {
- while (*Prefix) {
- Str.push_back(*Prefix);
- ++Prefix;
- };
- Str.push_back('0');
- return;
- }
- static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
- if (isSingleWord()) {
- char Buffer[65];
- char *BufPtr = std::end(Buffer);
- uint64_t N;
- if (!Signed) {
- N = getZExtValue();
- } else {
- int64_t I = getSExtValue();
- if (I >= 0) {
- N = I;
- } else {
- Str.push_back('-');
- N = -(uint64_t)I;
- }
- }
- while (*Prefix) {
- Str.push_back(*Prefix);
- ++Prefix;
- };
- while (N) {
- *--BufPtr = Digits[N % Radix];
- N /= Radix;
- }
- Str.append(BufPtr, std::end(Buffer));
- return;
- }
- APInt Tmp(*this);
- if (Signed && isNegative()) {
- // They want to print the signed version and it is a negative value
- // Flip the bits and add one to turn it into the equivalent positive
- // value and put a '-' in the result.
- Tmp.negate();
- Str.push_back('-');
- }
- while (*Prefix) {
- Str.push_back(*Prefix);
- ++Prefix;
- };
- // We insert the digits backward, then reverse them to get the right order.
- unsigned StartDig = Str.size();
- // For the 2, 8 and 16 bit cases, we can just shift instead of divide
- // because the number of bits per digit (1, 3 and 4 respectively) divides
- // equally. We just shift until the value is zero.
- if (Radix == 2 || Radix == 8 || Radix == 16) {
- // Just shift tmp right for each digit width until it becomes zero
- unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
- unsigned MaskAmt = Radix - 1;
- while (Tmp.getBoolValue()) {
- unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
- Str.push_back(Digits[Digit]);
- Tmp.lshrInPlace(ShiftAmt);
- }
- } else {
- while (Tmp.getBoolValue()) {
- uint64_t Digit;
- udivrem(Tmp, Radix, Tmp, Digit);
- assert(Digit < Radix && "divide failed");
- Str.push_back(Digits[Digit]);
- }
- }
- // Reverse the digits before returning.
- std::reverse(Str.begin()+StartDig, Str.end());
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void APInt::dump() const {
- SmallString<40> S, U;
- this->toStringUnsigned(U);
- this->toStringSigned(S);
- dbgs() << "APInt(" << BitWidth << "b, "
- << U << "u " << S << "s)\n";
- }
- #endif
- void APInt::print(raw_ostream &OS, bool isSigned) const {
- SmallString<40> S;
- this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
- OS << S;
- }
- // This implements a variety of operations on a representation of
- // arbitrary precision, two's-complement, bignum integer values.
- // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
- // and unrestricting assumption.
- static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
- "Part width must be divisible by 2!");
- // Returns the integer part with the least significant BITS set.
- // BITS cannot be zero.
- static inline APInt::WordType lowBitMask(unsigned bits) {
- assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
- return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
- }
- /// Returns the value of the lower half of PART.
- static inline APInt::WordType lowHalf(APInt::WordType part) {
- return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
- }
- /// Returns the value of the upper half of PART.
- static inline APInt::WordType highHalf(APInt::WordType part) {
- return part >> (APInt::APINT_BITS_PER_WORD / 2);
- }
- /// Returns the bit number of the most significant set bit of a part.
- /// If the input number has no bits set -1U is returned.
- static unsigned partMSB(APInt::WordType value) {
- return findLastSet(value, ZB_Max);
- }
- /// Returns the bit number of the least significant set bit of a part. If the
- /// input number has no bits set -1U is returned.
- static unsigned partLSB(APInt::WordType value) {
- return findFirstSet(value, ZB_Max);
- }
- /// Sets the least significant part of a bignum to the input value, and zeroes
- /// out higher parts.
- void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
- assert(parts > 0);
- dst[0] = part;
- for (unsigned i = 1; i < parts; i++)
- dst[i] = 0;
- }
- /// Assign one bignum to another.
- void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
- for (unsigned i = 0; i < parts; i++)
- dst[i] = src[i];
- }
- /// Returns true if a bignum is zero, false otherwise.
- bool APInt::tcIsZero(const WordType *src, unsigned parts) {
- for (unsigned i = 0; i < parts; i++)
- if (src[i])
- return false;
- return true;
- }
- /// Extract the given bit of a bignum; returns 0 or 1.
- int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
- return (parts[whichWord(bit)] & maskBit(bit)) != 0;
- }
- /// Set the given bit of a bignum.
