123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308 |
- //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the common interface used by the various execution engine
- // subclasses.
- //
- // FIXME: This file needs to be updated to support scalable vectors
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ExecutionEngine/ExecutionEngine.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ExecutionEngine/GenericValue.h"
- #include "llvm/ExecutionEngine/JITEventListener.h"
- #include "llvm/ExecutionEngine/ObjectCache.h"
- #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Mangler.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/MC/TargetRegistry.h"
- #include "llvm/Object/Archive.h"
- #include "llvm/Object/ObjectFile.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/DynamicLibrary.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/Host.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetMachine.h"
- #include <cmath>
- #include <cstring>
- #include <mutex>
- using namespace llvm;
- #define DEBUG_TYPE "jit"
- STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
- STATISTIC(NumGlobals , "Number of global vars initialized");
- ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
- std::unique_ptr<Module> M, std::string *ErrorStr,
- std::shared_ptr<MCJITMemoryManager> MemMgr,
- std::shared_ptr<LegacyJITSymbolResolver> Resolver,
- std::unique_ptr<TargetMachine> TM) = nullptr;
- ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
- std::string *ErrorStr) =nullptr;
- void JITEventListener::anchor() {}
- void ObjectCache::anchor() {}
- void ExecutionEngine::Init(std::unique_ptr<Module> M) {
- CompilingLazily = false;
- GVCompilationDisabled = false;
- SymbolSearchingDisabled = false;
- // IR module verification is enabled by default in debug builds, and disabled
- // by default in release builds.
- #ifndef NDEBUG
- VerifyModules = true;
- #else
- VerifyModules = false;
- #endif
- assert(M && "Module is null?");
- Modules.push_back(std::move(M));
- }
- ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
- : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
- Init(std::move(M));
- }
- ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
- : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
- Init(std::move(M));
- }
- ExecutionEngine::~ExecutionEngine() {
- clearAllGlobalMappings();
- }
- namespace {
- /// Helper class which uses a value handler to automatically deletes the
- /// memory block when the GlobalVariable is destroyed.
- class GVMemoryBlock final : public CallbackVH {
- GVMemoryBlock(const GlobalVariable *GV)
- : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
- public:
- /// Returns the address the GlobalVariable should be written into. The
- /// GVMemoryBlock object prefixes that.
- static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
- Type *ElTy = GV->getValueType();
- size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
- void *RawMemory = ::operator new(
- alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlign(GV)) + GVSize);
- new(RawMemory) GVMemoryBlock(GV);
- return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
- }
- void deleted() override {
- // We allocated with operator new and with some extra memory hanging off the
- // end, so don't just delete this. I'm not sure if this is actually
- // required.
- this->~GVMemoryBlock();
- ::operator delete(this);
- }
- };
- } // anonymous namespace
- char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
- return GVMemoryBlock::Create(GV, getDataLayout());
- }
- void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
- llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
- }
- void
- ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
- llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
- }
- void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
- llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
- }
- bool ExecutionEngine::removeModule(Module *M) {
- for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
- Module *Found = I->get();
- if (Found == M) {
- I->release();
- Modules.erase(I);
- clearGlobalMappingsFromModule(M);
- return true;
- }
- }
- return false;
- }
- Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) {
- for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
- Function *F = Modules[i]->getFunction(FnName);
- if (F && !F->isDeclaration())
- return F;
- }
- return nullptr;
- }
- GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
- for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
- GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal);
- if (GV && !GV->isDeclaration())
- return GV;
- }
- return nullptr;
- }
- uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
- GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
- uint64_t OldVal;
- // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
- // GlobalAddressMap.
- if (I == GlobalAddressMap.end())
- OldVal = 0;
- else {
- GlobalAddressReverseMap.erase(I->second);
- OldVal = I->second;
- GlobalAddressMap.erase(I);
- }
- return OldVal;
- }
- std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
- assert(GV->hasName() && "Global must have name.");
- std::lock_guard<sys::Mutex> locked(lock);
- SmallString<128> FullName;
- const DataLayout &DL =
- GV->getParent()->getDataLayout().isDefault()
- ? getDataLayout()
- : GV->getParent()->getDataLayout();
- Mangler::getNameWithPrefix(FullName, GV->getName(), DL);
- return std::string(FullName.str());
- }
- void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
- std::lock_guard<sys::Mutex> locked(lock);
- addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
- }
- void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
- std::lock_guard<sys::Mutex> locked(lock);
- assert(!Name.empty() && "Empty GlobalMapping symbol name!");
- LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
- uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
- assert((!CurVal || !Addr) && "GlobalMapping already established!");
- CurVal = Addr;
- // If we are using the reverse mapping, add it too.
