123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209 |
- //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// This file implements some simple delegations needed for call lowering.
- ///
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/Analysis.h"
- #include "llvm/CodeGen/CallingConvLower.h"
- #include "llvm/CodeGen/GlobalISel/CallLowering.h"
- #include "llvm/CodeGen/GlobalISel/Utils.h"
- #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/Target/TargetMachine.h"
- #define DEBUG_TYPE "call-lowering"
- using namespace llvm;
- void CallLowering::anchor() {}
- /// Helper function which updates \p Flags when \p AttrFn returns true.
- static void
- addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
- const std::function<bool(Attribute::AttrKind)> &AttrFn) {
- if (AttrFn(Attribute::SExt))
- Flags.setSExt();
- if (AttrFn(Attribute::ZExt))
- Flags.setZExt();
- if (AttrFn(Attribute::InReg))
- Flags.setInReg();
- if (AttrFn(Attribute::StructRet))
- Flags.setSRet();
- if (AttrFn(Attribute::Nest))
- Flags.setNest();
- if (AttrFn(Attribute::ByVal))
- Flags.setByVal();
- if (AttrFn(Attribute::Preallocated))
- Flags.setPreallocated();
- if (AttrFn(Attribute::InAlloca))
- Flags.setInAlloca();
- if (AttrFn(Attribute::Returned))
- Flags.setReturned();
- if (AttrFn(Attribute::SwiftSelf))
- Flags.setSwiftSelf();
- if (AttrFn(Attribute::SwiftAsync))
- Flags.setSwiftAsync();
- if (AttrFn(Attribute::SwiftError))
- Flags.setSwiftError();
- }
- ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
- unsigned ArgIdx) const {
- ISD::ArgFlagsTy Flags;
- addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
- return Call.paramHasAttr(ArgIdx, Attr);
- });
- return Flags;
- }
- void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
- const AttributeList &Attrs,
- unsigned OpIdx) const {
- addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
- return Attrs.hasAttributeAtIndex(OpIdx, Attr);
- });
- }
- bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
- ArrayRef<Register> ResRegs,
- ArrayRef<ArrayRef<Register>> ArgRegs,
- Register SwiftErrorVReg,
- std::function<unsigned()> GetCalleeReg) const {
- CallLoweringInfo Info;
- const DataLayout &DL = MIRBuilder.getDataLayout();
- MachineFunction &MF = MIRBuilder.getMF();
- MachineRegisterInfo &MRI = MF.getRegInfo();
- bool CanBeTailCalled = CB.isTailCall() &&
- isInTailCallPosition(CB, MF.getTarget()) &&
- (MF.getFunction()
- .getFnAttribute("disable-tail-calls")
- .getValueAsString() != "true");
- CallingConv::ID CallConv = CB.getCallingConv();
- Type *RetTy = CB.getType();
- bool IsVarArg = CB.getFunctionType()->isVarArg();
- SmallVector<BaseArgInfo, 4> SplitArgs;
- getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
- Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
- if (!Info.CanLowerReturn) {
- // Callee requires sret demotion.
- insertSRetOutgoingArgument(MIRBuilder, CB, Info);
- // The sret demotion isn't compatible with tail-calls, since the sret
- // argument points into the caller's stack frame.
- CanBeTailCalled = false;
- }
- // First step is to marshall all the function's parameters into the correct
- // physregs and memory locations. Gather the sequence of argument types that
- // we'll pass to the assigner function.
- unsigned i = 0;
- unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
- for (auto &Arg : CB.args()) {
- ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
- i < NumFixedArgs};
- setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
- // If we have an explicit sret argument that is an Instruction, (i.e., it
- // might point to function-local memory), we can't meaningfully tail-call.
- if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
- CanBeTailCalled = false;
- Info.OrigArgs.push_back(OrigArg);
- ++i;
- }
- // Try looking through a bitcast from one function type to another.
- // Commonly happens with calls to objc_msgSend().