- void APInt::tcSetBit(WordType *parts, unsigned bit) {
- parts[whichWord(bit)] |= maskBit(bit);
- }
- /// Clears the given bit of a bignum.
- void APInt::tcClearBit(WordType *parts, unsigned bit) {
- parts[whichWord(bit)] &= ~maskBit(bit);
- }
- /// Returns the bit number of the least significant set bit of a number. If the
- /// input number has no bits set -1U is returned.
- unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
- for (unsigned i = 0; i < n; i++) {
- if (parts[i] != 0) {
- unsigned lsb = partLSB(parts[i]);
- return lsb + i * APINT_BITS_PER_WORD;
- }
- }
- return -1U;
- }
- /// Returns the bit number of the most significant set bit of a number.
- /// If the input number has no bits set -1U is returned.
- unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
- do {
- --n;
- if (parts[n] != 0) {
- unsigned msb = partMSB(parts[n]);
- return msb + n * APINT_BITS_PER_WORD;
- }
- } while (n);
- return -1U;
- }
- /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
- /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
- /// significant bit of DST. All high bits above srcBITS in DST are zero-filled.
- /// */
- void
- APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
- unsigned srcBits, unsigned srcLSB) {
- unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
- assert(dstParts <= dstCount);
- unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
- tcAssign(dst, src + firstSrcPart, dstParts);
- unsigned shift = srcLSB % APINT_BITS_PER_WORD;
- tcShiftRight(dst, dstParts, shift);
- // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
- // in DST. If this is less that srcBits, append the rest, else
- // clear the high bits.
- unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
- if (n < srcBits) {
- WordType mask = lowBitMask (srcBits - n);
- dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
- << n % APINT_BITS_PER_WORD);
- } else if (n > srcBits) {
- if (srcBits % APINT_BITS_PER_WORD)
- dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
- }
- // Clear high parts.
- while (dstParts < dstCount)
- dst[dstParts++] = 0;
- }
- //// DST += RHS + C where C is zero or one. Returns the carry flag.
- APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
- WordType c, unsigned parts) {
- assert(c <= 1);
- for (unsigned i = 0; i < parts; i++) {
- WordType l = dst[i];
- if (c) {
- dst[i] += rhs[i] + 1;
- c = (dst[i] <= l);
- } else {
- dst[i] += rhs[i];
- c = (dst[i] < l);
- }
- }
- return c;
- }
- /// This function adds a single "word" integer, src, to the multiple
- /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
- /// 1 is returned if there is a carry out, otherwise 0 is returned.
- /// @returns the carry of the addition.
- APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
- unsigned parts) {
- for (unsigned i = 0; i < parts; ++i) {
- dst[i] += src;
- if (dst[i] >= src)
- return 0; // No need to carry so exit early.
- src = 1; // Carry one to next digit.
- }
- return 1;
- }
- /// DST -= RHS + C where C is zero or one. Returns the carry flag.
- APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
- WordType c, unsigned parts) {
- assert(c <= 1);
- for (unsigned i = 0; i < parts; i++) {
- WordType l = dst[i];
- if (c) {
- dst[i] -= rhs[i] + 1;
- c = (dst[i] >= l);
- } else {
- dst[i] -= rhs[i];
- c = (dst[i] > l);
- }
- }
- return c;
- }
- /// This function subtracts a single "word" (64-bit word), src, from
- /// the multi-word integer array, dst[], propagating the borrowed 1 value until
- /// no further borrowing is needed or it runs out of "words" in dst. The result
- /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
- /// exhausted. In other words, if src > dst then this function returns 1,
- /// otherwise 0.
- /// @returns the borrow out of the subtraction
- APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
- unsigned parts) {
- for (unsigned i = 0; i < parts; ++i) {
- WordType Dst = dst[i];
- dst[i] -= src;
- if (src <= Dst)
- return 0; // No need to borrow so exit early.
- src = 1; // We have to "borrow 1" from next "word"
- }
- return 1;
- }
- /// Negate a bignum in-place.
- void APInt::tcNegate(WordType *dst, unsigned parts) {
- tcComplement(dst, parts);
- tcIncrement(dst, parts);
- }
- /// DST += SRC * MULTIPLIER + CARRY if add is true
- /// DST = SRC * MULTIPLIER + CARRY if add is false
- /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
- /// they must start at the same point, i.e. DST == SRC.
