1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779 |
- //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the RAGreedy function pass for register allocation in
- // optimized builds.
- //
- //===----------------------------------------------------------------------===//
- #include "RegAllocGreedy.h"
- #include "AllocationOrder.h"
- #include "InterferenceCache.h"
- #include "LiveDebugVariables.h"
- #include "RegAllocBase.h"
- #include "RegAllocEvictionAdvisor.h"
- #include "SpillPlacement.h"
- #include "SplitKit.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/IndexedMap.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/CodeGen/CalcSpillWeights.h"
- #include "llvm/CodeGen/EdgeBundles.h"
- #include "llvm/CodeGen/LiveInterval.h"
- #include "llvm/CodeGen/LiveIntervalUnion.h"
- #include "llvm/CodeGen/LiveIntervals.h"
- #include "llvm/CodeGen/LiveRangeEdit.h"
- #include "llvm/CodeGen/LiveRegMatrix.h"
- #include "llvm/CodeGen/LiveStacks.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/RegAllocRegistry.h"
- #include "llvm/CodeGen/RegisterClassInfo.h"
- #include "llvm/CodeGen/SlotIndexes.h"
- #include "llvm/CodeGen/Spiller.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/CodeGen/VirtRegMap.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/MC/MCRegisterInfo.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/BlockFrequency.h"
- #include "llvm/Support/BranchProbability.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/Timer.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetMachine.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <memory>
- #include <queue>
- #include <tuple>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "regalloc"
- STATISTIC(NumGlobalSplits, "Number of split global live ranges");
- STATISTIC(NumLocalSplits, "Number of split local live ranges");
- STATISTIC(NumEvicted, "Number of interferences evicted");
- static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
- "split-spill-mode", cl::Hidden,
- cl::desc("Spill mode for splitting live ranges"),
- cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
- clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
- clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
- cl::init(SplitEditor::SM_Speed));
- static cl::opt<unsigned>
- LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
- cl::desc("Last chance recoloring max depth"),
- cl::init(5));
- static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
- "lcr-max-interf", cl::Hidden,
- cl::desc("Last chance recoloring maximum number of considered"
- " interference at a time"),
- cl::init(8));
- static cl::opt<bool> ExhaustiveSearch(
- "exhaustive-register-search", cl::NotHidden,
- cl::desc("Exhaustive Search for registers bypassing the depth "
- "and interference cutoffs of last chance recoloring"),
- cl::Hidden);
- static cl::opt<bool> EnableDeferredSpilling(
- "enable-deferred-spilling", cl::Hidden,
- cl::desc("Instead of spilling a variable right away, defer the actual "
- "code insertion to the end of the allocation. That way the "
- "allocator might still find a suitable coloring for this "
- "variable because of other evicted variables."),
- cl::init(false));
- // FIXME: Find a good default for this flag and remove the flag.
- static cl::opt<unsigned>
- CSRFirstTimeCost("regalloc-csr-first-time-cost",
- cl::desc("Cost for first time use of callee-saved register."),
- cl::init(0), cl::Hidden);
- static cl::opt<bool> ConsiderLocalIntervalCost(
- "consider-local-interval-cost", cl::Hidden,
- cl::desc("Consider the cost of local intervals created by a split "
- "candidate when choosing the best split candidate."),
- cl::init(false));
- static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
- createGreedyRegisterAllocator);
- char RAGreedy::ID = 0;
- char &llvm::RAGreedyID = RAGreedy::ID;
- INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
- "Greedy Register Allocator", false, false)
- INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
- INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
- INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
- INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
- INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
- INITIALIZE_PASS_DEPENDENCY(LiveStacks)
- INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
- INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
- INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
- INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
- INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
- INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
- INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
- INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
- INITIALIZE_PASS_END(RAGreedy, "greedy",
- "Greedy Register Allocator", false, false)
- #ifndef NDEBUG
- const char *const RAGreedy::StageName[] = {
- "RS_New",
- "RS_Assign",
- "RS_Split",
- "RS_Split2",
- "RS_Spill",
- "RS_Memory",
- "RS_Done"
- };
- #endif
- // Hysteresis to use when comparing floats.
- // This helps stabilize decisions based on float comparisons.
- const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
- FunctionPass* llvm::createGreedyRegisterAllocator() {
- return new RAGreedy();
- }
- namespace llvm {
- FunctionPass* createGreedyRegisterAllocator(
- std::function<bool(const TargetRegisterInfo &TRI,
- const TargetRegisterClass &RC)> Ftor);
- }
- FunctionPass* llvm::createGreedyRegisterAllocator(
- std::function<bool(const TargetRegisterInfo &TRI,
- const TargetRegisterClass &RC)> Ftor) {
- return new RAGreedy(Ftor);
- }
- RAGreedy::RAGreedy(RegClassFilterFunc F):
- MachineFunctionPass(ID),
- RegAllocBase(F) {
- }
- void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.addPreserved<MachineBlockFrequencyInfo>();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addPreserved<AAResultsWrapperPass>();
- AU.addRequired<LiveIntervals>();
- AU.addPreserved<LiveIntervals>();
- AU.addRequired<SlotIndexes>();
- AU.addPreserved<SlotIndexes>();
- AU.addRequired<LiveDebugVariables>();
- AU.addPreserved<LiveDebugVariables>();
- AU.addRequired<LiveStacks>();
- AU.addPreserved<LiveStacks>();
- AU.addRequired<MachineDominatorTree>();
- AU.addPreserved<MachineDominatorTree>();
- AU.addRequired<MachineLoopInfo>();
- AU.addPreserved<MachineLoopInfo>();
- AU.addRequired<VirtRegMap>();
- AU.addPreserved<VirtRegMap>();
- AU.addRequired<LiveRegMatrix>();
- AU.addPreserved<LiveRegMatrix>();
- AU.addRequired<EdgeBundles>();
- AU.addRequired<SpillPlacement>();
- AU.addRequired<MachineOptimizationRemarkEmitterPass>();
- AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- //===----------------------------------------------------------------------===//
- // LiveRangeEdit delegate methods
- //===----------------------------------------------------------------------===//
- bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
- LiveInterval &LI = LIS->getInterval(VirtReg);
- if (VRM->hasPhys(VirtReg)) {
- Matrix->unassign(LI);
- aboutToRemoveInterval(LI);
- return true;
- }
- // Unassigned virtreg is probably in the priority queue.
- // RegAllocBase will erase it after dequeueing.
- // Nonetheless, clear the live-range so that the debug
- // dump will show the right state for that VirtReg.
- LI.clear();
- return false;
- }
- void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
- if (!VRM->hasPhys(VirtReg))
- return;
- // Register is assigned, put it back on the queue for reassignment.
- LiveInterval &LI = LIS->getInterval(VirtReg);
- Matrix->unassign(LI);
- RegAllocBase::enqueue(&LI);
- }
- void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
- ExtraInfo->LRE_DidCloneVirtReg(New, Old);
- }
- void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
- // Cloning a register we haven't even heard about yet? Just ignore it.
- if (!Info.inBounds(Old))
- return;
- // LRE may clone a virtual register because dead code elimination causes it to
- // be split into connected components. The new components are much smaller
- // than the original, so they should get a new chance at being assigned.
- // same stage as the parent.
- Info[Old].Stage = RS_Assign;
- Info.grow(New.id());
- Info[New] = Info[Old];
- }
- void RAGreedy::releaseMemory() {
- SpillerInstance.reset();
- GlobalCand.clear();
- }
- void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); }
- void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
- // Prioritize live ranges by size, assigning larger ranges first.
- // The queue holds (size, reg) pairs.
- const unsigned Size = LI->getSize();
- const Register Reg = LI->reg();
- assert(Reg.isVirtual() && "Can only enqueue virtual registers");
- unsigned Prio;
- auto Stage = ExtraInfo->getOrInitStage(Reg);
- if (Stage == RS_New) {
- Stage = RS_Assign;
- ExtraInfo->setStage(Reg, Stage);
- }
- if (Stage == RS_Split) {
- // Unsplit ranges that couldn't be allocated immediately are deferred until
- // everything else has been allocated.
- Prio = Size;
- } else if (Stage == RS_Memory) {
- // Memory operand should be considered last.
- // Change the priority such that Memory operand are assigned in
- // the reverse order that they came in.
- // TODO: Make this a member variable and probably do something about hints.
- static unsigned MemOp = 0;
- Prio = MemOp++;
- } else {
- // Giant live ranges fall back to the global assignment heuristic, which
- // prevents excessive spilling in pathological cases.
- bool ReverseLocal = TRI->reverseLocalAssignment();
- const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
- bool ForceGlobal = !ReverseLocal &&
- (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC));
- if (Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
- LIS->intervalIsInOneMBB(*LI)) {
- // Allocate original local ranges in linear instruction order. Since they
- // are singly defined, this produces optimal coloring in the absence of
- // global interference and other constraints.
- if (!ReverseLocal)
- Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
- else {
- // Allocating bottom up may allow many short LRGs to be assigned first
- // to one of the cheap registers. This could be much faster for very
- // large blocks on targets with many physical registers.
- Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
- }
- Prio |= RC.AllocationPriority << 24;
- } else {
- // Allocate global and split ranges in long->short order. Long ranges that
- // don't fit should be spilled (or split) ASAP so they don't create
- // interference. Mark a bit to prioritize global above local ranges.
- Prio = (1u << 29) + Size;
- Prio |= RC.AllocationPriority << 24;
- }
- // Mark a higher bit to prioritize global and local above RS_Split.
- Prio |= (1u << 31);
- // Boost ranges that have a physical register hint.
- if (VRM->hasKnownPreference(Reg))
- Prio |= (1u << 30);
- }
- // The virtual register number is a tie breaker for same-sized ranges.
- // Give lower vreg numbers higher priority to assign them first.
- CurQueue.push(std::make_pair(Prio, ~Reg));
- }
- LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
- LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
- if (CurQueue.empty())
- return nullptr;
- LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
- CurQueue.pop();
- return LI;
- }
- //===----------------------------------------------------------------------===//
- // Direct Assignment
- //===----------------------------------------------------------------------===//
- /// tryAssign - Try to assign VirtReg to an available register.
- MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs,
- const SmallVirtRegSet &FixedRegisters) {
- MCRegister PhysReg;
- for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
- assert(*I);
- if (!Matrix->checkInterference(VirtReg, *I)) {
- if (I.isHint())
- return *I;
- else
- PhysReg = *I;
- }
- }
- if (!PhysReg.isValid())
- return PhysReg;
- // PhysReg is available, but there may be a better choice.