- if (!EEState.getGlobalAddressReverseMap().empty()) {
- std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
- assert((!V.empty() || !Name.empty()) &&
- "GlobalMapping already established!");
- V = std::string(Name);
- }
- }
- void ExecutionEngine::clearAllGlobalMappings() {
- std::lock_guard<sys::Mutex> locked(lock);
- EEState.getGlobalAddressMap().clear();
- EEState.getGlobalAddressReverseMap().clear();
- }
- void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
- std::lock_guard<sys::Mutex> locked(lock);
- for (GlobalObject &GO : M->global_objects())
- EEState.RemoveMapping(getMangledName(&GO));
- }
- uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
- void *Addr) {
- std::lock_guard<sys::Mutex> locked(lock);
- return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
- }
- uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
- std::lock_guard<sys::Mutex> locked(lock);
- ExecutionEngineState::GlobalAddressMapTy &Map =
- EEState.getGlobalAddressMap();
- // Deleting from the mapping?
- if (!Addr)
- return EEState.RemoveMapping(Name);
- uint64_t &CurVal = Map[Name];
- uint64_t OldVal = CurVal;
- if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
- EEState.getGlobalAddressReverseMap().erase(CurVal);
- CurVal = Addr;
- // If we are using the reverse mapping, add it too.
- if (!EEState.getGlobalAddressReverseMap().empty()) {
- std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
- assert((!V.empty() || !Name.empty()) &&
- "GlobalMapping already established!");
- V = std::string(Name);
- }
- return OldVal;
- }
- uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
- std::lock_guard<sys::Mutex> locked(lock);
- uint64_t Address = 0;
- ExecutionEngineState::GlobalAddressMapTy::iterator I =
- EEState.getGlobalAddressMap().find(S);
- if (I != EEState.getGlobalAddressMap().end())
- Address = I->second;
- return Address;
- }
- void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
- std::lock_guard<sys::Mutex> locked(lock);
- if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
- return Address;
- return nullptr;
- }
- void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
- std::lock_guard<sys::Mutex> locked(lock);
- return getPointerToGlobalIfAvailable(getMangledName(GV));
- }
- const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
- std::lock_guard<sys::Mutex> locked(lock);
- // If we haven't computed the reverse mapping yet, do so first.
- if (EEState.getGlobalAddressReverseMap().empty()) {
- for (ExecutionEngineState::GlobalAddressMapTy::iterator
- I = EEState.getGlobalAddressMap().begin(),
- E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
- StringRef Name = I->first();
- uint64_t Addr = I->second;
- EEState.getGlobalAddressReverseMap().insert(
- std::make_pair(Addr, std::string(Name)));
- }
- }
- std::map<uint64_t, std::string>::iterator I =
- EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
- if (I != EEState.getGlobalAddressReverseMap().end()) {
- StringRef Name = I->second;
- for (unsigned i = 0, e = Modules.size(); i != e; ++i)
- if (GlobalValue *GV = Modules[i]->getNamedValue(Name))
- return GV;
- }
- return nullptr;
- }
- namespace {
- class ArgvArray {
- std::unique_ptr<char[]> Array;
- std::vector<std::unique_ptr<char[]>> Values;
- public:
- /// Turn a vector of strings into a nice argv style array of pointers to null
- /// terminated strings.
- void *reset(LLVMContext &C, ExecutionEngine *EE,
- const std::vector<std::string> &InputArgv);
- };
- } // anonymous namespace
- void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
- const std::vector<std::string> &InputArgv) {
- Values.clear(); // Free the old contents.
- Values.reserve(InputArgv.size());
- unsigned PtrSize = EE->getDataLayout().getPointerSize();
- Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize);
- LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n");
- Type *SBytePtr = Type::getInt8PtrTy(C);
- for (unsigned i = 0; i != InputArgv.size(); ++i) {
- unsigned Size = InputArgv[i].size()+1;
- auto Dest = std::make_unique<char[]>(Size);
- LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get()
- << "\n");
- std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
- Dest[Size-1] = 0;
- // Endian safe: Array[i] = (PointerTy)Dest;
- EE->StoreValueToMemory(PTOGV(Dest.get()),
- (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
- Values.push_back(std::move(Dest));
- }
- // Null terminate it
- EE->StoreValueToMemory(PTOGV(nullptr),
- (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
- SBytePtr);
- return Array.get();
- }
- void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
- bool isDtors) {
- StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors");
- GlobalVariable *GV = module.getNamedGlobal(Name);
- // If this global has internal linkage, or if it has a use, then it must be
- // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
- // this is the case, don't execute any of the global ctors, __main will do
- // it.