- const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
- if (const Function *F = dyn_cast<Function>(CalleeV))
- Info.Callee = MachineOperand::CreateGA(F, 0);
- else
- Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
- Register ReturnHintAlignReg;
- Align ReturnHintAlign;
- Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
- if (!Info.OrigRet.Ty->isVoidTy()) {
- setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
- if (MaybeAlign Alignment = CB.getRetAlign()) {
- if (*Alignment > Align(1)) {
- ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
- Info.OrigRet.Regs[0] = ReturnHintAlignReg;
- ReturnHintAlign = *Alignment;
- }
- }
- }
- Info.CB = &CB;
- Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
- Info.CallConv = CallConv;
- Info.SwiftErrorVReg = SwiftErrorVReg;
- Info.IsMustTailCall = CB.isMustTailCall();
- Info.IsTailCall = CanBeTailCalled;
- Info.IsVarArg = IsVarArg;
- if (!lowerCall(MIRBuilder, Info))
- return false;
- if (ReturnHintAlignReg && !Info.IsTailCall) {
- MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
- ReturnHintAlign);
- }
- return true;
- }
- template <typename FuncInfoTy>
- void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
- const DataLayout &DL,
- const FuncInfoTy &FuncInfo) const {
- auto &Flags = Arg.Flags[0];
- const AttributeList &Attrs = FuncInfo.getAttributes();
- addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
- PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
- if (PtrTy) {
- Flags.setPointer();
- Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
- }
- Align MemAlign = DL.getABITypeAlign(Arg.Ty);
- if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
- assert(OpIdx >= AttributeList::FirstArgIndex);
- unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
- Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
- if (!ElementTy)
- ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
- if (!ElementTy)
- ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
- assert(ElementTy && "Must have byval, inalloca or preallocated type");
- Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
- // For ByVal, alignment should be passed from FE. BE will guess if
- // this info is not there but there are cases it cannot get right.
- if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
- MemAlign = *ParamAlign;
- else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
- MemAlign = *ParamAlign;
- else
- MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
- } else if (OpIdx >= AttributeList::FirstArgIndex) {
- if (auto ParamAlign =
- FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
- MemAlign = *ParamAlign;
- }
- Flags.setMemAlign(MemAlign);
- Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
- // Don't try to use the returned attribute if the argument is marked as
- // swiftself, since it won't be passed in x0.
- if (Flags.isSwiftSelf())
- Flags.setReturned(false);
- }
- template void
- CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
- const DataLayout &DL,
- const Function &FuncInfo) const;
- template void
- CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
- const DataLayout &DL,
- const CallBase &FuncInfo) const;
- void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
- SmallVectorImpl<ArgInfo> &SplitArgs,
- const DataLayout &DL,
- CallingConv::ID CallConv,
- SmallVectorImpl<uint64_t> *Offsets) const {
- LLVMContext &Ctx = OrigArg.Ty->getContext();
- SmallVector<EVT, 4> SplitVTs;
- ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
- if (SplitVTs.size() == 0)
- return;
- if (SplitVTs.size() == 1) {
- // No splitting to do, but we want to replace the original type (e.g. [1 x
- // double] -> double).
- SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
- OrigArg.OrigArgIndex, OrigArg.Flags[0],
- OrigArg.IsFixed, OrigArg.OrigValue);
- return;
- }
- // Create one ArgInfo for each virtual register in the original ArgInfo.
- assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
- bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
- OrigArg.Ty, CallConv, false, DL);
- for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
- Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
- SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
- OrigArg.Flags[0], OrigArg.IsFixed);
- if (NeedsRegBlock)
- SplitArgs.back().Flags[0].setInConsecutiveRegs();
- }
- SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
- }
- /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
- static MachineInstrBuilder
- mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
- ArrayRef<Register> SrcRegs) {
- MachineRegisterInfo &MRI = *B.getMRI();
- LLT LLTy = MRI.getType(DstRegs[0]);
- LLT PartLLT = MRI.getType(SrcRegs[0]);
- // Deal with v3s16 split into v2s16
- LLT LCMTy = getCoverTy(LLTy, PartLLT);
- if (LCMTy == LLTy) {
- // Common case where no padding is needed.
- assert(DstRegs.size() == 1);
- return B.buildConcatVectors(DstRegs[0], SrcRegs);
- }
- // We need to create an unmerge to the result registers, which may require
- // widening the original value.
- Register UnmergeSrcReg;
- if (LCMTy != PartLLT) {
- assert(DstRegs.size() == 1);
- return B.buildDeleteTrailingVectorElements(DstRegs[0],
- B.buildMerge(LCMTy, SrcRegs));
- } else {
- // We don't need to widen anything if we're extracting a scalar which was
- // promoted to a vector e.g. s8 -> v4s8 -> s8
- assert(SrcRegs.size() == 1);
- UnmergeSrcReg = SrcRegs[0];
- }
- int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
- SmallVector<Register, 8> PadDstRegs(NumDst);
- std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
- // Create the excess dead defs for the unmerge.
