123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923 |
- //===-- APFloat.cpp - Implement APFloat class -----------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a class to represent arbitrary precision floating
- // point values and provide a variety of arithmetic operations on them.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APSInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/FoldingSet.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/Error.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cstring>
- #include <limits.h>
- #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \
- do { \
- if (usesLayout<IEEEFloat>(getSemantics())) \
- return U.IEEE.METHOD_CALL; \
- if (usesLayout<DoubleAPFloat>(getSemantics())) \
- return U.Double.METHOD_CALL; \
- llvm_unreachable("Unexpected semantics"); \
- } while (false)
- using namespace llvm;
- /// A macro used to combine two fcCategory enums into one key which can be used
- /// in a switch statement to classify how the interaction of two APFloat's
- /// categories affects an operation.
- ///
- /// TODO: If clang source code is ever allowed to use constexpr in its own
- /// codebase, change this into a static inline function.
- #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs))
- /* Assumed in hexadecimal significand parsing, and conversion to
- hexadecimal strings. */
- static_assert(APFloatBase::integerPartWidth % 4 == 0, "Part width must be divisible by 4!");
- namespace llvm {
- /* Represents floating point arithmetic semantics. */
- struct fltSemantics {
- /* The largest E such that 2^E is representable; this matches the
- definition of IEEE 754. */
- APFloatBase::ExponentType maxExponent;
- /* The smallest E such that 2^E is a normalized number; this
- matches the definition of IEEE 754. */
- APFloatBase::ExponentType minExponent;
- /* Number of bits in the significand. This includes the integer
- bit. */
- unsigned int precision;
- /* Number of bits actually used in the semantics. */
- unsigned int sizeInBits;
- // Returns true if any number described by this semantics can be precisely
- // represented by the specified semantics.
- bool isRepresentableBy(const fltSemantics &S) const {
- return maxExponent <= S.maxExponent && minExponent >= S.minExponent &&
- precision <= S.precision;
- }
- };
- static const fltSemantics semIEEEhalf = {15, -14, 11, 16};
- static const fltSemantics semBFloat = {127, -126, 8, 16};
- static const fltSemantics semIEEEsingle = {127, -126, 24, 32};
- static const fltSemantics semIEEEdouble = {1023, -1022, 53, 64};
- static const fltSemantics semIEEEquad = {16383, -16382, 113, 128};
- static const fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80};
- static const fltSemantics semBogus = {0, 0, 0, 0};
- /* The IBM double-double semantics. Such a number consists of a pair of IEEE
- 64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal,
- (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo.
- Therefore it has two 53-bit mantissa parts that aren't necessarily adjacent
- to each other, and two 11-bit exponents.
- Note: we need to make the value different from semBogus as otherwise
- an unsafe optimization may collapse both values to a single address,
- and we heavily rely on them having distinct addresses. */
- static const fltSemantics semPPCDoubleDouble = {-1, 0, 0, 128};
- /* These are legacy semantics for the fallback, inaccrurate implementation of
- IBM double-double, if the accurate semPPCDoubleDouble doesn't handle the
- operation. It's equivalent to having an IEEE number with consecutive 106
- bits of mantissa and 11 bits of exponent.
- It's not equivalent to IBM double-double. For example, a legit IBM
- double-double, 1 + epsilon:
- 1 + epsilon = 1 + (1 >> 1076)
- is not representable by a consecutive 106 bits of mantissa.
- Currently, these semantics are used in the following way:
- semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) ->
- (64-bit APInt, 64-bit APInt) -> (128-bit APInt) ->
- semPPCDoubleDoubleLegacy -> IEEE operations
- We use bitcastToAPInt() to get the bit representation (in APInt) of the
- underlying IEEEdouble, then use the APInt constructor to construct the
- legacy IEEE float.
- TODO: Implement all operations in semPPCDoubleDouble, and delete these
- semantics. */
- static const fltSemantics semPPCDoubleDoubleLegacy = {1023, -1022 + 53,
- 53 + 53, 128};
- const llvm::fltSemantics &APFloatBase::EnumToSemantics(Semantics S) {
- switch (S) {
- case S_IEEEhalf:
- return IEEEhalf();
- case S_BFloat:
- return BFloat();
- case S_IEEEsingle:
- return IEEEsingle();
- case S_IEEEdouble:
- return IEEEdouble();
- case S_x87DoubleExtended:
- return x87DoubleExtended();
- case S_IEEEquad:
- return IEEEquad();
- case S_PPCDoubleDouble:
- return PPCDoubleDouble();
- }
- llvm_unreachable("Unrecognised floating semantics");
- }
- APFloatBase::Semantics
- APFloatBase::SemanticsToEnum(const llvm::fltSemantics &Sem) {
- if (&Sem == &llvm::APFloat::IEEEhalf())
- return S_IEEEhalf;
- else if (&Sem == &llvm::APFloat::BFloat())
- return S_BFloat;
- else if (&Sem == &llvm::APFloat::IEEEsingle())
- return S_IEEEsingle;
- else if (&Sem == &llvm::APFloat::IEEEdouble())
- return S_IEEEdouble;
- else if (&Sem == &llvm::APFloat::x87DoubleExtended())
- return S_x87DoubleExtended;
- else if (&Sem == &llvm::APFloat::IEEEquad())
- return S_IEEEquad;
- else if (&Sem == &llvm::APFloat::PPCDoubleDouble())
- return S_PPCDoubleDouble;
- else
- llvm_unreachable("Unknown floating semantics");
- }
- const fltSemantics &APFloatBase::IEEEhalf() {
- return semIEEEhalf;
- }
- const fltSemantics &APFloatBase::BFloat() {
- return semBFloat;
- }
- const fltSemantics &APFloatBase::IEEEsingle() {
- return semIEEEsingle;
- }
- const fltSemantics &APFloatBase::IEEEdouble() {
- return semIEEEdouble;
- }
- const fltSemantics &APFloatBase::IEEEquad() {
- return semIEEEquad;
- }
- const fltSemantics &APFloatBase::x87DoubleExtended() {
- return semX87DoubleExtended;
- }
- const fltSemantics &APFloatBase::Bogus() {
- return semBogus;
- }
- const fltSemantics &APFloatBase::PPCDoubleDouble() {
- return semPPCDoubleDouble;
- }
- constexpr RoundingMode APFloatBase::rmNearestTiesToEven;
- constexpr RoundingMode APFloatBase::rmTowardPositive;
- constexpr RoundingMode APFloatBase::rmTowardNegative;
- constexpr RoundingMode APFloatBase::rmTowardZero;
- constexpr RoundingMode APFloatBase::rmNearestTiesToAway;
- /* A tight upper bound on number of parts required to hold the value
- pow(5, power) is
- power * 815 / (351 * integerPartWidth) + 1
- However, whilst the result may require only this many parts,
- because we are multiplying two values to get it, the
- multiplication may require an extra part with the excess part
- being zero (consider the trivial case of 1 * 1, tcFullMultiply
- requires two parts to hold the single-part result). So we add an
- extra one to guarantee enough space whilst multiplying. */
- const unsigned int maxExponent = 16383;
- const unsigned int maxPrecision = 113;
- const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
- const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) / (351 * APFloatBase::integerPartWidth));
- unsigned int APFloatBase::semanticsPrecision(const fltSemantics &semantics) {
- return semantics.precision;
- }
- APFloatBase::ExponentType
- APFloatBase::semanticsMaxExponent(const fltSemantics &semantics) {
- return semantics.maxExponent;
- }
- APFloatBase::ExponentType
- APFloatBase::semanticsMinExponent(const fltSemantics &semantics) {
- return semantics.minExponent;
- }
- unsigned int APFloatBase::semanticsSizeInBits(const fltSemantics &semantics) {
- return semantics.sizeInBits;
- }
- unsigned APFloatBase::getSizeInBits(const fltSemantics &Sem) {
- return Sem.sizeInBits;
- }
- /* A bunch of private, handy routines. */
- static inline Error createError(const Twine &Err) {
- return make_error<StringError>(Err, inconvertibleErrorCode());
- }
- static inline unsigned int
- partCountForBits(unsigned int bits)
- {
- return ((bits) + APFloatBase::integerPartWidth - 1) / APFloatBase::integerPartWidth;
- }
- /* Returns 0U-9U. Return values >= 10U are not digits. */
- static inline unsigned int
- decDigitValue(unsigned int c)
- {
- return c - '0';
- }
- /* Return the value of a decimal exponent of the form
- [+-]ddddddd.
- If the exponent overflows, returns a large exponent with the
- appropriate sign. */
- static Expected<int> readExponent(StringRef::iterator begin,
- StringRef::iterator end) {
- bool isNegative;
- unsigned int absExponent;
- const unsigned int overlargeExponent = 24000; /* FIXME. */
- StringRef::iterator p = begin;
- // Treat no exponent as 0 to match binutils
- if (p == end || ((*p == '-' || *p == '+') && (p + 1) == end)) {
- return 0;
- }
- isNegative = (*p == '-');
- if (*p == '-' || *p == '+') {
- p++;
- if (p == end)
- return createError("Exponent has no digits");
- }
- absExponent = decDigitValue(*p++);
- if (absExponent >= 10U)
- return createError("Invalid character in exponent");
- for (; p != end; ++p) {
- unsigned int value;
- value = decDigitValue(*p);
- if (value >= 10U)
- return createError("Invalid character in exponent");
- absExponent = absExponent * 10U + value;
- if (absExponent >= overlargeExponent) {
- absExponent = overlargeExponent;
- break;
- }
- }
- if (isNegative)
- return -(int) absExponent;
- else
- return (int) absExponent;
- }
- /* This is ugly and needs cleaning up, but I don't immediately see
- how whilst remaining safe. */
- static Expected<int> totalExponent(StringRef::iterator p,
- StringRef::iterator end,
- int exponentAdjustment) {
- int unsignedExponent;
- bool negative, overflow;
- int exponent = 0;
- if (p == end)
- return createError("Exponent has no digits");
- negative = *p == '-';
- if (*p == '-' || *p == '+') {
- p++;
- if (p == end)
- return createError("Exponent has no digits");
- }
- unsignedExponent = 0;
- overflow = false;
- for (; p != end; ++p) {
- unsigned int value;
- value = decDigitValue(*p);
- if (value >= 10U)
- return createError("Invalid character in exponent");
- unsignedExponent = unsignedExponent * 10 + value;
- if (unsignedExponent > 32767) {
- overflow = true;
- break;
- }
- }
- if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
- overflow = true;
- if (!overflow) {
- exponent = unsignedExponent;
- if (negative)
- exponent = -exponent;
- exponent += exponentAdjustment;
- if (exponent > 32767 || exponent < -32768)
- overflow = true;
- }
- if (overflow)
- exponent = negative ? -32768: 32767;
- return exponent;
- }
- static Expected<StringRef::iterator>
- skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
- StringRef::iterator *dot) {
- StringRef::iterator p = begin;
- *dot = end;
- while (p != end && *p == '0')
- p++;
- if (p != end && *p == '.') {
- *dot = p++;
- if (end - begin == 1)
- return createError("Significand has no digits");
- while (p != end && *p == '0')
- p++;
- }
- return p;
- }
- /* Given a normal decimal floating point number of the form
- dddd.dddd[eE][+-]ddd
- where the decimal point and exponent are optional, fill out the
- structure D. Exponent is appropriate if the significand is
- treated as an integer, and normalizedExponent if the significand
- is taken to have the decimal point after a single leading
- non-zero digit.
- If the value is zero, V->firstSigDigit points to a non-digit, and
- the return exponent is zero.
- */
- struct decimalInfo {
- const char *firstSigDigit;
- const char *lastSigDigit;
- int exponent;
- int normalizedExponent;
- };
- static Error interpretDecimal(StringRef::iterator begin,
- StringRef::iterator end, decimalInfo *D) {
- StringRef::iterator dot = end;
- auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot);
- if (!PtrOrErr)
- return PtrOrErr.takeError();
- StringRef::iterator p = *PtrOrErr;
- D->firstSigDigit = p;
- D->exponent = 0;
- D->normalizedExponent = 0;
- for (; p != end; ++p) {
- if (*p == '.') {
- if (dot != end)
- return createError("String contains multiple dots");
- dot = p++;
- if (p == end)
- break;
- }
- if (decDigitValue(*p) >= 10U)
- break;
- }
- if (p != end) {
- if (*p != 'e' && *p != 'E')
- return createError("Invalid character in significand");
- if (p == begin)
- return createError("Significand has no digits");
- if (dot != end && p - begin == 1)
- return createError("Significand has no digits");
- /* p points to the first non-digit in the string */
- auto ExpOrErr = readExponent(p + 1, end);
- if (!ExpOrErr)
- return ExpOrErr.takeError();
- D->exponent = *ExpOrErr;
- /* Implied decimal point? */
- if (dot == end)
- dot = p;
- }
- /* If number is all zeroes accept any exponent. */
- if (p != D->firstSigDigit) {
- /* Drop insignificant trailing zeroes. */
- if (p != begin) {
- do
- do
- p--;
- while (p != begin && *p == '0');
- while (p != begin && *p == '.');
- }
- /* Adjust the exponents for any decimal point. */
- D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p));
- D->normalizedExponent = (D->exponent +
- static_cast<APFloat::ExponentType>((p - D->firstSigDigit)
- - (dot > D->firstSigDigit && dot < p)));
- }
- D->lastSigDigit = p;
- return Error::success();
- }
- /* Return the trailing fraction of a hexadecimal number.
- DIGITVALUE is the first hex digit of the fraction, P points to
- the next digit. */
- static Expected<lostFraction>
- trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
- unsigned int digitValue) {
- unsigned int hexDigit;
- /* If the first trailing digit isn't 0 or 8 we can work out the
- fraction immediately. */
- if (digitValue > 8)
- return lfMoreThanHalf;
- else if (digitValue < 8 && digitValue > 0)
- return lfLessThanHalf;
- // Otherwise we need to find the first non-zero digit.
- while (p != end && (*p == '0' || *p == '.'))
- p++;
- if (p == end)
- return createError("Invalid trailing hexadecimal fraction!");
- hexDigit = hexDigitValue(*p);
- /* If we ran off the end it is exactly zero or one-half, otherwise
- a little more. */
- if (hexDigit == -1U)
- return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
- else
- return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
- }
- /* Return the fraction lost were a bignum truncated losing the least
- significant BITS bits. */
- static lostFraction
- lostFractionThroughTruncation(const APFloatBase::integerPart *parts,
- unsigned int partCount,
- unsigned int bits)
- {
- unsigned int lsb;
- lsb = APInt::tcLSB(parts, partCount);
- /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
- if (bits <= lsb)
- return lfExactlyZero;
- if (bits == lsb + 1)
- return lfExactlyHalf;
- if (bits <= partCount * APFloatBase::integerPartWidth &&
- APInt::tcExtractBit(parts, bits - 1))
- return lfMoreThanHalf;
- return lfLessThanHalf;
- }
- /* Shift DST right BITS bits noting lost fraction. */
- static lostFraction
- shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits)
- {
- lostFraction lost_fraction;
- lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
- APInt::tcShiftRight(dst, parts, bits);
- return lost_fraction;
- }
- /* Combine the effect of two lost fractions. */
- static lostFraction
- combineLostFractions(lostFraction moreSignificant,
- lostFraction lessSignificant)
- {
- if (lessSignificant != lfExactlyZero) {
- if (moreSignificant == lfExactlyZero)
- moreSignificant = lfLessThanHalf;
- else if (moreSignificant == lfExactlyHalf)
- moreSignificant = lfMoreThanHalf;
- }
- return moreSignificant;
- }
- /* The error from the true value, in half-ulps, on multiplying two
- floating point numbers, which differ from the value they
- approximate by at most HUE1 and HUE2 half-ulps, is strictly less
- than the returned value.
- See "How to Read Floating Point Numbers Accurately" by William D
- Clinger. */
- static unsigned int
- HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
- {
- assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
- if (HUerr1 + HUerr2 == 0)
- return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
- else
- return inexactMultiply + 2 * (HUerr1 + HUerr2);
- }
- /* The number of ulps from the boundary (zero, or half if ISNEAREST)
- when the least significant BITS are truncated. BITS cannot be
- zero. */
- static APFloatBase::integerPart
- ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits,
- bool isNearest) {
- unsigned int count, partBits;
- APFloatBase::integerPart part, boundary;
- assert(bits != 0);
- bits--;
- count = bits / APFloatBase::integerPartWidth;
- partBits = bits % APFloatBase::integerPartWidth + 1;
- part = parts[count] & (~(APFloatBase::integerPart) 0 >> (APFloatBase::integerPartWidth - partBits));
- if (isNearest)
- boundary = (APFloatBase::integerPart) 1 << (partBits - 1);
- else
- boundary = 0;
- if (count == 0) {
- if (part - boundary <= boundary - part)
- return part - boundary;
- else
- return boundary - part;
- }
- if (part == boundary) {
- while (--count)
- if (parts[count])
- return ~(APFloatBase::integerPart) 0; /* A lot. */
- return parts[0];
- } else if (part == boundary - 1) {
- while (--count)
- if (~parts[count])
- return ~(APFloatBase::integerPart) 0; /* A lot. */
- return -parts[0];
- }
- return ~(APFloatBase::integerPart) 0; /* A lot. */
- }
- /* Place pow(5, power) in DST, and return the number of parts used.