- if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
- // Should be an array of '{ i32, void ()* }' structs. The first value is
- // the init priority, which we ignore.
- ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
- if (!InitList)
- return;
- for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
- ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
- if (!CS) continue;
- Constant *FP = CS->getOperand(1);
- if (FP->isNullValue())
- continue; // Found a sentinal value, ignore.
- // Strip off constant expression casts.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
- if (CE->isCast())
- FP = CE->getOperand(0);
- // Execute the ctor/dtor function!
- if (Function *F = dyn_cast<Function>(FP))
- runFunction(F, None);
- // FIXME: It is marginally lame that we just do nothing here if we see an
- // entry we don't recognize. It might not be unreasonable for the verifier
- // to not even allow this and just assert here.
- }
- }
- void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
- // Execute global ctors/dtors for each module in the program.
- for (std::unique_ptr<Module> &M : Modules)
- runStaticConstructorsDestructors(*M, isDtors);
- }
- #ifndef NDEBUG
- /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
- static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
- unsigned PtrSize = EE->getDataLayout().getPointerSize();
- for (unsigned i = 0; i < PtrSize; ++i)
- if (*(i + (uint8_t*)Loc))
- return false;
- return true;
- }
- #endif
- int ExecutionEngine::runFunctionAsMain(Function *Fn,
- const std::vector<std::string> &argv,
- const char * const * envp) {
- std::vector<GenericValue> GVArgs;
- GenericValue GVArgc;
- GVArgc.IntVal = APInt(32, argv.size());
- // Check main() type
- unsigned NumArgs = Fn->getFunctionType()->getNumParams();
- FunctionType *FTy = Fn->getFunctionType();
- Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
- // Check the argument types.
- if (NumArgs > 3)
- report_fatal_error("Invalid number of arguments of main() supplied");
- if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
- report_fatal_error("Invalid type for third argument of main() supplied");
- if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
- report_fatal_error("Invalid type for second argument of main() supplied");
- if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
- report_fatal_error("Invalid type for first argument of main() supplied");
- if (!FTy->getReturnType()->isIntegerTy() &&
- !FTy->getReturnType()->isVoidTy())
- report_fatal_error("Invalid return type of main() supplied");
- ArgvArray CArgv;
- ArgvArray CEnv;
- if (NumArgs) {
- GVArgs.push_back(GVArgc); // Arg #0 = argc.
- if (NumArgs > 1) {
- // Arg #1 = argv.
- GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
- assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
- "argv[0] was null after CreateArgv");
- if (NumArgs > 2) {
- std::vector<std::string> EnvVars;
- for (unsigned i = 0; envp[i]; ++i)
- EnvVars.emplace_back(envp[i]);
- // Arg #2 = envp.
- GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
- }
- }
- }
- return runFunction(Fn, GVArgs).IntVal.getZExtValue();
- }
- EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
- EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
- : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
- OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr) {
- // IR module verification is enabled by default in debug builds, and disabled
- // by default in release builds.
- #ifndef NDEBUG
- VerifyModules = true;
- #else
- VerifyModules = false;
- #endif
- }
- EngineBuilder::~EngineBuilder() = default;
- EngineBuilder &EngineBuilder::setMCJITMemoryManager(
- std::unique_ptr<RTDyldMemoryManager> mcjmm) {
- auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
- MemMgr = SharedMM;
- Resolver = SharedMM;
- return *this;
- }
- EngineBuilder&
- EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
- MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
- return *this;
- }
- EngineBuilder &
- EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) {
- Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR));
- return *this;
- }
- ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
- std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
- // Make sure we can resolve symbols in the program as well. The zero arg
- // to the function tells DynamicLibrary to load the program, not a library.
- if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
- return nullptr;
- // If the user specified a memory manager but didn't specify which engine to
- // create, we assume they only want the JIT, and we fail if they only want
- // the interpreter.
- if (MemMgr) {
- if (WhichEngine & EngineKind::JIT)
- WhichEngine = EngineKind::JIT;
- else {
- if (ErrorStr)
- *ErrorStr = "Cannot create an interpreter with a memory manager.";
- return nullptr;
- }
- }
- // Unless the interpreter was explicitly selected or the JIT is not linked,
- // try making a JIT.