- // If we missed a simple hint, try to cheaply evict interference from the
- // preferred register.
- if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
- if (Order.isHint(Hint)) {
- MCRegister PhysHint = Hint.asMCReg();
- LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
- if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
- FixedRegisters)) {
- evictInterference(VirtReg, PhysHint, NewVRegs);
- return PhysHint;
- }
- // Record the missed hint, we may be able to recover
- // at the end if the surrounding allocation changed.
- SetOfBrokenHints.insert(&VirtReg);
- }
- // Try to evict interference from a cheaper alternative.
- uint8_t Cost = RegCosts[PhysReg];
- // Most registers have 0 additional cost.
- if (!Cost)
- return PhysReg;
- LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
- << (unsigned)Cost << '\n');
- MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
- return CheapReg ? CheapReg : PhysReg;
- }
- //===----------------------------------------------------------------------===//
- // Interference eviction
- //===----------------------------------------------------------------------===//
- Register RegAllocEvictionAdvisor::canReassign(LiveInterval &VirtReg,
- Register PrevReg) const {
- auto Order =
- AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
- MCRegister PhysReg;
- for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
- if ((*I).id() == PrevReg.id())
- continue;
- MCRegUnitIterator Units(*I, TRI);
- for (; Units.isValid(); ++Units) {
- // Instantiate a "subquery", not to be confused with the Queries array.
- LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
- if (subQ.checkInterference())
- break;
- }
- // If no units have interference, break out with the current PhysReg.
- if (!Units.isValid())
- PhysReg = *I;
- }
- if (PhysReg)
- LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
- << printReg(PrevReg, TRI) << " to "
- << printReg(PhysReg, TRI) << '\n');
- return PhysReg;
- }
- /// Return true if all interferences between VirtReg and PhysReg between
- /// Start and End can be evicted.
- ///
- /// \param VirtReg Live range that is about to be assigned.
- /// \param PhysReg Desired register for assignment.
- /// \param Start Start of range to look for interferences.
- /// \param End End of range to look for interferences.
- /// \param MaxCost Only look for cheaper candidates and update with new cost
- /// when returning true.
- /// \return True when interference can be evicted cheaper than MaxCost.
- bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
- MCRegister PhysReg, SlotIndex Start,
- SlotIndex End,
- EvictionCost &MaxCost) const {
- EvictionCost Cost;
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
- // Check if any interfering live range is heavier than MaxWeight.
- for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
- // Check if interference overlast the segment in interest.
- if (!Intf->overlaps(Start, End))
- continue;
- // Cannot evict non virtual reg interference.
- if (!Register::isVirtualRegister(Intf->reg()))
- return false;
- // Never evict spill products. They cannot split or spill.
- if (ExtraInfo->getStage(*Intf) == RS_Done)
- return false;
- // Would this break a satisfied hint?
- bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
- // Update eviction cost.
- Cost.BrokenHints += BreaksHint;
- Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
- // Abort if this would be too expensive.
- if (!(Cost < MaxCost))
- return false;
- }
- }
- if (Cost.MaxWeight == 0)
- return false;
- MaxCost = Cost;
- return true;
- }
- /// Return the physical register that will be best
- /// candidate for eviction by a local split interval that will be created
- /// between Start and End.
- ///
- /// \param Order The allocation order
- /// \param VirtReg Live range that is about to be assigned.
- /// \param Start Start of range to look for interferences
- /// \param End End of range to look for interferences
- /// \param BestEvictweight The eviction cost of that eviction
- /// \return The PhysReg which is the best candidate for eviction and the
- /// eviction cost in BestEvictweight
- MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
- const LiveInterval &VirtReg,
- SlotIndex Start, SlotIndex End,
- float *BestEvictweight) const {
- EvictionCost BestEvictCost;
- BestEvictCost.setMax();
- BestEvictCost.MaxWeight = VirtReg.weight();
- MCRegister BestEvicteePhys;
- // Go over all physical registers and find the best candidate for eviction
- for (MCRegister PhysReg : Order.getOrder()) {
- if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
- BestEvictCost))
- continue;
- // Best so far.
- BestEvicteePhys = PhysReg;
- }
- *BestEvictweight = BestEvictCost.MaxWeight;
- return BestEvicteePhys;
- }
- /// evictInterference - Evict any interferring registers that prevent VirtReg
- /// from being assigned to Physreg. This assumes that canEvictInterference
- /// returned true.
- void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
- SmallVectorImpl<Register> &NewVRegs) {
- // Make sure that VirtReg has a cascade number, and assign that cascade
- // number to every evicted register. These live ranges than then only be
- // evicted by a newer cascade, preventing infinite loops.
- unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
- LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
- << " interference: Cascade " << Cascade << '\n');
- // Collect all interfering virtregs first.
- SmallVector<LiveInterval*, 8> Intfs;
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
- // We usually have the interfering VRegs cached so collectInterferingVRegs()
- // should be fast, we may need to recalculate if when different physregs
- // overlap the same register unit so we had different SubRanges queried
- // against it.
- ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
- Intfs.append(IVR.begin(), IVR.end());
- }
- // Evict them second. This will invalidate the queries.
- for (LiveInterval *Intf : Intfs) {
- // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
- if (!VRM->hasPhys(Intf->reg()))
- continue;
- LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
- Matrix->unassign(*Intf);
- assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
- VirtReg.isSpillable() < Intf->isSpillable()) &&
- "Cannot decrease cascade number, illegal eviction");
- ExtraInfo->setCascade(Intf->reg(), Cascade);
- ++NumEvicted;
- NewVRegs.push_back(Intf->reg());
- }
- }
- /// Returns true if the given \p PhysReg is a callee saved register and has not
- /// been used for allocation yet.
- bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
- MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
- if (!CSR)
- return false;
- return !Matrix->isPhysRegUsed(PhysReg);
- }
- Optional<unsigned>
- RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
- const AllocationOrder &Order,
- unsigned CostPerUseLimit) const {
- unsigned OrderLimit = Order.getOrder().size();
- if (CostPerUseLimit < uint8_t(~0u)) {
- // Check of any registers in RC are below CostPerUseLimit.
- const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
- uint8_t MinCost = RegClassInfo.getMinCost(RC);
- if (MinCost >= CostPerUseLimit) {
- LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
- << MinCost << ", no cheaper registers to be found.\n");
- return None;
- }
- // It is normal for register classes to have a long tail of registers with
- // the same cost. We don't need to look at them if they're too expensive.
- if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
- OrderLimit = RegClassInfo.getLastCostChange(RC);
- LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
- << " regs.\n");
- }
- }
- return OrderLimit;
- }
- bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
- MCRegister PhysReg) const {
- if (RegCosts[PhysReg] >= CostPerUseLimit)
- return false;
- // The first use of a callee-saved register in a function has cost 1.
- // Don't start using a CSR when the CostPerUseLimit is low.
- if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
- LLVM_DEBUG(
- dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
- << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
- << '\n');
- return false;
- }
- return true;
- }
- /// tryEvict - Try to evict all interferences for a physreg.
- /// @param VirtReg Currently unassigned virtual register.
- /// @param Order Physregs to try.
- /// @return Physreg to assign VirtReg, or 0.
- MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs,
- uint8_t CostPerUseLimit,
- const SmallVirtRegSet &FixedRegisters) {
- NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
- TimePassesIsEnabled);
- MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
- VirtReg, Order, CostPerUseLimit, FixedRegisters);
- if (BestPhys.isValid())
- evictInterference(VirtReg, BestPhys, NewVRegs);
- return BestPhys;
- }
- //===----------------------------------------------------------------------===//
- // Region Splitting
- //===----------------------------------------------------------------------===//
- /// addSplitConstraints - Fill out the SplitConstraints vector based on the
- /// interference pattern in Physreg and its aliases. Add the constraints to
- /// SpillPlacement and return the static cost of this split in Cost, assuming
- /// that all preferences in SplitConstraints are met.
- /// Return false if there are no bundles with positive bias.
- bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
- BlockFrequency &Cost) {
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- // Reset interference dependent info.
- SplitConstraints.resize(UseBlocks.size());
- BlockFrequency StaticCost = 0;
- for (unsigned I = 0; I != UseBlocks.size(); ++I) {
- const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
- SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
- BC.Number = BI.MBB->getNumber();
- Intf.moveToBlock(BC.Number);
- BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
- BC.Exit = (BI.LiveOut &&
- !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
- ? SpillPlacement::PrefReg
- : SpillPlacement::DontCare;
- BC.ChangesValue = BI.FirstDef.isValid();
- if (!Intf.hasInterference())
- continue;
- // Number of spill code instructions to insert.
- unsigned Ins = 0;
- // Interference for the live-in value.
- if (BI.LiveIn) {
- if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
- BC.Entry = SpillPlacement::MustSpill;
- ++Ins;
- } else if (Intf.first() < BI.FirstInstr) {
- BC.Entry = SpillPlacement::PrefSpill;
- ++Ins;
- } else if (Intf.first() < BI.LastInstr) {
- ++Ins;
- }
- // Abort if the spill cannot be inserted at the MBB' start
- if (((BC.Entry == SpillPlacement::MustSpill) ||
- (BC.Entry == SpillPlacement::PrefSpill)) &&
- SlotIndex::isEarlierInstr(BI.FirstInstr,
- SA->getFirstSplitPoint(BC.Number)))
- return false;
- }
- // Interference for the live-out value.
- if (BI.LiveOut) {
- if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
- BC.Exit = SpillPlacement::MustSpill;
- ++Ins;
- } else if (Intf.last() > BI.LastInstr) {
- BC.Exit = SpillPlacement::PrefSpill;
- ++Ins;
- } else if (Intf.last() > BI.FirstInstr) {
- ++Ins;
- }
- }
- // Accumulate the total frequency of inserted spill code.
- while (Ins--)
- StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
- }
- Cost = StaticCost;
- // Add constraints for use-blocks. Note that these are the only constraints
- // that may add a positive bias, it is downhill from here.
- SpillPlacer->addConstraints(SplitConstraints);
- return SpillPlacer->scanActiveBundles();
- }
- /// addThroughConstraints - Add constraints and links to SpillPlacer from the
- /// live-through blocks in Blocks.
- bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
- ArrayRef<unsigned> Blocks) {
- const unsigned GroupSize = 8;
- SpillPlacement::BlockConstraint BCS[GroupSize];
- unsigned TBS[GroupSize];
- unsigned B = 0, T = 0;
- for (unsigned Number : Blocks) {
- Intf.moveToBlock(Number);
- if (!Intf.hasInterference()) {
- assert(T < GroupSize && "Array overflow");
- TBS[T] = Number;
- if (++T == GroupSize) {
- SpillPlacer->addLinks(makeArrayRef(TBS, T));
- T = 0;
- }
- continue;
- }
- assert(B < GroupSize && "Array overflow");
- BCS[B].Number = Number;
- // Abort if the spill cannot be inserted at the MBB' start
- MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
- auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
- if (FirstNonDebugInstr != MBB->end() &&
- SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
- SA->getFirstSplitPoint(Number)))
- return false;
- // Interference for the live-in value.
- if (Intf.first() <= Indexes->getMBBStartIdx(Number))
- BCS[B].Entry = SpillPlacement::MustSpill;
- else
- BCS[B].Entry = SpillPlacement::PrefSpill;
- // Interference for the live-out value.
- if (Intf.last() >= SA->getLastSplitPoint(Number))
- BCS[B].Exit = SpillPlacement::MustSpill;
- else
- BCS[B].Exit = SpillPlacement::PrefSpill;
- if (++B == GroupSize) {
- SpillPlacer->addConstraints(makeArrayRef(BCS, B));
- B = 0;
- }
- }
- SpillPlacer->addConstraints(makeArrayRef(BCS, B));
- SpillPlacer->addLinks(makeArrayRef(TBS, T));
- return true;
- }
- bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
- // Keep track of through blocks that have not been added to SpillPlacer.
- BitVector Todo = SA->getThroughBlocks();
- SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
- unsigned AddedTo = 0;
- #ifndef NDEBUG
- unsigned Visited = 0;
- #endif
- while (true) {
- ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
- // Find new through blocks in the periphery of PrefRegBundles.
- for (unsigned Bundle : NewBundles) {
- // Look at all blocks connected to Bundle in the full graph.
- ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
- for (unsigned Block : Blocks) {
- if (!Todo.test(Block))
- continue;
- Todo.reset(Block);
- // This is a new through block. Add it to SpillPlacer later.
- ActiveBlocks.push_back(Block);
- #ifndef NDEBUG
- ++Visited;
- #endif
- }
- }
- // Any new blocks to add?
- if (ActiveBlocks.size() == AddedTo)
- break;
- // Compute through constraints from the interference, or assume that all
- // through blocks prefer spilling when forming compact regions.
- auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
- if (Cand.PhysReg) {
- if (!addThroughConstraints(Cand.Intf, NewBlocks))
- return false;
- } else
- // Provide a strong negative bias on through blocks to prevent unwanted
- // liveness on loop backedges.
- SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
- AddedTo = ActiveBlocks.size();
- // Perhaps iterating can enable more bundles?
- SpillPlacer->iterate();
- }
- LLVM_DEBUG(dbgs() << ", v=" << Visited);
- return true;
- }
- /// calcCompactRegion - Compute the set of edge bundles that should be live
- /// when splitting the current live range into compact regions. Compact
- /// regions can be computed without looking at interference. They are the
- /// regions formed by removing all the live-through blocks from the live range.
- ///
- /// Returns false if the current live range is already compact, or if the
- /// compact regions would form single block regions anyway.
- bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
- // Without any through blocks, the live range is already compact.
- if (!SA->getNumThroughBlocks())
- return false;
- // Compact regions don't correspond to any physreg.
- Cand.reset(IntfCache, MCRegister::NoRegister);
- LLVM_DEBUG(dbgs() << "Compact region bundles");
- // Use the spill placer to determine the live bundles. GrowRegion pretends
- // that all the through blocks have interference when PhysReg is unset.
- SpillPlacer->prepare(Cand.LiveBundles);
- // The static split cost will be zero since Cand.Intf reports no interference.
- BlockFrequency Cost;
- if (!addSplitConstraints(Cand.Intf, Cost)) {
- LLVM_DEBUG(dbgs() << ", none.\n");
- return false;
- }
- if (!growRegion(Cand)) {
- LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
- return false;
- }
- SpillPlacer->finish();
- if (!Cand.LiveBundles.any()) {
- LLVM_DEBUG(dbgs() << ", none.\n");
- return false;
- }
- LLVM_DEBUG({
- for (int I : Cand.LiveBundles.set_bits())
- dbgs() << " EB#" << I;
- dbgs() << ".\n";
- });
- return true;
- }
- /// calcSpillCost - Compute how expensive it would be to split the live range in
- /// SA around all use blocks instead of forming bundle regions.
- BlockFrequency RAGreedy::calcSpillCost() {
- BlockFrequency Cost = 0;
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
- unsigned Number = BI.MBB->getNumber();
- // We normally only need one spill instruction - a load or a store.
- Cost += SpillPlacer->getBlockFrequency(Number);
- // Unless the value is redefined in the block.
- if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
- Cost += SpillPlacer->getBlockFrequency(Number);
- }
- return Cost;
- }
- /// Check if splitting Evictee will create a local split interval in
- /// basic block number BBNumber that may cause a bad eviction chain. This is
- /// intended to prevent bad eviction sequences like:
- /// movl %ebp, 8(%esp) # 4-byte Spill
- /// movl %ecx, %ebp
- /// movl %ebx, %ecx
- /// movl %edi, %ebx
- /// movl %edx, %edi
- /// cltd
- /// idivl %esi
- /// movl %edi, %edx
- /// movl %ebx, %edi
- /// movl %ecx, %ebx
- /// movl %ebp, %ecx
- /// movl 16(%esp), %ebp # 4 - byte Reload
- ///
- /// Such sequences are created in 2 scenarios:
- ///
- /// Scenario #1:
- /// %0 is evicted from physreg0 by %1.
- /// Evictee %0 is intended for region splitting with split candidate
- /// physreg0 (the reg %0 was evicted from).
- /// Region splitting creates a local interval because of interference with the
- /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
- /// and "by stack" intervals and local interval created when interference
- /// occurs).
- /// One of the split intervals ends up evicting %2 from physreg1.
- /// Evictee %2 is intended for region splitting with split candidate
- /// physreg1.
- /// One of the split intervals ends up evicting %3 from physreg2, etc.
- ///
- /// Scenario #2
- /// %0 is evicted from physreg0 by %1.
- /// %2 is evicted from physreg2 by %3 etc.
- /// Evictee %0 is intended for region splitting with split candidate
- /// physreg1.
- /// Region splitting creates a local interval because of interference with the
- /// evictor %1.
- /// One of the split intervals ends up evicting back original evictor %1
- /// from physreg0 (the reg %0 was evicted from).
- /// Another evictee %2 is intended for region splitting with split candidate
- /// physreg1.
- /// One of the split intervals ends up evicting %3 from physreg2, etc.
- ///
- /// \param Evictee The register considered to be split.
- /// \param Cand The split candidate that determines the physical register
- /// we are splitting for and the interferences.
- /// \param BBNumber The number of a BB for which the region split process will
- /// create a local split interval.
- /// \param Order The physical registers that may get evicted by a split
- /// artifact of Evictee.
- /// \return True if splitting Evictee may cause a bad eviction chain, false
- /// otherwise.
- bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
- GlobalSplitCandidate &Cand,
- unsigned BBNumber,
- const AllocationOrder &Order) {
- EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
- unsigned Evictor = VregEvictorInfo.first;
- MCRegister PhysReg = VregEvictorInfo.second;
- // No actual evictor.
- if (!Evictor || !PhysReg)
- return false;
- float MaxWeight = 0;
- MCRegister FutureEvictedPhysReg =
- getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
- Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
- // The bad eviction chain occurs when either the split candidate is the
- // evicting reg or one of the split artifact will evict the evicting reg.
- if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
- return false;
- Cand.Intf.moveToBlock(BBNumber);
- // Check to see if the Evictor contains interference (with Evictee) in the
- // given BB. If so, this interference caused the eviction of Evictee from
- // PhysReg. This suggest that we will create a local interval during the
- // region split to avoid this interference This local interval may cause a bad
- // eviction chain.
- if (!LIS->hasInterval(Evictor))
- return false;
- LiveInterval &EvictorLI = LIS->getInterval(Evictor);
- if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
- return false;
- // Now, check to see if the local interval we will create is going to be
- // expensive enough to evict somebody If so, this may cause a bad eviction
- // chain.
- float splitArtifactWeight =
- VRAI->futureWeight(LIS->getInterval(Evictee),
- Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
- if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
- return false;
- return true;
- }
- /// Check if splitting VirtRegToSplit will create a local split interval
- /// in basic block number BBNumber that may cause a spill.
- ///
- /// \param VirtRegToSplit The register considered to be split.
- /// \param Cand The split candidate that determines the physical
- /// register we are splitting for and the interferences.
- /// \param BBNumber The number of a BB for which the region split process
- /// will create a local split interval.
- /// \param Order The physical registers that may get evicted by a
- /// split artifact of VirtRegToSplit.
- /// \return True if splitting VirtRegToSplit may cause a spill, false
- /// otherwise.
- bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
- GlobalSplitCandidate &Cand,
- unsigned BBNumber,
- const AllocationOrder &Order) {
- Cand.Intf.moveToBlock(BBNumber);
- // Check if the local interval will find a non interfereing assignment.
- for (auto PhysReg : Order.getOrder()) {
- if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
- Cand.Intf.last(), PhysReg))
- return false;
- }
- // The local interval is not able to find non interferencing assignment
- // and not able to evict a less worthy interval, therfore, it can cause a
- // spill.
- return true;
- }
- /// calcGlobalSplitCost - Return the global split cost of following the split
- /// pattern in LiveBundles. This cost should be added to the local cost of the
- /// interference pattern in SplitConstraints.
- ///
- BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
- const AllocationOrder &Order,
- bool *CanCauseEvictionChain) {
- BlockFrequency GlobalCost = 0;
- const BitVector &LiveBundles = Cand.LiveBundles;
- Register VirtRegToSplit = SA->getParent().reg();
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- for (unsigned I = 0; I != UseBlocks.size(); ++I) {
- const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
- SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
- bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)];
- bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
- unsigned Ins = 0;
- Cand.Intf.moveToBlock(BC.Number);
- // Check wheather a local interval is going to be created during the region
- // split. Calculate adavanced spilt cost (cost of local intervals) if option
- // is enabled.