- DST must be at least one part larger than size of the answer. */
- static unsigned int
- powerOf5(APFloatBase::integerPart *dst, unsigned int power) {
- static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 };
- APFloatBase::integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
- pow5s[0] = 78125 * 5;
- unsigned int partsCount[16] = { 1 };
- APFloatBase::integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
- unsigned int result;
- assert(power <= maxExponent);
- p1 = dst;
- p2 = scratch;
- *p1 = firstEightPowers[power & 7];
- power >>= 3;
- result = 1;
- pow5 = pow5s;
- for (unsigned int n = 0; power; power >>= 1, n++) {
- unsigned int pc;
- pc = partsCount[n];
- /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
- if (pc == 0) {
- pc = partsCount[n - 1];
- APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
- pc *= 2;
- if (pow5[pc - 1] == 0)
- pc--;
- partsCount[n] = pc;
- }
- if (power & 1) {
- APFloatBase::integerPart *tmp;
- APInt::tcFullMultiply(p2, p1, pow5, result, pc);
- result += pc;
- if (p2[result - 1] == 0)
- result--;
- /* Now result is in p1 with partsCount parts and p2 is scratch
- space. */
- tmp = p1;
- p1 = p2;
- p2 = tmp;
- }
- pow5 += pc;
- }
- if (p1 != dst)
- APInt::tcAssign(dst, p1, result);
- return result;
- }
- /* Zero at the end to avoid modular arithmetic when adding one; used
- when rounding up during hexadecimal output. */
- static const char hexDigitsLower[] = "0123456789abcdef0";
- static const char hexDigitsUpper[] = "0123456789ABCDEF0";
- static const char infinityL[] = "infinity";
- static const char infinityU[] = "INFINITY";
- static const char NaNL[] = "nan";
- static const char NaNU[] = "NAN";
- /* Write out an integerPart in hexadecimal, starting with the most
- significant nibble. Write out exactly COUNT hexdigits, return
- COUNT. */
- static unsigned int
- partAsHex (char *dst, APFloatBase::integerPart part, unsigned int count,
- const char *hexDigitChars)
- {
- unsigned int result = count;
- assert(count != 0 && count <= APFloatBase::integerPartWidth / 4);
- part >>= (APFloatBase::integerPartWidth - 4 * count);
- while (count--) {
- dst[count] = hexDigitChars[part & 0xf];
- part >>= 4;
- }
- return result;
- }
- /* Write out an unsigned decimal integer. */
- static char *
- writeUnsignedDecimal (char *dst, unsigned int n)
- {
- char buff[40], *p;
- p = buff;
- do
- *p++ = '0' + n % 10;
- while (n /= 10);
- do
- *dst++ = *--p;
- while (p != buff);
- return dst;
- }
- /* Write out a signed decimal integer. */
- static char *
- writeSignedDecimal (char *dst, int value)
- {
- if (value < 0) {
- *dst++ = '-';
- dst = writeUnsignedDecimal(dst, -(unsigned) value);
- } else
- dst = writeUnsignedDecimal(dst, value);
- return dst;
- }
- namespace detail {
- /* Constructors. */
- void IEEEFloat::initialize(const fltSemantics *ourSemantics) {
- unsigned int count;
- semantics = ourSemantics;
- count = partCount();
- if (count > 1)
- significand.parts = new integerPart[count];
- }
- void IEEEFloat::freeSignificand() {
- if (needsCleanup())
- delete [] significand.parts;
- }
- void IEEEFloat::assign(const IEEEFloat &rhs) {
- assert(semantics == rhs.semantics);
- sign = rhs.sign;
- category = rhs.category;
- exponent = rhs.exponent;
- if (isFiniteNonZero() || category == fcNaN)
- copySignificand(rhs);
- }
- void IEEEFloat::copySignificand(const IEEEFloat &rhs) {
- assert(isFiniteNonZero() || category == fcNaN);
- assert(rhs.partCount() >= partCount());
- APInt::tcAssign(significandParts(), rhs.significandParts(),
- partCount());
- }
- /* Make this number a NaN, with an arbitrary but deterministic value
- for the significand. If double or longer, this is a signalling NaN,
- which may not be ideal. If float, this is QNaN(0). */
- void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) {
- category = fcNaN;
- sign = Negative;
- exponent = exponentNaN();
- integerPart *significand = significandParts();
- unsigned numParts = partCount();
- // Set the significand bits to the fill.
- if (!fill || fill->getNumWords() < numParts)
- APInt::tcSet(significand, 0, numParts);
- if (fill) {
- APInt::tcAssign(significand, fill->getRawData(),
- std::min(fill->getNumWords(), numParts));
- // Zero out the excess bits of the significand.
- unsigned bitsToPreserve = semantics->precision - 1;
- unsigned part = bitsToPreserve / 64;
- bitsToPreserve %= 64;
- significand[part] &= ((1ULL << bitsToPreserve) - 1);
- for (part++; part != numParts; ++part)
- significand[part] = 0;
- }
- unsigned QNaNBit = semantics->precision - 2;
- if (SNaN) {
- // We always have to clear the QNaN bit to make it an SNaN.
- APInt::tcClearBit(significand, QNaNBit);
- // If there are no bits set in the payload, we have to set
- // *something* to make it a NaN instead of an infinity;
- // conventionally, this is the next bit down from the QNaN bit.
- if (APInt::tcIsZero(significand, numParts))
- APInt::tcSetBit(significand, QNaNBit - 1);
- } else {
- // We always have to set the QNaN bit to make it a QNaN.
- APInt::tcSetBit(significand, QNaNBit);
- }
- // For x87 extended precision, we want to make a NaN, not a
- // pseudo-NaN. Maybe we should expose the ability to make
- // pseudo-NaNs?
- if (semantics == &semX87DoubleExtended)
- APInt::tcSetBit(significand, QNaNBit + 1);
- }
- IEEEFloat &IEEEFloat::operator=(const IEEEFloat &rhs) {
- if (this != &rhs) {
- if (semantics != rhs.semantics) {
- freeSignificand();
- initialize(rhs.semantics);
- }
- assign(rhs);
- }
- return *this;
- }
- IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) {
- freeSignificand();
- semantics = rhs.semantics;
- significand = rhs.significand;
- exponent = rhs.exponent;
- category = rhs.category;
- sign = rhs.sign;
- rhs.semantics = &semBogus;
- return *this;
- }
- bool IEEEFloat::isDenormal() const {
- return isFiniteNonZero() && (exponent == semantics->minExponent) &&
- (APInt::tcExtractBit(significandParts(),
- semantics->precision - 1) == 0);
- }
- bool IEEEFloat::isSmallest() const {
- // The smallest number by magnitude in our format will be the smallest
- // denormal, i.e. the floating point number with exponent being minimum
- // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0).
- return isFiniteNonZero() && exponent == semantics->minExponent &&
- significandMSB() == 0;
- }
- bool IEEEFloat::isSignificandAllOnes() const {
- // Test if the significand excluding the integral bit is all ones. This allows
- // us to test for binade boundaries.
- const integerPart *Parts = significandParts();
- const unsigned PartCount = partCountForBits(semantics->precision);
- for (unsigned i = 0; i < PartCount - 1; i++)
- if (~Parts[i])
- return false;
- // Set the unused high bits to all ones when we compare.
- const unsigned NumHighBits =
- PartCount*integerPartWidth - semantics->precision + 1;
- assert(NumHighBits <= integerPartWidth && NumHighBits > 0 &&
- "Can not have more high bits to fill than integerPartWidth");
- const integerPart HighBitFill =
- ~integerPart(0) << (integerPartWidth - NumHighBits);
- if (~(Parts[PartCount - 1] | HighBitFill))
- return false;
- return true;
- }
- bool IEEEFloat::isSignificandAllZeros() const {
- // Test if the significand excluding the integral bit is all zeros. This
- // allows us to test for binade boundaries.
- const integerPart *Parts = significandParts();
- const unsigned PartCount = partCountForBits(semantics->precision);
- for (unsigned i = 0; i < PartCount - 1; i++)
- if (Parts[i])
- return false;
- // Compute how many bits are used in the final word.
- const unsigned NumHighBits =
- PartCount*integerPartWidth - semantics->precision + 1;
- assert(NumHighBits < integerPartWidth && "Can not have more high bits to "
- "clear than integerPartWidth");
- const integerPart HighBitMask = ~integerPart(0) >> NumHighBits;
- if (Parts[PartCount - 1] & HighBitMask)
- return false;
- return true;
- }
- bool IEEEFloat::isLargest() const {
- // The largest number by magnitude in our format will be the floating point
- // number with maximum exponent and with significand that is all ones.
- return isFiniteNonZero() && exponent == semantics->maxExponent
- && isSignificandAllOnes();
- }
- bool IEEEFloat::isInteger() const {
- // This could be made more efficient; I'm going for obviously correct.
- if (!isFinite()) return false;
- IEEEFloat truncated = *this;
- truncated.roundToIntegral(rmTowardZero);
- return compare(truncated) == cmpEqual;
- }
- bool IEEEFloat::bitwiseIsEqual(const IEEEFloat &rhs) const {
- if (this == &rhs)
- return true;
- if (semantics != rhs.semantics ||
- category != rhs.category ||
- sign != rhs.sign)
- return false;
- if (category==fcZero || category==fcInfinity)
- return true;
- if (isFiniteNonZero() && exponent != rhs.exponent)
- return false;
- return std::equal(significandParts(), significandParts() + partCount(),
- rhs.significandParts());
- }
- IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, integerPart value) {
- initialize(&ourSemantics);
- sign = 0;
- category = fcNormal;
- zeroSignificand();
- exponent = ourSemantics.precision - 1;
- significandParts()[0] = value;
- normalize(rmNearestTiesToEven, lfExactlyZero);
- }
- IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics) {
- initialize(&ourSemantics);
- makeZero(false);
- }
- // Delegate to the previous constructor, because later copy constructor may
- // actually inspects category, which can't be garbage.
- IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, uninitializedTag tag)
- : IEEEFloat(ourSemantics) {}
- IEEEFloat::IEEEFloat(const IEEEFloat &rhs) {
- initialize(rhs.semantics);
- assign(rhs);
- }
- IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) {
- *this = std::move(rhs);
- }
- IEEEFloat::~IEEEFloat() { freeSignificand(); }
- unsigned int IEEEFloat::partCount() const {
- return partCountForBits(semantics->precision + 1);
- }
- const IEEEFloat::integerPart *IEEEFloat::significandParts() const {
- return const_cast<IEEEFloat *>(this)->significandParts();
- }
- IEEEFloat::integerPart *IEEEFloat::significandParts() {
- if (partCount() > 1)
- return significand.parts;
- else
- return &significand.part;
- }
- void IEEEFloat::zeroSignificand() {
- APInt::tcSet(significandParts(), 0, partCount());
- }
- /* Increment an fcNormal floating point number's significand. */
- void IEEEFloat::incrementSignificand() {
- integerPart carry;
- carry = APInt::tcIncrement(significandParts(), partCount());
- /* Our callers should never cause us to overflow. */
- assert(carry == 0);
- (void)carry;
- }
- /* Add the significand of the RHS. Returns the carry flag. */
- IEEEFloat::integerPart IEEEFloat::addSignificand(const IEEEFloat &rhs) {
- integerPart *parts;
- parts = significandParts();
- assert(semantics == rhs.semantics);
- assert(exponent == rhs.exponent);
- return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
- }
- /* Subtract the significand of the RHS with a borrow flag. Returns
- the borrow flag. */
- IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs,
- integerPart borrow) {
- integerPart *parts;
- parts = significandParts();
- assert(semantics == rhs.semantics);
- assert(exponent == rhs.exponent);
- return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
- partCount());
- }
- /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
- on to the full-precision result of the multiplication. Returns the
- lost fraction. */
- lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs,
- IEEEFloat addend) {
- unsigned int omsb; // One, not zero, based MSB.
- unsigned int partsCount, newPartsCount, precision;
- integerPart *lhsSignificand;
- integerPart scratch[4];
- integerPart *fullSignificand;
- lostFraction lost_fraction;
- bool ignored;
- assert(semantics == rhs.semantics);
- precision = semantics->precision;
- // Allocate space for twice as many bits as the original significand, plus one
- // extra bit for the addition to overflow into.
- newPartsCount = partCountForBits(precision * 2 + 1);
- if (newPartsCount > 4)
- fullSignificand = new integerPart[newPartsCount];
- else
- fullSignificand = scratch;
- lhsSignificand = significandParts();
- partsCount = partCount();
- APInt::tcFullMultiply(fullSignificand, lhsSignificand,
- rhs.significandParts(), partsCount, partsCount);
- lost_fraction = lfExactlyZero;
- omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
- exponent += rhs.exponent;
- // Assume the operands involved in the multiplication are single-precision
- // FP, and the two multiplicants are:
- // *this = a23 . a22 ... a0 * 2^e1
- // rhs = b23 . b22 ... b0 * 2^e2
- // the result of multiplication is:
- // *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
- // Note that there are three significant bits at the left-hand side of the
- // radix point: two for the multiplication, and an overflow bit for the
- // addition (that will always be zero at this point). Move the radix point
- // toward left by two bits, and adjust exponent accordingly.
- exponent += 2;
- if (addend.isNonZero()) {
- // The intermediate result of the multiplication has "2 * precision"
- // signicant bit; adjust the addend to be consistent with mul result.
- //
- Significand savedSignificand = significand;
- const fltSemantics *savedSemantics = semantics;
- fltSemantics extendedSemantics;
- opStatus status;
- unsigned int extendedPrecision;
- // Normalize our MSB to one below the top bit to allow for overflow.
- extendedPrecision = 2 * precision + 1;
- if (omsb != extendedPrecision - 1) {
- assert(extendedPrecision > omsb);
- APInt::tcShiftLeft(fullSignificand, newPartsCount,
- (extendedPrecision - 1) - omsb);
- exponent -= (extendedPrecision - 1) - omsb;
- }
- /* Create new semantics. */
- extendedSemantics = *semantics;
- extendedSemantics.precision = extendedPrecision;
- if (newPartsCount == 1)
- significand.part = fullSignificand[0];
- else
- significand.parts = fullSignificand;
- semantics = &extendedSemantics;
- // Make a copy so we can convert it to the extended semantics.
- // Note that we cannot convert the addend directly, as the extendedSemantics
- // is a local variable (which we take a reference to).
- IEEEFloat extendedAddend(addend);
- status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
- assert(status == opOK);
- (void)status;
- // Shift the significand of the addend right by one bit. This guarantees
- // that the high bit of the significand is zero (same as fullSignificand),
- // so the addition will overflow (if it does overflow at all) into the top bit.
- lost_fraction = extendedAddend.shiftSignificandRight(1);
- assert(lost_fraction == lfExactlyZero &&
- "Lost precision while shifting addend for fused-multiply-add.");
- lost_fraction = addOrSubtractSignificand(extendedAddend, false);
- /* Restore our state. */
- if (newPartsCount == 1)
- fullSignificand[0] = significand.part;
- significand = savedSignificand;
- semantics = savedSemantics;
- omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
- }
- // Convert the result having "2 * precision" significant-bits back to the one
- // having "precision" significant-bits. First, move the radix point from
- // poision "2*precision - 1" to "precision - 1". The exponent need to be
- // adjusted by "2*precision - 1" - "precision - 1" = "precision".
- exponent -= precision + 1;
- // In case MSB resides at the left-hand side of radix point, shift the
- // mantissa right by some amount to make sure the MSB reside right before
- // the radix point (i.e. "MSB . rest-significant-bits").
- //
- // Note that the result is not normalized when "omsb < precision". So, the
- // caller needs to call IEEEFloat::normalize() if normalized value is
- // expected.
- if (omsb > precision) {
- unsigned int bits, significantParts;
- lostFraction lf;
- bits = omsb - precision;
- significantParts = partCountForBits(omsb);
- lf = shiftRight(fullSignificand, significantParts, bits);
- lost_fraction = combineLostFractions(lf, lost_fraction);
- exponent += bits;
- }
- APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
- if (newPartsCount > 4)
- delete [] fullSignificand;
- return lost_fraction;
- }
- lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs) {
- return multiplySignificand(rhs, IEEEFloat(*semantics));
- }
- /* Multiply the significands of LHS and RHS to DST. */
- lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) {
- unsigned int bit, i, partsCount;
- const integerPart *rhsSignificand;
- integerPart *lhsSignificand, *dividend, *divisor;
- integerPart scratch[4];
- lostFraction lost_fraction;
- assert(semantics == rhs.semantics);
- lhsSignificand = significandParts();
- rhsSignificand = rhs.significandParts();
- partsCount = partCount();
- if (partsCount > 2)
- dividend = new integerPart[partsCount * 2];
- else
- dividend = scratch;
- divisor = dividend + partsCount;
- /* Copy the dividend and divisor as they will be modified in-place. */
- for (i = 0; i < partsCount; i++) {
- dividend[i] = lhsSignificand[i];
- divisor[i] = rhsSignificand[i];
- lhsSignificand[i] = 0;
- }
- exponent -= rhs.exponent;
- unsigned int precision = semantics->precision;
- /* Normalize the divisor. */
- bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
- if (bit) {
- exponent += bit;
- APInt::tcShiftLeft(divisor, partsCount, bit);
- }
- /* Normalize the dividend. */
- bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
- if (bit) {
- exponent -= bit;
- APInt::tcShiftLeft(dividend, partsCount, bit);
- }
- /* Ensure the dividend >= divisor initially for the loop below.