- if ((WhichEngine & EngineKind::JIT) && TheTM) {
- if (!TM->getTarget().hasJIT()) {
- errs() << "WARNING: This target JIT is not designed for the host"
- << " you are running. If bad things happen, please choose"
- << " a different -march switch.\n";
- }
- ExecutionEngine *EE = nullptr;
- if (ExecutionEngine::MCJITCtor)
- EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
- std::move(Resolver), std::move(TheTM));
- if (EE) {
- EE->setVerifyModules(VerifyModules);
- return EE;
- }
- }
- // If we can't make a JIT and we didn't request one specifically, try making
- // an interpreter instead.
- if (WhichEngine & EngineKind::Interpreter) {
- if (ExecutionEngine::InterpCtor)
- return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
- if (ErrorStr)
- *ErrorStr = "Interpreter has not been linked in.";
- return nullptr;
- }
- if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
- if (ErrorStr)
- *ErrorStr = "JIT has not been linked in.";
- }
- return nullptr;
- }
- void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
- if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
- return getPointerToFunction(F);
- std::lock_guard<sys::Mutex> locked(lock);
- if (void* P = getPointerToGlobalIfAvailable(GV))
- return P;
- // Global variable might have been added since interpreter started.
- if (GlobalVariable *GVar =
- const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
- emitGlobalVariable(GVar);
- else
- llvm_unreachable("Global hasn't had an address allocated yet!");
- return getPointerToGlobalIfAvailable(GV);
- }
- /// Converts a Constant* into a GenericValue, including handling of
- /// ConstantExpr values.
- GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
- // If its undefined, return the garbage.
- if (isa<UndefValue>(C)) {
- GenericValue Result;
- switch (C->getType()->getTypeID()) {
- default:
- break;
- case Type::IntegerTyID:
- case Type::X86_FP80TyID:
- case Type::FP128TyID:
- case Type::PPC_FP128TyID:
- // Although the value is undefined, we still have to construct an APInt
- // with the correct bit width.
- Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
- break;
- case Type::StructTyID: {
- // if the whole struct is 'undef' just reserve memory for the value.
- if(StructType *STy = dyn_cast<StructType>(C->getType())) {
- unsigned int elemNum = STy->getNumElements();
- Result.AggregateVal.resize(elemNum);
- for (unsigned int i = 0; i < elemNum; ++i) {
- Type *ElemTy = STy->getElementType(i);
- if (ElemTy->isIntegerTy())
- Result.AggregateVal[i].IntVal =
- APInt(ElemTy->getPrimitiveSizeInBits(), 0);
- else if (ElemTy->isAggregateType()) {
- const Constant *ElemUndef = UndefValue::get(ElemTy);
- Result.AggregateVal[i] = getConstantValue(ElemUndef);
- }
- }
- }
- }
- break;
- case Type::ScalableVectorTyID:
- report_fatal_error(
- "Scalable vector support not yet implemented in ExecutionEngine");
- case Type::FixedVectorTyID:
- // if the whole vector is 'undef' just reserve memory for the value.
- auto *VTy = cast<FixedVectorType>(C->getType());
- Type *ElemTy = VTy->getElementType();
- unsigned int elemNum = VTy->getNumElements();
- Result.AggregateVal.resize(elemNum);
- if (ElemTy->isIntegerTy())
- for (unsigned int i = 0; i < elemNum; ++i)
- Result.AggregateVal[i].IntVal =
- APInt(ElemTy->getPrimitiveSizeInBits(), 0);
- break;
- }
- return Result;
- }
- // Otherwise, if the value is a ConstantExpr...