- if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
- BI.LiveOut && RegIn && RegOut) {
- if (CanCauseEvictionChain &&
- splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
- // This interference causes our eviction from this assignment, we might
- // evict somebody else and eventually someone will spill, add that cost.
- // See splitCanCauseEvictionChain for detailed description of scenarios.
- GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
- GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
- *CanCauseEvictionChain = true;
- } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
- Order)) {
- // This interference causes local interval to spill, add that cost.
- GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
- GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
- }
- }
- if (BI.LiveIn)
- Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
- if (BI.LiveOut)
- Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
- while (Ins--)
- GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
- }
- for (unsigned Number : Cand.ActiveBlocks) {
- bool RegIn = LiveBundles[Bundles->getBundle(Number, false)];
- bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
- if (!RegIn && !RegOut)
- continue;
- if (RegIn && RegOut) {
- // We need double spill code if this block has interference.
- Cand.Intf.moveToBlock(Number);
- if (Cand.Intf.hasInterference()) {
- GlobalCost += SpillPlacer->getBlockFrequency(Number);
- GlobalCost += SpillPlacer->getBlockFrequency(Number);
- // Check wheather a local interval is going to be created during the
- // region split.
- if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
- splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
- // This interference cause our eviction from this assignment, we might
- // evict somebody else, add that cost.
- // See splitCanCauseEvictionChain for detailed description of
- // scenarios.
- GlobalCost += SpillPlacer->getBlockFrequency(Number);
- GlobalCost += SpillPlacer->getBlockFrequency(Number);
- *CanCauseEvictionChain = true;
- }
- }
- continue;
- }
- // live-in / stack-out or stack-in live-out.
- GlobalCost += SpillPlacer->getBlockFrequency(Number);
- }
- return GlobalCost;
- }
- /// splitAroundRegion - Split the current live range around the regions
- /// determined by BundleCand and GlobalCand.
- ///
- /// Before calling this function, GlobalCand and BundleCand must be initialized
- /// so each bundle is assigned to a valid candidate, or NoCand for the
- /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
- /// objects must be initialized for the current live range, and intervals
- /// created for the used candidates.
- ///
- /// @param LREdit The LiveRangeEdit object handling the current split.
- /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
- /// must appear in this list.
- void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
- ArrayRef<unsigned> UsedCands) {
- // These are the intervals created for new global ranges. We may create more
- // intervals for local ranges.
- const unsigned NumGlobalIntvs = LREdit.size();
- LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
- << " globals.\n");
- assert(NumGlobalIntvs && "No global intervals configured");
- // Isolate even single instructions when dealing with a proper sub-class.
- // That guarantees register class inflation for the stack interval because it
- // is all copies.
- Register Reg = SA->getParent().reg();
- bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
- // First handle all the blocks with uses.
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
- unsigned Number = BI.MBB->getNumber();
- unsigned IntvIn = 0, IntvOut = 0;
- SlotIndex IntfIn, IntfOut;
- if (BI.LiveIn) {
- unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
- if (CandIn != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[CandIn];
- IntvIn = Cand.IntvIdx;
- Cand.Intf.moveToBlock(Number);
- IntfIn = Cand.Intf.first();
- }
- }
- if (BI.LiveOut) {
- unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
- if (CandOut != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[CandOut];
- IntvOut = Cand.IntvIdx;
- Cand.Intf.moveToBlock(Number);
- IntfOut = Cand.Intf.last();
- }
- }
- // Create separate intervals for isolated blocks with multiple uses.
- if (!IntvIn && !IntvOut) {
- LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
- if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
- SE->splitSingleBlock(BI);
- continue;
- }
- if (IntvIn && IntvOut)
- SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
- else if (IntvIn)
- SE->splitRegInBlock(BI, IntvIn, IntfIn);
- else
- SE->splitRegOutBlock(BI, IntvOut, IntfOut);
- }
- // Handle live-through blocks. The relevant live-through blocks are stored in
- // the ActiveBlocks list with each candidate. We need to filter out
- // duplicates.
- BitVector Todo = SA->getThroughBlocks();
- for (unsigned UsedCand : UsedCands) {
- ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
- for (unsigned Number : Blocks) {
- if (!Todo.test(Number))
- continue;
- Todo.reset(Number);
- unsigned IntvIn = 0, IntvOut = 0;
- SlotIndex IntfIn, IntfOut;
- unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
- if (CandIn != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[CandIn];
- IntvIn = Cand.IntvIdx;
- Cand.Intf.moveToBlock(Number);
- IntfIn = Cand.Intf.first();
- }
- unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
- if (CandOut != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[CandOut];
- IntvOut = Cand.IntvIdx;
- Cand.Intf.moveToBlock(Number);
- IntfOut = Cand.Intf.last();
- }
- if (!IntvIn && !IntvOut)
- continue;
- SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
- }
- }
- ++NumGlobalSplits;
- SmallVector<unsigned, 8> IntvMap;
- SE->finish(&IntvMap);
- DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
- unsigned OrigBlocks = SA->getNumLiveBlocks();
- // Sort out the new intervals created by splitting. We get four kinds:
- // - Remainder intervals should not be split again.
- // - Candidate intervals can be assigned to Cand.PhysReg.
- // - Block-local splits are candidates for local splitting.
- // - DCE leftovers should go back on the queue.
- for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
- const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
- // Ignore old intervals from DCE.
- if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
- continue;
- // Remainder interval. Don't try splitting again, spill if it doesn't
- // allocate.
- if (IntvMap[I] == 0) {
- ExtraInfo->setStage(Reg, RS_Spill);
- continue;
- }
- // Global intervals. Allow repeated splitting as long as the number of live
- // blocks is strictly decreasing.
- if (IntvMap[I] < NumGlobalIntvs) {
- if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
- LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
- << " blocks as original.\n");
- // Don't allow repeated splitting as a safe guard against looping.
- ExtraInfo->setStage(Reg, RS_Split2);
- }
- continue;
- }
- // Other intervals are treated as new. This includes local intervals created
- // for blocks with multiple uses, and anything created by DCE.
- }
- if (VerifyEnabled)
- MF->verify(this, "After splitting live range around region");
- }
- MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs) {
- if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
- return MCRegister::NoRegister;
- unsigned NumCands = 0;
- BlockFrequency SpillCost = calcSpillCost();
- BlockFrequency BestCost;
- // Check if we can split this live range around a compact region.
- bool HasCompact = calcCompactRegion(GlobalCand.front());
- if (HasCompact) {
- // Yes, keep GlobalCand[0] as the compact region candidate.
- NumCands = 1;
- BestCost = BlockFrequency::getMaxFrequency();
- } else {
- // No benefit from the compact region, our fallback will be per-block
- // splitting. Make sure we find a solution that is cheaper than spilling.
- BestCost = SpillCost;
- LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
- MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
- }
- bool CanCauseEvictionChain = false;
- unsigned BestCand =
- calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
- false /*IgnoreCSR*/, &CanCauseEvictionChain);
- // Split candidates with compact regions can cause a bad eviction sequence.
- // See splitCanCauseEvictionChain for detailed description of scenarios.
- // To avoid it, we need to comapre the cost with the spill cost and not the
- // current max frequency.
- if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
- CanCauseEvictionChain) {
- return MCRegister::NoRegister;
- }
- // No solutions found, fall back to single block splitting.
- if (!HasCompact && BestCand == NoCand)
- return MCRegister::NoRegister;
- return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
- }
- unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
- AllocationOrder &Order,
- BlockFrequency &BestCost,
- unsigned &NumCands, bool IgnoreCSR,
- bool *CanCauseEvictionChain) {
- unsigned BestCand = NoCand;
- for (MCPhysReg PhysReg : Order) {
- assert(PhysReg);
- if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
- continue;
- // Discard bad candidates before we run out of interference cache cursors.
- // This will only affect register classes with a lot of registers (>32).
- if (NumCands == IntfCache.getMaxCursors()) {
- unsigned WorstCount = ~0u;
- unsigned Worst = 0;
- for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
- if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
- continue;
- unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
- if (Count < WorstCount) {
- Worst = CandIndex;
- WorstCount = Count;
- }
- }
- --NumCands;
- GlobalCand[Worst] = GlobalCand[NumCands];
- if (BestCand == NumCands)
- BestCand = Worst;
- }
- if (GlobalCand.size() <= NumCands)
- GlobalCand.resize(NumCands+1);
- GlobalSplitCandidate &Cand = GlobalCand[NumCands];
- Cand.reset(IntfCache, PhysReg);
- SpillPlacer->prepare(Cand.LiveBundles);
- BlockFrequency Cost;
- if (!addSplitConstraints(Cand.Intf, Cost)) {
- LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
- continue;
- }
- LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
- MBFI->printBlockFreq(dbgs(), Cost));
- if (Cost >= BestCost) {
- LLVM_DEBUG({
- if (BestCand == NoCand)
- dbgs() << " worse than no bundles\n";
- else
- dbgs() << " worse than "
- << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
- });
- continue;
- }
- if (!growRegion(Cand)) {
- LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
- continue;
- }
- SpillPlacer->finish();
- // No live bundles, defer to splitSingleBlocks().
- if (!Cand.LiveBundles.any()) {
- LLVM_DEBUG(dbgs() << " no bundles.\n");
- continue;
- }
- bool HasEvictionChain = false;
- Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
- LLVM_DEBUG({
- dbgs() << ", total = ";
- MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
- for (int I : Cand.LiveBundles.set_bits())
- dbgs() << " EB#" << I;
- dbgs() << ".\n";
- });
- if (Cost < BestCost) {
- BestCand = NumCands;
- BestCost = Cost;
- // See splitCanCauseEvictionChain for detailed description of bad
- // eviction chain scenarios.
- if (CanCauseEvictionChain)
- *CanCauseEvictionChain = HasEvictionChain;
- }
- ++NumCands;
- }
- if (CanCauseEvictionChain && BestCand != NoCand) {
- // See splitCanCauseEvictionChain for detailed description of bad
- // eviction chain scenarios.
- LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
- << printReg(VirtReg.reg(), TRI) << " may ");
- if (!(*CanCauseEvictionChain))
- LLVM_DEBUG(dbgs() << "not ");
- LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
- }
- return BestCand;
- }
- unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
- bool HasCompact,
- SmallVectorImpl<Register> &NewVRegs) {
- SmallVector<unsigned, 8> UsedCands;
- // Prepare split editor.
- LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
- SE->reset(LREdit, SplitSpillMode);
- // Assign all edge bundles to the preferred candidate, or NoCand.