- Incidentally, this means that the division loop below is
- guaranteed to set the integer bit to one. */
- if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
- exponent--;
- APInt::tcShiftLeft(dividend, partsCount, 1);
- assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
- }
- /* Long division. */
- for (bit = precision; bit; bit -= 1) {
- if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
- APInt::tcSubtract(dividend, divisor, 0, partsCount);
- APInt::tcSetBit(lhsSignificand, bit - 1);
- }
- APInt::tcShiftLeft(dividend, partsCount, 1);
- }
- /* Figure out the lost fraction. */
- int cmp = APInt::tcCompare(dividend, divisor, partsCount);
- if (cmp > 0)
- lost_fraction = lfMoreThanHalf;
- else if (cmp == 0)
- lost_fraction = lfExactlyHalf;
- else if (APInt::tcIsZero(dividend, partsCount))
- lost_fraction = lfExactlyZero;
- else
- lost_fraction = lfLessThanHalf;
- if (partsCount > 2)
- delete [] dividend;
- return lost_fraction;
- }
- unsigned int IEEEFloat::significandMSB() const {
- return APInt::tcMSB(significandParts(), partCount());
- }
- unsigned int IEEEFloat::significandLSB() const {
- return APInt::tcLSB(significandParts(), partCount());
- }
- /* Note that a zero result is NOT normalized to fcZero. */
- lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) {
- /* Our exponent should not overflow. */
- assert((ExponentType) (exponent + bits) >= exponent);
- exponent += bits;
- return shiftRight(significandParts(), partCount(), bits);
- }
- /* Shift the significand left BITS bits, subtract BITS from its exponent. */
- void IEEEFloat::shiftSignificandLeft(unsigned int bits) {
- assert(bits < semantics->precision);
- if (bits) {
- unsigned int partsCount = partCount();
- APInt::tcShiftLeft(significandParts(), partsCount, bits);
- exponent -= bits;
- assert(!APInt::tcIsZero(significandParts(), partsCount));
- }
- }
- IEEEFloat::cmpResult
- IEEEFloat::compareAbsoluteValue(const IEEEFloat &rhs) const {
- int compare;
- assert(semantics == rhs.semantics);
- assert(isFiniteNonZero());
- assert(rhs.isFiniteNonZero());
- compare = exponent - rhs.exponent;
- /* If exponents are equal, do an unsigned bignum comparison of the
- significands. */
- if (compare == 0)
- compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
- partCount());
- if (compare > 0)
- return cmpGreaterThan;
- else if (compare < 0)
- return cmpLessThan;
- else
- return cmpEqual;
- }
- /* Set the least significant BITS bits of a bignum, clear the
- rest. */
- static void tcSetLeastSignificantBits(APInt::WordType *dst, unsigned parts,
- unsigned bits) {
- unsigned i = 0;
- while (bits > APInt::APINT_BITS_PER_WORD) {
- dst[i++] = ~(APInt::WordType)0;
- bits -= APInt::APINT_BITS_PER_WORD;
- }
- if (bits)
- dst[i++] = ~(APInt::WordType)0 >> (APInt::APINT_BITS_PER_WORD - bits);
- while (i < parts)
- dst[i++] = 0;
- }
- /* Handle overflow. Sign is preserved. We either become infinity or
- the largest finite number. */
- IEEEFloat::opStatus IEEEFloat::handleOverflow(roundingMode rounding_mode) {
- /* Infinity? */
- if (rounding_mode == rmNearestTiesToEven ||
- rounding_mode == rmNearestTiesToAway ||
- (rounding_mode == rmTowardPositive && !sign) ||
- (rounding_mode == rmTowardNegative && sign)) {
- category = fcInfinity;
- return (opStatus) (opOverflow | opInexact);
- }
- /* Otherwise we become the largest finite number. */
- category = fcNormal;
- exponent = semantics->maxExponent;
- tcSetLeastSignificantBits(significandParts(), partCount(),
- semantics->precision);
- return opInexact;
- }
- /* Returns TRUE if, when truncating the current number, with BIT the
- new LSB, with the given lost fraction and rounding mode, the result
- would need to be rounded away from zero (i.e., by increasing the
- signficand). This routine must work for fcZero of both signs, and
- fcNormal numbers. */
- bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode,
- lostFraction lost_fraction,
- unsigned int bit) const {
- /* NaNs and infinities should not have lost fractions. */
- assert(isFiniteNonZero() || category == fcZero);
- /* Current callers never pass this so we don't handle it. */
- assert(lost_fraction != lfExactlyZero);
- switch (rounding_mode) {
- case rmNearestTiesToAway:
- return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
- case rmNearestTiesToEven:
- if (lost_fraction == lfMoreThanHalf)
- return true;
- /* Our zeroes don't have a significand to test. */
- if (lost_fraction == lfExactlyHalf && category != fcZero)
- return APInt::tcExtractBit(significandParts(), bit);
- return false;
- case rmTowardZero:
- return false;
- case rmTowardPositive:
- return !sign;
- case rmTowardNegative:
- return sign;
- default:
- break;
- }
- llvm_unreachable("Invalid rounding mode found");
- }
- IEEEFloat::opStatus IEEEFloat::normalize(roundingMode rounding_mode,
- lostFraction lost_fraction) {
- unsigned int omsb; /* One, not zero, based MSB. */
- int exponentChange;
- if (!isFiniteNonZero())
- return opOK;
- /* Before rounding normalize the exponent of fcNormal numbers. */
- omsb = significandMSB() + 1;
- if (omsb) {
- /* OMSB is numbered from 1. We want to place it in the integer
- bit numbered PRECISION if possible, with a compensating change in
- the exponent. */
- exponentChange = omsb - semantics->precision;
- /* If the resulting exponent is too high, overflow according to
- the rounding mode. */
- if (exponent + exponentChange > semantics->maxExponent)
- return handleOverflow(rounding_mode);
- /* Subnormal numbers have exponent minExponent, and their MSB
- is forced based on that. */
- if (exponent + exponentChange < semantics->minExponent)
- exponentChange = semantics->minExponent - exponent;
- /* Shifting left is easy as we don't lose precision. */
- if (exponentChange < 0) {
- assert(lost_fraction == lfExactlyZero);
- shiftSignificandLeft(-exponentChange);
- return opOK;
- }
- if (exponentChange > 0) {
- lostFraction lf;
- /* Shift right and capture any new lost fraction. */
- lf = shiftSignificandRight(exponentChange);
- lost_fraction = combineLostFractions(lf, lost_fraction);
- /* Keep OMSB up-to-date. */
- if (omsb > (unsigned) exponentChange)
- omsb -= exponentChange;
- else
- omsb = 0;
- }
- }
- /* Now round the number according to rounding_mode given the lost
- fraction. */
- /* As specified in IEEE 754, since we do not trap we do not report
- underflow for exact results. */
- if (lost_fraction == lfExactlyZero) {
- /* Canonicalize zeroes. */
- if (omsb == 0)
- category = fcZero;
- return opOK;
- }
- /* Increment the significand if we're rounding away from zero. */
- if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
- if (omsb == 0)
- exponent = semantics->minExponent;
- incrementSignificand();
- omsb = significandMSB() + 1;
- /* Did the significand increment overflow? */
- if (omsb == (unsigned) semantics->precision + 1) {
- /* Renormalize by incrementing the exponent and shifting our
- significand right one. However if we already have the
- maximum exponent we overflow to infinity. */
- if (exponent == semantics->maxExponent) {
- category = fcInfinity;
- return (opStatus) (opOverflow | opInexact);
- }
- shiftSignificandRight(1);
- return opInexact;
- }
- }
- /* The normal case - we were and are not denormal, and any
- significand increment above didn't overflow. */
- if (omsb == semantics->precision)
- return opInexact;
- /* We have a non-zero denormal. */
- assert(omsb < semantics->precision);
- /* Canonicalize zeroes. */
- if (omsb == 0)
- category = fcZero;
- /* The fcZero case is a denormal that underflowed to zero. */
- return (opStatus) (opUnderflow | opInexact);
- }
- IEEEFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs,
- bool subtract) {
- switch (PackCategoriesIntoKey(category, rhs.category)) {
- default:
- llvm_unreachable(nullptr);
- case PackCategoriesIntoKey(fcZero, fcNaN):
- case PackCategoriesIntoKey(fcNormal, fcNaN):
- case PackCategoriesIntoKey(fcInfinity, fcNaN):
- assign(rhs);
- LLVM_FALLTHROUGH;
- case PackCategoriesIntoKey(fcNaN, fcZero):
- case PackCategoriesIntoKey(fcNaN, fcNormal):
- case PackCategoriesIntoKey(fcNaN, fcInfinity):
- case PackCategoriesIntoKey(fcNaN, fcNaN):
- if (isSignaling()) {
- makeQuiet();
- return opInvalidOp;
- }
- return rhs.isSignaling() ? opInvalidOp : opOK;
- case PackCategoriesIntoKey(fcNormal, fcZero):
- case PackCategoriesIntoKey(fcInfinity, fcNormal):
- case PackCategoriesIntoKey(fcInfinity, fcZero):
- return opOK;
- case PackCategoriesIntoKey(fcNormal, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcInfinity):
- category = fcInfinity;
- sign = rhs.sign ^ subtract;
- return opOK;
- case PackCategoriesIntoKey(fcZero, fcNormal):
- assign(rhs);
- sign = rhs.sign ^ subtract;
- return opOK;
- case PackCategoriesIntoKey(fcZero, fcZero):
- /* Sign depends on rounding mode; handled by caller. */
- return opOK;
- case PackCategoriesIntoKey(fcInfinity, fcInfinity):
- /* Differently signed infinities can only be validly
- subtracted. */
- if (((sign ^ rhs.sign)!=0) != subtract) {
- makeNaN();
- return opInvalidOp;
- }
- return opOK;
- case PackCategoriesIntoKey(fcNormal, fcNormal):
- return opDivByZero;
- }
- }
- /* Add or subtract two normal numbers. */
- lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs,
- bool subtract) {
- integerPart carry;
- lostFraction lost_fraction;
- int bits;
- /* Determine if the operation on the absolute values is effectively
- an addition or subtraction. */
- subtract ^= static_cast<bool>(sign ^ rhs.sign);
- /* Are we bigger exponent-wise than the RHS? */
- bits = exponent - rhs.exponent;
- /* Subtraction is more subtle than one might naively expect. */
- if (subtract) {
- IEEEFloat temp_rhs(rhs);
- if (bits == 0)
- lost_fraction = lfExactlyZero;
- else if (bits > 0) {
- lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
- shiftSignificandLeft(1);
- } else {
- lost_fraction = shiftSignificandRight(-bits - 1);
- temp_rhs.shiftSignificandLeft(1);
- }
- // Should we reverse the subtraction.
- if (compareAbsoluteValue(temp_rhs) == cmpLessThan) {
- carry = temp_rhs.subtractSignificand
- (*this, lost_fraction != lfExactlyZero);
- copySignificand(temp_rhs);
- sign = !sign;
- } else {
- carry = subtractSignificand
- (temp_rhs, lost_fraction != lfExactlyZero);
- }
- /* Invert the lost fraction - it was on the RHS and
- subtracted. */
- if (lost_fraction == lfLessThanHalf)
- lost_fraction = lfMoreThanHalf;
- else if (lost_fraction == lfMoreThanHalf)
- lost_fraction = lfLessThanHalf;
- /* The code above is intended to ensure that no borrow is
- necessary. */
- assert(!carry);
- (void)carry;
- } else {
- if (bits > 0) {
- IEEEFloat temp_rhs(rhs);
- lost_fraction = temp_rhs.shiftSignificandRight(bits);
- carry = addSignificand(temp_rhs);
- } else {
- lost_fraction = shiftSignificandRight(-bits);
- carry = addSignificand(rhs);
- }
- /* We have a guard bit; generating a carry cannot happen. */
- assert(!carry);
- (void)carry;
- }
- return lost_fraction;
- }
- IEEEFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) {
- switch (PackCategoriesIntoKey(category, rhs.category)) {
- default:
- llvm_unreachable(nullptr);
- case PackCategoriesIntoKey(fcZero, fcNaN):
- case PackCategoriesIntoKey(fcNormal, fcNaN):
- case PackCategoriesIntoKey(fcInfinity, fcNaN):
- assign(rhs);
- sign = false;
- LLVM_FALLTHROUGH;
- case PackCategoriesIntoKey(fcNaN, fcZero):
- case PackCategoriesIntoKey(fcNaN, fcNormal):
- case PackCategoriesIntoKey(fcNaN, fcInfinity):
- case PackCategoriesIntoKey(fcNaN, fcNaN):
- sign ^= rhs.sign; // restore the original sign
- if (isSignaling()) {
- makeQuiet();
- return opInvalidOp;
- }
- return rhs.isSignaling() ? opInvalidOp : opOK;
- case PackCategoriesIntoKey(fcNormal, fcInfinity):
- case PackCategoriesIntoKey(fcInfinity, fcNormal):
- case PackCategoriesIntoKey(fcInfinity, fcInfinity):
- category = fcInfinity;
- return opOK;
- case PackCategoriesIntoKey(fcZero, fcNormal):
- case PackCategoriesIntoKey(fcNormal, fcZero):
- case PackCategoriesIntoKey(fcZero, fcZero):
- category = fcZero;
- return opOK;
- case PackCategoriesIntoKey(fcZero, fcInfinity):
- case PackCategoriesIntoKey(fcInfinity, fcZero):
- makeNaN();
- return opInvalidOp;
- case PackCategoriesIntoKey(fcNormal, fcNormal):
- return opOK;
- }
- }
- IEEEFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) {
- switch (PackCategoriesIntoKey(category, rhs.category)) {
- default:
- llvm_unreachable(nullptr);
- case PackCategoriesIntoKey(fcZero, fcNaN):
- case PackCategoriesIntoKey(fcNormal, fcNaN):
- case PackCategoriesIntoKey(fcInfinity, fcNaN):
- assign(rhs);
- sign = false;
- LLVM_FALLTHROUGH;
- case PackCategoriesIntoKey(fcNaN, fcZero):
- case PackCategoriesIntoKey(fcNaN, fcNormal):
- case PackCategoriesIntoKey(fcNaN, fcInfinity):
- case PackCategoriesIntoKey(fcNaN, fcNaN):
- sign ^= rhs.sign; // restore the original sign
- if (isSignaling()) {
- makeQuiet();
- return opInvalidOp;
- }
- return rhs.isSignaling() ? opInvalidOp : opOK;
- case PackCategoriesIntoKey(fcInfinity, fcZero):
- case PackCategoriesIntoKey(fcInfinity, fcNormal):
- case PackCategoriesIntoKey(fcZero, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcNormal):
- return opOK;
- case PackCategoriesIntoKey(fcNormal, fcInfinity):
- category = fcZero;
- return opOK;
- case PackCategoriesIntoKey(fcNormal, fcZero):
- category = fcInfinity;
- return opDivByZero;
- case PackCategoriesIntoKey(fcInfinity, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcZero):
- makeNaN();
- return opInvalidOp;
- case PackCategoriesIntoKey(fcNormal, fcNormal):
- return opOK;
- }
- }
- IEEEFloat::opStatus IEEEFloat::modSpecials(const IEEEFloat &rhs) {
- switch (PackCategoriesIntoKey(category, rhs.category)) {
- default:
- llvm_unreachable(nullptr);
- case PackCategoriesIntoKey(fcZero, fcNaN):
- case PackCategoriesIntoKey(fcNormal, fcNaN):
- case PackCategoriesIntoKey(fcInfinity, fcNaN):
- assign(rhs);
- LLVM_FALLTHROUGH;
- case PackCategoriesIntoKey(fcNaN, fcZero):
- case PackCategoriesIntoKey(fcNaN, fcNormal):
- case PackCategoriesIntoKey(fcNaN, fcInfinity):
- case PackCategoriesIntoKey(fcNaN, fcNaN):
- if (isSignaling()) {
- makeQuiet();
- return opInvalidOp;
- }
- return rhs.isSignaling() ? opInvalidOp : opOK;
- case PackCategoriesIntoKey(fcZero, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcNormal):
- case PackCategoriesIntoKey(fcNormal, fcInfinity):
- return opOK;
- case PackCategoriesIntoKey(fcNormal, fcZero):
- case PackCategoriesIntoKey(fcInfinity, fcZero):
- case PackCategoriesIntoKey(fcInfinity, fcNormal):
- case PackCategoriesIntoKey(fcInfinity, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcZero):
- makeNaN();
- return opInvalidOp;
- case PackCategoriesIntoKey(fcNormal, fcNormal):
- return opOK;
- }
- }
- IEEEFloat::opStatus IEEEFloat::remainderSpecials(const IEEEFloat &rhs) {
- switch (PackCategoriesIntoKey(category, rhs.category)) {
- default:
- llvm_unreachable(nullptr);
- case PackCategoriesIntoKey(fcZero, fcNaN):
- case PackCategoriesIntoKey(fcNormal, fcNaN):
- case PackCategoriesIntoKey(fcInfinity, fcNaN):
- assign(rhs);
- LLVM_FALLTHROUGH;
- case PackCategoriesIntoKey(fcNaN, fcZero):
- case PackCategoriesIntoKey(fcNaN, fcNormal):
- case PackCategoriesIntoKey(fcNaN, fcInfinity):
- case PackCategoriesIntoKey(fcNaN, fcNaN):
- if (isSignaling()) {
- makeQuiet();
- return opInvalidOp;
- }
- return rhs.isSignaling() ? opInvalidOp : opOK;
- case PackCategoriesIntoKey(fcZero, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcNormal):
- case PackCategoriesIntoKey(fcNormal, fcInfinity):
- return opOK;
- case PackCategoriesIntoKey(fcNormal, fcZero):
- case PackCategoriesIntoKey(fcInfinity, fcZero):
- case PackCategoriesIntoKey(fcInfinity, fcNormal):
- case PackCategoriesIntoKey(fcInfinity, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcZero):
- makeNaN();
- return opInvalidOp;
- case PackCategoriesIntoKey(fcNormal, fcNormal):
- return opDivByZero; // fake status, indicating this is not a special case
- }
- }
- /* Change sign. */
- void IEEEFloat::changeSign() {
- /* Look mummy, this one's easy. */
- sign = !sign;
- }
- /* Normalized addition or subtraction. */
- IEEEFloat::opStatus IEEEFloat::addOrSubtract(const IEEEFloat &rhs,
- roundingMode rounding_mode,
- bool subtract) {
- opStatus fs;
- fs = addOrSubtractSpecials(rhs, subtract);
- /* This return code means it was not a simple case. */
- if (fs == opDivByZero) {
- lostFraction lost_fraction;
- lost_fraction = addOrSubtractSignificand(rhs, subtract);
- fs = normalize(rounding_mode, lost_fraction);
- /* Can only be zero if we lost no fraction. */
- assert(category != fcZero || lost_fraction == lfExactlyZero);
- }
- /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
- positive zero unless rounding to minus infinity, except that
- adding two like-signed zeroes gives that zero. */
- if (category == fcZero) {
- if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
- sign = (rounding_mode == rmTowardNegative);
- }
- return fs;
- }
- /* Normalized addition. */
- IEEEFloat::opStatus IEEEFloat::add(const IEEEFloat &rhs,
- roundingMode rounding_mode) {
- return addOrSubtract(rhs, rounding_mode, false);
- }
- /* Normalized subtraction. */
- IEEEFloat::opStatus IEEEFloat::subtract(const IEEEFloat &rhs,
- roundingMode rounding_mode) {
- return addOrSubtract(rhs, rounding_mode, true);
- }
- /* Normalized multiply. */
- IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs,
- roundingMode rounding_mode) {
- opStatus fs;
- sign ^= rhs.sign;
- fs = multiplySpecials(rhs);
- if (isFiniteNonZero()) {
- lostFraction lost_fraction = multiplySignificand(rhs);
- fs = normalize(rounding_mode, lost_fraction);
- if (lost_fraction != lfExactlyZero)
- fs = (opStatus) (fs | opInexact);
- }
- return fs;
- }
- /* Normalized divide. */
- IEEEFloat::opStatus IEEEFloat::divide(const IEEEFloat &rhs,
- roundingMode rounding_mode) {
- opStatus fs;
- sign ^= rhs.sign;
- fs = divideSpecials(rhs);
- if (isFiniteNonZero()) {
- lostFraction lost_fraction = divideSignificand(rhs);
- fs = normalize(rounding_mode, lost_fraction);
- if (lost_fraction != lfExactlyZero)
- fs = (opStatus) (fs | opInexact);
- }
- return fs;
- }
- /* Normalized remainder. */
- IEEEFloat::opStatus IEEEFloat::remainder(const IEEEFloat &rhs) {
- opStatus fs;
- unsigned int origSign = sign;
- // First handle the special cases.
- fs = remainderSpecials(rhs);
- if (fs != opDivByZero)
- return fs;
- fs = opOK;
- // Make sure the current value is less than twice the denom. If the addition
- // did not succeed (an overflow has happened), which means that the finite
- // value we currently posses must be less than twice the denom (as we are
- // using the same semantics).
- IEEEFloat P2 = rhs;
- if (P2.add(rhs, rmNearestTiesToEven) == opOK) {
- fs = mod(P2);
- assert(fs == opOK);
- }
- // Lets work with absolute numbers.
- IEEEFloat P = rhs;
- P.sign = false;
- sign = false;
- //
- // To calculate the remainder we use the following scheme.
- //
- // The remainder is defained as follows:
- //
- // remainder = numer - rquot * denom = x - r * p
- //
- // Where r is the result of: x/p, rounded toward the nearest integral value
- // (with halfway cases rounded toward the even number).
- //
- // Currently, (after x mod 2p):
- // r is the number of 2p's present inside x, which is inherently, an even
- // number of p's.
- //
- // We may split the remaining calculation into 4 options:
- // - if x < 0.5p then we round to the nearest number with is 0, and are done.
- // - if x == 0.5p then we round to the nearest even number which is 0, and we
- // are done as well.
- // - if 0.5p < x < p then we round to nearest number which is 1, and we have
- // to subtract 1p at least once.
- // - if x >= p then we must subtract p at least once, as x must be a
- // remainder.