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- Constant *Op0 = CE->getOperand(0);
- switch (CE->getOpcode()) {
- case Instruction::GetElementPtr: {
- // Compute the index
- GenericValue Result = getConstantValue(Op0);
- APInt Offset(DL.getPointerSizeInBits(), 0);
- cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset);
- char* tmp = (char*) Result.PointerVal;
- Result = PTOGV(tmp + Offset.getSExtValue());
- return Result;
- }
- case Instruction::Trunc: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
- GV.IntVal = GV.IntVal.trunc(BitWidth);
- return GV;
- }
- case Instruction::ZExt: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
- GV.IntVal = GV.IntVal.zext(BitWidth);
- return GV;
- }
- case Instruction::SExt: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
- GV.IntVal = GV.IntVal.sext(BitWidth);
- return GV;
- }
- case Instruction::FPTrunc: {
- // FIXME long double
- GenericValue GV = getConstantValue(Op0);
- GV.FloatVal = float(GV.DoubleVal);
- return GV;
- }
- case Instruction::FPExt:{
- // FIXME long double
- GenericValue GV = getConstantValue(Op0);
- GV.DoubleVal = double(GV.FloatVal);
- return GV;
- }
- case Instruction::UIToFP: {
- GenericValue GV = getConstantValue(Op0);
- if (CE->getType()->isFloatTy())
- GV.FloatVal = float(GV.IntVal.roundToDouble());
- else if (CE->getType()->isDoubleTy())
- GV.DoubleVal = GV.IntVal.roundToDouble();
- else if (CE->getType()->isX86_FP80Ty()) {
- APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
- (void)apf.convertFromAPInt(GV.IntVal,
- false,
- APFloat::rmNearestTiesToEven);
- GV.IntVal = apf.bitcastToAPInt();
- }
- return GV;
- }
- case Instruction::SIToFP: {
- GenericValue GV = getConstantValue(Op0);
- if (CE->getType()->isFloatTy())
- GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
- else if (CE->getType()->isDoubleTy())
- GV.DoubleVal = GV.IntVal.signedRoundToDouble();
- else if (CE->getType()->isX86_FP80Ty()) {
- APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
- (void)apf.convertFromAPInt(GV.IntVal,
- true,
- APFloat::rmNearestTiesToEven);
- GV.IntVal = apf.bitcastToAPInt();
- }
- return GV;
- }
- case Instruction::FPToUI: // double->APInt conversion handles sign
- case Instruction::FPToSI: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
- if (Op0->getType()->isFloatTy())
- GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
- else if (Op0->getType()->isDoubleTy())
- GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
- else if (Op0->getType()->isX86_FP80Ty()) {
- APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
- uint64_t v;
- bool ignored;
- (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth,
- CE->getOpcode()==Instruction::FPToSI,
- APFloat::rmTowardZero, &ignored);
- GV.IntVal = v; // endian?
- }
- return GV;
- }
- case Instruction::PtrToInt: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType());
- assert(PtrWidth <= 64 && "Bad pointer width");
- GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
- uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType());
- GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
- return GV;
- }
- case Instruction::IntToPtr: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType());
- GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
- assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
- GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
- return GV;
- }
- case Instruction::BitCast: {
- GenericValue GV = getConstantValue(Op0);
- Type* DestTy = CE->getType();
- switch (Op0->getType()->getTypeID()) {
- default: llvm_unreachable("Invalid bitcast operand");
- case Type::IntegerTyID:
- assert(DestTy->isFloatingPointTy() && "invalid bitcast");
- if (DestTy->isFloatTy())
- GV.FloatVal = GV.IntVal.bitsToFloat();
- else if (DestTy->isDoubleTy())
- GV.DoubleVal = GV.IntVal.bitsToDouble();
- break;
- case Type::FloatTyID:
- assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
- GV.IntVal = APInt::floatToBits(GV.FloatVal);
- break;
- case Type::DoubleTyID:
- assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
- GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
- break;
- case Type::PointerTyID:
- assert(DestTy->isPointerTy() && "Invalid bitcast");
- break; // getConstantValue(Op0) above already converted it
- }
- return GV;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- GenericValue LHS = getConstantValue(Op0);
- GenericValue RHS = getConstantValue(CE->getOperand(1));
- GenericValue GV;
- switch (CE->getOperand(0)->getType()->getTypeID()) {
- default: llvm_unreachable("Bad add type!");
- case Type::IntegerTyID:
- switch (CE->getOpcode()) {
- default: llvm_unreachable("Invalid integer opcode");
- case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
- case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
- case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
- case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
- case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
- case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
- case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
- case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
- case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
- case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
- }
- break;
- case Type::FloatTyID:
- switch (CE->getOpcode()) {
- default: llvm_unreachable("Invalid float opcode");
- case Instruction::FAdd:
- GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
- case Instruction::FSub:
- GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
- case Instruction::FMul:
- GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
- case Instruction::FDiv:
- GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
- case Instruction::FRem:
- GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
- }
- break;
- case Type::DoubleTyID:
- switch (CE->getOpcode()) {
- default: llvm_unreachable("Invalid double opcode");
- case Instruction::FAdd:
- GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
- case Instruction::FSub:
- GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
- case Instruction::FMul:
- GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
- case Instruction::FDiv:
- GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
- case Instruction::FRem:
- GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
- }
- break;
- case Type::X86_FP80TyID:
- case Type::PPC_FP128TyID:
- case Type::FP128TyID: {
- const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
- APFloat apfLHS = APFloat(Sem, LHS.IntVal);
- switch (CE->getOpcode()) {
- default: llvm_unreachable("Invalid long double opcode");
- case Instruction::FAdd:
- apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.bitcastToAPInt();
- break;
- case Instruction::FSub:
- apfLHS.subtract(APFloat(Sem, RHS.IntVal),
- APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.bitcastToAPInt();
- break;
- case Instruction::FMul:
- apfLHS.multiply(APFloat(Sem, RHS.IntVal),
- APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.bitcastToAPInt();
- break;
- case Instruction::FDiv:
- apfLHS.divide(APFloat(Sem, RHS.IntVal),
- APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.bitcastToAPInt();
- break;
- case Instruction::FRem:
- apfLHS.mod(APFloat(Sem, RHS.IntVal));
- GV.IntVal = apfLHS.bitcastToAPInt();
- break;
- }
- }
- break;
- }
- return GV;
- }
- default:
- break;
- }
- SmallString<256> Msg;
- raw_svector_ostream OS(Msg);
- OS << "ConstantExpr not handled: " << *CE;
- report_fatal_error(OS.str());
- }
- // Otherwise, we have a simple constant.