- for (int I = DstRegs.size(); I != NumDst; ++I)
- PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
- if (PadDstRegs.size() == 1)
- return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
- return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
- }
- /// Create a sequence of instructions to combine pieces split into register
- /// typed values to the original IR value. \p OrigRegs contains the destination
- /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
- /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
- static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
- ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
- const ISD::ArgFlagsTy Flags) {
- MachineRegisterInfo &MRI = *B.getMRI();
- if (PartLLT == LLTy) {
- // We should have avoided introducing a new virtual register, and just
- // directly assigned here.
- assert(OrigRegs[0] == Regs[0]);
- return;
- }
- if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
- Regs.size() == 1) {
- B.buildBitcast(OrigRegs[0], Regs[0]);
- return;
- }
- // A vector PartLLT needs extending to LLTy's element size.
- // E.g. <2 x s64> = G_SEXT <2 x s32>.
- if (PartLLT.isVector() == LLTy.isVector() &&
- PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
- (!PartLLT.isVector() ||
- PartLLT.getNumElements() == LLTy.getNumElements()) &&
- OrigRegs.size() == 1 && Regs.size() == 1) {
- Register SrcReg = Regs[0];
- LLT LocTy = MRI.getType(SrcReg);
- if (Flags.isSExt()) {
- SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
- .getReg(0);
- } else if (Flags.isZExt()) {
- SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
- .getReg(0);
- }
- // Sometimes pointers are passed zero extended.
- LLT OrigTy = MRI.getType(OrigRegs[0]);
- if (OrigTy.isPointer()) {
- LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
- B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
- return;
- }
- B.buildTrunc(OrigRegs[0], SrcReg);
- return;
- }
- if (!LLTy.isVector() && !PartLLT.isVector()) {
- assert(OrigRegs.size() == 1);
- LLT OrigTy = MRI.getType(OrigRegs[0]);
- unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
- if (SrcSize == OrigTy.getSizeInBits())
- B.buildMerge(OrigRegs[0], Regs);
- else {
- auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
- B.buildTrunc(OrigRegs[0], Widened);
- }
- return;
- }
- if (PartLLT.isVector()) {
- assert(OrigRegs.size() == 1);
- SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
- // If PartLLT is a mismatched vector in both number of elements and element
- // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
- // have the same elt type, i.e. v4s32.
- if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
- PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
- Regs.size() == 1) {
- LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
- .changeElementCount(PartLLT.getElementCount() * 2);
- CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
- PartLLT = NewTy;
- }
- if (LLTy.getScalarType() == PartLLT.getElementType()) {
- mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
- } else {
- unsigned I = 0;
- LLT GCDTy = getGCDType(LLTy, PartLLT);
- // We are both splitting a vector, and bitcasting its element types. Cast
- // the source pieces into the appropriate number of pieces with the result
- // element type.
- for (Register SrcReg : CastRegs)
- CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
- mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
- }
- return;
- }
- assert(LLTy.isVector() && !PartLLT.isVector());
- LLT DstEltTy = LLTy.getElementType();
- // Pointer information was discarded. We'll need to coerce some register types
- // to avoid violating type constraints.
- LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
- assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
- if (DstEltTy == PartLLT) {
- // Vector was trivially scalarized.
- if (RealDstEltTy.isPointer()) {
- for (Register Reg : Regs)
- MRI.setType(Reg, RealDstEltTy);
- }
- B.buildBuildVector(OrigRegs[0], Regs);
- } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
- // Deal with vector with 64-bit elements decomposed to 32-bit
- // registers. Need to create intermediate 64-bit elements.
- SmallVector<Register, 8> EltMerges;
- int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
- assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
- for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
- auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
- // Fix the type in case this is really a vector of pointers.
- MRI.setType(Merge.getReg(0), RealDstEltTy);
- EltMerges.push_back(Merge.getReg(0));
- Regs = Regs.drop_front(PartsPerElt);
- }
- B.buildBuildVector(OrigRegs[0], EltMerges);
- } else {
- // Vector was split, and elements promoted to a wider type.
- // FIXME: Should handle floating point promotions.
- LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
- auto BV = B.buildBuildVector(BVType, Regs);
- B.buildTrunc(OrigRegs[0], BV);
- }
- }
- /// Create a sequence of instructions to expand the value in \p SrcReg (of type
- /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
- /// contain the type of scalar value extension if necessary.
- ///
- /// This is used for outgoing values (vregs to physregs)
- static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
- Register SrcReg, LLT SrcTy, LLT PartTy,
- unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
- // We could just insert a regular copy, but this is unreachable at the moment.
- assert(SrcTy != PartTy && "identical part types shouldn't reach here");
- const unsigned PartSize = PartTy.getSizeInBits();
- if (PartTy.isVector() == SrcTy.isVector() &&
- PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
- assert(DstRegs.size() == 1);
- B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
- return;
- }
- if (SrcTy.isVector() && !PartTy.isVector() &&
- PartSize > SrcTy.getElementType().getSizeInBits()) {
- // Vector was scalarized, and the elements extended.
- auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
- for (int i = 0, e = DstRegs.size(); i != e; ++i)
- B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
- return;
- }
- LLT GCDTy = getGCDType(SrcTy, PartTy);
- if (GCDTy == PartTy) {
- // If this already evenly divisible, we can create a simple unmerge.
- B.buildUnmerge(DstRegs, SrcReg);
- return;
- }
- MachineRegisterInfo &MRI = *B.getMRI();
- LLT DstTy = MRI.getType(DstRegs[0]);
- LLT LCMTy = getCoverTy(SrcTy, PartTy);
- const unsigned DstSize = DstTy.getSizeInBits();
- const unsigned SrcSize = SrcTy.getSizeInBits();
- unsigned CoveringSize = LCMTy.getSizeInBits();
- Register UnmergeSrc = SrcReg;
- if (!LCMTy.isVector() && CoveringSize != SrcSize) {
- // For scalars, it's common to be able to use a simple extension.
- if (SrcTy.isScalar() && DstTy.isScalar()) {
- CoveringSize = alignTo(SrcSize, DstSize);
- LLT CoverTy = LLT::scalar(CoveringSize);
- UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
- } else {
- // Widen to the common type.
- // FIXME: This should respect the extend type
- Register Undef = B.buildUndef(SrcTy).getReg(0);
- SmallVector<Register, 8> MergeParts(1, SrcReg);
- for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
- MergeParts.push_back(Undef);
- UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
- }
- }
- if (LCMTy.isVector() && CoveringSize != SrcSize)
- UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
- B.buildUnmerge(DstRegs, UnmergeSrc);
- }
- bool CallLowering::determineAndHandleAssignments(
- ValueHandler &Handler, ValueAssigner &Assigner,
- SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
- CallingConv::ID CallConv, bool IsVarArg,
- ArrayRef<Register> ThisReturnRegs) const {
- MachineFunction &MF = MIRBuilder.getMF();
- const Function &F = MF.getFunction();
- SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
- if (!determineAssignments(Assigner, Args, CCInfo))
- return false;
- return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
- ThisReturnRegs);
- }
- static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
- if (Flags.isSExt())
- return TargetOpcode::G_SEXT;
- if (Flags.isZExt())
- return TargetOpcode::G_ZEXT;
- return TargetOpcode::G_ANYEXT;
- }
- bool CallLowering::determineAssignments(ValueAssigner &Assigner,
- SmallVectorImpl<ArgInfo> &Args,
- CCState &CCInfo) const {
- LLVMContext &Ctx = CCInfo.getContext();
- const CallingConv::ID CallConv = CCInfo.getCallingConv();
- unsigned NumArgs = Args.size();
- for (unsigned i = 0; i != NumArgs; ++i) {
- EVT CurVT = EVT::getEVT(Args[i].Ty);
- MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
- // If we need to split the type over multiple regs, check it's a scenario
- // we currently support.
- unsigned NumParts =
- TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
- if (NumParts == 1) {
- // Try to use the register type if we couldn't assign the VT.
- if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
- Args[i].Flags[0], CCInfo))
- return false;
- continue;
- }
- // For incoming arguments (physregs to vregs), we could have values in
- // physregs (or memlocs) which we want to extract and copy to vregs.
- // During this, we might have to deal with the LLT being split across
- // multiple regs, so we have to record this information for later.
- //
- // If we have outgoing args, then we have the opposite case. We have a
- // vreg with an LLT which we want to assign to a physical location, and
- // we might have to record that the value has to be split later.