- //
- // By now, we were done, or we added 1 to r, which in turn, now an odd number.
- //
- // We can now split the remaining calculation to the following 3 options:
- // - if x < 0.5p then we round to the nearest number with is 0, and are done.
- // - if x == 0.5p then we round to the nearest even number. As r is odd, we
- // must round up to the next even number. so we must subtract p once more.
- // - if x > 0.5p (and inherently x < p) then we must round r up to the next
- // integral, and subtract p once more.
- //
- // Extend the semantics to prevent an overflow/underflow or inexact result.
- bool losesInfo;
- fltSemantics extendedSemantics = *semantics;
- extendedSemantics.maxExponent++;
- extendedSemantics.minExponent--;
- extendedSemantics.precision += 2;
- IEEEFloat VEx = *this;
- fs = VEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK && !losesInfo);
- IEEEFloat PEx = P;
- fs = PEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK && !losesInfo);
- // It is simpler to work with 2x instead of 0.5p, and we do not need to lose
- // any fraction.
- fs = VEx.add(VEx, rmNearestTiesToEven);
- assert(fs == opOK);
- if (VEx.compare(PEx) == cmpGreaterThan) {
- fs = subtract(P, rmNearestTiesToEven);
- assert(fs == opOK);
- // Make VEx = this.add(this), but because we have different semantics, we do
- // not want to `convert` again, so we just subtract PEx twice (which equals
- // to the desired value).
- fs = VEx.subtract(PEx, rmNearestTiesToEven);
- assert(fs == opOK);
- fs = VEx.subtract(PEx, rmNearestTiesToEven);
- assert(fs == opOK);
- cmpResult result = VEx.compare(PEx);
- if (result == cmpGreaterThan || result == cmpEqual) {
- fs = subtract(P, rmNearestTiesToEven);
- assert(fs == opOK);
- }
- }
- if (isZero())
- sign = origSign; // IEEE754 requires this
- else
- sign ^= origSign;
- return fs;
- }
- /* Normalized llvm frem (C fmod). */
- IEEEFloat::opStatus IEEEFloat::mod(const IEEEFloat &rhs) {
- opStatus fs;
- fs = modSpecials(rhs);
- unsigned int origSign = sign;
- while (isFiniteNonZero() && rhs.isFiniteNonZero() &&
- compareAbsoluteValue(rhs) != cmpLessThan) {
- IEEEFloat V = scalbn(rhs, ilogb(*this) - ilogb(rhs), rmNearestTiesToEven);
- if (compareAbsoluteValue(V) == cmpLessThan)
- V = scalbn(V, -1, rmNearestTiesToEven);
- V.sign = sign;
- fs = subtract(V, rmNearestTiesToEven);
- assert(fs==opOK);
- }
- if (isZero())
- sign = origSign; // fmod requires this
- return fs;
- }
- /* Normalized fused-multiply-add. */
- IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand,
- const IEEEFloat &addend,
- roundingMode rounding_mode) {
- opStatus fs;
- /* Post-multiplication sign, before addition. */
- sign ^= multiplicand.sign;
- /* If and only if all arguments are normal do we need to do an
- extended-precision calculation. */
- if (isFiniteNonZero() &&
- multiplicand.isFiniteNonZero() &&
- addend.isFinite()) {
- lostFraction lost_fraction;
- lost_fraction = multiplySignificand(multiplicand, addend);
- fs = normalize(rounding_mode, lost_fraction);
- if (lost_fraction != lfExactlyZero)
- fs = (opStatus) (fs | opInexact);
- /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
- positive zero unless rounding to minus infinity, except that
- adding two like-signed zeroes gives that zero. */
- if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign)
- sign = (rounding_mode == rmTowardNegative);
- } else {
- fs = multiplySpecials(multiplicand);
- /* FS can only be opOK or opInvalidOp. There is no more work
- to do in the latter case. The IEEE-754R standard says it is
- implementation-defined in this case whether, if ADDEND is a
- quiet NaN, we raise invalid op; this implementation does so.
- If we need to do the addition we can do so with normal
- precision. */
- if (fs == opOK)
- fs = addOrSubtract(addend, rounding_mode, false);
- }
- return fs;
- }
- /* Rounding-mode correct round to integral value. */
- IEEEFloat::opStatus IEEEFloat::roundToIntegral(roundingMode rounding_mode) {
- opStatus fs;
- if (isInfinity())
- // [IEEE Std 754-2008 6.1]:
- // The behavior of infinity in floating-point arithmetic is derived from the
- // limiting cases of real arithmetic with operands of arbitrarily
- // large magnitude, when such a limit exists.
- // ...
- // Operations on infinite operands are usually exact and therefore signal no
- // exceptions ...
- return opOK;
- if (isNaN()) {
- if (isSignaling()) {
- // [IEEE Std 754-2008 6.2]:
- // Under default exception handling, any operation signaling an invalid
- // operation exception and for which a floating-point result is to be
- // delivered shall deliver a quiet NaN.
- makeQuiet();
- // [IEEE Std 754-2008 6.2]:
- // Signaling NaNs shall be reserved operands that, under default exception
- // handling, signal the invalid operation exception(see 7.2) for every
- // general-computational and signaling-computational operation except for
- // the conversions described in 5.12.
- return opInvalidOp;
- } else {
- // [IEEE Std 754-2008 6.2]:
- // For an operation with quiet NaN inputs, other than maximum and minimum
- // operations, if a floating-point result is to be delivered the result
- // shall be a quiet NaN which should be one of the input NaNs.
- // ...
- // Every general-computational and quiet-computational operation involving
- // one or more input NaNs, none of them signaling, shall signal no
- // exception, except fusedMultiplyAdd might signal the invalid operation
- // exception(see 7.2).
- return opOK;
- }
- }
- if (isZero()) {
- // [IEEE Std 754-2008 6.3]:
- // ... the sign of the result of conversions, the quantize operation, the
- // roundToIntegral operations, and the roundToIntegralExact(see 5.3.1) is
- // the sign of the first or only operand.
- return opOK;
- }
- // If the exponent is large enough, we know that this value is already
- // integral, and the arithmetic below would potentially cause it to saturate
- // to +/-Inf. Bail out early instead.
- if (exponent+1 >= (int)semanticsPrecision(*semantics))
- return opOK;
- // The algorithm here is quite simple: we add 2^(p-1), where p is the
- // precision of our format, and then subtract it back off again. The choice
- // of rounding modes for the addition/subtraction determines the rounding mode
- // for our integral rounding as well.
- // NOTE: When the input value is negative, we do subtraction followed by
- // addition instead.
- APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
- IntegerConstant <<= semanticsPrecision(*semantics)-1;
- IEEEFloat MagicConstant(*semantics);
- fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
- rmNearestTiesToEven);
- assert(fs == opOK);
- MagicConstant.sign = sign;
- // Preserve the input sign so that we can handle the case of zero result
- // correctly.
- bool inputSign = isNegative();
- fs = add(MagicConstant, rounding_mode);
- // Current value and 'MagicConstant' are both integers, so the result of the
- // subtraction is always exact according to Sterbenz' lemma.
- subtract(MagicConstant, rounding_mode);
- // Restore the input sign.
- if (inputSign != isNegative())
- changeSign();
- return fs;
- }
- /* Comparison requires normalized numbers. */
- IEEEFloat::cmpResult IEEEFloat::compare(const IEEEFloat &rhs) const {
- cmpResult result;
- assert(semantics == rhs.semantics);
- switch (PackCategoriesIntoKey(category, rhs.category)) {
- default:
- llvm_unreachable(nullptr);
- case PackCategoriesIntoKey(fcNaN, fcZero):
- case PackCategoriesIntoKey(fcNaN, fcNormal):
- case PackCategoriesIntoKey(fcNaN, fcInfinity):
- case PackCategoriesIntoKey(fcNaN, fcNaN):
- case PackCategoriesIntoKey(fcZero, fcNaN):
- case PackCategoriesIntoKey(fcNormal, fcNaN):
- case PackCategoriesIntoKey(fcInfinity, fcNaN):
- return cmpUnordered;
- case PackCategoriesIntoKey(fcInfinity, fcNormal):
- case PackCategoriesIntoKey(fcInfinity, fcZero):
- case PackCategoriesIntoKey(fcNormal, fcZero):
- if (sign)
- return cmpLessThan;
- else
- return cmpGreaterThan;
- case PackCategoriesIntoKey(fcNormal, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcInfinity):
- case PackCategoriesIntoKey(fcZero, fcNormal):
- if (rhs.sign)
- return cmpGreaterThan;
- else
- return cmpLessThan;
- case PackCategoriesIntoKey(fcInfinity, fcInfinity):
- if (sign == rhs.sign)
- return cmpEqual;
- else if (sign)
- return cmpLessThan;
- else
- return cmpGreaterThan;
- case PackCategoriesIntoKey(fcZero, fcZero):
- return cmpEqual;
- case PackCategoriesIntoKey(fcNormal, fcNormal):
- break;
- }
- /* Two normal numbers. Do they have the same sign? */
- if (sign != rhs.sign) {
- if (sign)
- result = cmpLessThan;
- else
- result = cmpGreaterThan;
- } else {
- /* Compare absolute values; invert result if negative. */
- result = compareAbsoluteValue(rhs);
- if (sign) {
- if (result == cmpLessThan)
- result = cmpGreaterThan;
- else if (result == cmpGreaterThan)
- result = cmpLessThan;
- }
- }
- return result;
- }
- /// IEEEFloat::convert - convert a value of one floating point type to another.
- /// The return value corresponds to the IEEE754 exceptions. *losesInfo
- /// records whether the transformation lost information, i.e. whether
- /// converting the result back to the original type will produce the
- /// original value (this is almost the same as return value==fsOK, but there
- /// are edge cases where this is not so).
- IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics,
- roundingMode rounding_mode,
- bool *losesInfo) {
- lostFraction lostFraction;
- unsigned int newPartCount, oldPartCount;
- opStatus fs;
- int shift;
- const fltSemantics &fromSemantics = *semantics;
- lostFraction = lfExactlyZero;
- newPartCount = partCountForBits(toSemantics.precision + 1);
- oldPartCount = partCount();
- shift = toSemantics.precision - fromSemantics.precision;
- bool X86SpecialNan = false;
- if (&fromSemantics == &semX87DoubleExtended &&
- &toSemantics != &semX87DoubleExtended && category == fcNaN &&
- (!(*significandParts() & 0x8000000000000000ULL) ||
- !(*significandParts() & 0x4000000000000000ULL))) {
- // x86 has some unusual NaNs which cannot be represented in any other
- // format; note them here.
- X86SpecialNan = true;
- }
- // If this is a truncation of a denormal number, and the target semantics
- // has larger exponent range than the source semantics (this can happen
- // when truncating from PowerPC double-double to double format), the
- // right shift could lose result mantissa bits. Adjust exponent instead
- // of performing excessive shift.
- if (shift < 0 && isFiniteNonZero()) {
- int exponentChange = significandMSB() + 1 - fromSemantics.precision;
- if (exponent + exponentChange < toSemantics.minExponent)
- exponentChange = toSemantics.minExponent - exponent;
- if (exponentChange < shift)
- exponentChange = shift;
- if (exponentChange < 0) {
- shift -= exponentChange;
- exponent += exponentChange;
- }
- }
- // If this is a truncation, perform the shift before we narrow the storage.
- if (shift < 0 && (isFiniteNonZero() || category==fcNaN))
- lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
- // Fix the storage so it can hold to new value.
- if (newPartCount > oldPartCount) {
- // The new type requires more storage; make it available.
- integerPart *newParts;
- newParts = new integerPart[newPartCount];
- APInt::tcSet(newParts, 0, newPartCount);
- if (isFiniteNonZero() || category==fcNaN)
- APInt::tcAssign(newParts, significandParts(), oldPartCount);
- freeSignificand();
- significand.parts = newParts;
- } else if (newPartCount == 1 && oldPartCount != 1) {
- // Switch to built-in storage for a single part.
- integerPart newPart = 0;
- if (isFiniteNonZero() || category==fcNaN)
- newPart = significandParts()[0];
- freeSignificand();
- significand.part = newPart;
- }
- // Now that we have the right storage, switch the semantics.
- semantics = &toSemantics;
- // If this is an extension, perform the shift now that the storage is
- // available.
- if (shift > 0 && (isFiniteNonZero() || category==fcNaN))
- APInt::tcShiftLeft(significandParts(), newPartCount, shift);
- if (isFiniteNonZero()) {
- fs = normalize(rounding_mode, lostFraction);
- *losesInfo = (fs != opOK);
- } else if (category == fcNaN) {
- *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
- // For x87 extended precision, we want to make a NaN, not a special NaN if
- // the input wasn't special either.
- if (!X86SpecialNan && semantics == &semX87DoubleExtended)
- APInt::tcSetBit(significandParts(), semantics->precision - 1);
- // Convert of sNaN creates qNaN and raises an exception (invalid op).
- // This also guarantees that a sNaN does not become Inf on a truncation
- // that loses all payload bits.
- if (isSignaling()) {
- makeQuiet();
- fs = opInvalidOp;
- } else {
- fs = opOK;
- }
- } else {
- *losesInfo = false;
- fs = opOK;
- }
- return fs;
- }
- /* Convert a floating point number to an integer according to the
- rounding mode. If the rounded integer value is out of range this
- returns an invalid operation exception and the contents of the
- destination parts are unspecified. If the rounded value is in
- range but the floating point number is not the exact integer, the C
- standard doesn't require an inexact exception to be raised. IEEE
- 854 does require it so we do that.
- Note that for conversions to integer type the C standard requires
- round-to-zero to always be used. */
- IEEEFloat::opStatus IEEEFloat::convertToSignExtendedInteger(
- MutableArrayRef<integerPart> parts, unsigned int width, bool isSigned,
- roundingMode rounding_mode, bool *isExact) const {
- lostFraction lost_fraction;
- const integerPart *src;
- unsigned int dstPartsCount, truncatedBits;
- *isExact = false;
- /* Handle the three special cases first. */
- if (category == fcInfinity || category == fcNaN)
- return opInvalidOp;
- dstPartsCount = partCountForBits(width);
- assert(dstPartsCount <= parts.size() && "Integer too big");
- if (category == fcZero) {
- APInt::tcSet(parts.data(), 0, dstPartsCount);
- // Negative zero can't be represented as an int.
- *isExact = !sign;
- return opOK;
- }
- src = significandParts();
- /* Step 1: place our absolute value, with any fraction truncated, in
- the destination. */
- if (exponent < 0) {
- /* Our absolute value is less than one; truncate everything. */
- APInt::tcSet(parts.data(), 0, dstPartsCount);
- /* For exponent -1 the integer bit represents .5, look at that.
- For smaller exponents leftmost truncated bit is 0. */
- truncatedBits = semantics->precision -1U - exponent;
- } else {
- /* We want the most significant (exponent + 1) bits; the rest are
- truncated. */
- unsigned int bits = exponent + 1U;
- /* Hopelessly large in magnitude? */
- if (bits > width)
- return opInvalidOp;
- if (bits < semantics->precision) {
- /* We truncate (semantics->precision - bits) bits. */
- truncatedBits = semantics->precision - bits;
- APInt::tcExtract(parts.data(), dstPartsCount, src, bits, truncatedBits);
- } else {
- /* We want at least as many bits as are available. */
- APInt::tcExtract(parts.data(), dstPartsCount, src, semantics->precision,
- 0);
- APInt::tcShiftLeft(parts.data(), dstPartsCount,
- bits - semantics->precision);
- truncatedBits = 0;
- }
- }
- /* Step 2: work out any lost fraction, and increment the absolute
- value if we would round away from zero. */
- if (truncatedBits) {
- lost_fraction = lostFractionThroughTruncation(src, partCount(),
- truncatedBits);
- if (lost_fraction != lfExactlyZero &&
- roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
- if (APInt::tcIncrement(parts.data(), dstPartsCount))
- return opInvalidOp; /* Overflow. */
- }
- } else {
- lost_fraction = lfExactlyZero;
- }
- /* Step 3: check if we fit in the destination. */
- unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1;
- if (sign) {
- if (!isSigned) {
- /* Negative numbers cannot be represented as unsigned. */
- if (omsb != 0)
- return opInvalidOp;
- } else {
- /* It takes omsb bits to represent the unsigned integer value.
- We lose a bit for the sign, but care is needed as the
- maximally negative integer is a special case. */
- if (omsb == width &&
- APInt::tcLSB(parts.data(), dstPartsCount) + 1 != omsb)
- return opInvalidOp;
- /* This case can happen because of rounding. */
- if (omsb > width)
- return opInvalidOp;
- }
- APInt::tcNegate (parts.data(), dstPartsCount);
- } else {
- if (omsb >= width + !isSigned)
- return opInvalidOp;
- }
- if (lost_fraction == lfExactlyZero) {
- *isExact = true;
- return opOK;
- } else
- return opInexact;
- }
- /* Same as convertToSignExtendedInteger, except we provide
- deterministic values in case of an invalid operation exception,
- namely zero for NaNs and the minimal or maximal value respectively
- for underflow or overflow.
- The *isExact output tells whether the result is exact, in the sense
- that converting it back to the original floating point type produces
- the original value. This is almost equivalent to result==opOK,
- except for negative zeroes.