- GenericValue Result;
- switch (C->getType()->getTypeID()) {
- case Type::FloatTyID:
- Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
- break;
- case Type::DoubleTyID:
- Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
- break;
- case Type::X86_FP80TyID:
- case Type::FP128TyID:
- case Type::PPC_FP128TyID:
- Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
- break;
- case Type::IntegerTyID:
- Result.IntVal = cast<ConstantInt>(C)->getValue();
- break;
- case Type::PointerTyID:
- while (auto *A = dyn_cast<GlobalAlias>(C)) {
- C = A->getAliasee();
- }
- if (isa<ConstantPointerNull>(C))
- Result.PointerVal = nullptr;
- else if (const Function *F = dyn_cast<Function>(C))
- Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
- else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
- Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
- else
- llvm_unreachable("Unknown constant pointer type!");
- break;
- case Type::ScalableVectorTyID:
- report_fatal_error(
- "Scalable vector support not yet implemented in ExecutionEngine");
- case Type::FixedVectorTyID: {
- unsigned elemNum;
- Type* ElemTy;
- const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
- const ConstantVector *CV = dyn_cast<ConstantVector>(C);
- const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
- if (CDV) {
- elemNum = CDV->getNumElements();
- ElemTy = CDV->getElementType();
- } else if (CV || CAZ) {
- auto *VTy = cast<FixedVectorType>(C->getType());
- elemNum = VTy->getNumElements();
- ElemTy = VTy->getElementType();
- } else {
- llvm_unreachable("Unknown constant vector type!");
- }
- Result.AggregateVal.resize(elemNum);
- // Check if vector holds floats.
- if(ElemTy->isFloatTy()) {
- if (CAZ) {
- GenericValue floatZero;
- floatZero.FloatVal = 0.f;
- std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
- floatZero);
- break;
- }
- if(CV) {
- for (unsigned i = 0; i < elemNum; ++i)
- if (!isa<UndefValue>(CV->getOperand(i)))
- Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
- CV->getOperand(i))->getValueAPF().convertToFloat();
- break;
- }
- if(CDV)
- for (unsigned i = 0; i < elemNum; ++i)
- Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
- break;
- }
- // Check if vector holds doubles.
- if (ElemTy->isDoubleTy()) {
- if (CAZ) {
- GenericValue doubleZero;
- doubleZero.DoubleVal = 0.0;
- std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
- doubleZero);
- break;
- }
- if(CV) {
- for (unsigned i = 0; i < elemNum; ++i)
- if (!isa<UndefValue>(CV->getOperand(i)))
- Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
- CV->getOperand(i))->getValueAPF().convertToDouble();
- break;
- }
- if(CDV)
- for (unsigned i = 0; i < elemNum; ++i)
- Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
- break;
- }
- // Check if vector holds integers.