- /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
- /// returned. Otherwise DST is filled with the least significant
- /// DSTPARTS parts of the result, and if all of the omitted higher
- /// parts were zero return zero, otherwise overflow occurred and
- /// return one.
- int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
- WordType multiplier, WordType carry,
- unsigned srcParts, unsigned dstParts,
- bool add) {
- // Otherwise our writes of DST kill our later reads of SRC.
- assert(dst <= src || dst >= src + srcParts);
- assert(dstParts <= srcParts + 1);
- // N loops; minimum of dstParts and srcParts.
- unsigned n = std::min(dstParts, srcParts);
- for (unsigned i = 0; i < n; i++) {
- // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
- // This cannot overflow, because:
- // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
- // which is less than n^2.
- WordType srcPart = src[i];
- WordType low, mid, high;
- if (multiplier == 0 || srcPart == 0) {
- low = carry;
- high = 0;
- } else {
- low = lowHalf(srcPart) * lowHalf(multiplier);
- high = highHalf(srcPart) * highHalf(multiplier);
- mid = lowHalf(srcPart) * highHalf(multiplier);
- high += highHalf(mid);
- mid <<= APINT_BITS_PER_WORD / 2;
- if (low + mid < low)
- high++;
- low += mid;
- mid = highHalf(srcPart) * lowHalf(multiplier);
- high += highHalf(mid);
- mid <<= APINT_BITS_PER_WORD / 2;
- if (low + mid < low)
- high++;
- low += mid;
- // Now add carry.
- if (low + carry < low)
- high++;
- low += carry;
- }
- if (add) {
- // And now DST[i], and store the new low part there.
- if (low + dst[i] < low)
- high++;
- dst[i] += low;
- } else
- dst[i] = low;
- carry = high;
- }
- if (srcParts < dstParts) {
- // Full multiplication, there is no overflow.
- assert(srcParts + 1 == dstParts);
- dst[srcParts] = carry;
- return 0;
- }
- // We overflowed if there is carry.
- if (carry)
- return 1;
- // We would overflow if any significant unwritten parts would be
- // non-zero. This is true if any remaining src parts are non-zero
- // and the multiplier is non-zero.
- if (multiplier)
- for (unsigned i = dstParts; i < srcParts; i++)
- if (src[i])
- return 1;
- // We fitted in the narrow destination.
- return 0;
- }
- /// DST = LHS * RHS, where DST has the same width as the operands and
- /// is filled with the least significant parts of the result. Returns
- /// one if overflow occurred, otherwise zero. DST must be disjoint
- /// from both operands.
- int APInt::tcMultiply(WordType *dst, const WordType *lhs,
- const WordType *rhs, unsigned parts) {
- assert(dst != lhs && dst != rhs);
- int overflow = 0;
- tcSet(dst, 0, parts);
- for (unsigned i = 0; i < parts; i++)
- overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
- parts - i, true);
- return overflow;
- }
- /// DST = LHS * RHS, where DST has width the sum of the widths of the
- /// operands. No overflow occurs. DST must be disjoint from both operands.
- void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
- const WordType *rhs, unsigned lhsParts,
- unsigned rhsParts) {
- // Put the narrower number on the LHS for less loops below.
- if (lhsParts > rhsParts)
- return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
- assert(dst != lhs && dst != rhs);
- tcSet(dst, 0, rhsParts);
- for (unsigned i = 0; i < lhsParts; i++)
- tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
- }
- // If RHS is zero LHS and REMAINDER are left unchanged, return one.
- // Otherwise set LHS to LHS / RHS with the fractional part discarded,
- // set REMAINDER to the remainder, return zero. i.e.
- //
- // OLD_LHS = RHS * LHS + REMAINDER
- //
- // SCRATCH is a bignum of the same size as the operands and result for
- // use by the routine; its contents need not be initialized and are
- // destroyed. LHS, REMAINDER and SCRATCH must be distinct.
- int APInt::tcDivide(WordType *lhs, const WordType *rhs,
- WordType *remainder, WordType *srhs,
- unsigned parts) {
- assert(lhs != remainder && lhs != srhs && remainder != srhs);
- unsigned shiftCount = tcMSB(rhs, parts) + 1;
- if (shiftCount == 0)
- return true;
- shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
- unsigned n = shiftCount / APINT_BITS_PER_WORD;
- WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
- tcAssign(srhs, rhs, parts);
- tcShiftLeft(srhs, parts, shiftCount);
- tcAssign(remainder, lhs, parts);
- tcSet(lhs, 0, parts);
- // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
- // total.