- // We're handling an incoming arg which is split over multiple regs.
- // E.g. passing an s128 on AArch64.
- ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
- Args[i].Flags.clear();
- for (unsigned Part = 0; Part < NumParts; ++Part) {
- ISD::ArgFlagsTy Flags = OrigFlags;
- if (Part == 0) {
- Flags.setSplit();
- } else {
- Flags.setOrigAlign(Align(1));
- if (Part == NumParts - 1)
- Flags.setSplitEnd();
- }
- Args[i].Flags.push_back(Flags);
- if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
- Args[i].Flags[Part], CCInfo)) {
- // Still couldn't assign this smaller part type for some reason.
- return false;
- }
- }
- }
- return true;
- }
- bool CallLowering::handleAssignments(ValueHandler &Handler,
- SmallVectorImpl<ArgInfo> &Args,
- CCState &CCInfo,
- SmallVectorImpl<CCValAssign> &ArgLocs,
- MachineIRBuilder &MIRBuilder,
- ArrayRef<Register> ThisReturnRegs) const {
- MachineFunction &MF = MIRBuilder.getMF();
- MachineRegisterInfo &MRI = MF.getRegInfo();
- const Function &F = MF.getFunction();
- const DataLayout &DL = F.getParent()->getDataLayout();
- const unsigned NumArgs = Args.size();
- // Stores thunks for outgoing register assignments. This is used so we delay
- // generating register copies until mem loc assignments are done. We do this
- // so that if the target is using the delayed stack protector feature, we can
- // find the split point of the block accurately. E.g. if we have:
- // G_STORE %val, %memloc
- // $x0 = COPY %foo
- // $x1 = COPY %bar
- // CALL func
- // ... then the split point for the block will correctly be at, and including,
- // the copy to $x0. If instead the G_STORE instruction immediately precedes
- // the CALL, then we'd prematurely choose the CALL as the split point, thus
- // generating a split block with a CALL that uses undefined physregs.
- SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
- for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
- assert(j < ArgLocs.size() && "Skipped too many arg locs");
- CCValAssign &VA = ArgLocs[j];
- assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
- if (VA.needsCustom()) {
- std::function<void()> Thunk;
- unsigned NumArgRegs = Handler.assignCustomValue(
- Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk);
- if (Thunk)
- DelayedOutgoingRegAssignments.emplace_back(Thunk);
- if (!NumArgRegs)
- return false;
- j += NumArgRegs;
- continue;
- }
- const MVT ValVT = VA.getValVT();
- const MVT LocVT = VA.getLocVT();
- const LLT LocTy(LocVT);
- const LLT ValTy(ValVT);
- const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
- const EVT OrigVT = EVT::getEVT(Args[i].Ty);
- const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
- // Expected to be multiple regs for a single incoming arg.
- // There should be Regs.size() ArgLocs per argument.
- // This should be the same as getNumRegistersForCallingConv
- const unsigned NumParts = Args[i].Flags.size();
- // Now split the registers into the assigned types.
- Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
- if (NumParts != 1 || NewLLT != OrigTy) {
- // If we can't directly assign the register, we need one or more
- // intermediate values.
- Args[i].Regs.resize(NumParts);
- // For each split register, create and assign a vreg that will store
- // the incoming component of the larger value. These will later be
- // merged to form the final vreg.
- for (unsigned Part = 0; Part < NumParts; ++Part)
- Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
- }
- assert((j + (NumParts - 1)) < ArgLocs.size() &&
- "Too many regs for number of args");
- // Coerce into outgoing value types before register assignment.
- if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
- assert(Args[i].OrigRegs.size() == 1);
- buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
- ValTy, extendOpFromFlags(Args[i].Flags[0]));
- }
- for (unsigned Part = 0; Part < NumParts; ++Part) {
- Register ArgReg = Args[i].Regs[Part];
- // There should be Regs.size() ArgLocs per argument.
- VA = ArgLocs[j + Part];
- const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
- if (VA.isMemLoc() && !Flags.isByVal()) {
- // Individual pieces may have been spilled to the stack and others
- // passed in registers.
- // TODO: The memory size may be larger than the value we need to
- // store. We may need to adjust the offset for big endian targets.
- LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
- MachinePointerInfo MPO;
- Register StackAddr = Handler.getStackAddress(
- MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
- Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
- continue;
- }
- if (VA.isMemLoc() && Flags.isByVal()) {
- assert(Args[i].Regs.size() == 1 &&
- "didn't expect split byval pointer");
- if (Handler.isIncomingArgumentHandler()) {
- // We just need to copy the frame index value to the pointer.