- if (ElemTy->isIntegerTy()) {
- if (CAZ) {
- GenericValue intZero;
- intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
- std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
- intZero);
- break;
- }
- if(CV) {
- for (unsigned i = 0; i < elemNum; ++i)
- if (!isa<UndefValue>(CV->getOperand(i)))
- Result.AggregateVal[i].IntVal = cast<ConstantInt>(
- CV->getOperand(i))->getValue();
- else {
- Result.AggregateVal[i].IntVal =
- APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
- }
- break;
- }
- if(CDV)
- for (unsigned i = 0; i < elemNum; ++i)
- Result.AggregateVal[i].IntVal = APInt(
- CDV->getElementType()->getPrimitiveSizeInBits(),
- CDV->getElementAsInteger(i));
- break;
- }
- llvm_unreachable("Unknown constant pointer type!");
- } break;
- default:
- SmallString<256> Msg;
- raw_svector_ostream OS(Msg);
- OS << "ERROR: Constant unimplemented for type: " << *C->getType();
- report_fatal_error(OS.str());
- }
- return Result;
- }
- void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
- GenericValue *Ptr, Type *Ty) {
- const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
- switch (Ty->getTypeID()) {
- default:
- dbgs() << "Cannot store value of type " << *Ty << "!\n";
- break;
- case Type::IntegerTyID:
- StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
- break;
- case Type::FloatTyID:
- *((float*)Ptr) = Val.FloatVal;
- break;
- case Type::DoubleTyID:
- *((double*)Ptr) = Val.DoubleVal;
- break;
- case Type::X86_FP80TyID:
- memcpy(Ptr, Val.IntVal.getRawData(), 10);
- break;
- case Type::PointerTyID:
- // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
- if (StoreBytes != sizeof(PointerTy))
- memset(&(Ptr->PointerVal), 0, StoreBytes);
- *((PointerTy*)Ptr) = Val.PointerVal;
- break;
- case Type::FixedVectorTyID:
- case Type::ScalableVectorTyID:
- for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
- if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
- *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
- *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
- if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
- unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
- StoreIntToMemory(Val.AggregateVal[i].IntVal,
- (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
- }
- }
- break;
- }
- if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
- // Host and target are different endian - reverse the stored bytes.
- std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
- }
- /// FIXME: document
- ///
- void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
- GenericValue *Ptr,
- Type *Ty) {
- const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- // An APInt with all words initially zero.
- Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
- LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
- break;
- case Type::FloatTyID:
- Result.FloatVal = *((float*)Ptr);
- break;
- case Type::DoubleTyID:
- Result.DoubleVal = *((double*)Ptr);
- break;
- case Type::PointerTyID:
- Result.PointerVal = *((PointerTy*)Ptr);
- break;
- case Type::X86_FP80TyID: {
- // This is endian dependent, but it will only work on x86 anyway.
- // FIXME: Will not trap if loading a signaling NaN.
- uint64_t y[2];
- memcpy(y, Ptr, 10);
- Result.IntVal = APInt(80, y);
- break;
- }
- case Type::ScalableVectorTyID:
- report_fatal_error(
- "Scalable vector support not yet implemented in ExecutionEngine");
- case Type::FixedVectorTyID: {
- auto *VT = cast<FixedVectorType>(Ty);
- Type *ElemT = VT->getElementType();
- const unsigned numElems = VT->getNumElements();
- if (ElemT->isFloatTy()) {
- Result.AggregateVal.resize(numElems);
- for (unsigned i = 0; i < numElems; ++i)
- Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
- }
- if (ElemT->isDoubleTy()) {
- Result.AggregateVal.resize(numElems);
- for (unsigned i = 0; i < numElems; ++i)
- Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
- }
- if (ElemT->isIntegerTy()) {
- GenericValue intZero;
- const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
- intZero.IntVal = APInt(elemBitWidth, 0);
- Result.AggregateVal.resize(numElems, intZero);
- for (unsigned i = 0; i < numElems; ++i)
- LoadIntFromMemory(Result.AggregateVal[i].IntVal,
- (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
- }
- break;
- }
- default:
- SmallString<256> Msg;
- raw_svector_ostream OS(Msg);
- OS << "Cannot load value of type " << *Ty << "!";
- report_fatal_error(OS.str());
- }
- }
- void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
- LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
- LLVM_DEBUG(Init->dump());
- if (isa<UndefValue>(Init))
- return;
- if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
- unsigned ElementSize =
- getDataLayout().getTypeAllocSize(CP->getType()->getElementType());
- for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
- InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
- return;
- }
- if (isa<ConstantAggregateZero>(Init)) {
- memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType()));
- return;
- }
- if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
- unsigned ElementSize =
- getDataLayout().getTypeAllocSize(CPA->getType()->getElementType());
- for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
- InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
- return;
- }
- if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
- const StructLayout *SL =
- getDataLayout().getStructLayout(cast<StructType>(CPS->getType()));
- for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
- InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
- return;
- }
- if (const ConstantDataSequential *CDS =
- dyn_cast<ConstantDataSequential>(Init)) {
- // CDS is already laid out in host memory order.