- for (;;) {
- int compare = tcCompare(remainder, srhs, parts);
- if (compare >= 0) {
- tcSubtract(remainder, srhs, 0, parts);
- lhs[n] |= mask;
- }
- if (shiftCount == 0)
- break;
- shiftCount--;
- tcShiftRight(srhs, parts, 1);
- if ((mask >>= 1) == 0) {
- mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
- n--;
- }
- }
- return false;
- }
- /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
- /// no restrictions on Count.
- void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
- // Don't bother performing a no-op shift.
- if (!Count)
- return;
- // WordShift is the inter-part shift; BitShift is the intra-part shift.
- unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
- unsigned BitShift = Count % APINT_BITS_PER_WORD;
- // Fastpath for moving by whole words.
- if (BitShift == 0) {
- std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
- } else {
- while (Words-- > WordShift) {
- Dst[Words] = Dst[Words - WordShift] << BitShift;
- if (Words > WordShift)
- Dst[Words] |=
- Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
- }
- }
- // Fill in the remainder with 0s.
- std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
- }
- /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
- /// are no restrictions on Count.
- void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
- // Don't bother performing a no-op shift.
- if (!Count)
- return;
- // WordShift is the inter-part shift; BitShift is the intra-part shift.
- unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
- unsigned BitShift = Count % APINT_BITS_PER_WORD;
- unsigned WordsToMove = Words - WordShift;
- // Fastpath for moving by whole words.
- if (BitShift == 0) {
- std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
- } else {
- for (unsigned i = 0; i != WordsToMove; ++i) {
- Dst[i] = Dst[i + WordShift] >> BitShift;
- if (i + 1 != WordsToMove)
- Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
- }
- }
- // Fill in the remainder with 0s.
- std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
- }
- // Comparison (unsigned) of two bignums.
- int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
- unsigned parts) {
- while (parts) {
- parts--;
- if (lhs[parts] != rhs[parts])
- return (lhs[parts] > rhs[parts]) ? 1 : -1;
- }
- return 0;
- }
- APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
- APInt::Rounding RM) {
- // Currently udivrem always rounds down.
- switch (RM) {
- case APInt::Rounding::DOWN:
- case APInt::Rounding::TOWARD_ZERO:
- return A.udiv(B);
- case APInt::Rounding::UP: {
- APInt Quo, Rem;
- APInt::udivrem(A, B, Quo, Rem);
- if (Rem.isZero())
- return Quo;
- return Quo + 1;
- }
- }
- llvm_unreachable("Unknown APInt::Rounding enum");
- }
- APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
- APInt::Rounding RM) {
- switch (RM) {
- case APInt::Rounding::DOWN:
- case APInt::Rounding::UP: {
- APInt Quo, Rem;
- APInt::sdivrem(A, B, Quo, Rem);
- if (Rem.isZero())
- return Quo;
- // This algorithm deals with arbitrary rounding mode used by sdivrem.
- // We want to check whether the non-integer part of the mathematical value
- // is negative or not. If the non-integer part is negative, we need to round
- // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
- // already rounded down.
- if (RM == APInt::Rounding::DOWN) {
- if (Rem.isNegative() != B.isNegative())
- return Quo - 1;
- return Quo;
- }
- if (Rem.isNegative() != B.isNegative())
- return Quo;
- return Quo + 1;
- }
- // Currently sdiv rounds towards zero.
- case APInt::Rounding::TOWARD_ZERO:
- return A.sdiv(B);
- }
- llvm_unreachable("Unknown APInt::Rounding enum");
- }
- Optional<APInt>
- llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
- unsigned RangeWidth) {
- unsigned CoeffWidth = A.getBitWidth();
- assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
- assert(RangeWidth <= CoeffWidth &&
- "Value range width should be less than coefficient width");
- assert(RangeWidth > 1 && "Value range bit width should be > 1");
- LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
- << "x + " << C << ", rw:" << RangeWidth << '\n');
- // Identify 0 as a (non)solution immediately.
- if (C.sextOrTrunc(RangeWidth).isZero()) {
- LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
- return APInt(CoeffWidth, 0);
- }
- // The result of APInt arithmetic has the same bit width as the operands,
- // so it can actually lose high bits. A product of two n-bit integers needs
- // 2n-1 bits to represent the full value.