- MachinePointerInfo MPO;
- Register StackAddr = Handler.getStackAddress(
- Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
- MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
- } else {
- // For outgoing byval arguments, insert the implicit copy byval
- // implies, such that writes in the callee do not modify the caller's
- // value.
- uint64_t MemSize = Flags.getByValSize();
- int64_t Offset = VA.getLocMemOffset();
- MachinePointerInfo DstMPO;
- Register StackAddr =
- Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
- MachinePointerInfo SrcMPO(Args[i].OrigValue);
- if (!Args[i].OrigValue) {
- // We still need to accurately track the stack address space if we
- // don't know the underlying value.
- const LLT PtrTy = MRI.getType(StackAddr);
- SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
- }
- Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
- inferAlignFromPtrInfo(MF, DstMPO));
- Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
- inferAlignFromPtrInfo(MF, SrcMPO));
- Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
- DstMPO, DstAlign, SrcMPO, SrcAlign,
- MemSize, VA);
- }
- continue;
- }
- assert(!VA.needsCustom() && "custom loc should have been handled already");
- if (i == 0 && !ThisReturnRegs.empty() &&
- Handler.isIncomingArgumentHandler() &&
- isTypeIsValidForThisReturn(ValVT)) {
- Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
- continue;
- }
- if (Handler.isIncomingArgumentHandler())
- Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
- else {
- DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
- Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
- });
- }
- }
- // Now that all pieces have been assigned, re-pack the register typed values
- // into the original value typed registers.
- if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
- // Merge the split registers into the expected larger result vregs of
- // the original call.
- buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
- LocTy, Args[i].Flags[0]);
- }
- j += NumParts - 1;
- }
- for (auto &Fn : DelayedOutgoingRegAssignments)
- Fn();
- return true;
- }
- void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
- ArrayRef<Register> VRegs, Register DemoteReg,
- int FI) const {
- MachineFunction &MF = MIRBuilder.getMF();
- MachineRegisterInfo &MRI = MF.getRegInfo();
- const DataLayout &DL = MF.getDataLayout();
- SmallVector<EVT, 4> SplitVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
- assert(VRegs.size() == SplitVTs.size());
- unsigned NumValues = SplitVTs.size();
- Align BaseAlign = DL.getPrefTypeAlign(RetTy);
- Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
- LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
- MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
- for (unsigned I = 0; I < NumValues; ++I) {
- Register Addr;
- MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
- auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
- MRI.getType(VRegs[I]),
- commonAlignment(BaseAlign, Offsets[I]));
- MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
- }
- }
- void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
- ArrayRef<Register> VRegs,
- Register DemoteReg) const {
- MachineFunction &MF = MIRBuilder.getMF();
- MachineRegisterInfo &MRI = MF.getRegInfo();
- const DataLayout &DL = MF.getDataLayout();
- SmallVector<EVT, 4> SplitVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
- assert(VRegs.size() == SplitVTs.size());
- unsigned NumValues = SplitVTs.size();
- Align BaseAlign = DL.getPrefTypeAlign(RetTy);
- unsigned AS = DL.getAllocaAddrSpace();
- LLT OffsetLLTy =
- getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
- MachinePointerInfo PtrInfo(AS);
- for (unsigned I = 0; I < NumValues; ++I) {
- Register Addr;
- MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
- auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
- MRI.getType(VRegs[I]),
- commonAlignment(BaseAlign, Offsets[I]));
- MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
- }
- }
- void CallLowering::insertSRetIncomingArgument(
- const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
- MachineRegisterInfo &MRI, const DataLayout &DL) const {
- unsigned AS = DL.getAllocaAddrSpace();
- DemoteReg = MRI.createGenericVirtualRegister(
- LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
- Type *PtrTy = PointerType::get(F.getReturnType(), AS);
- SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
- // NOTE: Assume that a pointer won't get split into more than one VT.