- StringRef Data = CDS->getRawDataValues();
- memcpy(Addr, Data.data(), Data.size());
- return;
- }
- if (Init->getType()->isFirstClassType()) {
- GenericValue Val = getConstantValue(Init);
- StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
- return;
- }
- LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
- llvm_unreachable("Unknown constant type to initialize memory with!");
- }
- /// EmitGlobals - Emit all of the global variables to memory, storing their
- /// addresses into GlobalAddress. This must make sure to copy the contents of
- /// their initializers into the memory.
- void ExecutionEngine::emitGlobals() {
- // Loop over all of the global variables in the program, allocating the memory
- // to hold them. If there is more than one module, do a prepass over globals
- // to figure out how the different modules should link together.
- std::map<std::pair<std::string, Type*>,
- const GlobalValue*> LinkedGlobalsMap;
- if (Modules.size() != 1) {
- for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
- Module &M = *Modules[m];
- for (const auto &GV : M.globals()) {
- if (GV.hasLocalLinkage() || GV.isDeclaration() ||
- GV.hasAppendingLinkage() || !GV.hasName())
- continue;// Ignore external globals and globals with internal linkage.
- const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(
- std::string(GV.getName()), GV.getType())];
- // If this is the first time we've seen this global, it is the canonical
- // version.
- if (!GVEntry) {
- GVEntry = &GV;
- continue;
- }
- // If the existing global is strong, never replace it.
- if (GVEntry->hasExternalLinkage())
- continue;
- // Otherwise, we know it's linkonce/weak, replace it if this is a strong
- // symbol. FIXME is this right for common?
- if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
- GVEntry = &GV;
- }
- }
- }
- std::vector<const GlobalValue*> NonCanonicalGlobals;
- for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
- Module &M = *Modules[m];
- for (const auto &GV : M.globals()) {
- // In the multi-module case, see what this global maps to.
- if (!LinkedGlobalsMap.empty()) {
- if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
- std::string(GV.getName()), GV.getType())]) {
- // If something else is the canonical global, ignore this one.
- if (GVEntry != &GV) {
- NonCanonicalGlobals.push_back(&GV);
- continue;
- }
- }
- }
- if (!GV.isDeclaration()) {
- addGlobalMapping(&GV, getMemoryForGV(&GV));
- } else {
- // External variable reference. Try to use the dynamic loader to
- // get a pointer to it.
- if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(
- std::string(GV.getName())))
- addGlobalMapping(&GV, SymAddr);
- else {
- report_fatal_error("Could not resolve external global address: "
- +GV.getName());
- }
- }
- }
- // If there are multiple modules, map the non-canonical globals to their
- // canonical location.
- if (!NonCanonicalGlobals.empty()) {
- for (const GlobalValue *GV : NonCanonicalGlobals) {
- const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair(
- std::string(GV->getName()), GV->getType())];
- void *Ptr = getPointerToGlobalIfAvailable(CGV);
- assert(Ptr && "Canonical global wasn't codegen'd!");
- addGlobalMapping(GV, Ptr);
- }
- }
- // Now that all of the globals are set up in memory, loop through them all
- // and initialize their contents.
- for (const auto &GV : M.globals()) {
- if (!GV.isDeclaration()) {
- if (!LinkedGlobalsMap.empty()) {
- if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
- std::string(GV.getName()), GV.getType())])
- if (GVEntry != &GV) // Not the canonical variable.
- continue;
- }
- emitGlobalVariable(&GV);
- }
- }
- }
- }
- // EmitGlobalVariable - This method emits the specified global variable to the
- // address specified in GlobalAddresses, or allocates new memory if it's not
- // already in the map.
- void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) {
- void *GA = getPointerToGlobalIfAvailable(GV);
- if (!GA) {
- // If it's not already specified, allocate memory for the global.
- GA = getMemoryForGV(GV);
- // If we failed to allocate memory for this global, return.
- if (!GA) return;
- addGlobalMapping(GV, GA);
- }
- // Don't initialize if it's thread local, let the client do it.
- if (!GV->isThreadLocal())
- InitializeMemory(GV->getInitializer(), GA);
- Type *ElTy = GV->getValueType();
- size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy);
- NumInitBytes += (unsigned)GVSize;
- ++NumGlobals;
- }
|