- // The operation done below (on quadratic coefficients) that can produce
- // the largest value is the evaluation of the equation during bisection,
- // which needs 3 times the bitwidth of the coefficient, so the total number
- // of required bits is 3n.
- //
- // The purpose of this extension is to simulate the set Z of all integers,
- // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
- // and negative numbers (not so much in a modulo arithmetic). The method
- // used to solve the equation is based on the standard formula for real
- // numbers, and uses the concepts of "positive" and "negative" with their
- // usual meanings.
- CoeffWidth *= 3;
- A = A.sext(CoeffWidth);
- B = B.sext(CoeffWidth);
- C = C.sext(CoeffWidth);
- // Make A > 0 for simplicity. Negate cannot overflow at this point because
- // the bit width has increased.
- if (A.isNegative()) {
- A.negate();
- B.negate();
- C.negate();
- }
- // Solving an equation q(x) = 0 with coefficients in modular arithmetic
- // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
- // and R = 2^BitWidth.
- // Since we're trying not only to find exact solutions, but also values
- // that "wrap around", such a set will always have a solution, i.e. an x
- // that satisfies at least one of the equations, or such that |q(x)|
- // exceeds kR, while |q(x-1)| for the same k does not.
- //
- // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
- // positive solution n (in the above sense), and also such that the n
- // will be the least among all solutions corresponding to k = 0, 1, ...
- // (more precisely, the least element in the set
- // { n(k) | k is such that a solution n(k) exists }).
- //
- // Consider the parabola (over real numbers) that corresponds to the
- // quadratic equation. Since A > 0, the arms of the parabola will point
- // up. Picking different values of k will shift it up and down by R.
- //
- // We want to shift the parabola in such a way as to reduce the problem
- // of solving q(x) = kR to solving shifted_q(x) = 0.
- // (The interesting solutions are the ceilings of the real number
- // solutions.)
- APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
- APInt TwoA = 2 * A;
- APInt SqrB = B * B;
- bool PickLow;
- auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
- assert(A.isStrictlyPositive());
- APInt T = V.abs().urem(A);
- if (T.isZero())
- return V;
- return V.isNegative() ? V+T : V+(A-T);
- };
- // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
- // iff B is positive.
- if (B.isNonNegative()) {
- // If B >= 0, the vertex it at a negative location (or at 0), so in
- // order to have a non-negative solution we need to pick k that makes
- // C-kR negative. To satisfy all the requirements for the solution
- // that we are looking for, it needs to be closest to 0 of all k.
- C = C.srem(R);
- if (C.isStrictlyPositive())
- C -= R;
- // Pick the greater solution.
- PickLow = false;
- } else {
- // If B < 0, the vertex is at a positive location. For any solution
- // to exist, the discriminant must be non-negative. This means that
- // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
- // lower bound on values of k: kR >= C - B^2/4A.
- APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
- // Round LowkR up (towards +inf) to the nearest kR.
- LowkR = RoundUp(LowkR, R);
- // If there exists k meeting the condition above, and such that
- // C-kR > 0, there will be two positive real number solutions of
- // q(x) = kR. Out of all such values of k, pick the one that makes
- // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
- // In other words, find maximum k such that LowkR <= kR < C.
- if (C.sgt(LowkR)) {
- // If LowkR < C, then such a k is guaranteed to exist because
- // LowkR itself is a multiple of R.
- C -= -RoundUp(-C, R); // C = C - RoundDown(C, R)
- // Pick the smaller solution.
- PickLow = true;
- } else {
- // If C-kR < 0 for all potential k's, it means that one solution
- // will be negative, while the other will be positive. The positive
- // solution will shift towards 0 if the parabola is moved up.
- // Pick the kR closest to the lower bound (i.e. make C-kR closest
- // to 0, or in other words, out of all parabolas that have solutions,
- // pick the one that is the farthest "up").
- // Since LowkR is itself a multiple of R, simply take C-LowkR.
- C -= LowkR;
- // Pick the greater solution.
- PickLow = false;
- }
- }
- LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
- << B << "x + " << C << ", rw:" << RangeWidth << '\n');
- APInt D = SqrB - 4*A*C;
- assert(D.isNonNegative() && "Negative discriminant");
- APInt SQ = D.sqrt();
- APInt Q = SQ * SQ;
- bool InexactSQ = Q != D;
- // The calculated SQ may actually be greater than the exact (non-integer)
- // value. If that's the case, decrement SQ to get a value that is lower.