- assert(ValueVTs.size() == 1);
- ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
- ArgInfo::NoArgIndex);
- setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
- DemoteArg.Flags[0].setSRet();
- SplitArgs.insert(SplitArgs.begin(), DemoteArg);
- }
- void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
- const CallBase &CB,
- CallLoweringInfo &Info) const {
- const DataLayout &DL = MIRBuilder.getDataLayout();
- Type *RetTy = CB.getType();
- unsigned AS = DL.getAllocaAddrSpace();
- LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
- int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
- DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
- Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
- ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
- ArgInfo::NoArgIndex);
- setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
- DemoteArg.Flags[0].setSRet();
- Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
- Info.DemoteStackIndex = FI;
- Info.DemoteRegister = DemoteReg;
- }
- bool CallLowering::checkReturn(CCState &CCInfo,
- SmallVectorImpl<BaseArgInfo> &Outs,
- CCAssignFn *Fn) const {
- for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
- MVT VT = MVT::getVT(Outs[I].Ty);
- if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
- return false;
- }
- return true;
- }
- void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
- AttributeList Attrs,
- SmallVectorImpl<BaseArgInfo> &Outs,
- const DataLayout &DL) const {
- LLVMContext &Context = RetTy->getContext();
- ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
- SmallVector<EVT, 4> SplitVTs;
- ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
- addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
- for (EVT VT : SplitVTs) {
- unsigned NumParts =
- TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
- MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
- Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
- for (unsigned I = 0; I < NumParts; ++I) {
- Outs.emplace_back(PartTy, Flags);
- }
- }
- }
- bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
- const auto &F = MF.getFunction();
- Type *ReturnType = F.getReturnType();
- CallingConv::ID CallConv = F.getCallingConv();
- SmallVector<BaseArgInfo, 4> SplitArgs;
- getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
- MF.getDataLayout());
- return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
- }
- bool CallLowering::parametersInCSRMatch(
- const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
- const SmallVectorImpl<CCValAssign> &OutLocs,
- const SmallVectorImpl<ArgInfo> &OutArgs) const {
- for (unsigned i = 0; i < OutLocs.size(); ++i) {
- auto &ArgLoc = OutLocs[i];
- // If it's not a register, it's fine.
- if (!ArgLoc.isRegLoc())
- continue;
- MCRegister PhysReg = ArgLoc.getLocReg();
- // Only look at callee-saved registers.
- if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
- continue;
- LLVM_DEBUG(
- dbgs()
- << "... Call has an argument passed in a callee-saved register.\n");
- // Check if it was copied from.
- const ArgInfo &OutInfo = OutArgs[i];
- if (OutInfo.Regs.size() > 1) {
- LLVM_DEBUG(
- dbgs() << "... Cannot handle arguments in multiple registers.\n");
- return false;
- }
- // Check if we copy the register, walking through copies from virtual
- // registers. Note that getDefIgnoringCopies does not ignore copies from
- // physical registers.
- MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
- if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
- LLVM_DEBUG(
- dbgs()
- << "... Parameter was not copied into a VReg, cannot tail call.\n");
- return false;
- }
- // Got a copy. Verify that it's the same as the register we want.
- Register CopyRHS = RegDef->getOperand(1).getReg();
- if (CopyRHS != PhysReg) {
- LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
- "VReg, cannot tail call.\n");
- return false;
- }
- }
- return true;
- }
- bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
- MachineFunction &MF,
- SmallVectorImpl<ArgInfo> &InArgs,
- ValueAssigner &CalleeAssigner,
- ValueAssigner &CallerAssigner) const {
- const Function &F = MF.getFunction();
- CallingConv::ID CalleeCC = Info.CallConv;
- CallingConv::ID CallerCC = F.getCallingConv();
- if (CallerCC == CalleeCC)
- return true;
- SmallVector<CCValAssign, 16> ArgLocs1;
- CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
- if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
- return false;
- SmallVector<CCValAssign, 16> ArgLocs2;
- CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
- if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
- return false;
- // We need the argument locations to match up exactly. If there's more in
- // one than the other, then we are done.
- if (ArgLocs1.size() != ArgLocs2.size())
- return false;
- // Make sure that each location is passed in exactly the same way.
- for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
- const CCValAssign &Loc1 = ArgLocs1[i];
- const CCValAssign &Loc2 = ArgLocs2[i];
- // We need both of them to be the same. So if one is a register and one
- // isn't, we're done.
- if (Loc1.isRegLoc() != Loc2.isRegLoc())
- return false;
- if (Loc1.isRegLoc()) {
- // If they don't have the same register location, we're done.
- if (Loc1.getLocReg() != Loc2.getLocReg())
- return false;
- // They matched, so we can move to the next ArgLoc.