- */
- IEEEFloat::opStatus
- IEEEFloat::convertToInteger(MutableArrayRef<integerPart> parts,
- unsigned int width, bool isSigned,
- roundingMode rounding_mode, bool *isExact) const {
- opStatus fs;
- fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
- isExact);
- if (fs == opInvalidOp) {
- unsigned int bits, dstPartsCount;
- dstPartsCount = partCountForBits(width);
- assert(dstPartsCount <= parts.size() && "Integer too big");
- if (category == fcNaN)
- bits = 0;
- else if (sign)
- bits = isSigned;
- else
- bits = width - isSigned;
- tcSetLeastSignificantBits(parts.data(), dstPartsCount, bits);
- if (sign && isSigned)
- APInt::tcShiftLeft(parts.data(), dstPartsCount, width - 1);
- }
- return fs;
- }
- /* Convert an unsigned integer SRC to a floating point number,
- rounding according to ROUNDING_MODE. The sign of the floating
- point number is not modified. */
- IEEEFloat::opStatus IEEEFloat::convertFromUnsignedParts(
- const integerPart *src, unsigned int srcCount, roundingMode rounding_mode) {
- unsigned int omsb, precision, dstCount;
- integerPart *dst;
- lostFraction lost_fraction;
- category = fcNormal;
- omsb = APInt::tcMSB(src, srcCount) + 1;
- dst = significandParts();
- dstCount = partCount();
- precision = semantics->precision;
- /* We want the most significant PRECISION bits of SRC. There may not
- be that many; extract what we can. */
- if (precision <= omsb) {
- exponent = omsb - 1;
- lost_fraction = lostFractionThroughTruncation(src, srcCount,
- omsb - precision);
- APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
- } else {
- exponent = precision - 1;
- lost_fraction = lfExactlyZero;
- APInt::tcExtract(dst, dstCount, src, omsb, 0);
- }
- return normalize(rounding_mode, lost_fraction);
- }
- IEEEFloat::opStatus IEEEFloat::convertFromAPInt(const APInt &Val, bool isSigned,
- roundingMode rounding_mode) {
- unsigned int partCount = Val.getNumWords();
- APInt api = Val;
- sign = false;
- if (isSigned && api.isNegative()) {
- sign = true;
- api = -api;
- }
- return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
- }
- /* Convert a two's complement integer SRC to a floating point number,
- rounding according to ROUNDING_MODE. ISSIGNED is true if the
- integer is signed, in which case it must be sign-extended. */
- IEEEFloat::opStatus
- IEEEFloat::convertFromSignExtendedInteger(const integerPart *src,
- unsigned int srcCount, bool isSigned,
- roundingMode rounding_mode) {
- opStatus status;
- if (isSigned &&
- APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
- integerPart *copy;
- /* If we're signed and negative negate a copy. */
- sign = true;
- copy = new integerPart[srcCount];
- APInt::tcAssign(copy, src, srcCount);
- APInt::tcNegate(copy, srcCount);
- status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
- delete [] copy;
- } else {
- sign = false;
- status = convertFromUnsignedParts(src, srcCount, rounding_mode);
- }
- return status;
- }
- /* FIXME: should this just take a const APInt reference? */
- IEEEFloat::opStatus
- IEEEFloat::convertFromZeroExtendedInteger(const integerPart *parts,
- unsigned int width, bool isSigned,
- roundingMode rounding_mode) {
- unsigned int partCount = partCountForBits(width);
- APInt api = APInt(width, makeArrayRef(parts, partCount));
- sign = false;
- if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
- sign = true;
- api = -api;
- }
- return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
- }
- Expected<IEEEFloat::opStatus>
- IEEEFloat::convertFromHexadecimalString(StringRef s,
- roundingMode rounding_mode) {
- lostFraction lost_fraction = lfExactlyZero;
- category = fcNormal;
- zeroSignificand();
- exponent = 0;
- integerPart *significand = significandParts();
- unsigned partsCount = partCount();
- unsigned bitPos = partsCount * integerPartWidth;
- bool computedTrailingFraction = false;
- // Skip leading zeroes and any (hexa)decimal point.
- StringRef::iterator begin = s.begin();
- StringRef::iterator end = s.end();
- StringRef::iterator dot;
- auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot);
- if (!PtrOrErr)
- return PtrOrErr.takeError();
- StringRef::iterator p = *PtrOrErr;
- StringRef::iterator firstSignificantDigit = p;
- while (p != end) {
- integerPart hex_value;
- if (*p == '.') {
- if (dot != end)
- return createError("String contains multiple dots");
- dot = p++;
- continue;
- }
- hex_value = hexDigitValue(*p);
- if (hex_value == -1U)
- break;
- p++;
- // Store the number while we have space.
- if (bitPos) {
- bitPos -= 4;
- hex_value <<= bitPos % integerPartWidth;
- significand[bitPos / integerPartWidth] |= hex_value;
- } else if (!computedTrailingFraction) {
- auto FractOrErr = trailingHexadecimalFraction(p, end, hex_value);
- if (!FractOrErr)
- return FractOrErr.takeError();
- lost_fraction = *FractOrErr;
- computedTrailingFraction = true;
- }
- }
- /* Hex floats require an exponent but not a hexadecimal point. */
- if (p == end)
- return createError("Hex strings require an exponent");
- if (*p != 'p' && *p != 'P')
- return createError("Invalid character in significand");
- if (p == begin)
- return createError("Significand has no digits");
- if (dot != end && p - begin == 1)
- return createError("Significand has no digits");
- /* Ignore the exponent if we are zero. */
- if (p != firstSignificantDigit) {
- int expAdjustment;
- /* Implicit hexadecimal point? */
- if (dot == end)
- dot = p;
- /* Calculate the exponent adjustment implicit in the number of
- significant digits. */
- expAdjustment = static_cast<int>(dot - firstSignificantDigit);
- if (expAdjustment < 0)
- expAdjustment++;
- expAdjustment = expAdjustment * 4 - 1;
- /* Adjust for writing the significand starting at the most
- significant nibble. */
- expAdjustment += semantics->precision;
- expAdjustment -= partsCount * integerPartWidth;
- /* Adjust for the given exponent. */
- auto ExpOrErr = totalExponent(p + 1, end, expAdjustment);
- if (!ExpOrErr)
- return ExpOrErr.takeError();
- exponent = *ExpOrErr;
- }
- return normalize(rounding_mode, lost_fraction);
- }
- IEEEFloat::opStatus
- IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts,
- unsigned sigPartCount, int exp,
- roundingMode rounding_mode) {
- unsigned int parts, pow5PartCount;
- fltSemantics calcSemantics = { 32767, -32767, 0, 0 };
- integerPart pow5Parts[maxPowerOfFiveParts];
- bool isNearest;
- isNearest = (rounding_mode == rmNearestTiesToEven ||
- rounding_mode == rmNearestTiesToAway);
- parts = partCountForBits(semantics->precision + 11);
- /* Calculate pow(5, abs(exp)). */
- pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
- for (;; parts *= 2) {
- opStatus sigStatus, powStatus;
- unsigned int excessPrecision, truncatedBits;
- calcSemantics.precision = parts * integerPartWidth - 1;
- excessPrecision = calcSemantics.precision - semantics->precision;
- truncatedBits = excessPrecision;
- IEEEFloat decSig(calcSemantics, uninitialized);
- decSig.makeZero(sign);
- IEEEFloat pow5(calcSemantics);
- sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
- rmNearestTiesToEven);
- powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
- rmNearestTiesToEven);
- /* Add exp, as 10^n = 5^n * 2^n. */
- decSig.exponent += exp;
- lostFraction calcLostFraction;
- integerPart HUerr, HUdistance;
- unsigned int powHUerr;
- if (exp >= 0) {
- /* multiplySignificand leaves the precision-th bit set to 1. */
- calcLostFraction = decSig.multiplySignificand(pow5);
- powHUerr = powStatus != opOK;
- } else {
- calcLostFraction = decSig.divideSignificand(pow5);
- /* Denormal numbers have less precision. */
- if (decSig.exponent < semantics->minExponent) {
- excessPrecision += (semantics->minExponent - decSig.exponent);
- truncatedBits = excessPrecision;
- if (excessPrecision > calcSemantics.precision)
- excessPrecision = calcSemantics.precision;
- }
- /* Extra half-ulp lost in reciprocal of exponent. */
- powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
- }
- /* Both multiplySignificand and divideSignificand return the
- result with the integer bit set. */
- assert(APInt::tcExtractBit
- (decSig.significandParts(), calcSemantics.precision - 1) == 1);
- HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
- powHUerr);
- HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
- excessPrecision, isNearest);
- /* Are we guaranteed to round correctly if we truncate? */
- if (HUdistance >= HUerr) {
- APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
- calcSemantics.precision - excessPrecision,
- excessPrecision);
- /* Take the exponent of decSig. If we tcExtract-ed less bits
- above we must adjust our exponent to compensate for the
- implicit right shift. */
- exponent = (decSig.exponent + semantics->precision
- - (calcSemantics.precision - excessPrecision));
- calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
- decSig.partCount(),
- truncatedBits);
- return normalize(rounding_mode, calcLostFraction);
- }
- }
- }
- Expected<IEEEFloat::opStatus>
- IEEEFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) {
- decimalInfo D;
- opStatus fs;
- /* Scan the text. */
- StringRef::iterator p = str.begin();
- if (Error Err = interpretDecimal(p, str.end(), &D))
- return std::move(Err);
- /* Handle the quick cases. First the case of no significant digits,
- i.e. zero, and then exponents that are obviously too large or too
- small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
- definitely overflows if
- (exp - 1) * L >= maxExponent
- and definitely underflows to zero where
- (exp + 1) * L <= minExponent - precision
- With integer arithmetic the tightest bounds for L are
- 93/28 < L < 196/59 [ numerator <= 256 ]
- 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
- */
- // Test if we have a zero number allowing for strings with no null terminators
- // and zero decimals with non-zero exponents.
- //
- // We computed firstSigDigit by ignoring all zeros and dots. Thus if
- // D->firstSigDigit equals str.end(), every digit must be a zero and there can
- // be at most one dot. On the other hand, if we have a zero with a non-zero
- // exponent, then we know that D.firstSigDigit will be non-numeric.
- if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) {
- category = fcZero;
- fs = opOK;
- /* Check whether the normalized exponent is high enough to overflow
- max during the log-rebasing in the max-exponent check below. */
- } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
- fs = handleOverflow(rounding_mode);
- /* If it wasn't, then it also wasn't high enough to overflow max
- during the log-rebasing in the min-exponent check. Check that it
- won't overflow min in either check, then perform the min-exponent
- check. */
- } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
- (D.normalizedExponent + 1) * 28738 <=
- 8651 * (semantics->minExponent - (int) semantics->precision)) {
- /* Underflow to zero and round. */
- category = fcNormal;
- zeroSignificand();
- fs = normalize(rounding_mode, lfLessThanHalf);
- /* We can finally safely perform the max-exponent check. */
- } else if ((D.normalizedExponent - 1) * 42039
- >= 12655 * semantics->maxExponent) {
- /* Overflow and round. */
- fs = handleOverflow(rounding_mode);
- } else {
- integerPart *decSignificand;
- unsigned int partCount;
- /* A tight upper bound on number of bits required to hold an
- N-digit decimal integer is N * 196 / 59. Allocate enough space
- to hold the full significand, and an extra part required by
- tcMultiplyPart. */
- partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
- partCount = partCountForBits(1 + 196 * partCount / 59);
- decSignificand = new integerPart[partCount + 1];
- partCount = 0;
- /* Convert to binary efficiently - we do almost all multiplication
- in an integerPart. When this would overflow do we do a single
- bignum multiplication, and then revert again to multiplication
- in an integerPart. */
- do {
- integerPart decValue, val, multiplier;
- val = 0;
- multiplier = 1;
- do {
- if (*p == '.') {
- p++;
- if (p == str.end()) {
- break;
- }
- }
- decValue = decDigitValue(*p++);
- if (decValue >= 10U) {
- delete[] decSignificand;
- return createError("Invalid character in significand");
- }
- multiplier *= 10;
- val = val * 10 + decValue;
- /* The maximum number that can be multiplied by ten with any
- digit added without overflowing an integerPart. */
- } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
- /* Multiply out the current part. */
- APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
- partCount, partCount + 1, false);
- /* If we used another part (likely but not guaranteed), increase
- the count. */
- if (decSignificand[partCount])
- partCount++;
- } while (p <= D.lastSigDigit);
- category = fcNormal;
- fs = roundSignificandWithExponent(decSignificand, partCount,
- D.exponent, rounding_mode);
- delete [] decSignificand;
- }
- return fs;
- }
- bool IEEEFloat::convertFromStringSpecials(StringRef str) {
- const size_t MIN_NAME_SIZE = 3;
- if (str.size() < MIN_NAME_SIZE)
- return false;
- if (str.equals("inf") || str.equals("INFINITY") || str.equals("+Inf")) {
- makeInf(false);
- return true;
- }
- bool IsNegative = str.front() == '-';
- if (IsNegative) {
- str = str.drop_front();
- if (str.size() < MIN_NAME_SIZE)
- return false;
- if (str.equals("inf") || str.equals("INFINITY") || str.equals("Inf")) {
- makeInf(true);
- return true;
- }
- }
- // If we have a 's' (or 'S') prefix, then this is a Signaling NaN.
- bool IsSignaling = str.front() == 's' || str.front() == 'S';
- if (IsSignaling) {
- str = str.drop_front();
- if (str.size() < MIN_NAME_SIZE)
- return false;
- }
- if (str.startswith("nan") || str.startswith("NaN")) {
- str = str.drop_front(3);
- // A NaN without payload.
- if (str.empty()) {
- makeNaN(IsSignaling, IsNegative);
- return true;
- }
- // Allow the payload to be inside parentheses.
- if (str.front() == '(') {
- // Parentheses should be balanced (and not empty).
- if (str.size() <= 2 || str.back() != ')')
- return false;
- str = str.slice(1, str.size() - 1);
- }
- // Determine the payload number's radix.
- unsigned Radix = 10;
- if (str[0] == '0') {
- if (str.size() > 1 && tolower(str[1]) == 'x') {
- str = str.drop_front(2);
- Radix = 16;
- } else
- Radix = 8;
- }
- // Parse the payload and make the NaN.
- APInt Payload;
- if (!str.getAsInteger(Radix, Payload)) {
- makeNaN(IsSignaling, IsNegative, &Payload);
- return true;
- }
- }
- return false;
- }
- Expected<IEEEFloat::opStatus>
- IEEEFloat::convertFromString(StringRef str, roundingMode rounding_mode) {
- if (str.empty())
- return createError("Invalid string length");
- // Handle special cases.
- if (convertFromStringSpecials(str))
- return opOK;
- /* Handle a leading minus sign. */
- StringRef::iterator p = str.begin();
- size_t slen = str.size();
- sign = *p == '-' ? 1 : 0;
- if (*p == '-' || *p == '+') {
- p++;
- slen--;
- if (!slen)
- return createError("String has no digits");
- }
- if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
- if (slen == 2)
- return createError("Invalid string");
- return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
- rounding_mode);
- }
- return convertFromDecimalString(StringRef(p, slen), rounding_mode);
- }
- /* Write out a hexadecimal representation of the floating point value
- to DST, which must be of sufficient size, in the C99 form
- [-]0xh.hhhhp[+-]d. Return the number of characters written,
- excluding the terminating NUL.
- If UPPERCASE, the output is in upper case, otherwise in lower case.
- HEXDIGITS digits appear altogether, rounding the value if
- necessary. If HEXDIGITS is 0, the minimal precision to display the
- number precisely is used instead. If nothing would appear after
- the decimal point it is suppressed.
- The decimal exponent is always printed and has at least one digit.
- Zero values display an exponent of zero. Infinities and NaNs
- appear as "infinity" or "nan" respectively.
- The above rules are as specified by C99. There is ambiguity about
- what the leading hexadecimal digit should be. This implementation
- uses whatever is necessary so that the exponent is displayed as
- stored. This implies the exponent will fall within the IEEE format
- range, and the leading hexadecimal digit will be 0 (for denormals),
- 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
- any other digits zero).
- */
- unsigned int IEEEFloat::convertToHexString(char *dst, unsigned int hexDigits,
- bool upperCase,
- roundingMode rounding_mode) const {
- char *p;
- p = dst;
- if (sign)
- *dst++ = '-';
- switch (category) {
- case fcInfinity:
- memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
- dst += sizeof infinityL - 1;
- break;
- case fcNaN:
- memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
- dst += sizeof NaNU - 1;
- break;
- case fcZero:
- *dst++ = '0';
- *dst++ = upperCase ? 'X': 'x';
- *dst++ = '0';
- if (hexDigits > 1) {
- *dst++ = '.';
- memset (dst, '0', hexDigits - 1);
- dst += hexDigits - 1;
- }
- *dst++ = upperCase ? 'P': 'p';
- *dst++ = '0';
- break;
- case fcNormal:
- dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
- break;
- }
- *dst = 0;
- return static_cast<unsigned int>(dst - p);
- }
- /* Does the hard work of outputting the correctly rounded hexadecimal
- form of a normal floating point number with the specified number of
- hexadecimal digits. If HEXDIGITS is zero the minimum number of
- digits necessary to print the value precisely is output. */
- char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
- bool upperCase,
- roundingMode rounding_mode) const {
- unsigned int count, valueBits, shift, partsCount, outputDigits;
- const char *hexDigitChars;
- const integerPart *significand;
- char *p;
- bool roundUp;
- *dst++ = '0';
- *dst++ = upperCase ? 'X': 'x';
- roundUp = false;
- hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
- significand = significandParts();
- partsCount = partCount();
- /* +3 because the first digit only uses the single integer bit, so
- we have 3 virtual zero most-significant-bits. */
- valueBits = semantics->precision + 3;
- shift = integerPartWidth - valueBits % integerPartWidth;
- /* The natural number of digits required ignoring trailing
- insignificant zeroes. */
- outputDigits = (valueBits - significandLSB () + 3) / 4;
- /* hexDigits of zero means use the required number for the
- precision. Otherwise, see if we are truncating. If we are,
- find out if we need to round away from zero. */
- if (hexDigits) {
- if (hexDigits < outputDigits) {
- /* We are dropping non-zero bits, so need to check how to round.
- "bits" is the number of dropped bits. */
- unsigned int bits;
- lostFraction fraction;
- bits = valueBits - hexDigits * 4;
- fraction = lostFractionThroughTruncation (significand, partsCount, bits);
- roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
- }
- outputDigits = hexDigits;
- }
- /* Write the digits consecutively, and start writing in the location
- of the hexadecimal point. We move the most significant digit
- left and add the hexadecimal point later. */
- p = ++dst;
- count = (valueBits + integerPartWidth - 1) / integerPartWidth;
- while (outputDigits && count) {
- integerPart part;
- /* Put the most significant integerPartWidth bits in "part". */
- if (--count == partsCount)
- part = 0; /* An imaginary higher zero part. */
- else
- part = significand[count] << shift;
- if (count && shift)
- part |= significand[count - 1] >> (integerPartWidth - shift);
- /* Convert as much of "part" to hexdigits as we can. */
- unsigned int curDigits = integerPartWidth / 4;
- if (curDigits > outputDigits)
- curDigits = outputDigits;
- dst += partAsHex (dst, part, curDigits, hexDigitChars);
- outputDigits -= curDigits;
- }
- if (roundUp) {
- char *q = dst;
- /* Note that hexDigitChars has a trailing '0'. */
- do {
- q--;
- *q = hexDigitChars[hexDigitValue (*q) + 1];
- } while (*q == '0');
- assert(q >= p);
- } else {
- /* Add trailing zeroes. */
- memset (dst, '0', outputDigits);
- dst += outputDigits;
- }
- /* Move the most significant digit to before the point, and if there
- is something after the decimal point add it. This must come
- after rounding above. */
- p[-1] = p[0];
- if (dst -1 == p)
- dst--;
- else
- p[0] = '.';
- /* Finally output the exponent. */
- *dst++ = upperCase ? 'P': 'p';
- return writeSignedDecimal (dst, exponent);
- }
- hash_code hash_value(const IEEEFloat &Arg) {
- if (!Arg.isFiniteNonZero())
- return hash_combine((uint8_t)Arg.category,
- // NaN has no sign, fix it at zero.
- Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
- Arg.semantics->precision);
- // Normal floats need their exponent and significand hashed.
- return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
- Arg.semantics->precision, Arg.exponent,
- hash_combine_range(
- Arg.significandParts(),
- Arg.significandParts() + Arg.partCount()));
- }
- // Conversion from APFloat to/from host float/double. It may eventually be
- // possible to eliminate these and have everybody deal with APFloats, but that
- // will take a while. This approach will not easily extend to long double.