- if (Q.sgt(D))
- SQ -= 1;
- APInt X;
- APInt Rem;
- // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
- // When using the quadratic formula directly, the calculated low root
- // may be greater than the exact one, since we would be subtracting SQ.
- // To make sure that the calculated root is not greater than the exact
- // one, subtract SQ+1 when calculating the low root (for inexact value
- // of SQ).
- if (PickLow)
- APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
- else
- APInt::sdivrem(-B + SQ, TwoA, X, Rem);
- // The updated coefficients should be such that the (exact) solution is
- // positive. Since APInt division rounds towards 0, the calculated one
- // can be 0, but cannot be negative.
- assert(X.isNonNegative() && "Solution should be non-negative");
- if (!InexactSQ && Rem.isZero()) {
- LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
- return X;
- }
- assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
- // The exact value of the square root of D should be between SQ and SQ+1.
- // This implies that the solution should be between that corresponding to
- // SQ (i.e. X) and that corresponding to SQ+1.
- //
- // The calculated X cannot be greater than the exact (real) solution.
- // Actually it must be strictly less than the exact solution, while
- // X+1 will be greater than or equal to it.
- APInt VX = (A*X + B)*X + C;
- APInt VY = VX + TwoA*X + A + B;
- bool SignChange =
- VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
- // If the sign did not change between X and X+1, X is not a valid solution.
- // This could happen when the actual (exact) roots don't have an integer
- // between them, so they would both be contained between X and X+1.
- if (!SignChange) {
- LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
- return None;
- }
- X += 1;
- LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
- return X;
- }
- Optional<unsigned>
- llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
- assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
- if (A == B)
- return llvm::None;
- return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
- }
- APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth) {
- unsigned OldBitWidth = A.getBitWidth();
- assert((((OldBitWidth % NewBitWidth) == 0) ||
- ((NewBitWidth % OldBitWidth) == 0)) &&
- "One size should be a multiple of the other one. "
- "Can't do fractional scaling.");
- // Check for matching bitwidths.
- if (OldBitWidth == NewBitWidth)
- return A;
- APInt NewA = APInt::getZero(NewBitWidth);
- // Check for null input.
- if (A.isZero())
- return NewA;
- if (NewBitWidth > OldBitWidth) {
- // Repeat bits.
- unsigned Scale = NewBitWidth / OldBitWidth;
- for (unsigned i = 0; i != OldBitWidth; ++i)
- if (A[i])
- NewA.setBits(i * Scale, (i + 1) * Scale);
- } else {
- // Merge bits - if any old bit is set, then set scale equivalent new bit.
- unsigned Scale = OldBitWidth / NewBitWidth;
- for (unsigned i = 0; i != NewBitWidth; ++i)
- if (!A.extractBits(Scale, i * Scale).isZero())
- NewA.setBit(i);
- }
- return NewA;
- }
- /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
- /// with the integer held in IntVal.
- void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
- unsigned StoreBytes) {
- assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
- const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
- if (sys::IsLittleEndianHost) {
- // Little-endian host - the source is ordered from LSB to MSB. Order the
- // destination from LSB to MSB: Do a straight copy.
- memcpy(Dst, Src, StoreBytes);
- } else {
- // Big-endian host - the source is an array of 64 bit words ordered from
- // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
- // from MSB to LSB: Reverse the word order, but not the bytes in a word.
- while (StoreBytes > sizeof(uint64_t)) {
- StoreBytes -= sizeof(uint64_t);
- // May not be aligned so use memcpy.
- memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
- Src += sizeof(uint64_t);
- }
- memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
- }
- }
- /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
- /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
- void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
- unsigned LoadBytes) {
- assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
- uint8_t *Dst = reinterpret_cast<uint8_t *>(
- const_cast<uint64_t *>(IntVal.getRawData()));
- if (sys::IsLittleEndianHost)
- // Little-endian host - the destination must be ordered from LSB to MSB.
- // The source is ordered from LSB to MSB: Do a straight copy.
- memcpy(Dst, Src, LoadBytes);
- else {
- // Big-endian - the destination is an array of 64 bit words ordered from
- // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
- // ordered from MSB to LSB: Reverse the word order, but not the bytes in
- // a word.
- while (LoadBytes > sizeof(uint64_t)) {
- LoadBytes -= sizeof(uint64_t);
- // May not be aligned so use memcpy.
- memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
- Dst += sizeof(uint64_t);
- }
- memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
- }
- }
|