123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- //===- XRayInstrumentation.cpp - Adds XRay instrumentation to functions. --===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a MachineFunctionPass that inserts the appropriate
- // XRay instrumentation instructions. We look for XRay-specific attributes
- // on the function to determine whether we should insert the replacement
- // operations.
- //
- //===---------------------------------------------------------------------===//
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Target/TargetMachine.h"
- using namespace llvm;
- namespace {
- struct InstrumentationOptions {
- // Whether to emit PATCHABLE_TAIL_CALL.
- bool HandleTailcall;
- // Whether to emit PATCHABLE_RET/PATCHABLE_FUNCTION_EXIT for all forms of
- // return, e.g. conditional return.
- bool HandleAllReturns;
- };
- struct XRayInstrumentation : public MachineFunctionPass {
- static char ID;
- XRayInstrumentation() : MachineFunctionPass(ID) {
- initializeXRayInstrumentationPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addPreserved<MachineLoopInfo>();
- AU.addPreserved<MachineDominatorTree>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- bool runOnMachineFunction(MachineFunction &MF) override;
- private:
- // Replace the original RET instruction with the exit sled code ("patchable
- // ret" pseudo-instruction), so that at runtime XRay can replace the sled
- // with a code jumping to XRay trampoline, which calls the tracing handler
- // and, in the end, issues the RET instruction.
- // This is the approach to go on CPUs which have a single RET instruction,
- // like x86/x86_64.
- void replaceRetWithPatchableRet(MachineFunction &MF,
- const TargetInstrInfo *TII,
- InstrumentationOptions);
- // Prepend the original return instruction with the exit sled code ("patchable
- // function exit" pseudo-instruction), preserving the original return
- // instruction just after the exit sled code.
- // This is the approach to go on CPUs which have multiple options for the
- // return instruction, like ARM. For such CPUs we can't just jump into the
- // XRay trampoline and issue a single return instruction there. We rather
- // have to call the trampoline and return from it to the original return
- // instruction of the function being instrumented.
- void prependRetWithPatchableExit(MachineFunction &MF,
- const TargetInstrInfo *TII,
- InstrumentationOptions);
- };
- } // end anonymous namespace
- void XRayInstrumentation::replaceRetWithPatchableRet(
- MachineFunction &MF, const TargetInstrInfo *TII,
- InstrumentationOptions op) {
- // We look for *all* terminators and returns, then replace those with
- // PATCHABLE_RET instructions.
- SmallVector<MachineInstr *, 4> Terminators;
- for (auto &MBB : MF) {
- for (auto &T : MBB.terminators()) {
- unsigned Opc = 0;
- if (T.isReturn() &&
- (op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) {
- // Replace return instructions with:
- // PATCHABLE_RET <Opcode>, <Operand>...
- Opc = TargetOpcode::PATCHABLE_RET;
- }
- if (TII->isTailCall(T) && op.HandleTailcall) {
- // Treat the tail call as a return instruction, which has a
- // different-looking sled than the normal return case.
- Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
- }
- if (Opc != 0) {
- auto MIB = BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc))
- .addImm(T.getOpcode());
- for (auto &MO : T.operands())
- MIB.add(MO);
- Terminators.push_back(&T);
- if (T.shouldUpdateCallSiteInfo())
- MF.eraseCallSiteInfo(&T);
- }
- }
- }
- for (auto &I : Terminators)
- I->eraseFromParent();
- }
- void XRayInstrumentation::prependRetWithPatchableExit(
- MachineFunction &MF, const TargetInstrInfo *TII,
- InstrumentationOptions op) {
- for (auto &MBB : MF)
- for (auto &T : MBB.terminators()) {
- unsigned Opc = 0;
- if (T.isReturn() &&
- (op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) {
- Opc = TargetOpcode::PATCHABLE_FUNCTION_EXIT;
- }
- if (TII->isTailCall(T) && op.HandleTailcall) {
- Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
- }
- if (Opc != 0) {
- // Prepend the return instruction with PATCHABLE_FUNCTION_EXIT or
- // PATCHABLE_TAIL_CALL .
- BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc));
- }
- }
- }
- bool XRayInstrumentation::runOnMachineFunction(MachineFunction &MF) {
- auto &F = MF.getFunction();
- auto InstrAttr = F.getFnAttribute("function-instrument");
- bool AlwaysInstrument = InstrAttr.isStringAttribute() &&
- InstrAttr.getValueAsString() == "xray-always";
- bool NeverInstrument = InstrAttr.isStringAttribute() &&
- InstrAttr.getValueAsString() == "xray-never";
- if (NeverInstrument && !AlwaysInstrument)
- return false;
- auto ThresholdAttr = F.getFnAttribute("xray-instruction-threshold");
- auto IgnoreLoopsAttr = F.getFnAttribute("xray-ignore-loops");
- unsigned int XRayThreshold = 0;
- if (!AlwaysInstrument) {
- if (!ThresholdAttr.isStringAttribute())
- return false; // XRay threshold attribute not found.
- if (ThresholdAttr.getValueAsString().getAsInteger(10, XRayThreshold))
- return false; // Invalid value for threshold.
- bool IgnoreLoops = IgnoreLoopsAttr.isValid();
- // Count the number of MachineInstr`s in MachineFunction
- int64_t MICount = 0;
- for (const auto &MBB : MF)
- MICount += MBB.size();
- bool TooFewInstrs = MICount < XRayThreshold;
- if (!IgnoreLoops) {
- // Get MachineDominatorTree or compute it on the fly if it's unavailable
- auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>();
- MachineDominatorTree ComputedMDT;
- if (!MDT) {
- ComputedMDT.getBase().recalculate(MF);
- MDT = &ComputedMDT;
- }
- // Get MachineLoopInfo or compute it on the fly if it's unavailable
- auto *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
- MachineLoopInfo ComputedMLI;
- if (!MLI) {
- ComputedMLI.getBase().analyze(MDT->getBase());
- MLI = &ComputedMLI;
- }
- // Check if we have a loop.
- // FIXME: Maybe make this smarter, and see whether the loops are dependent
- // on inputs or side-effects?
- if (MLI->empty() && TooFewInstrs)
- return false; // Function is too small and has no loops.
- } else if (TooFewInstrs) {
- // Function is too small
- return false;
- }
- }
- // We look for the first non-empty MachineBasicBlock, so that we can insert
- // the function instrumentation in the appropriate place.
- auto MBI = llvm::find_if(
- MF, [&](const MachineBasicBlock &MBB) { return !MBB.empty(); });
- if (MBI == MF.end())
- return false; // The function is empty.
- auto *TII = MF.getSubtarget().getInstrInfo();
- auto &FirstMBB = *MBI;
- auto &FirstMI = *FirstMBB.begin();
- if (!MF.getSubtarget().isXRaySupported()) {
- FirstMI.emitError("An attempt to perform XRay instrumentation for an"
- " unsupported target.");
- return false;
- }
- if (!F.hasFnAttribute("xray-skip-entry")) {
- // First, insert an PATCHABLE_FUNCTION_ENTER as the first instruction of the
- // MachineFunction.
- BuildMI(FirstMBB, FirstMI, FirstMI.getDebugLoc(),
- TII->get(TargetOpcode::PATCHABLE_FUNCTION_ENTER));
- }
- if (!F.hasFnAttribute("xray-skip-exit")) {
- switch (MF.getTarget().getTargetTriple().getArch()) {
- case Triple::ArchType::arm:
- case Triple::ArchType::thumb:
- case Triple::ArchType::aarch64:
- case Triple::ArchType::hexagon:
- case Triple::ArchType::mips:
- case Triple::ArchType::mipsel:
- case Triple::ArchType::mips64:
- case Triple::ArchType::mips64el: {
- // For the architectures which don't have a single return instruction
- InstrumentationOptions op;
- op.HandleTailcall = false;
- op.HandleAllReturns = true;
- prependRetWithPatchableExit(MF, TII, op);
- break;
- }
- case Triple::ArchType::ppc64le: {
- // PPC has conditional returns. Turn them into branch and plain returns.
- InstrumentationOptions op;
- op.HandleTailcall = false;
- op.HandleAllReturns = true;
- replaceRetWithPatchableRet(MF, TII, op);
- break;
- }
- default: {
- // For the architectures that have a single return instruction (such as
- // RETQ on x86_64).
- InstrumentationOptions op;
- op.HandleTailcall = true;
- op.HandleAllReturns = false;
- replaceRetWithPatchableRet(MF, TII, op);
- break;
- }
- }
- }
- return true;
- }
- char XRayInstrumentation::ID = 0;
- char &llvm::XRayInstrumentationID = XRayInstrumentation::ID;
- INITIALIZE_PASS_BEGIN(XRayInstrumentation, "xray-instrumentation",
- "Insert XRay ops", false, false)
- INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
- INITIALIZE_PASS_END(XRayInstrumentation, "xray-instrumentation",
- "Insert XRay ops", false, false)
|