- // Current implementation requires integerPartWidth==64, which is correct at
- // the moment but could be made more general.
- // Denormals have exponent minExponent in APFloat, but minExponent-1 in
- // the actual IEEE respresentations. We compensate for that here.
- APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const {
- assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended);
- assert(partCount()==2);
- uint64_t myexponent, mysignificand;
- if (isFiniteNonZero()) {
- myexponent = exponent+16383; //bias
- mysignificand = significandParts()[0];
- if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
- myexponent = 0; // denormal
- } else if (category==fcZero) {
- myexponent = 0;
- mysignificand = 0;
- } else if (category==fcInfinity) {
- myexponent = 0x7fff;
- mysignificand = 0x8000000000000000ULL;
- } else {
- assert(category == fcNaN && "Unknown category");
- myexponent = 0x7fff;
- mysignificand = significandParts()[0];
- }
- uint64_t words[2];
- words[0] = mysignificand;
- words[1] = ((uint64_t)(sign & 1) << 15) |
- (myexponent & 0x7fffLL);
- return APInt(80, words);
- }
- APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const {
- assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy);
- assert(partCount()==2);
- uint64_t words[2];
- opStatus fs;
- bool losesInfo;
- // Convert number to double. To avoid spurious underflows, we re-
- // normalize against the "double" minExponent first, and only *then*
- // truncate the mantissa. The result of that second conversion
- // may be inexact, but should never underflow.
- // Declare fltSemantics before APFloat that uses it (and
- // saves pointer to it) to ensure correct destruction order.
- fltSemantics extendedSemantics = *semantics;
- extendedSemantics.minExponent = semIEEEdouble.minExponent;
- IEEEFloat extended(*this);
- fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK && !losesInfo);
- (void)fs;
- IEEEFloat u(extended);
- fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK || fs == opInexact);
- (void)fs;
- words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
- // If conversion was exact or resulted in a special case, we're done;
- // just set the second double to zero. Otherwise, re-convert back to
- // the extended format and compute the difference. This now should
- // convert exactly to double.
- if (u.isFiniteNonZero() && losesInfo) {
- fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK && !losesInfo);
- (void)fs;
- IEEEFloat v(extended);
- v.subtract(u, rmNearestTiesToEven);
- fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK && !losesInfo);
- (void)fs;
- words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
- } else {
- words[1] = 0;
- }
- return APInt(128, words);
- }
- APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const {
- assert(semantics == (const llvm::fltSemantics*)&semIEEEquad);
- assert(partCount()==2);
- uint64_t myexponent, mysignificand, mysignificand2;
- if (isFiniteNonZero()) {
- myexponent = exponent+16383; //bias
- mysignificand = significandParts()[0];
- mysignificand2 = significandParts()[1];
- if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
- myexponent = 0; // denormal
- } else if (category==fcZero) {
- myexponent = 0;
- mysignificand = mysignificand2 = 0;
- } else if (category==fcInfinity) {
- myexponent = 0x7fff;
- mysignificand = mysignificand2 = 0;
- } else {
- assert(category == fcNaN && "Unknown category!");
- myexponent = 0x7fff;
- mysignificand = significandParts()[0];
- mysignificand2 = significandParts()[1];
- }
- uint64_t words[2];
- words[0] = mysignificand;
- words[1] = ((uint64_t)(sign & 1) << 63) |
- ((myexponent & 0x7fff) << 48) |
- (mysignificand2 & 0xffffffffffffLL);
- return APInt(128, words);
- }
- APInt IEEEFloat::convertDoubleAPFloatToAPInt() const {
- assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble);
- assert(partCount()==1);
- uint64_t myexponent, mysignificand;
- if (isFiniteNonZero()) {
- myexponent = exponent+1023; //bias
- mysignificand = *significandParts();
- if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
- myexponent = 0; // denormal
- } else if (category==fcZero) {
- myexponent = 0;
- mysignificand = 0;
- } else if (category==fcInfinity) {
- myexponent = 0x7ff;
- mysignificand = 0;
- } else {
- assert(category == fcNaN && "Unknown category!");
- myexponent = 0x7ff;
- mysignificand = *significandParts();
- }
- return APInt(64, ((((uint64_t)(sign & 1) << 63) |
- ((myexponent & 0x7ff) << 52) |
- (mysignificand & 0xfffffffffffffLL))));
- }
- APInt IEEEFloat::convertFloatAPFloatToAPInt() const {
- assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle);
- assert(partCount()==1);
- uint32_t myexponent, mysignificand;
- if (isFiniteNonZero()) {
- myexponent = exponent+127; //bias
- mysignificand = (uint32_t)*significandParts();
- if (myexponent == 1 && !(mysignificand & 0x800000))
- myexponent = 0; // denormal
- } else if (category==fcZero) {
- myexponent = 0;
- mysignificand = 0;
- } else if (category==fcInfinity) {
- myexponent = 0xff;
- mysignificand = 0;
- } else {
- assert(category == fcNaN && "Unknown category!");
- myexponent = 0xff;
- mysignificand = (uint32_t)*significandParts();
- }
- return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
- (mysignificand & 0x7fffff)));
- }
- APInt IEEEFloat::convertBFloatAPFloatToAPInt() const {
- assert(semantics == (const llvm::fltSemantics *)&semBFloat);
- assert(partCount() == 1);
- uint32_t myexponent, mysignificand;
- if (isFiniteNonZero()) {
- myexponent = exponent + 127; // bias
- mysignificand = (uint32_t)*significandParts();
- if (myexponent == 1 && !(mysignificand & 0x80))
- myexponent = 0; // denormal
- } else if (category == fcZero) {
- myexponent = 0;
- mysignificand = 0;
- } else if (category == fcInfinity) {
- myexponent = 0xff;
- mysignificand = 0;
- } else {
- assert(category == fcNaN && "Unknown category!");
- myexponent = 0xff;
- mysignificand = (uint32_t)*significandParts();
- }
- return APInt(16, (((sign & 1) << 15) | ((myexponent & 0xff) << 7) |
- (mysignificand & 0x7f)));
- }
- APInt IEEEFloat::convertHalfAPFloatToAPInt() const {
- assert(semantics == (const llvm::fltSemantics*)&semIEEEhalf);
- assert(partCount()==1);
- uint32_t myexponent, mysignificand;
- if (isFiniteNonZero()) {
- myexponent = exponent+15; //bias
- mysignificand = (uint32_t)*significandParts();
- if (myexponent == 1 && !(mysignificand & 0x400))
- myexponent = 0; // denormal
- } else if (category==fcZero) {
- myexponent = 0;
- mysignificand = 0;
- } else if (category==fcInfinity) {
- myexponent = 0x1f;
- mysignificand = 0;
- } else {
- assert(category == fcNaN && "Unknown category!");
- myexponent = 0x1f;
- mysignificand = (uint32_t)*significandParts();
- }
- return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
- (mysignificand & 0x3ff)));
- }
- // This function creates an APInt that is just a bit map of the floating
- // point constant as it would appear in memory. It is not a conversion,
- // and treating the result as a normal integer is unlikely to be useful.
- APInt IEEEFloat::bitcastToAPInt() const {
- if (semantics == (const llvm::fltSemantics*)&semIEEEhalf)
- return convertHalfAPFloatToAPInt();
- if (semantics == (const llvm::fltSemantics *)&semBFloat)
- return convertBFloatAPFloatToAPInt();
- if (semantics == (const llvm::fltSemantics*)&semIEEEsingle)
- return convertFloatAPFloatToAPInt();
- if (semantics == (const llvm::fltSemantics*)&semIEEEdouble)
- return convertDoubleAPFloatToAPInt();
- if (semantics == (const llvm::fltSemantics*)&semIEEEquad)
- return convertQuadrupleAPFloatToAPInt();
- if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy)
- return convertPPCDoubleDoubleAPFloatToAPInt();
- assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended &&
- "unknown format!");
- return convertF80LongDoubleAPFloatToAPInt();
- }
- float IEEEFloat::convertToFloat() const {
- assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle &&
- "Float semantics are not IEEEsingle");
- APInt api = bitcastToAPInt();
- return api.bitsToFloat();
- }
- double IEEEFloat::convertToDouble() const {
- assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble &&
- "Float semantics are not IEEEdouble");
- APInt api = bitcastToAPInt();
- return api.bitsToDouble();
- }
- /// Integer bit is explicit in this format. Intel hardware (387 and later)
- /// does not support these bit patterns:
- /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
- /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
- /// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
- /// exponent = 0, integer bit 1 ("pseudodenormal")
- /// At the moment, the first three are treated as NaNs, the last one as Normal.
- void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) {
- uint64_t i1 = api.getRawData()[0];
- uint64_t i2 = api.getRawData()[1];
- uint64_t myexponent = (i2 & 0x7fff);
- uint64_t mysignificand = i1;
- uint8_t myintegerbit = mysignificand >> 63;
- initialize(&semX87DoubleExtended);
- assert(partCount()==2);
- sign = static_cast<unsigned int>(i2>>15);
- if (myexponent == 0 && mysignificand == 0) {
- makeZero(sign);
- } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
- makeInf(sign);
- } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) ||
- (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) {
- category = fcNaN;
- exponent = exponentNaN();
- significandParts()[0] = mysignificand;
- significandParts()[1] = 0;
- } else {
- category = fcNormal;
- exponent = myexponent - 16383;
- significandParts()[0] = mysignificand;
- significandParts()[1] = 0;
- if (myexponent==0) // denormal
- exponent = -16382;
- }
- }
- void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) {
- uint64_t i1 = api.getRawData()[0];
- uint64_t i2 = api.getRawData()[1];
- opStatus fs;
- bool losesInfo;
- // Get the first double and convert to our format.
- initFromDoubleAPInt(APInt(64, i1));
- fs = convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK && !losesInfo);
- (void)fs;
- // Unless we have a special case, add in second double.
- if (isFiniteNonZero()) {
- IEEEFloat v(semIEEEdouble, APInt(64, i2));
- fs = v.convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo);
- assert(fs == opOK && !losesInfo);
- (void)fs;
- add(v, rmNearestTiesToEven);
- }
- }
- void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) {
- uint64_t i1 = api.getRawData()[0];
- uint64_t i2 = api.getRawData()[1];
- uint64_t myexponent = (i2 >> 48) & 0x7fff;
- uint64_t mysignificand = i1;
- uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
- initialize(&semIEEEquad);
- assert(partCount()==2);
- sign = static_cast<unsigned int>(i2>>63);
- if (myexponent==0 &&
- (mysignificand==0 && mysignificand2==0)) {
- makeZero(sign);
- } else if (myexponent==0x7fff &&
- (mysignificand==0 && mysignificand2==0)) {
- makeInf(sign);
- } else if (myexponent==0x7fff &&
- (mysignificand!=0 || mysignificand2 !=0)) {
- category = fcNaN;
- exponent = exponentNaN();
- significandParts()[0] = mysignificand;
- significandParts()[1] = mysignificand2;
- } else {
- category = fcNormal;
- exponent = myexponent - 16383;
- significandParts()[0] = mysignificand;
- significandParts()[1] = mysignificand2;
- if (myexponent==0) // denormal
- exponent = -16382;
- else
- significandParts()[1] |= 0x1000000000000LL; // integer bit
- }
- }
- void IEEEFloat::initFromDoubleAPInt(const APInt &api) {
- uint64_t i = *api.getRawData();
- uint64_t myexponent = (i >> 52) & 0x7ff;
- uint64_t mysignificand = i & 0xfffffffffffffLL;
- initialize(&semIEEEdouble);
- assert(partCount()==1);
- sign = static_cast<unsigned int>(i>>63);
- if (myexponent==0 && mysignificand==0) {
- makeZero(sign);
- } else if (myexponent==0x7ff && mysignificand==0) {
- makeInf(sign);
- } else if (myexponent==0x7ff && mysignificand!=0) {
- category = fcNaN;
- exponent = exponentNaN();
- *significandParts() = mysignificand;
- } else {
- category = fcNormal;
- exponent = myexponent - 1023;
- *significandParts() = mysignificand;
- if (myexponent==0) // denormal
- exponent = -1022;
- else
- *significandParts() |= 0x10000000000000LL; // integer bit
- }
- }
- void IEEEFloat::initFromFloatAPInt(const APInt &api) {
- uint32_t i = (uint32_t)*api.getRawData();
- uint32_t myexponent = (i >> 23) & 0xff;
- uint32_t mysignificand = i & 0x7fffff;
- initialize(&semIEEEsingle);
- assert(partCount()==1);
- sign = i >> 31;
- if (myexponent==0 && mysignificand==0) {
- makeZero(sign);
- } else if (myexponent==0xff && mysignificand==0) {
- makeInf(sign);
- } else if (myexponent==0xff && mysignificand!=0) {
- category = fcNaN;
- exponent = exponentNaN();
- *significandParts() = mysignificand;
- } else {
- category = fcNormal;
- exponent = myexponent - 127; //bias
- *significandParts() = mysignificand;
- if (myexponent==0) // denormal
- exponent = -126;
- else
- *significandParts() |= 0x800000; // integer bit
- }
- }
- void IEEEFloat::initFromBFloatAPInt(const APInt &api) {
- uint32_t i = (uint32_t)*api.getRawData();
- uint32_t myexponent = (i >> 7) & 0xff;
- uint32_t mysignificand = i & 0x7f;
- initialize(&semBFloat);
- assert(partCount() == 1);
- sign = i >> 15;
- if (myexponent == 0 && mysignificand == 0) {
- makeZero(sign);
- } else if (myexponent == 0xff && mysignificand == 0) {
- makeInf(sign);
- } else if (myexponent == 0xff && mysignificand != 0) {
- category = fcNaN;
- exponent = exponentNaN();
- *significandParts() = mysignificand;
- } else {
- category = fcNormal;
- exponent = myexponent - 127; // bias
- *significandParts() = mysignificand;
- if (myexponent == 0) // denormal
- exponent = -126;
- else
- *significandParts() |= 0x80; // integer bit
- }
- }
- void IEEEFloat::initFromHalfAPInt(const APInt &api) {
- uint32_t i = (uint32_t)*api.getRawData();
- uint32_t myexponent = (i >> 10) & 0x1f;
- uint32_t mysignificand = i & 0x3ff;
- initialize(&semIEEEhalf);
- assert(partCount()==1);
- sign = i >> 15;
- if (myexponent==0 && mysignificand==0) {
- makeZero(sign);
- } else if (myexponent==0x1f && mysignificand==0) {
- makeInf(sign);
- } else if (myexponent==0x1f && mysignificand!=0) {
- category = fcNaN;
- exponent = exponentNaN();
- *significandParts() = mysignificand;
- } else {
- category = fcNormal;
- exponent = myexponent - 15; //bias
- *significandParts() = mysignificand;
- if (myexponent==0) // denormal
- exponent = -14;
- else
- *significandParts() |= 0x400; // integer bit
- }
- }
- /// Treat api as containing the bits of a floating point number. Currently
- /// we infer the floating point type from the size of the APInt. The
- /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
- /// when the size is anything else).
- void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) {
- assert(api.getBitWidth() == Sem->sizeInBits);
- if (Sem == &semIEEEhalf)
- return initFromHalfAPInt(api);
- if (Sem == &semBFloat)
- return initFromBFloatAPInt(api);
- if (Sem == &semIEEEsingle)
- return initFromFloatAPInt(api);
- if (Sem == &semIEEEdouble)
- return initFromDoubleAPInt(api);
- if (Sem == &semX87DoubleExtended)
- return initFromF80LongDoubleAPInt(api);
- if (Sem == &semIEEEquad)
- return initFromQuadrupleAPInt(api);
- if (Sem == &semPPCDoubleDoubleLegacy)
- return initFromPPCDoubleDoubleAPInt(api);
- llvm_unreachable(nullptr);
- }
- /// Make this number the largest magnitude normal number in the given
- /// semantics.
- void IEEEFloat::makeLargest(bool Negative) {
- // We want (in interchange format):
- // sign = {Negative}
- // exponent = 1..10
- // significand = 1..1
- category = fcNormal;
- sign = Negative;
- exponent = semantics->maxExponent;
- // Use memset to set all but the highest integerPart to all ones.
- integerPart *significand = significandParts();
- unsigned PartCount = partCount();
- memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1));
- // Set the high integerPart especially setting all unused top bits for
- // internal consistency.
- const unsigned NumUnusedHighBits =
- PartCount*integerPartWidth - semantics->precision;
- significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth)
- ? (~integerPart(0) >> NumUnusedHighBits)
- : 0;
- }
- /// Make this number the smallest magnitude denormal number in the given
- /// semantics.
- void IEEEFloat::makeSmallest(bool Negative) {
- // We want (in interchange format):
- // sign = {Negative}
- // exponent = 0..0
- // significand = 0..01
- category = fcNormal;
- sign = Negative;
- exponent = semantics->minExponent;
- APInt::tcSet(significandParts(), 1, partCount());
- }
- void IEEEFloat::makeSmallestNormalized(bool Negative) {
- // We want (in interchange format):
- // sign = {Negative}
- // exponent = 0..0
- // significand = 10..0
- category = fcNormal;
- zeroSignificand();
- sign = Negative;
- exponent = semantics->minExponent;
- significandParts()[partCountForBits(semantics->precision) - 1] |=
- (((integerPart)1) << ((semantics->precision - 1) % integerPartWidth));
- }
- IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) {
- initFromAPInt(&Sem, API);
- }
- IEEEFloat::IEEEFloat(float f) {
- initFromAPInt(&semIEEEsingle, APInt::floatToBits(f));
- }
- IEEEFloat::IEEEFloat(double d) {
- initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d));
- }
- namespace {
- void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
- Buffer.append(Str.begin(), Str.end());
- }
- /// Removes data from the given significand until it is no more
- /// precise than is required for the desired precision.
- void AdjustToPrecision(APInt &significand,
- int &exp, unsigned FormatPrecision) {
- unsigned bits = significand.getActiveBits();
- // 196/59 is a very slight overestimate of lg_2(10).
- unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
- if (bits <= bitsRequired) return;
- unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
- if (!tensRemovable) return;
- exp += tensRemovable;
- APInt divisor(significand.getBitWidth(), 1);
- APInt powten(significand.getBitWidth(), 10);
- while (true) {
- if (tensRemovable & 1)
- divisor *= powten;
- tensRemovable >>= 1;
- if (!tensRemovable) break;
- powten *= powten;
- }
- significand = significand.udiv(divisor);
- // Truncate the significand down to its active bit count.
- significand = significand.trunc(significand.getActiveBits());
- }
- void AdjustToPrecision(SmallVectorImpl<char> &buffer,
- int &exp, unsigned FormatPrecision) {
- unsigned N = buffer.size();
- if (N <= FormatPrecision) return;
- // The most significant figures are the last ones in the buffer.
- unsigned FirstSignificant = N - FormatPrecision;
- // Round.
- // FIXME: this probably shouldn't use 'round half up'.
- // Rounding down is just a truncation, except we also want to drop
- // trailing zeros from the new result.
