123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427 |
- //===- Dominators.cpp - Dominator Calculation -----------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements simple dominator construction algorithms for finding
- // forward dominators. Postdominators are available in libanalysis, but are not
- // included in libvmcore, because it's not needed. Forward dominators are
- // needed to support the Verifier pass.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/IR/Dominators.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/PassRegistry.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cassert>
- namespace llvm {
- class Argument;
- class Constant;
- class Value;
- } // namespace llvm
- using namespace llvm;
- bool llvm::VerifyDomInfo = false;
- static cl::opt<bool, true>
- VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden,
- cl::desc("Verify dominator info (time consuming)"));
- #ifdef EXPENSIVE_CHECKS
- static constexpr bool ExpensiveChecksEnabled = true;
- #else
- static constexpr bool ExpensiveChecksEnabled = false;
- #endif
- bool BasicBlockEdge::isSingleEdge() const {
- const Instruction *TI = Start->getTerminator();
- unsigned NumEdgesToEnd = 0;
- for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
- if (TI->getSuccessor(i) == End)
- ++NumEdgesToEnd;
- if (NumEdgesToEnd >= 2)
- return false;
- }
- assert(NumEdgesToEnd == 1);
- return true;
- }
- //===----------------------------------------------------------------------===//
- // DominatorTree Implementation
- //===----------------------------------------------------------------------===//
- //
- // Provide public access to DominatorTree information. Implementation details
- // can be found in Dominators.h, GenericDomTree.h, and
- // GenericDomTreeConstruction.h.
- //
- //===----------------------------------------------------------------------===//
- template class llvm::DomTreeNodeBase<BasicBlock>;
- template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase
- template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase
- template class llvm::cfg::Update<BasicBlock *>;
- template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>(
- DomTreeBuilder::BBDomTree &DT);
- template void
- llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>(
- DomTreeBuilder::BBDomTree &DT, BBUpdates U);
- template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>(
- DomTreeBuilder::BBPostDomTree &DT);
- // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises.
- template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>(
- DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
- template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>(
- DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
- template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>(
- DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
- template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>(
- DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
- template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>(
- DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBDomTreeGraphDiff &,
- DomTreeBuilder::BBDomTreeGraphDiff *);
- template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>(
- DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBPostDomTreeGraphDiff &,
- DomTreeBuilder::BBPostDomTreeGraphDiff *);
- template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>(
- const DomTreeBuilder::BBDomTree &DT,
- DomTreeBuilder::BBDomTree::VerificationLevel VL);
- template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>(
- const DomTreeBuilder::BBPostDomTree &DT,
- DomTreeBuilder::BBPostDomTree::VerificationLevel VL);
- bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA,
- FunctionAnalysisManager::Invalidator &) {
- // Check whether the analysis, all analyses on functions, or the function's
- // CFG have been preserved.
- auto PAC = PA.getChecker<DominatorTreeAnalysis>();
- return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
- PAC.preservedSet<CFGAnalyses>());
- }
- bool DominatorTree::dominates(const BasicBlock *BB, const Use &U) const {
- Instruction *UserInst = cast<Instruction>(U.getUser());
- if (auto *PN = dyn_cast<PHINode>(UserInst))
- // A phi use using a value from a block is dominated by the end of that
- // block. Note that the phi's parent block may not be.
- return dominates(BB, PN->getIncomingBlock(U));
- else
- return properlyDominates(BB, UserInst->getParent());
- }
- // dominates - Return true if Def dominates a use in User. This performs
- // the special checks necessary if Def and User are in the same basic block.
- // Note that Def doesn't dominate a use in Def itself!
- bool DominatorTree::dominates(const Value *DefV,
- const Instruction *User) const {
- const Instruction *Def = dyn_cast<Instruction>(DefV);
- if (!Def) {
- assert((isa<Argument>(DefV) || isa<Constant>(DefV)) &&
- "Should be called with an instruction, argument or constant");
- return true; // Arguments and constants dominate everything.
- }
- const BasicBlock *UseBB = User->getParent();
- const BasicBlock *DefBB = Def->getParent();
- // Any unreachable use is dominated, even if Def == User.
- if (!isReachableFromEntry(UseBB))
- return true;
- // Unreachable definitions don't dominate anything.
- if (!isReachableFromEntry(DefBB))
- return false;
- // An instruction doesn't dominate a use in itself.
- if (Def == User)
- return false;
- // The value defined by an invoke dominates an instruction only if it
- // dominates every instruction in UseBB.