- BundleCand.assign(Bundles->getNumBundles(), NoCand);
- // Assign bundles for the best candidate region.
- if (BestCand != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[BestCand];
- if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
- UsedCands.push_back(BestCand);
- Cand.IntvIdx = SE->openIntv();
- LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
- << B << " bundles, intv " << Cand.IntvIdx << ".\n");
- (void)B;
- }
- }
- // Assign bundles for the compact region.
- if (HasCompact) {
- GlobalSplitCandidate &Cand = GlobalCand.front();
- assert(!Cand.PhysReg && "Compact region has no physreg");
- if (unsigned B = Cand.getBundles(BundleCand, 0)) {
- UsedCands.push_back(0);
- Cand.IntvIdx = SE->openIntv();
- LLVM_DEBUG(dbgs() << "Split for compact region in " << B
- << " bundles, intv " << Cand.IntvIdx << ".\n");
- (void)B;
- }
- }
- splitAroundRegion(LREdit, UsedCands);
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Per-Block Splitting
- //===----------------------------------------------------------------------===//
- /// tryBlockSplit - Split a global live range around every block with uses. This
- /// creates a lot of local live ranges, that will be split by tryLocalSplit if
- /// they don't allocate.
- unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs) {
- assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
- Register Reg = VirtReg.reg();
- bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
- LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
- SE->reset(LREdit, SplitSpillMode);
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
- if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
- SE->splitSingleBlock(BI);
- }
- // No blocks were split.
- if (LREdit.empty())
- return 0;
- // We did split for some blocks.
- SmallVector<unsigned, 8> IntvMap;
- SE->finish(&IntvMap);
- // Tell LiveDebugVariables about the new ranges.
- DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
- // Sort out the new intervals created by splitting. The remainder interval
- // goes straight to spilling, the new local ranges get to stay RS_New.
- for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
- const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
- if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
- ExtraInfo->setStage(LI, RS_Spill);
- }
- if (VerifyEnabled)
- MF->verify(this, "After splitting live range around basic blocks");
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Per-Instruction Splitting
- //===----------------------------------------------------------------------===//
- /// Get the number of allocatable registers that match the constraints of \p Reg
- /// on \p MI and that are also in \p SuperRC.
- static unsigned getNumAllocatableRegsForConstraints(
- const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
- const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
- const RegisterClassInfo &RCI) {
- assert(SuperRC && "Invalid register class");
- const TargetRegisterClass *ConstrainedRC =
- MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
- /* ExploreBundle */ true);
- if (!ConstrainedRC)
- return 0;
- return RCI.getNumAllocatableRegs(ConstrainedRC);
- }
- /// tryInstructionSplit - Split a live range around individual instructions.
- /// This is normally not worthwhile since the spiller is doing essentially the
- /// same thing. However, when the live range is in a constrained register
- /// class, it may help to insert copies such that parts of the live range can
- /// be moved to a larger register class.
- ///
- /// This is similar to spilling to a larger register class.
- unsigned
- RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs) {
- const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
- // There is no point to this if there are no larger sub-classes.
- if (!RegClassInfo.isProperSubClass(CurRC))
- return 0;
- // Always enable split spill mode, since we're effectively spilling to a
- // register.
- LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
- SE->reset(LREdit, SplitEditor::SM_Size);
- ArrayRef<SlotIndex> Uses = SA->getUseSlots();
- if (Uses.size() <= 1)
- return 0;
- LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
- << " individual instrs.\n");
- const TargetRegisterClass *SuperRC =
- TRI->getLargestLegalSuperClass(CurRC, *MF);
- unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
- // Split around every non-copy instruction if this split will relax
- // the constraints on the virtual register.
- // Otherwise, splitting just inserts uncoalescable copies that do not help
- // the allocation.
- for (const SlotIndex Use : Uses) {
- if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
- if (MI->isFullCopy() ||
- SuperRCNumAllocatableRegs ==
- getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
- TII, TRI, RCI)) {
- LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI);
- continue;
- }
- SE->openIntv();
- SlotIndex SegStart = SE->enterIntvBefore(Use);
- SlotIndex SegStop = SE->leaveIntvAfter(Use);
- SE->useIntv(SegStart, SegStop);
- }
- if (LREdit.empty()) {
- LLVM_DEBUG(dbgs() << "All uses were copies.\n");
- return 0;
- }
- SmallVector<unsigned, 8> IntvMap;
- SE->finish(&IntvMap);
- DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
- // Assign all new registers to RS_Spill. This was the last chance.
- ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Local Splitting
- //===----------------------------------------------------------------------===//
- /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
- /// in order to use PhysReg between two entries in SA->UseSlots.
- ///
- /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
- ///
- void RAGreedy::calcGapWeights(MCRegister PhysReg,
- SmallVectorImpl<float> &GapWeight) {
- assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
- const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
- ArrayRef<SlotIndex> Uses = SA->getUseSlots();
- const unsigned NumGaps = Uses.size()-1;
- // Start and end points for the interference check.
- SlotIndex StartIdx =
- BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
- SlotIndex StopIdx =
- BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
- GapWeight.assign(NumGaps, 0.0f);
- // Add interference from each overlapping register.
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
- .checkInterference())
- continue;
- // We know that VirtReg is a continuous interval from FirstInstr to
- // LastInstr, so we don't need InterferenceQuery.
- //
- // Interference that overlaps an instruction is counted in both gaps
- // surrounding the instruction. The exception is interference before
- // StartIdx and after StopIdx.
- //
- LiveIntervalUnion::SegmentIter IntI =
- Matrix->getLiveUnions()[*Units] .find(StartIdx);
- for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
- // Skip the gaps before IntI.
- while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
- if (++Gap == NumGaps)
- break;
- if (Gap == NumGaps)
- break;
- // Update the gaps covered by IntI.
- const float weight = IntI.value()->weight();
- for (; Gap != NumGaps; ++Gap) {
- GapWeight[Gap] = std::max(GapWeight[Gap], weight);
- if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
- break;
- }
- if (Gap == NumGaps)
- break;
- }
- }
- // Add fixed interference.
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- const LiveRange &LR = LIS->getRegUnit(*Units);
- LiveRange::const_iterator I = LR.find(StartIdx);
- LiveRange::const_iterator E = LR.end();
- // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
- for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
- while (Uses[Gap+1].getBoundaryIndex() < I->start)
- if (++Gap == NumGaps)
- break;
- if (Gap == NumGaps)
- break;
- for (; Gap != NumGaps; ++Gap) {
- GapWeight[Gap] = huge_valf;
- if (Uses[Gap+1].getBaseIndex() >= I->end)
- break;
- }
- if (Gap == NumGaps)
- break;
- }
- }
- }
- /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
- /// basic block.
- ///
- unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs) {
- // TODO: the function currently only handles a single UseBlock; it should be
- // possible to generalize.
- if (SA->getUseBlocks().size() != 1)
- return 0;
- const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
- // Note that it is possible to have an interval that is live-in or live-out
- // while only covering a single block - A phi-def can use undef values from
- // predecessors, and the block could be a single-block loop.
- // We don't bother doing anything clever about such a case, we simply assume
- // that the interval is continuous from FirstInstr to LastInstr. We should
- // make sure that we don't do anything illegal to such an interval, though.
- ArrayRef<SlotIndex> Uses = SA->getUseSlots();
- if (Uses.size() <= 2)
- return 0;
- const unsigned NumGaps = Uses.size()-1;
- LLVM_DEBUG({
- dbgs() << "tryLocalSplit: ";
- for (const auto &Use : Uses)
- dbgs() << ' ' << Use;
- dbgs() << '\n';
- });
- // If VirtReg is live across any register mask operands, compute a list of
- // gaps with register masks.
- SmallVector<unsigned, 8> RegMaskGaps;
- if (Matrix->checkRegMaskInterference(VirtReg)) {
- // Get regmask slots for the whole block.
- ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
- LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
- // Constrain to VirtReg's live range.
- unsigned RI =
- llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
- unsigned RE = RMS.size();
- for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
- // Look for Uses[I] <= RMS <= Uses[I + 1].
- assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
- if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
- continue;
- // Skip a regmask on the same instruction as the last use. It doesn't
- // overlap the live range.
- if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
- break;
- LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
- << Uses[I + 1]);
- RegMaskGaps.push_back(I);
- // Advance ri to the next gap. A regmask on one of the uses counts in
- // both gaps.
- while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
- ++RI;
- }
- LLVM_DEBUG(dbgs() << '\n');
- }
- // Since we allow local split results to be split again, there is a risk of
- // creating infinite loops. It is tempting to require that the new live
- // ranges have less instructions than the original. That would guarantee
- // convergence, but it is too strict. A live range with 3 instructions can be
- // split 2+3 (including the COPY), and we want to allow that.
- //
- // Instead we use these rules:
- //
- // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
- // noop split, of course).
- // 2. Require progress be made for ranges with getStage() == RS_Split2. All
- // the new ranges must have fewer instructions than before the split.
- // 3. New ranges with the same number of instructions are marked RS_Split2,
- // smaller ranges are marked RS_New.
- //
- // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
- // excessive splitting and infinite loops.
- //
- bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
- // Best split candidate.
- unsigned BestBefore = NumGaps;
- unsigned BestAfter = 0;
- float BestDiff = 0;
- const float blockFreq =
- SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
- (1.0f / MBFI->getEntryFreq());
- SmallVector<float, 8> GapWeight;
- for (MCPhysReg PhysReg : Order) {
- assert(PhysReg);
- // Keep track of the largest spill weight that would need to be evicted in
- // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
- calcGapWeights(PhysReg, GapWeight);
- // Remove any gaps with regmask clobbers.
- if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
- for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
- GapWeight[RegMaskGaps[I]] = huge_valf;
- // Try to find the best sequence of gaps to close.
- // The new spill weight must be larger than any gap interference.
- // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
- unsigned SplitBefore = 0, SplitAfter = 1;
- // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
- // It is the spill weight that needs to be evicted.
- float MaxGap = GapWeight[0];
- while (true) {
- // Live before/after split?
- const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
- const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
- LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
- << '-' << Uses[SplitAfter] << " I=" << MaxGap);
- // Stop before the interval gets so big we wouldn't be making progress.
- if (!LiveBefore && !LiveAfter) {
- LLVM_DEBUG(dbgs() << " all\n");
- break;
- }
- // Should the interval be extended or shrunk?