- if (buffer[FirstSignificant - 1] < '5') {
- while (FirstSignificant < N && buffer[FirstSignificant] == '0')
- FirstSignificant++;
- exp += FirstSignificant;
- buffer.erase(&buffer[0], &buffer[FirstSignificant]);
- return;
- }
- // Rounding up requires a decimal add-with-carry. If we continue
- // the carry, the newly-introduced zeros will just be truncated.
- for (unsigned I = FirstSignificant; I != N; ++I) {
- if (buffer[I] == '9') {
- FirstSignificant++;
- } else {
- buffer[I]++;
- break;
- }
- }
- // If we carried through, we have exactly one digit of precision.
- if (FirstSignificant == N) {
- exp += FirstSignificant;
- buffer.clear();
- buffer.push_back('1');
- return;
- }
- exp += FirstSignificant;
- buffer.erase(&buffer[0], &buffer[FirstSignificant]);
- }
- } // namespace
- void IEEEFloat::toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
- unsigned FormatMaxPadding, bool TruncateZero) const {
- switch (category) {
- case fcInfinity:
- if (isNegative())
- return append(Str, "-Inf");
- else
- return append(Str, "+Inf");
- case fcNaN: return append(Str, "NaN");
- case fcZero:
- if (isNegative())
- Str.push_back('-');
- if (!FormatMaxPadding) {
- if (TruncateZero)
- append(Str, "0.0E+0");
- else {
- append(Str, "0.0");
- if (FormatPrecision > 1)
- Str.append(FormatPrecision - 1, '0');
- append(Str, "e+00");
- }
- } else
- Str.push_back('0');
- return;
- case fcNormal:
- break;
- }
- if (isNegative())
- Str.push_back('-');
- // Decompose the number into an APInt and an exponent.
- int exp = exponent - ((int) semantics->precision - 1);
- APInt significand(semantics->precision,
- makeArrayRef(significandParts(),
- partCountForBits(semantics->precision)));
- // Set FormatPrecision if zero. We want to do this before we
- // truncate trailing zeros, as those are part of the precision.
- if (!FormatPrecision) {
- // We use enough digits so the number can be round-tripped back to an
- // APFloat. The formula comes from "How to Print Floating-Point Numbers
- // Accurately" by Steele and White.
- // FIXME: Using a formula based purely on the precision is conservative;
- // we can print fewer digits depending on the actual value being printed.
- // FormatPrecision = 2 + floor(significandBits / lg_2(10))
- FormatPrecision = 2 + semantics->precision * 59 / 196;
- }
- // Ignore trailing binary zeros.
- int trailingZeros = significand.countTrailingZeros();
- exp += trailingZeros;
- significand.lshrInPlace(trailingZeros);
- // Change the exponent from 2^e to 10^e.
- if (exp == 0) {
- // Nothing to do.
- } else if (exp > 0) {
- // Just shift left.
- significand = significand.zext(semantics->precision + exp);
- significand <<= exp;
- exp = 0;
- } else { /* exp < 0 */
- int texp = -exp;
- // We transform this using the identity:
- // (N)(2^-e) == (N)(5^e)(10^-e)
- // This means we have to multiply N (the significand) by 5^e.
- // To avoid overflow, we have to operate on numbers large
- // enough to store N * 5^e:
- // log2(N * 5^e) == log2(N) + e * log2(5)
- // <= semantics->precision + e * 137 / 59
- // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
- unsigned precision = semantics->precision + (137 * texp + 136) / 59;
- // Multiply significand by 5^e.
- // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
- significand = significand.zext(precision);
- APInt five_to_the_i(precision, 5);
- while (true) {
- if (texp & 1) significand *= five_to_the_i;
- texp >>= 1;
- if (!texp) break;
- five_to_the_i *= five_to_the_i;
- }
- }
- AdjustToPrecision(significand, exp, FormatPrecision);
- SmallVector<char, 256> buffer;
- // Fill the buffer.
- unsigned precision = significand.getBitWidth();
- APInt ten(precision, 10);
- APInt digit(precision, 0);
- bool inTrail = true;
- while (significand != 0) {
- // digit <- significand % 10
- // significand <- significand / 10
- APInt::udivrem(significand, ten, significand, digit);
- unsigned d = digit.getZExtValue();
- // Drop trailing zeros.
- if (inTrail && !d) exp++;
- else {
- buffer.push_back((char) ('0' + d));
- inTrail = false;
- }
- }
- assert(!buffer.empty() && "no characters in buffer!");
- // Drop down to FormatPrecision.
- // TODO: don't do more precise calculations above than are required.
- AdjustToPrecision(buffer, exp, FormatPrecision);
- unsigned NDigits = buffer.size();
- // Check whether we should use scientific notation.
- bool FormatScientific;
- if (!FormatMaxPadding)
- FormatScientific = true;
- else {
- if (exp >= 0) {
- // 765e3 --> 765000
- // ^^^
- // But we shouldn't make the number look more precise than it is.
- FormatScientific = ((unsigned) exp > FormatMaxPadding ||
- NDigits + (unsigned) exp > FormatPrecision);
- } else {
- // Power of the most significant digit.
- int MSD = exp + (int) (NDigits - 1);
- if (MSD >= 0) {
- // 765e-2 == 7.65
- FormatScientific = false;
- } else {
- // 765e-5 == 0.00765
- // ^ ^^
- FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
- }
- }
- }
- // Scientific formatting is pretty straightforward.
- if (FormatScientific) {
- exp += (NDigits - 1);
- Str.push_back(buffer[NDigits-1]);
- Str.push_back('.');
- if (NDigits == 1 && TruncateZero)
- Str.push_back('0');
- else
- for (unsigned I = 1; I != NDigits; ++I)
- Str.push_back(buffer[NDigits-1-I]);
- // Fill with zeros up to FormatPrecision.
- if (!TruncateZero && FormatPrecision > NDigits - 1)
- Str.append(FormatPrecision - NDigits + 1, '0');
- // For !TruncateZero we use lower 'e'.
- Str.push_back(TruncateZero ? 'E' : 'e');
- Str.push_back(exp >= 0 ? '+' : '-');
- if (exp < 0) exp = -exp;
- SmallVector<char, 6> expbuf;
- do {
- expbuf.push_back((char) ('0' + (exp % 10)));
- exp /= 10;
- } while (exp);
- // Exponent always at least two digits if we do not truncate zeros.
- if (!TruncateZero && expbuf.size() < 2)
- expbuf.push_back('0');
- for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
- Str.push_back(expbuf[E-1-I]);
- return;
- }
- // Non-scientific, positive exponents.
- if (exp >= 0) {
- for (unsigned I = 0; I != NDigits; ++I)
- Str.push_back(buffer[NDigits-1-I]);
- for (unsigned I = 0; I != (unsigned) exp; ++I)
- Str.push_back('0');
- return;
- }
- // Non-scientific, negative exponents.
- // The number of digits to the left of the decimal point.
- int NWholeDigits = exp + (int) NDigits;
- unsigned I = 0;
- if (NWholeDigits > 0) {
- for (; I != (unsigned) NWholeDigits; ++I)
- Str.push_back(buffer[NDigits-I-1]);
- Str.push_back('.');
- } else {
- unsigned NZeros = 1 + (unsigned) -NWholeDigits;
- Str.push_back('0');
- Str.push_back('.');
- for (unsigned Z = 1; Z != NZeros; ++Z)
- Str.push_back('0');
- }
- for (; I != NDigits; ++I)
- Str.push_back(buffer[NDigits-I-1]);
- }
- bool IEEEFloat::getExactInverse(APFloat *inv) const {
- // Special floats and denormals have no exact inverse.
- if (!isFiniteNonZero())
- return false;
- // Check that the number is a power of two by making sure that only the
- // integer bit is set in the significand.
- if (significandLSB() != semantics->precision - 1)
- return false;
- // Get the inverse.
- IEEEFloat reciprocal(*semantics, 1ULL);
- if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
- return false;
- // Avoid multiplication with a denormal, it is not safe on all platforms and
- // may be slower than a normal division.
- if (reciprocal.isDenormal())
- return false;
- assert(reciprocal.isFiniteNonZero() &&
- reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
- if (inv)
- *inv = APFloat(reciprocal, *semantics);
- return true;
- }
- bool IEEEFloat::isSignaling() const {
- if (!isNaN())
- return false;
- // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
- // first bit of the trailing significand being 0.
- return !APInt::tcExtractBit(significandParts(), semantics->precision - 2);
- }
- /// IEEE-754R 2008 5.3.1: nextUp/nextDown.
- ///
- /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
- /// appropriate sign switching before/after the computation.
- IEEEFloat::opStatus IEEEFloat::next(bool nextDown) {
- // If we are performing nextDown, swap sign so we have -x.
- if (nextDown)
- changeSign();
- // Compute nextUp(x)
- opStatus result = opOK;
- // Handle each float category separately.
- switch (category) {
- case fcInfinity:
- // nextUp(+inf) = +inf
- if (!isNegative())
- break;
- // nextUp(-inf) = -getLargest()
- makeLargest(true);
- break;
- case fcNaN:
- // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
- // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
- // change the payload.
- if (isSignaling()) {
- result = opInvalidOp;
- // For consistency, propagate the sign of the sNaN to the qNaN.
- makeNaN(false, isNegative(), nullptr);
- }
- break;
- case fcZero:
- // nextUp(pm 0) = +getSmallest()
- makeSmallest(false);
- break;
- case fcNormal:
- // nextUp(-getSmallest()) = -0
- if (isSmallest() && isNegative()) {
- APInt::tcSet(significandParts(), 0, partCount());
- category = fcZero;
- exponent = 0;
- break;
- }
- // nextUp(getLargest()) == INFINITY
- if (isLargest() && !isNegative()) {
- APInt::tcSet(significandParts(), 0, partCount());
- category = fcInfinity;
- exponent = semantics->maxExponent + 1;
- break;
- }
- // nextUp(normal) == normal + inc.
- if (isNegative()) {
- // If we are negative, we need to decrement the significand.
- // We only cross a binade boundary that requires adjusting the exponent
- // if:
- // 1. exponent != semantics->minExponent. This implies we are not in the
- // smallest binade or are dealing with denormals.
- // 2. Our significand excluding the integral bit is all zeros.
- bool WillCrossBinadeBoundary =
- exponent != semantics->minExponent && isSignificandAllZeros();
- // Decrement the significand.
- //
- // We always do this since:
- // 1. If we are dealing with a non-binade decrement, by definition we
- // just decrement the significand.
- // 2. If we are dealing with a normal -> normal binade decrement, since
- // we have an explicit integral bit the fact that all bits but the
- // integral bit are zero implies that subtracting one will yield a
- // significand with 0 integral bit and 1 in all other spots. Thus we
- // must just adjust the exponent and set the integral bit to 1.
- // 3. If we are dealing with a normal -> denormal binade decrement,
- // since we set the integral bit to 0 when we represent denormals, we
- // just decrement the significand.
- integerPart *Parts = significandParts();
- APInt::tcDecrement(Parts, partCount());
- if (WillCrossBinadeBoundary) {
- // Our result is a normal number. Do the following:
- // 1. Set the integral bit to 1.
- // 2. Decrement the exponent.
- APInt::tcSetBit(Parts, semantics->precision - 1);
- exponent--;
- }
- } else {
- // If we are positive, we need to increment the significand.
- // We only cross a binade boundary that requires adjusting the exponent if
- // the input is not a denormal and all of said input's significand bits
- // are set. If all of said conditions are true: clear the significand, set
- // the integral bit to 1, and increment the exponent. If we have a
- // denormal always increment since moving denormals and the numbers in the
- // smallest normal binade have the same exponent in our representation.
- bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes();
- if (WillCrossBinadeBoundary) {
- integerPart *Parts = significandParts();
- APInt::tcSet(Parts, 0, partCount());
- APInt::tcSetBit(Parts, semantics->precision - 1);
- assert(exponent != semantics->maxExponent &&
- "We can not increment an exponent beyond the maxExponent allowed"
- " by the given floating point semantics.");
- exponent++;
- } else {
- incrementSignificand();
- }
- }
- break;
- }
- // If we are performing nextDown, swap sign so we have -nextUp(-x)
- if (nextDown)
- changeSign();
- return result;
- }
- APFloatBase::ExponentType IEEEFloat::exponentNaN() const {
- return semantics->maxExponent + 1;
- }
- APFloatBase::ExponentType IEEEFloat::exponentInf() const {
- return semantics->maxExponent + 1;
- }
- APFloatBase::ExponentType IEEEFloat::exponentZero() const {
- return semantics->minExponent - 1;
- }
- void IEEEFloat::makeInf(bool Negative) {
- category = fcInfinity;
- sign = Negative;
- exponent = exponentInf();
- APInt::tcSet(significandParts(), 0, partCount());
- }
- void IEEEFloat::makeZero(bool Negative) {
- category = fcZero;
- sign = Negative;
- exponent = exponentZero();
- APInt::tcSet(significandParts(), 0, partCount());
- }
- void IEEEFloat::makeQuiet() {
- assert(isNaN());
- APInt::tcSetBit(significandParts(), semantics->precision - 2);
- }
- int ilogb(const IEEEFloat &Arg) {
- if (Arg.isNaN())
- return IEEEFloat::IEK_NaN;
- if (Arg.isZero())
- return IEEEFloat::IEK_Zero;
- if (Arg.isInfinity())
- return IEEEFloat::IEK_Inf;
- if (!Arg.isDenormal())
- return Arg.exponent;
- IEEEFloat Normalized(Arg);
- int SignificandBits = Arg.getSemantics().precision - 1;
- Normalized.exponent += SignificandBits;
- Normalized.normalize(IEEEFloat::rmNearestTiesToEven, lfExactlyZero);
- return Normalized.exponent - SignificandBits;
- }
- IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode RoundingMode) {
- auto MaxExp = X.getSemantics().maxExponent;
- auto MinExp = X.getSemantics().minExponent;
- // If Exp is wildly out-of-scale, simply adding it to X.exponent will
- // overflow; clamp it to a safe range before adding, but ensure that the range
- // is large enough that the clamp does not change the result. The range we
- // need to support is the difference between the largest possible exponent and
- // the normalized exponent of half the smallest denormal.
- int SignificandBits = X.getSemantics().precision - 1;
- int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1;
- // Clamp to one past the range ends to let normalize handle overlflow.
- X.exponent += std::min(std::max(Exp, -MaxIncrement - 1), MaxIncrement);
- X.normalize(RoundingMode, lfExactlyZero);
- if (X.isNaN())
- X.makeQuiet();
- return X;
- }
- IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) {
- Exp = ilogb(Val);
- // Quiet signalling nans.
- if (Exp == IEEEFloat::IEK_NaN) {
- IEEEFloat Quiet(Val);
- Quiet.makeQuiet();
- return Quiet;
- }
- if (Exp == IEEEFloat::IEK_Inf)
- return Val;
- // 1 is added because frexp is defined to return a normalized fraction in
- // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0).
- Exp = Exp == IEEEFloat::IEK_Zero ? 0 : Exp + 1;
- return scalbn(Val, -Exp, RM);
- }
- DoubleAPFloat::DoubleAPFloat(const fltSemantics &S)
- : Semantics(&S),
- Floats(new APFloat[2]{APFloat(semIEEEdouble), APFloat(semIEEEdouble)}) {
- assert(Semantics == &semPPCDoubleDouble);
- }
- DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag)
- : Semantics(&S),
- Floats(new APFloat[2]{APFloat(semIEEEdouble, uninitialized),
- APFloat(semIEEEdouble, uninitialized)}) {
- assert(Semantics == &semPPCDoubleDouble);
- }
- DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I)
- : Semantics(&S), Floats(new APFloat[2]{APFloat(semIEEEdouble, I),
- APFloat(semIEEEdouble)}) {
- assert(Semantics == &semPPCDoubleDouble);
- }
- DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I)
- : Semantics(&S),
- Floats(new APFloat[2]{
- APFloat(semIEEEdouble, APInt(64, I.getRawData()[0])),
- APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) {
- assert(Semantics == &semPPCDoubleDouble);
- }
- DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First,
- APFloat &&Second)
- : Semantics(&S),
- Floats(new APFloat[2]{std::move(First), std::move(Second)}) {
- assert(Semantics == &semPPCDoubleDouble);
- assert(&Floats[0].getSemantics() == &semIEEEdouble);
- assert(&Floats[1].getSemantics() == &semIEEEdouble);
- }
- DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS)
- : Semantics(RHS.Semantics),
- Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]),
- APFloat(RHS.Floats[1])}
- : nullptr) {
- assert(Semantics == &semPPCDoubleDouble);
- }
- DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS)
- : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) {
- RHS.Semantics = &semBogus;
- assert(Semantics == &semPPCDoubleDouble);
- }
- DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) {
- if (Semantics == RHS.Semantics && RHS.Floats) {
- Floats[0] = RHS.Floats[0];
- Floats[1] = RHS.Floats[1];
- } else if (this != &RHS) {
- this->~DoubleAPFloat();
- new (this) DoubleAPFloat(RHS);
- }
- return *this;
- }
- // Implement addition, subtraction, multiplication and division based on:
- // "Software for Doubled-Precision Floating-Point Computations",
- // by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283.
- APFloat::opStatus DoubleAPFloat::addImpl(const APFloat &a, const APFloat &aa,
- const APFloat &c, const APFloat &cc,
- roundingMode RM) {
- int Status = opOK;
- APFloat z = a;
- Status |= z.add(c, RM);
- if (!z.isFinite()) {
- if (!z.isInfinity()) {
- Floats[0] = std::move(z);
- Floats[1].makeZero(/* Neg = */ false);
- return (opStatus)Status;
- }
- Status = opOK;
- auto AComparedToC = a.compareAbsoluteValue(c);
- z = cc;
- Status |= z.add(aa, RM);
- if (AComparedToC == APFloat::cmpGreaterThan) {
- // z = cc + aa + c + a;
- Status |= z.add(c, RM);
- Status |= z.add(a, RM);
- } else {
- // z = cc + aa + a + c;
- Status |= z.add(a, RM);
- Status |= z.add(c, RM);
- }
- if (!z.isFinite()) {
- Floats[0] = std::move(z);
- Floats[1].makeZero(/* Neg = */ false);
- return (opStatus)Status;
- }
- Floats[0] = z;
- APFloat zz = aa;
- Status |= zz.add(cc, RM);
- if (AComparedToC == APFloat::cmpGreaterThan) {
- // Floats[1] = a - z + c + zz;
- Floats[1] = a;
- Status |= Floats[1].subtract(z, RM);
- Status |= Floats[1].add(c, RM);
- Status |= Floats[1].add(zz, RM);
- } else {
- // Floats[1] = c - z + a + zz;
- Floats[1] = c;
- Status |= Floats[1].subtract(z, RM);
- Status |= Floats[1].add(a, RM);
- Status |= Floats[1].add(zz, RM);
- }
- } else {
- // q = a - z;
- APFloat q = a;
- Status |= q.subtract(z, RM);
- // zz = q + c + (a - (q + z)) + aa + cc;
- // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies.