- // A PHI is dominated only if the instruction dominates every possible use in
- // the UseBB.
- if (isa<InvokeInst>(Def) || isa<CallBrInst>(Def) || isa<PHINode>(User))
- return dominates(Def, UseBB);
- if (DefBB != UseBB)
- return dominates(DefBB, UseBB);
- return Def->comesBefore(User);
- }
- // true if Def would dominate a use in any instruction in UseBB.
- // note that dominates(Def, Def->getParent()) is false.
- bool DominatorTree::dominates(const Instruction *Def,
- const BasicBlock *UseBB) const {
- const BasicBlock *DefBB = Def->getParent();
- // Any unreachable use is dominated, even if DefBB == UseBB.
- if (!isReachableFromEntry(UseBB))
- return true;
- // Unreachable definitions don't dominate anything.
- if (!isReachableFromEntry(DefBB))
- return false;
- if (DefBB == UseBB)
- return false;
- // Invoke results are only usable in the normal destination, not in the
- // exceptional destination.
- if (const auto *II = dyn_cast<InvokeInst>(Def)) {
- BasicBlock *NormalDest = II->getNormalDest();
- BasicBlockEdge E(DefBB, NormalDest);
- return dominates(E, UseBB);
- }
- // Callbr results are similarly only usable in the default destination.
- if (const auto *CBI = dyn_cast<CallBrInst>(Def)) {
- BasicBlock *NormalDest = CBI->getDefaultDest();
- BasicBlockEdge E(DefBB, NormalDest);
- return dominates(E, UseBB);
- }
- return dominates(DefBB, UseBB);
- }
- bool DominatorTree::dominates(const BasicBlockEdge &BBE,
- const BasicBlock *UseBB) const {
- // If the BB the edge ends in doesn't dominate the use BB, then the
- // edge also doesn't.
- const BasicBlock *Start = BBE.getStart();
- const BasicBlock *End = BBE.getEnd();
- if (!dominates(End, UseBB))
- return false;
- // Simple case: if the end BB has a single predecessor, the fact that it
- // dominates the use block implies that the edge also does.
- if (End->getSinglePredecessor())
- return true;
- // The normal edge from the invoke is critical. Conceptually, what we would
- // like to do is split it and check if the new block dominates the use.
- // With X being the new block, the graph would look like:
- //
- // DefBB
- // /\ . .
- // / \ . .
- // / \ . .
- // / \ | |
- // A X B C
- // | \ | /
- // . \|/
- // . NormalDest
- // .
- //
- // Given the definition of dominance, NormalDest is dominated by X iff X
- // dominates all of NormalDest's predecessors (X, B, C in the example). X
- // trivially dominates itself, so we only have to find if it dominates the
- // other predecessors. Since the only way out of X is via NormalDest, X can
- // only properly dominate a node if NormalDest dominates that node too.
- int IsDuplicateEdge = 0;
- for (const BasicBlock *BB : predecessors(End)) {
- if (BB == Start) {
- // If there are multiple edges between Start and End, by definition they
- // can't dominate anything.
- if (IsDuplicateEdge++)
- return false;
- continue;
- }
- if (!dominates(End, BB))
- return false;
- }
- return true;
- }
- bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
- Instruction *UserInst = cast<Instruction>(U.getUser());
- // A PHI in the end of the edge is dominated by it.
- PHINode *PN = dyn_cast<PHINode>(UserInst);
- if (PN && PN->getParent() == BBE.getEnd() &&
- PN->getIncomingBlock(U) == BBE.getStart())
- return true;
- // Otherwise use the edge-dominates-block query, which
- // handles the crazy critical edge cases properly.
- const BasicBlock *UseBB;
- if (PN)
- UseBB = PN->getIncomingBlock(U);
- else
- UseBB = UserInst->getParent();
- return dominates(BBE, UseBB);
- }
- bool DominatorTree::dominates(const Value *DefV, const Use &U) const {
- const Instruction *Def = dyn_cast<Instruction>(DefV);
- if (!Def) {
- assert((isa<Argument>(DefV) || isa<Constant>(DefV)) &&
- "Should be called with an instruction, argument or constant");
- return true; // Arguments and constants dominate everything.
- }
- Instruction *UserInst = cast<Instruction>(U.getUser());
- const BasicBlock *DefBB = Def->getParent();
- // Determine the block in which the use happens. PHI nodes use
- // their operands on edges; simulate this by thinking of the use
- // happening at the end of the predecessor block.