- bool Shrink = true;
- // How many gaps would the new range have?
- unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
- // Legally, without causing looping?
- bool Legal = !ProgressRequired || NewGaps < NumGaps;
- if (Legal && MaxGap < huge_valf) {
- // Estimate the new spill weight. Each instruction reads or writes the
- // register. Conservatively assume there are no read-modify-write
- // instructions.
- //
- // Try to guess the size of the new interval.
- const float EstWeight = normalizeSpillWeight(
- blockFreq * (NewGaps + 1),
- Uses[SplitBefore].distance(Uses[SplitAfter]) +
- (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
- 1);
- // Would this split be possible to allocate?
- // Never allocate all gaps, we wouldn't be making progress.
- LLVM_DEBUG(dbgs() << " w=" << EstWeight);
- if (EstWeight * Hysteresis >= MaxGap) {
- Shrink = false;
- float Diff = EstWeight - MaxGap;
- if (Diff > BestDiff) {
- LLVM_DEBUG(dbgs() << " (best)");
- BestDiff = Hysteresis * Diff;
- BestBefore = SplitBefore;
- BestAfter = SplitAfter;
- }
- }
- }
- // Try to shrink.
- if (Shrink) {
- if (++SplitBefore < SplitAfter) {
- LLVM_DEBUG(dbgs() << " shrink\n");
- // Recompute the max when necessary.
- if (GapWeight[SplitBefore - 1] >= MaxGap) {
- MaxGap = GapWeight[SplitBefore];
- for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
- MaxGap = std::max(MaxGap, GapWeight[I]);
- }
- continue;
- }
- MaxGap = 0;
- }
- // Try to extend the interval.
- if (SplitAfter >= NumGaps) {
- LLVM_DEBUG(dbgs() << " end\n");
- break;
- }
- LLVM_DEBUG(dbgs() << " extend\n");
- MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
- }
- }
- // Didn't find any candidates?
- if (BestBefore == NumGaps)
- return 0;
- LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
- << Uses[BestAfter] << ", " << BestDiff << ", "
- << (BestAfter - BestBefore + 1) << " instrs\n");
- LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
- SE->reset(LREdit);
- SE->openIntv();
- SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
- SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
- SE->useIntv(SegStart, SegStop);
- SmallVector<unsigned, 8> IntvMap;
- SE->finish(&IntvMap);
- DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
- // If the new range has the same number of instructions as before, mark it as
- // RS_Split2 so the next split will be forced to make progress. Otherwise,
- // leave the new intervals as RS_New so they can compete.
- bool LiveBefore = BestBefore != 0 || BI.LiveIn;
- bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
- unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
- if (NewGaps >= NumGaps) {
- LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
- assert(!ProgressRequired && "Didn't make progress when it was required.");
- for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
- if (IntvMap[I] == 1) {
- ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
- LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
- }
- LLVM_DEBUG(dbgs() << '\n');
- }
- ++NumLocalSplits;
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Live Range Splitting
- //===----------------------------------------------------------------------===//
- /// trySplit - Try to split VirtReg or one of its interferences, making it
- /// assignable.
- /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
- unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs,
- const SmallVirtRegSet &FixedRegisters) {
- // Ranges must be Split2 or less.
- if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
- return 0;
- // Local intervals are handled separately.
- if (LIS->intervalIsInOneMBB(VirtReg)) {
- NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
- TimerGroupDescription, TimePassesIsEnabled);
- SA->analyze(&VirtReg);
- Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
- if (PhysReg || !NewVRegs.empty())
- return PhysReg;
- return tryInstructionSplit(VirtReg, Order, NewVRegs);
- }
- NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
- TimerGroupDescription, TimePassesIsEnabled);
- SA->analyze(&VirtReg);
- // First try to split around a region spanning multiple blocks. RS_Split2
- // ranges already made dubious progress with region splitting, so they go
- // straight to single block splitting.
- if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
- MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
- if (PhysReg || !NewVRegs.empty())
- return PhysReg;
- }
- // Then isolate blocks.
- return tryBlockSplit(VirtReg, Order, NewVRegs);
- }
- //===----------------------------------------------------------------------===//
- // Last Chance Recoloring
- //===----------------------------------------------------------------------===//
- /// Return true if \p reg has any tied def operand.
- static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
- for (const MachineOperand &MO : MRI->def_operands(reg))
- if (MO.isTied())
- return true;
- return false;
- }
- /// mayRecolorAllInterferences - Check if the virtual registers that
- /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
- /// recolored to free \p PhysReg.
- /// When true is returned, \p RecoloringCandidates has been augmented with all
- /// the live intervals that need to be recolored in order to free \p PhysReg
- /// for \p VirtReg.
- /// \p FixedRegisters contains all the virtual registers that cannot be
- /// recolored.
- bool RAGreedy::mayRecolorAllInterferences(
- MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates,
- const SmallVirtRegSet &FixedRegisters) {
- const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
- // If there is LastChanceRecoloringMaxInterference or more interferences,
- // chances are one would not be recolorable.
- if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
- LastChanceRecoloringMaxInterference &&
- !ExhaustiveSearch) {
- LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
- CutOffInfo |= CO_Interf;
- return false;
- }
- for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
- // If Intf is done and sit on the same register class as VirtReg,
- // it would not be recolorable as it is in the same state as VirtReg.
- // However, if VirtReg has tied defs and Intf doesn't, then
- // there is still a point in examining if it can be recolorable.
- if (((ExtraInfo->getStage(*Intf) == RS_Done &&
- MRI->getRegClass(Intf->reg()) == CurRC) &&
- !(hasTiedDef(MRI, VirtReg.reg()) &&
- !hasTiedDef(MRI, Intf->reg()))) ||
- FixedRegisters.count(Intf->reg())) {
- LLVM_DEBUG(
- dbgs() << "Early abort: the interference is not recolorable.\n");
- return false;
- }
- RecoloringCandidates.insert(Intf);
- }
- }
- return true;
- }
- /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
- /// its interferences.
- /// Last chance recoloring chooses a color for \p VirtReg and recolors every
- /// virtual register that was using it. The recoloring process may recursively
- /// use the last chance recoloring. Therefore, when a virtual register has been
- /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
- /// be last-chance-recolored again during this recoloring "session".
- /// E.g.,
- /// Let
- /// vA can use {R1, R2 }
- /// vB can use { R2, R3}
- /// vC can use {R1 }
- /// Where vA, vB, and vC cannot be split anymore (they are reloads for
- /// instance) and they all interfere.
- ///
- /// vA is assigned R1
- /// vB is assigned R2
- /// vC tries to evict vA but vA is already done.
- /// Regular register allocation fails.
- ///
- /// Last chance recoloring kicks in:
- /// vC does as if vA was evicted => vC uses R1.
- /// vC is marked as fixed.
- /// vA needs to find a color.
- /// None are available.
- /// vA cannot evict vC: vC is a fixed virtual register now.
- /// vA does as if vB was evicted => vA uses R2.
- /// vB needs to find a color.
- /// R3 is available.
- /// Recoloring => vC = R1, vA = R2, vB = R3
- ///
- /// \p Order defines the preferred allocation order for \p VirtReg.
- /// \p NewRegs will contain any new virtual register that have been created
- /// (split, spill) during the process and that must be assigned.
- /// \p FixedRegisters contains all the virtual registers that cannot be
- /// recolored.
- /// \p Depth gives the current depth of the last chance recoloring.
- /// \return a physical register that can be used for VirtReg or ~0u if none
- /// exists.
- unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<Register> &NewVRegs,
- SmallVirtRegSet &FixedRegisters,
- unsigned Depth) {
- if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
- return ~0u;
- LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
- // Ranges must be Done.
- assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
- "Last chance recoloring should really be last chance");
- // Set the max depth to LastChanceRecoloringMaxDepth.
- // We may want to reconsider that if we end up with a too large search space
- // for target with hundreds of registers.
- // Indeed, in that case we may want to cut the search space earlier.
- if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
- LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
- CutOffInfo |= CO_Depth;
- return ~0u;
- }
- // Set of Live intervals that will need to be recolored.
- SmallLISet RecoloringCandidates;
- // Record the original mapping virtual register to physical register in case
- // the recoloring fails.
- DenseMap<Register, MCRegister> VirtRegToPhysReg;
- // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
- // this recoloring "session".
- assert(!FixedRegisters.count(VirtReg.reg()));
- FixedRegisters.insert(VirtReg.reg());
- SmallVector<Register, 4> CurrentNewVRegs;
- for (MCRegister PhysReg : Order) {
- assert(PhysReg.isValid());
- LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
- << printReg(PhysReg, TRI) << '\n');
- RecoloringCandidates.clear();
- VirtRegToPhysReg.clear();
- CurrentNewVRegs.clear();
- // It is only possible to recolor virtual register interference.
- if (Matrix->checkInterference(VirtReg, PhysReg) >
- LiveRegMatrix::IK_VirtReg) {
- LLVM_DEBUG(
- dbgs() << "Some interferences are not with virtual registers.\n");
- continue;
- }
- // Early give up on this PhysReg if it is obvious we cannot recolor all
- // the interferences.
- if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
- FixedRegisters)) {
- LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
- continue;
- }
- // RecoloringCandidates contains all the virtual registers that interfer
- // with VirtReg on PhysReg (or one of its aliases).
- // Enqueue them for recoloring and perform the actual recoloring.
- PQueue RecoloringQueue;
- for (LiveInterval *RC : RecoloringCandidates) {
- Register ItVirtReg = RC->reg();
- enqueue(RecoloringQueue, RC);
- assert(VRM->hasPhys(ItVirtReg) &&
- "Interferences are supposed to be with allocated variables");
- // Record the current allocation.
- VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
- // unset the related struct.
- Matrix->unassign(*RC);
- }
- // Do as if VirtReg was assigned to PhysReg so that the underlying
- // recoloring has the right information about the interferes and
- // available colors.
- Matrix->assign(VirtReg, PhysReg);
- // Save the current recoloring state.
- // If we cannot recolor all the interferences, we will have to start again
- // at this point for the next physical register.
- SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
- if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
- FixedRegisters, Depth)) {
- // Push the queued vregs into the main queue.
- for (Register NewVReg : CurrentNewVRegs)
- NewVRegs.push_back(NewVReg);
- // Do not mess up with the global assignment process.
- // I.e., VirtReg must be unassigned.
- Matrix->unassign(VirtReg);
- return PhysReg;
- }
- LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
- << printReg(PhysReg, TRI) << '\n');
- // The recoloring attempt failed, undo the changes.