- auto zz = q;
- Status |= zz.add(c, RM);
- Status |= q.add(z, RM);
- Status |= q.subtract(a, RM);
- q.changeSign();
- Status |= zz.add(q, RM);
- Status |= zz.add(aa, RM);
- Status |= zz.add(cc, RM);
- if (zz.isZero() && !zz.isNegative()) {
- Floats[0] = std::move(z);
- Floats[1].makeZero(/* Neg = */ false);
- return opOK;
- }
- Floats[0] = z;
- Status |= Floats[0].add(zz, RM);
- if (!Floats[0].isFinite()) {
- Floats[1].makeZero(/* Neg = */ false);
- return (opStatus)Status;
- }
- Floats[1] = std::move(z);
- Status |= Floats[1].subtract(Floats[0], RM);
- Status |= Floats[1].add(zz, RM);
- }
- return (opStatus)Status;
- }
- APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS,
- const DoubleAPFloat &RHS,
- DoubleAPFloat &Out,
- roundingMode RM) {
- if (LHS.getCategory() == fcNaN) {
- Out = LHS;
- return opOK;
- }
- if (RHS.getCategory() == fcNaN) {
- Out = RHS;
- return opOK;
- }
- if (LHS.getCategory() == fcZero) {
- Out = RHS;
- return opOK;
- }
- if (RHS.getCategory() == fcZero) {
- Out = LHS;
- return opOK;
- }
- if (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcInfinity &&
- LHS.isNegative() != RHS.isNegative()) {
- Out.makeNaN(false, Out.isNegative(), nullptr);
- return opInvalidOp;
- }
- if (LHS.getCategory() == fcInfinity) {
- Out = LHS;
- return opOK;
- }
- if (RHS.getCategory() == fcInfinity) {
- Out = RHS;
- return opOK;
- }
- assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal);
- APFloat A(LHS.Floats[0]), AA(LHS.Floats[1]), C(RHS.Floats[0]),
- CC(RHS.Floats[1]);
- assert(&A.getSemantics() == &semIEEEdouble);
- assert(&AA.getSemantics() == &semIEEEdouble);
- assert(&C.getSemantics() == &semIEEEdouble);
- assert(&CC.getSemantics() == &semIEEEdouble);
- assert(&Out.Floats[0].getSemantics() == &semIEEEdouble);
- assert(&Out.Floats[1].getSemantics() == &semIEEEdouble);
- return Out.addImpl(A, AA, C, CC, RM);
- }
- APFloat::opStatus DoubleAPFloat::add(const DoubleAPFloat &RHS,
- roundingMode RM) {
- return addWithSpecial(*this, RHS, *this, RM);
- }
- APFloat::opStatus DoubleAPFloat::subtract(const DoubleAPFloat &RHS,
- roundingMode RM) {
- changeSign();
- auto Ret = add(RHS, RM);
- changeSign();
- return Ret;
- }
- APFloat::opStatus DoubleAPFloat::multiply(const DoubleAPFloat &RHS,
- APFloat::roundingMode RM) {
- const auto &LHS = *this;
- auto &Out = *this;
- /* Interesting observation: For special categories, finding the lowest
- common ancestor of the following layered graph gives the correct
- return category:
- NaN
- / \
- Zero Inf
- \ /
- Normal
- e.g. NaN * NaN = NaN
- Zero * Inf = NaN
- Normal * Zero = Zero
- Normal * Inf = Inf
- */
- if (LHS.getCategory() == fcNaN) {
- Out = LHS;
- return opOK;
- }
- if (RHS.getCategory() == fcNaN) {
- Out = RHS;
- return opOK;
- }
- if ((LHS.getCategory() == fcZero && RHS.getCategory() == fcInfinity) ||
- (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcZero)) {
- Out.makeNaN(false, false, nullptr);
- return opOK;
- }
- if (LHS.getCategory() == fcZero || LHS.getCategory() == fcInfinity) {
- Out = LHS;
- return opOK;
- }
- if (RHS.getCategory() == fcZero || RHS.getCategory() == fcInfinity) {
- Out = RHS;
- return opOK;
- }
- assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal &&
- "Special cases not handled exhaustively");
- int Status = opOK;
- APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1];
- // t = a * c
- APFloat T = A;
- Status |= T.multiply(C, RM);
- if (!T.isFiniteNonZero()) {
- Floats[0] = T;
- Floats[1].makeZero(/* Neg = */ false);
- return (opStatus)Status;
- }
- // tau = fmsub(a, c, t), that is -fmadd(-a, c, t).
- APFloat Tau = A;
- T.changeSign();
- Status |= Tau.fusedMultiplyAdd(C, T, RM);
- T.changeSign();
- {
- // v = a * d
- APFloat V = A;
- Status |= V.multiply(D, RM);
- // w = b * c
- APFloat W = B;
- Status |= W.multiply(C, RM);
- Status |= V.add(W, RM);
- // tau += v + w
- Status |= Tau.add(V, RM);
- }
- // u = t + tau
- APFloat U = T;
- Status |= U.add(Tau, RM);
- Floats[0] = U;
- if (!U.isFinite()) {
- Floats[1].makeZero(/* Neg = */ false);
- } else {
- // Floats[1] = (t - u) + tau
- Status |= T.subtract(U, RM);
- Status |= T.add(Tau, RM);
- Floats[1] = T;
- }
- return (opStatus)Status;
- }
- APFloat::opStatus DoubleAPFloat::divide(const DoubleAPFloat &RHS,
- APFloat::roundingMode RM) {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
- auto Ret =
- Tmp.divide(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()), RM);
- *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
- return Ret;
- }
- APFloat::opStatus DoubleAPFloat::remainder(const DoubleAPFloat &RHS) {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
- auto Ret =
- Tmp.remainder(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()));
- *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
- return Ret;
- }
- APFloat::opStatus DoubleAPFloat::mod(const DoubleAPFloat &RHS) {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
- auto Ret = Tmp.mod(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()));
- *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
- return Ret;
- }
- APFloat::opStatus
- DoubleAPFloat::fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
- const DoubleAPFloat &Addend,
- APFloat::roundingMode RM) {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
- auto Ret = Tmp.fusedMultiplyAdd(
- APFloat(semPPCDoubleDoubleLegacy, Multiplicand.bitcastToAPInt()),
- APFloat(semPPCDoubleDoubleLegacy, Addend.bitcastToAPInt()), RM);
- *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
- return Ret;
- }
- APFloat::opStatus DoubleAPFloat::roundToIntegral(APFloat::roundingMode RM) {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
- auto Ret = Tmp.roundToIntegral(RM);
- *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
- return Ret;
- }
- void DoubleAPFloat::changeSign() {
- Floats[0].changeSign();
- Floats[1].changeSign();
- }
- APFloat::cmpResult
- DoubleAPFloat::compareAbsoluteValue(const DoubleAPFloat &RHS) const {
- auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]);
- if (Result != cmpEqual)
- return Result;
- Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]);
- if (Result == cmpLessThan || Result == cmpGreaterThan) {
- auto Against = Floats[0].isNegative() ^ Floats[1].isNegative();
- auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative();
- if (Against && !RHSAgainst)
- return cmpLessThan;
- if (!Against && RHSAgainst)
- return cmpGreaterThan;
- if (!Against && !RHSAgainst)
- return Result;
- if (Against && RHSAgainst)
- return (cmpResult)(cmpLessThan + cmpGreaterThan - Result);
- }
- return Result;
- }
- APFloat::fltCategory DoubleAPFloat::getCategory() const {
- return Floats[0].getCategory();
- }
- bool DoubleAPFloat::isNegative() const { return Floats[0].isNegative(); }
- void DoubleAPFloat::makeInf(bool Neg) {
- Floats[0].makeInf(Neg);
- Floats[1].makeZero(/* Neg = */ false);
- }
- void DoubleAPFloat::makeZero(bool Neg) {
- Floats[0].makeZero(Neg);
- Floats[1].makeZero(/* Neg = */ false);
- }
- void DoubleAPFloat::makeLargest(bool Neg) {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x7fefffffffffffffull));
- Floats[1] = APFloat(semIEEEdouble, APInt(64, 0x7c8ffffffffffffeull));
- if (Neg)
- changeSign();
- }
- void DoubleAPFloat::makeSmallest(bool Neg) {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- Floats[0].makeSmallest(Neg);
- Floats[1].makeZero(/* Neg = */ false);
- }
- void DoubleAPFloat::makeSmallestNormalized(bool Neg) {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x0360000000000000ull));
- if (Neg)
- Floats[0].changeSign();
- Floats[1].makeZero(/* Neg = */ false);
- }
- void DoubleAPFloat::makeNaN(bool SNaN, bool Neg, const APInt *fill) {
- Floats[0].makeNaN(SNaN, Neg, fill);
- Floats[1].makeZero(/* Neg = */ false);
- }
- APFloat::cmpResult DoubleAPFloat::compare(const DoubleAPFloat &RHS) const {
- auto Result = Floats[0].compare(RHS.Floats[0]);
- // |Float[0]| > |Float[1]|
- if (Result == APFloat::cmpEqual)
- return Floats[1].compare(RHS.Floats[1]);
- return Result;
- }
- bool DoubleAPFloat::bitwiseIsEqual(const DoubleAPFloat &RHS) const {
- return Floats[0].bitwiseIsEqual(RHS.Floats[0]) &&
- Floats[1].bitwiseIsEqual(RHS.Floats[1]);
- }
- hash_code hash_value(const DoubleAPFloat &Arg) {
- if (Arg.Floats)
- return hash_combine(hash_value(Arg.Floats[0]), hash_value(Arg.Floats[1]));
- return hash_combine(Arg.Semantics);
- }
- APInt DoubleAPFloat::bitcastToAPInt() const {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- uint64_t Data[] = {
- Floats[0].bitcastToAPInt().getRawData()[0],
- Floats[1].bitcastToAPInt().getRawData()[0],
- };
- return APInt(128, 2, Data);
- }
- Expected<APFloat::opStatus> DoubleAPFloat::convertFromString(StringRef S,
- roundingMode RM) {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- APFloat Tmp(semPPCDoubleDoubleLegacy);
- auto Ret = Tmp.convertFromString(S, RM);
- *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
- return Ret;
- }
- APFloat::opStatus DoubleAPFloat::next(bool nextDown) {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
- auto Ret = Tmp.next(nextDown);
- *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
- return Ret;
- }
- APFloat::opStatus
- DoubleAPFloat::convertToInteger(MutableArrayRef<integerPart> Input,
- unsigned int Width, bool IsSigned,
- roundingMode RM, bool *IsExact) const {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
- .convertToInteger(Input, Width, IsSigned, RM, IsExact);
- }
- APFloat::opStatus DoubleAPFloat::convertFromAPInt(const APInt &Input,
- bool IsSigned,
- roundingMode RM) {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- APFloat Tmp(semPPCDoubleDoubleLegacy);
- auto Ret = Tmp.convertFromAPInt(Input, IsSigned, RM);
- *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
- return Ret;
- }
- APFloat::opStatus
- DoubleAPFloat::convertFromSignExtendedInteger(const integerPart *Input,
- unsigned int InputSize,
- bool IsSigned, roundingMode RM) {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- APFloat Tmp(semPPCDoubleDoubleLegacy);
- auto Ret = Tmp.convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM);
- *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
- return Ret;
- }
- APFloat::opStatus
- DoubleAPFloat::convertFromZeroExtendedInteger(const integerPart *Input,
- unsigned int InputSize,
- bool IsSigned, roundingMode RM) {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- APFloat Tmp(semPPCDoubleDoubleLegacy);
- auto Ret = Tmp.convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM);
- *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
- return Ret;
- }
- unsigned int DoubleAPFloat::convertToHexString(char *DST,
- unsigned int HexDigits,
- bool UpperCase,
- roundingMode RM) const {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
- .convertToHexString(DST, HexDigits, UpperCase, RM);
- }
- bool DoubleAPFloat::isDenormal() const {
- return getCategory() == fcNormal &&
- (Floats[0].isDenormal() || Floats[1].isDenormal() ||
- // (double)(Hi + Lo) == Hi defines a normal number.
- Floats[0] != Floats[0] + Floats[1]);
- }
- bool DoubleAPFloat::isSmallest() const {
- if (getCategory() != fcNormal)
- return false;
- DoubleAPFloat Tmp(*this);
- Tmp.makeSmallest(this->isNegative());
- return Tmp.compare(*this) == cmpEqual;
- }
- bool DoubleAPFloat::isLargest() const {
- if (getCategory() != fcNormal)
- return false;
- DoubleAPFloat Tmp(*this);
- Tmp.makeLargest(this->isNegative());
- return Tmp.compare(*this) == cmpEqual;
- }
- bool DoubleAPFloat::isInteger() const {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- return Floats[0].isInteger() && Floats[1].isInteger();
- }
- void DoubleAPFloat::toString(SmallVectorImpl<char> &Str,
- unsigned FormatPrecision,
- unsigned FormatMaxPadding,
- bool TruncateZero) const {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
- .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero);
- }
- bool DoubleAPFloat::getExactInverse(APFloat *inv) const {
- assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
- if (!inv)
- return Tmp.getExactInverse(nullptr);
- APFloat Inv(semPPCDoubleDoubleLegacy);
- auto Ret = Tmp.getExactInverse(&Inv);
- *inv = APFloat(semPPCDoubleDouble, Inv.bitcastToAPInt());
- return Ret;
- }
- DoubleAPFloat scalbn(const DoubleAPFloat &Arg, int Exp,
- APFloat::roundingMode RM) {
- assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- return DoubleAPFloat(semPPCDoubleDouble, scalbn(Arg.Floats[0], Exp, RM),
- scalbn(Arg.Floats[1], Exp, RM));
- }
- DoubleAPFloat frexp(const DoubleAPFloat &Arg, int &Exp,
- APFloat::roundingMode RM) {
- assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
- APFloat First = frexp(Arg.Floats[0], Exp, RM);
- APFloat Second = Arg.Floats[1];
- if (Arg.getCategory() == APFloat::fcNormal)
- Second = scalbn(Second, -Exp, RM);
- return DoubleAPFloat(semPPCDoubleDouble, std::move(First), std::move(Second));
- }
- } // namespace detail
- APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) {
- if (usesLayout<IEEEFloat>(Semantics)) {
- new (&IEEE) IEEEFloat(std::move(F));
- return;
- }
- if (usesLayout<DoubleAPFloat>(Semantics)) {
- const fltSemantics& S = F.getSemantics();
- new (&Double)
- DoubleAPFloat(Semantics, APFloat(std::move(F), S),
- APFloat(semIEEEdouble));
- return;
- }
- llvm_unreachable("Unexpected semantics");
- }
- Expected<APFloat::opStatus> APFloat::convertFromString(StringRef Str,
- roundingMode RM) {
- APFLOAT_DISPATCH_ON_SEMANTICS(convertFromString(Str, RM));
- }
- hash_code hash_value(const APFloat &Arg) {
- if (APFloat::usesLayout<detail::IEEEFloat>(Arg.getSemantics()))
- return hash_value(Arg.U.IEEE);
- if (APFloat::usesLayout<detail::DoubleAPFloat>(Arg.getSemantics()))
- return hash_value(Arg.U.Double);
- llvm_unreachable("Unexpected semantics");
- }
- APFloat::APFloat(const fltSemantics &Semantics, StringRef S)
- : APFloat(Semantics) {
- auto StatusOrErr = convertFromString(S, rmNearestTiesToEven);
- assert(StatusOrErr && "Invalid floating point representation");
- consumeError(StatusOrErr.takeError());
- }
- APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics,
- roundingMode RM, bool *losesInfo) {
- if (&getSemantics() == &ToSemantics) {
- *losesInfo = false;
- return opOK;
- }
- if (usesLayout<IEEEFloat>(getSemantics()) &&
- usesLayout<IEEEFloat>(ToSemantics))
- return U.IEEE.convert(ToSemantics, RM, losesInfo);
- if (usesLayout<IEEEFloat>(getSemantics()) &&
- usesLayout<DoubleAPFloat>(ToSemantics)) {
- assert(&ToSemantics == &semPPCDoubleDouble);
- auto Ret = U.IEEE.convert(semPPCDoubleDoubleLegacy, RM, losesInfo);
- *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt());
- return Ret;
- }
- if (usesLayout<DoubleAPFloat>(getSemantics()) &&
- usesLayout<IEEEFloat>(ToSemantics)) {
- auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo);
- *this = APFloat(std::move(getIEEE()), ToSemantics);
- return Ret;
- }
- llvm_unreachable("Unexpected semantics");
- }
- APFloat APFloat::getAllOnesValue(const fltSemantics &Semantics) {
- return APFloat(Semantics, APInt::getAllOnes(Semantics.sizeInBits));
- }
- void APFloat::print(raw_ostream &OS) const {
- SmallVector<char, 16> Buffer;
- toString(Buffer);
- OS << Buffer << "\n";
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void APFloat::dump() const { print(dbgs()); }
- #endif
- void APFloat::Profile(FoldingSetNodeID &NID) const {
- NID.Add(bitcastToAPInt());
- }
- /* Same as convertToInteger(integerPart*, ...), except the result is returned in
- an APSInt, whose initial bit-width and signed-ness are used to determine the
- precision of the conversion.
- */
- APFloat::opStatus APFloat::convertToInteger(APSInt &result,
- roundingMode rounding_mode,
- bool *isExact) const {
- unsigned bitWidth = result.getBitWidth();
- SmallVector<uint64_t, 4> parts(result.getNumWords());
- opStatus status = convertToInteger(parts, bitWidth, result.isSigned(),
- rounding_mode, isExact);
- // Keeps the original signed-ness.
- result = APInt(bitWidth, parts);
- return status;
- }
- double APFloat::convertToDouble() const {
- if (&getSemantics() == (const llvm::fltSemantics *)&semIEEEdouble)
- return getIEEE().convertToDouble();
- assert(getSemantics().isRepresentableBy(semIEEEdouble) &&
- "Float semantics is not representable by IEEEdouble");
- APFloat Temp = *this;
- bool LosesInfo;
- opStatus St = Temp.convert(semIEEEdouble, rmNearestTiesToEven, &LosesInfo);
- assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision");
- (void)St;
- return Temp.getIEEE().convertToDouble();
- }
- float APFloat::convertToFloat() const {
- if (&getSemantics() == (const llvm::fltSemantics *)&semIEEEsingle)
- return getIEEE().convertToFloat();
- assert(getSemantics().isRepresentableBy(semIEEEsingle) &&
- "Float semantics is not representable by IEEEsingle");
- APFloat Temp = *this;
- bool LosesInfo;
- opStatus St = Temp.convert(semIEEEsingle, rmNearestTiesToEven, &LosesInfo);
- assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision");
- (void)St;
- return Temp.getIEEE().convertToFloat();
- }
- } // namespace llvm
- #undef APFLOAT_DISPATCH_ON_SEMANTICS
|