- const BasicBlock *UseBB;
- if (PHINode *PN = dyn_cast<PHINode>(UserInst))
- UseBB = PN->getIncomingBlock(U);
- else
- UseBB = UserInst->getParent();
- // Any unreachable use is dominated, even if Def == User.
- if (!isReachableFromEntry(UseBB))
- return true;
- // Unreachable definitions don't dominate anything.
- if (!isReachableFromEntry(DefBB))
- return false;
- // Invoke instructions define their return values on the edges to their normal
- // successors, so we have to handle them specially.
- // Among other things, this means they don't dominate anything in
- // their own block, except possibly a phi, so we don't need to
- // walk the block in any case.
- if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
- BasicBlock *NormalDest = II->getNormalDest();
- BasicBlockEdge E(DefBB, NormalDest);
- return dominates(E, U);
- }
- // Callbr results are similarly only usable in the default destination.
- if (const auto *CBI = dyn_cast<CallBrInst>(Def)) {
- BasicBlock *NormalDest = CBI->getDefaultDest();
- BasicBlockEdge E(DefBB, NormalDest);
- return dominates(E, U);
- }
- // If the def and use are in different blocks, do a simple CFG dominator
- // tree query.
- if (DefBB != UseBB)
- return dominates(DefBB, UseBB);
- // Ok, def and use are in the same block. If the def is an invoke, it
- // doesn't dominate anything in the block. If it's a PHI, it dominates
- // everything in the block.
- if (isa<PHINode>(UserInst))
- return true;
- return Def->comesBefore(UserInst);
- }
- bool DominatorTree::isReachableFromEntry(const Use &U) const {
- Instruction *I = dyn_cast<Instruction>(U.getUser());
- // ConstantExprs aren't really reachable from the entry block, but they
- // don't need to be treated like unreachable code either.
- if (!I) return true;
- // PHI nodes use their operands on their incoming edges.
- if (PHINode *PN = dyn_cast<PHINode>(I))
- return isReachableFromEntry(PN->getIncomingBlock(U));
- // Everything else uses their operands in their own block.
- return isReachableFromEntry(I->getParent());
- }
- // Edge BBE1 dominates edge BBE2 if they match or BBE1 dominates start of BBE2.
- bool DominatorTree::dominates(const BasicBlockEdge &BBE1,
- const BasicBlockEdge &BBE2) const {
- if (BBE1.getStart() == BBE2.getStart() && BBE1.getEnd() == BBE2.getEnd())
- return true;
- return dominates(BBE1, BBE2.getStart());
- }
- //===----------------------------------------------------------------------===//
- // DominatorTreeAnalysis and related pass implementations
- //===----------------------------------------------------------------------===//
- //
- // This implements the DominatorTreeAnalysis which is used with the new pass
- // manager. It also implements some methods from utility passes.
- //
- //===----------------------------------------------------------------------===//
- DominatorTree DominatorTreeAnalysis::run(Function &F,
- FunctionAnalysisManager &) {
- DominatorTree DT;
- DT.recalculate(F);
- return DT;
- }
- AnalysisKey DominatorTreeAnalysis::Key;
- DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
- PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- OS << "DominatorTree for function: " << F.getName() << "\n";
- AM.getResult<DominatorTreeAnalysis>(F).print(OS);
- return PreservedAnalyses::all();
- }
- PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- assert(DT.verify());
- (void)DT;
- return PreservedAnalyses::all();
- }
- //===----------------------------------------------------------------------===//
- // DominatorTreeWrapperPass Implementation
- //===----------------------------------------------------------------------===//
- //
- // The implementation details of the wrapper pass that holds a DominatorTree
- // suitable for use with the legacy pass manager.
- //
- //===----------------------------------------------------------------------===//
- char DominatorTreeWrapperPass::ID = 0;
- DominatorTreeWrapperPass::DominatorTreeWrapperPass() : FunctionPass(ID) {
- initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry());
- }
- INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
- "Dominator Tree Construction", true, true)
- bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
- DT.recalculate(F);
- return false;
- }
- void DominatorTreeWrapperPass::verifyAnalysis() const {
- if (VerifyDomInfo)
- assert(DT.verify(DominatorTree::VerificationLevel::Full));
- else if (ExpensiveChecksEnabled)
- assert(DT.verify(DominatorTree::VerificationLevel::Basic));
- }
- void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
- DT.print(OS);
- }
|