- FixedRegisters = SaveFixedRegisters;
- Matrix->unassign(VirtReg);
- // For a newly created vreg which is also in RecoloringCandidates,
- // don't add it to NewVRegs because its physical register will be restored
- // below. Other vregs in CurrentNewVRegs are created by calling
- // selectOrSplit and should be added into NewVRegs.
- for (Register &R : CurrentNewVRegs) {
- if (RecoloringCandidates.count(&LIS->getInterval(R)))
- continue;
- NewVRegs.push_back(R);
- }
- for (LiveInterval *RC : RecoloringCandidates) {
- Register ItVirtReg = RC->reg();
- if (VRM->hasPhys(ItVirtReg))
- Matrix->unassign(*RC);
- MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
- Matrix->assign(*RC, ItPhysReg);
- }
- }
- // Last chance recoloring did not worked either, give up.
- return ~0u;
- }
- /// tryRecoloringCandidates - Try to assign a new color to every register
- /// in \RecoloringQueue.
- /// \p NewRegs will contain any new virtual register created during the
- /// recoloring process.
- /// \p FixedRegisters[in/out] contains all the registers that have been
- /// recolored.
- /// \return true if all virtual registers in RecoloringQueue were successfully
- /// recolored, false otherwise.
- bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
- SmallVectorImpl<Register> &NewVRegs,
- SmallVirtRegSet &FixedRegisters,
- unsigned Depth) {
- while (!RecoloringQueue.empty()) {
- LiveInterval *LI = dequeue(RecoloringQueue);
- LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
- MCRegister PhysReg =
- selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
- // When splitting happens, the live-range may actually be empty.
- // In that case, this is okay to continue the recoloring even
- // if we did not find an alternative color for it. Indeed,
- // there will not be anything to color for LI in the end.
- if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
- return false;
- if (!PhysReg) {
- assert(LI->empty() && "Only empty live-range do not require a register");
- LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
- << " succeeded. Empty LI.\n");
- continue;
- }
- LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
- << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
- Matrix->assign(*LI, PhysReg);
- FixedRegisters.insert(LI->reg());
- }
- return true;
- }
- //===----------------------------------------------------------------------===//
- // Main Entry Point
- //===----------------------------------------------------------------------===//
- MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg,
- SmallVectorImpl<Register> &NewVRegs) {
- CutOffInfo = CO_None;
- LLVMContext &Ctx = MF->getFunction().getContext();
- SmallVirtRegSet FixedRegisters;
- MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
- if (Reg == ~0U && (CutOffInfo != CO_None)) {
- uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
- if (CutOffEncountered == CO_Depth)
- Ctx.emitError("register allocation failed: maximum depth for recoloring "
- "reached. Use -fexhaustive-register-search to skip "
- "cutoffs");
- else if (CutOffEncountered == CO_Interf)
- Ctx.emitError("register allocation failed: maximum interference for "
- "recoloring reached. Use -fexhaustive-register-search "
- "to skip cutoffs");
- else if (CutOffEncountered == (CO_Depth | CO_Interf))
- Ctx.emitError("register allocation failed: maximum interference and "
- "depth for recoloring reached. Use "
- "-fexhaustive-register-search to skip cutoffs");
- }
- return Reg;
- }
- /// Using a CSR for the first time has a cost because it causes push|pop
- /// to be added to prologue|epilogue. Splitting a cold section of the live
- /// range can have lower cost than using the CSR for the first time;
- /// Spilling a live range in the cold path can have lower cost than using
- /// the CSR for the first time. Returns the physical register if we decide
- /// to use the CSR; otherwise return 0.
- MCRegister
- RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
- MCRegister PhysReg, uint8_t &CostPerUseLimit,
- SmallVectorImpl<Register> &NewVRegs) {
- if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
- // We choose spill over using the CSR for the first time if the spill cost
- // is lower than CSRCost.
- SA->analyze(&VirtReg);
- if (calcSpillCost() >= CSRCost)
- return PhysReg;
- // We are going to spill, set CostPerUseLimit to 1 to make sure that
- // we will not use a callee-saved register in tryEvict.
- CostPerUseLimit = 1;
- return 0;
- }
- if (ExtraInfo->getStage(VirtReg) < RS_Split) {
- // We choose pre-splitting over using the CSR for the first time if
- // the cost of splitting is lower than CSRCost.
- SA->analyze(&VirtReg);
- unsigned NumCands = 0;
- BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
- unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
- NumCands, true /*IgnoreCSR*/);
- if (BestCand == NoCand)
- // Use the CSR if we can't find a region split below CSRCost.
- return PhysReg;
- // Perform the actual pre-splitting.
- doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
- return 0;
- }
- return PhysReg;
- }
- void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
- // Do not keep invalid information around.
- SetOfBrokenHints.remove(&LI);
- }
- void RAGreedy::initializeCSRCost() {
- // We use the larger one out of the command-line option and the value report
- // by TRI.
- CSRCost = BlockFrequency(
- std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
- if (!CSRCost.getFrequency())
- return;
- // Raw cost is relative to Entry == 2^14; scale it appropriately.
- uint64_t ActualEntry = MBFI->getEntryFreq();
- if (!ActualEntry) {
- CSRCost = 0;
- return;
- }
- uint64_t FixedEntry = 1 << 14;
- if (ActualEntry < FixedEntry)
- CSRCost *= BranchProbability(ActualEntry, FixedEntry);
- else if (ActualEntry <= UINT32_MAX)
- // Invert the fraction and divide.
- CSRCost /= BranchProbability(FixedEntry, ActualEntry);
- else
- // Can't use BranchProbability in general, since it takes 32-bit numbers.
- CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
- }
- /// Collect the hint info for \p Reg.
- /// The results are stored into \p Out.
- /// \p Out is not cleared before being populated.
- void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
- for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
- if (!Instr.isFullCopy())
- continue;
- // Look for the other end of the copy.
- Register OtherReg = Instr.getOperand(0).getReg();
- if (OtherReg == Reg) {
- OtherReg = Instr.getOperand(1).getReg();
- if (OtherReg == Reg)
- continue;
- }
- // Get the current assignment.
- MCRegister OtherPhysReg =
- OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
- // Push the collected information.
- Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
- OtherPhysReg));
- }
- }
- /// Using the given \p List, compute the cost of the broken hints if
- /// \p PhysReg was used.
- /// \return The cost of \p List for \p PhysReg.
- BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
- MCRegister PhysReg) {
- BlockFrequency Cost = 0;
- for (const HintInfo &Info : List) {
- if (Info.PhysReg != PhysReg)
- Cost += Info.Freq;
- }
- return Cost;
- }
- /// Using the register assigned to \p VirtReg, try to recolor
- /// all the live ranges that are copy-related with \p VirtReg.
- /// The recoloring is then propagated to all the live-ranges that have
- /// been recolored and so on, until no more copies can be coalesced or
- /// it is not profitable.
- /// For a given live range, profitability is determined by the sum of the
- /// frequencies of the non-identity copies it would introduce with the old
- /// and new register.
- void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
- // We have a broken hint, check if it is possible to fix it by
- // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
- // some register and PhysReg may be available for the other live-ranges.
- SmallSet<Register, 4> Visited;
- SmallVector<unsigned, 2> RecoloringCandidates;
- HintsInfo Info;
- Register Reg = VirtReg.reg();
- MCRegister PhysReg = VRM->getPhys(Reg);
- // Start the recoloring algorithm from the input live-interval, then
- // it will propagate to the ones that are copy-related with it.
- Visited.insert(Reg);
- RecoloringCandidates.push_back(Reg);
- LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
- << '(' << printReg(PhysReg, TRI) << ")\n");
- do {
- Reg = RecoloringCandidates.pop_back_val();
- // We cannot recolor physical register.
- if (Register::isPhysicalRegister(Reg))
- continue;
- // This may be a skipped class
- if (!VRM->hasPhys(Reg)) {
- assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
- "We have an unallocated variable which should have been handled");
- continue;
- }
- // Get the live interval mapped with this virtual register to be able
- // to check for the interference with the new color.
- LiveInterval &LI = LIS->getInterval(Reg);
- MCRegister CurrPhys = VRM->getPhys(Reg);
- // Check that the new color matches the register class constraints and
- // that it is free for this live range.
- if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
- Matrix->checkInterference(LI, PhysReg)))
- continue;
- LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
- << ") is recolorable.\n");
- // Gather the hint info.
- Info.clear();
- collectHintInfo(Reg, Info);
- // Check if recoloring the live-range will increase the cost of the
- // non-identity copies.
- if (CurrPhys != PhysReg) {
- LLVM_DEBUG(dbgs() << "Checking profitability:\n");
- BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
- BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
- LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
- << "\nNew Cost: " << NewCopiesCost.getFrequency()
- << '\n');
- if (OldCopiesCost < NewCopiesCost) {
- LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
- continue;
- }
- // At this point, the cost is either cheaper or equal. If it is
- // equal, we consider this is profitable because it may expose
- // more recoloring opportunities.
- LLVM_DEBUG(dbgs() << "=> Profitable.\n");
- // Recolor the live-range.
- Matrix->unassign(LI);
- Matrix->assign(LI, PhysReg);
- }
- // Push all copy-related live-ranges to keep reconciling the broken
- // hints.
- for (const HintInfo &HI : Info) {
- if (Visited.insert(HI.Reg).second)
- RecoloringCandidates.push_back(HI.Reg);
- }
- } while (!RecoloringCandidates.empty());
- }
- /// Try to recolor broken hints.
- /// Broken hints may be repaired by recoloring when an evicted variable
- /// freed up a register for a larger live-range.
- /// Consider the following example:
- /// BB1:
- /// a =
- /// b =
- /// BB2:
- /// ...
- /// = b
- /// = a
- /// Let us assume b gets split:
- /// BB1:
- /// a =
- /// b =
- /// BB2:
- /// c = b
- /// ...
- /// d = c
- /// = d
- /// = a
- /// Because of how the allocation work, b, c, and d may be assigned different
- /// colors. Now, if a gets evicted later:
- /// BB1:
- /// a =
- /// st a, SpillSlot
- /// b =
- /// BB2:
- /// c = b
- /// ...
- /// d = c
- /// = d
- /// e = ld SpillSlot
- /// = e
- /// This is likely that we can assign the same register for b, c, and d,
- /// getting rid of 2 copies.