- continue;
- }
- // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
- if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
- return false;
- }
- return true;
- }
- LLT CallLowering::ValueHandler::getStackValueStoreType(
- const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
- const MVT ValVT = VA.getValVT();
- if (ValVT != MVT::iPTR) {
- LLT ValTy(ValVT);
- // We lost the pointeriness going through CCValAssign, so try to restore it
- // based on the flags.
- if (Flags.isPointer()) {
- LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
- ValTy.getScalarSizeInBits());
- if (ValVT.isVector())
- return LLT::vector(ValTy.getElementCount(), PtrTy);
- return PtrTy;
- }
- return ValTy;
- }
- unsigned AddrSpace = Flags.getPointerAddrSpace();
- return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
- }
- void CallLowering::ValueHandler::copyArgumentMemory(
- const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
- const MachinePointerInfo &DstPtrInfo, Align DstAlign,
- const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
- CCValAssign &VA) const {
- MachineFunction &MF = MIRBuilder.getMF();
- MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
- SrcPtrInfo,
- MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
- SrcAlign);
- MachineMemOperand *DstMMO = MF.getMachineMemOperand(
- DstPtrInfo,
- MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
- MemSize, DstAlign);
- const LLT PtrTy = MRI.getType(DstPtr);
- const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
- auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
- MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
- }
- Register CallLowering::ValueHandler::extendRegister(Register ValReg,
- CCValAssign &VA,
- unsigned MaxSizeBits) {
- LLT LocTy{VA.getLocVT()};
- LLT ValTy{VA.getValVT()};
- if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
- return ValReg;
- if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
- if (MaxSizeBits <= ValTy.getSizeInBits())
- return ValReg;
- LocTy = LLT::scalar(MaxSizeBits);
- }
- const LLT ValRegTy = MRI.getType(ValReg);
- if (ValRegTy.isPointer()) {
- // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
- // we have to cast to do the extension.
- LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
- ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
- }
- switch (VA.getLocInfo()) {
- default: break;
- case CCValAssign::Full:
- case CCValAssign::BCvt:
- // FIXME: bitconverting between vector types may or may not be a
- // nop in big-endian situations.
- return ValReg;
- case CCValAssign::AExt: {
- auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
- return MIB.getReg(0);
- }
- case CCValAssign::SExt: {
- Register NewReg = MRI.createGenericVirtualRegister(LocTy);
- MIRBuilder.buildSExt(NewReg, ValReg);
- return NewReg;
- }
- case CCValAssign::ZExt: {
- Register NewReg = MRI.createGenericVirtualRegister(LocTy);
- MIRBuilder.buildZExt(NewReg, ValReg);
- return NewReg;
- }
- }
- llvm_unreachable("unable to extend register");
- }
- void CallLowering::ValueAssigner::anchor() {}
- Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
- Register SrcReg,
- LLT NarrowTy) {
- switch (VA.getLocInfo()) {
- case CCValAssign::LocInfo::ZExt: {
- return MIRBuilder
- .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
- NarrowTy.getScalarSizeInBits())
- .getReg(0);
- }
- case CCValAssign::LocInfo::SExt: {
- return MIRBuilder
- .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
- NarrowTy.getScalarSizeInBits())
- .getReg(0);
- break;
- }
- default:
- return SrcReg;
- }
- }
- /// Check if we can use a basic COPY instruction between the two types.
- ///
- /// We're currently building on top of the infrastructure using MVT, which loses
- /// pointer information in the CCValAssign. We accept copies from physical
- /// registers that have been reported as integers if it's to an equivalent sized
- /// pointer LLT.
- static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
- if (SrcTy == DstTy)
- return true;
- if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
- return false;
- SrcTy = SrcTy.getScalarType();
- DstTy = DstTy.getScalarType();
- return (SrcTy.isPointer() && DstTy.isScalar()) ||
- (DstTy.isScalar() && SrcTy.isPointer());
- }
- void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
- Register PhysReg,
- CCValAssign VA) {
- const MVT LocVT = VA.getLocVT();
- const LLT LocTy(LocVT);
- const LLT RegTy = MRI.getType(ValVReg);
- if (isCopyCompatibleType(RegTy, LocTy)) {
- MIRBuilder.buildCopy(ValVReg, PhysReg);
- return;
- }
- auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
- auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
- MIRBuilder.buildTrunc(ValVReg, Hint);
- }
|