- void RAGreedy::tryHintsRecoloring() {
- for (LiveInterval *LI : SetOfBrokenHints) {
- assert(Register::isVirtualRegister(LI->reg()) &&
- "Recoloring is possible only for virtual registers");
- // Some dead defs may be around (e.g., because of debug uses).
- // Ignore those.
- if (!VRM->hasPhys(LI->reg()))
- continue;
- tryHintRecoloring(*LI);
- }
- }
- MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
- SmallVectorImpl<Register> &NewVRegs,
- SmallVirtRegSet &FixedRegisters,
- unsigned Depth) {
- uint8_t CostPerUseLimit = uint8_t(~0u);
- // First try assigning a free register.
- auto Order =
- AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
- if (MCRegister PhysReg =
- tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
- // If VirtReg got an assignment, the eviction info is no longer relevant.
- LastEvicted.clearEvicteeInfo(VirtReg.reg());
- // When NewVRegs is not empty, we may have made decisions such as evicting
- // a virtual register, go with the earlier decisions and use the physical
- // register.
- if (CSRCost.getFrequency() &&
- EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
- MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
- CostPerUseLimit, NewVRegs);
- if (CSRReg || !NewVRegs.empty())
- // Return now if we decide to use a CSR or create new vregs due to
- // pre-splitting.
- return CSRReg;
- } else
- return PhysReg;
- }
- LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
- LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
- << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
- // Try to evict a less worthy live range, but only for ranges from the primary
- // queue. The RS_Split ranges already failed to do this, and they should not
- // get a second chance until they have been split.
- if (Stage != RS_Split)
- if (Register PhysReg =
- tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
- FixedRegisters)) {
- Register Hint = MRI->getSimpleHint(VirtReg.reg());
- // If VirtReg has a hint and that hint is broken record this
- // virtual register as a recoloring candidate for broken hint.
- // Indeed, since we evicted a variable in its neighborhood it is
- // likely we can at least partially recolor some of the
- // copy-related live-ranges.
- if (Hint && Hint != PhysReg)
- SetOfBrokenHints.insert(&VirtReg);
- // If VirtReg eviction someone, the eviction info for it as an evictee is
- // no longer relevant.
- LastEvicted.clearEvicteeInfo(VirtReg.reg());
- return PhysReg;
- }
- assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
- // The first time we see a live range, don't try to split or spill.
- // Wait until the second time, when all smaller ranges have been allocated.
- // This gives a better picture of the interference to split around.
- if (Stage < RS_Split) {
- ExtraInfo->setStage(VirtReg, RS_Split);
- LLVM_DEBUG(dbgs() << "wait for second round\n");
- NewVRegs.push_back(VirtReg.reg());
- return 0;
- }
- if (Stage < RS_Spill) {
- // Try splitting VirtReg or interferences.
- unsigned NewVRegSizeBefore = NewVRegs.size();
- Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
- if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
- // If VirtReg got split, the eviction info is no longer relevant.
- LastEvicted.clearEvicteeInfo(VirtReg.reg());
- return PhysReg;
- }
- }
- // If we couldn't allocate a register from spilling, there is probably some
- // invalid inline assembly. The base class will report it.
- if (Stage >= RS_Done || !VirtReg.isSpillable())
- return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
- Depth);
- // Finally spill VirtReg itself.
- if ((EnableDeferredSpilling ||
- TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
- ExtraInfo->getStage(VirtReg) < RS_Memory) {
- // TODO: This is experimental and in particular, we do not model
- // the live range splitting done by spilling correctly.
- // We would need a deep integration with the spiller to do the
- // right thing here. Anyway, that is still good for early testing.
- ExtraInfo->setStage(VirtReg, RS_Memory);
- LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
- NewVRegs.push_back(VirtReg.reg());
- } else {
- NamedRegionTimer T("spill", "Spiller", TimerGroupName,
- TimerGroupDescription, TimePassesIsEnabled);
- LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
- spiller().spill(LRE);
- ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
- // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
- // the new regs are kept in LDV (still mapping to the old register), until
- // we rewrite spilled locations in LDV at a later stage.
- DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
- if (VerifyEnabled)
- MF->verify(this, "After spilling");
- }
- // The live virtual register requesting allocation was spilled, so tell
- // the caller not to allocate anything during this round.
- return 0;
- }
- void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
- using namespace ore;
- if (Spills) {
- R << NV("NumSpills", Spills) << " spills ";
- R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
- }
- if (FoldedSpills) {
- R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
- R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
- << " total folded spills cost ";
- }
- if (Reloads) {
- R << NV("NumReloads", Reloads) << " reloads ";
- R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
- }
- if (FoldedReloads) {
- R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
- R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
- << " total folded reloads cost ";
- }
- if (ZeroCostFoldedReloads)
- R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
- << " zero cost folded reloads ";
- if (Copies) {
- R << NV("NumVRCopies", Copies) << " virtual registers copies ";
- R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
- }
- }
- RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
- RAGreedyStats Stats;
- const MachineFrameInfo &MFI = MF->getFrameInfo();
- int FI;
- auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
- return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
- A->getPseudoValue())->getFrameIndex());
- };
- auto isPatchpointInstr = [](const MachineInstr &MI) {
- return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
- MI.getOpcode() == TargetOpcode::STACKMAP ||
- MI.getOpcode() == TargetOpcode::STATEPOINT;
- };
- for (MachineInstr &MI : MBB) {
- if (MI.isCopy()) {
- MachineOperand &Dest = MI.getOperand(0);
- MachineOperand &Src = MI.getOperand(1);
- if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
- Src.getReg().isVirtual())
- ++Stats.Copies;
- continue;
- }
- SmallVector<const MachineMemOperand *, 2> Accesses;
- if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
- ++Stats.Reloads;
- continue;
- }
- if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
- ++Stats.Spills;
- continue;
- }
- if (TII->hasLoadFromStackSlot(MI, Accesses) &&
- llvm::any_of(Accesses, isSpillSlotAccess)) {
- if (!isPatchpointInstr(MI)) {
- Stats.FoldedReloads += Accesses.size();
- continue;
- }
- // For statepoint there may be folded and zero cost folded stack reloads.
- std::pair<unsigned, unsigned> NonZeroCostRange =
- TII->getPatchpointUnfoldableRange(MI);
- SmallSet<unsigned, 16> FoldedReloads;
- SmallSet<unsigned, 16> ZeroCostFoldedReloads;
- for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
- MachineOperand &MO = MI.getOperand(Idx);
- if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
- continue;
- if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
- FoldedReloads.insert(MO.getIndex());
- else
- ZeroCostFoldedReloads.insert(MO.getIndex());
- }
- // If stack slot is used in folded reload it is not zero cost then.
- for (unsigned Slot : FoldedReloads)
- ZeroCostFoldedReloads.erase(Slot);
- Stats.FoldedReloads += FoldedReloads.size();
- Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
- continue;
- }
- Accesses.clear();
- if (TII->hasStoreToStackSlot(MI, Accesses) &&
- llvm::any_of(Accesses, isSpillSlotAccess)) {
- Stats.FoldedSpills += Accesses.size();
- }
- }
- // Set cost of collected statistic by multiplication to relative frequency of
- // this basic block.
- float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
- Stats.ReloadsCost = RelFreq * Stats.Reloads;
- Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
- Stats.SpillsCost = RelFreq * Stats.Spills;
- Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
- Stats.CopiesCost = RelFreq * Stats.Copies;
- return Stats;
- }
- RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
- RAGreedyStats Stats;
- // Sum up the spill and reloads in subloops.
- for (MachineLoop *SubLoop : *L)
- Stats.add(reportStats(SubLoop));
- for (MachineBasicBlock *MBB : L->getBlocks())
- // Handle blocks that were not included in subloops.
- if (Loops->getLoopFor(MBB) == L)
- Stats.add(computeStats(*MBB));
- if (!Stats.isEmpty()) {
- using namespace ore;
- ORE->emit([&]() {
- MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
- L->getStartLoc(), L->getHeader());
- Stats.report(R);
- R << "generated in loop";
- return R;
- });
- }
- return Stats;
- }
- void RAGreedy::reportStats() {
- if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
- return;
- RAGreedyStats Stats;
- for (MachineLoop *L : *Loops)
- Stats.add(reportStats(L));
- // Process non-loop blocks.
- for (MachineBasicBlock &MBB : *MF)
- if (!Loops->getLoopFor(&MBB))
- Stats.add(computeStats(MBB));
- if (!Stats.isEmpty()) {
- using namespace ore;
- ORE->emit([&]() {
- DebugLoc Loc;
- if (auto *SP = MF->getFunction().getSubprogram())
- Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
- MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
- &MF->front());
- Stats.report(R);
- R << "generated in function";
- return R;
- });
- }
- }
- bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
- LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
- << "********** Function: " << mf.getName() << '\n');
- MF = &mf;
- TRI = MF->getSubtarget().getRegisterInfo();
- TII = MF->getSubtarget().getInstrInfo();
- RCI.runOnMachineFunction(mf);
- EnableAdvancedRASplitCost =
- ConsiderLocalIntervalCost.getNumOccurrences()
- ? ConsiderLocalIntervalCost
- : MF->getSubtarget().enableAdvancedRASplitCost();
- if (VerifyEnabled)
- MF->verify(this, "Before greedy register allocator");
- RegAllocBase::init(getAnalysis<VirtRegMap>(),
- getAnalysis<LiveIntervals>(),
- getAnalysis<LiveRegMatrix>());
- Indexes = &getAnalysis<SlotIndexes>();
- MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
- DomTree = &getAnalysis<MachineDominatorTree>();
- ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
- Loops = &getAnalysis<MachineLoopInfo>();
- Bundles = &getAnalysis<EdgeBundles>();
- SpillPlacer = &getAnalysis<SpillPlacement>();
- DebugVars = &getAnalysis<LiveDebugVariables>();
- AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- initializeCSRCost();
- RegCosts = TRI->getRegisterCosts(*MF);
- ExtraInfo.emplace();
- EvictAdvisor =
- getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
- VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
- SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
- VRAI->calculateSpillWeightsAndHints();
- LLVM_DEBUG(LIS->dump());
- SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
- SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
- IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
- GlobalCand.resize(32); // This will grow as needed.
- SetOfBrokenHints.clear();
- LastEvicted.clear();
- allocatePhysRegs();
- tryHintsRecoloring();
- if (VerifyEnabled)
- MF->verify(this, "Before post optimization");
- postOptimization();
- reportStats();
- releaseMemory();
- return true;
- }
|