123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440 |
- //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines vectorizer utilities.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/ADT/EquivalenceClasses.h"
- #include "llvm/Analysis/DemandedBits.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/CommandLine.h"
- #define DEBUG_TYPE "vectorutils"
- using namespace llvm;
- using namespace llvm::PatternMatch;
- /// Maximum factor for an interleaved memory access.
- static cl::opt<unsigned> MaxInterleaveGroupFactor(
- "max-interleave-group-factor", cl::Hidden,
- cl::desc("Maximum factor for an interleaved access group (default = 8)"),
- cl::init(8));
- /// Return true if all of the intrinsic's arguments and return type are scalars
- /// for the scalar form of the intrinsic, and vectors for the vector form of the
- /// intrinsic (except operands that are marked as always being scalar by
- /// hasVectorInstrinsicScalarOpd).
- bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
- switch (ID) {
- case Intrinsic::abs: // Begin integer bit-manipulation.
- case Intrinsic::bswap:
- case Intrinsic::bitreverse:
- case Intrinsic::ctpop:
- case Intrinsic::ctlz:
- case Intrinsic::cttz:
- case Intrinsic::fshl:
- case Intrinsic::fshr:
- case Intrinsic::smax:
- case Intrinsic::smin:
- case Intrinsic::umax:
- case Intrinsic::umin:
- case Intrinsic::sadd_sat:
- case Intrinsic::ssub_sat:
- case Intrinsic::uadd_sat:
- case Intrinsic::usub_sat:
- case Intrinsic::smul_fix:
- case Intrinsic::smul_fix_sat:
- case Intrinsic::umul_fix:
- case Intrinsic::umul_fix_sat:
- case Intrinsic::sqrt: // Begin floating-point.
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::log:
- case Intrinsic::log10:
- case Intrinsic::log2:
- case Intrinsic::fabs:
- case Intrinsic::minnum:
- case Intrinsic::maxnum:
- case Intrinsic::minimum:
- case Intrinsic::maximum:
- case Intrinsic::copysign:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- case Intrinsic::roundeven:
- case Intrinsic::pow:
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- case Intrinsic::powi:
- case Intrinsic::canonicalize:
- return true;
- default:
- return false;
- }
- }
- /// Identifies if the vector form of the intrinsic has a scalar operand.
- bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
- unsigned ScalarOpdIdx) {
- switch (ID) {
- case Intrinsic::abs:
- case Intrinsic::ctlz:
- case Intrinsic::cttz:
- case Intrinsic::powi:
- return (ScalarOpdIdx == 1);
- case Intrinsic::smul_fix:
- case Intrinsic::smul_fix_sat:
- case Intrinsic::umul_fix:
- case Intrinsic::umul_fix_sat:
- return (ScalarOpdIdx == 2);
- default:
- return false;
- }
- }
- bool llvm::hasVectorInstrinsicOverloadedScalarOpd(Intrinsic::ID ID,
- unsigned ScalarOpdIdx) {
- switch (ID) {
- case Intrinsic::powi:
- return (ScalarOpdIdx == 1);
- default:
- return false;
- }
- }
- /// Returns intrinsic ID for call.
- /// For the input call instruction it finds mapping intrinsic and returns
- /// its ID, in case it does not found it return not_intrinsic.
- Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
- const TargetLibraryInfo *TLI) {
- Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
- if (ID == Intrinsic::not_intrinsic)
- return Intrinsic::not_intrinsic;
- if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
- ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
- ID == Intrinsic::experimental_noalias_scope_decl ||
- ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
- return ID;
- return Intrinsic::not_intrinsic;
- }
- /// Find the operand of the GEP that should be checked for consecutive
- /// stores. This ignores trailing indices that have no effect on the final
- /// pointer.
- unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
- const DataLayout &DL = Gep->getModule()->getDataLayout();
- unsigned LastOperand = Gep->getNumOperands() - 1;
- TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
- // Walk backwards and try to peel off zeros.
- while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
- // Find the type we're currently indexing into.
- gep_type_iterator GEPTI = gep_type_begin(Gep);
- std::advance(GEPTI, LastOperand - 2);
- // If it's a type with the same allocation size as the result of the GEP we
- // can peel off the zero index.
- if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
- break;
- --LastOperand;
- }
- return LastOperand;
- }
- /// If the argument is a GEP, then returns the operand identified by
- /// getGEPInductionOperand. However, if there is some other non-loop-invariant
- /// operand, it returns that instead.
- Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
- GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
- if (!GEP)
- return Ptr;
- unsigned InductionOperand = getGEPInductionOperand(GEP);
- // Check that all of the gep indices are uniform except for our induction
- // operand.
- for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
- if (i != InductionOperand &&
- !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
- return Ptr;
- return GEP->getOperand(InductionOperand);
- }
- /// If a value has only one user that is a CastInst, return it.
- Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
- Value *UniqueCast = nullptr;
- for (User *U : Ptr->users()) {
- CastInst *CI = dyn_cast<CastInst>(U);
- if (CI && CI->getType() == Ty) {
- if (!UniqueCast)
- UniqueCast = CI;
- else
- return nullptr;
- }
- }
- return UniqueCast;
- }
- /// Get the stride of a pointer access in a loop. Looks for symbolic
- /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
- Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
- auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
- if (!PtrTy || PtrTy->isAggregateType())
- return nullptr;
- // Try to remove a gep instruction to make the pointer (actually index at this
- // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
- // pointer, otherwise, we are analyzing the index.
- Value *OrigPtr = Ptr;
- // The size of the pointer access.
- int64_t PtrAccessSize = 1;
- Ptr = stripGetElementPtr(Ptr, SE, Lp);
- const SCEV *V = SE->getSCEV(Ptr);
- if (Ptr != OrigPtr)
- // Strip off casts.
- while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
- V = C->getOperand();
- const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
- if (!S)
- return nullptr;
- V = S->getStepRecurrence(*SE);
- if (!V)
- return nullptr;
- // Strip off the size of access multiplication if we are still analyzing the
- // pointer.
- if (OrigPtr == Ptr) {
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
- if (M->getOperand(0)->getSCEVType() != scConstant)
- return nullptr;
- const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
- // Huge step value - give up.
- if (APStepVal.getBitWidth() > 64)
- return nullptr;
- int64_t StepVal = APStepVal.getSExtValue();
- if (PtrAccessSize != StepVal)
- return nullptr;
- V = M->getOperand(1);
- }
- }
- // Strip off casts.
- Type *StripedOffRecurrenceCast = nullptr;
- if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) {
- StripedOffRecurrenceCast = C->getType();
- V = C->getOperand();
- }
- // Look for the loop invariant symbolic value.
- const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
- if (!U)
- return nullptr;
- Value *Stride = U->getValue();
- if (!Lp->isLoopInvariant(Stride))
- return nullptr;
- // If we have stripped off the recurrence cast we have to make sure that we
- // return the value that is used in this loop so that we can replace it later.
- if (StripedOffRecurrenceCast)
- Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
- return Stride;
- }
- /// Given a vector and an element number, see if the scalar value is
- /// already around as a register, for example if it were inserted then extracted
- /// from the vector.
- Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
- assert(V->getType()->isVectorTy() && "Not looking at a vector?");
- VectorType *VTy = cast<VectorType>(V->getType());
- // For fixed-length vector, return undef for out of range access.
- if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
- unsigned Width = FVTy->getNumElements();
- if (EltNo >= Width)
- return UndefValue::get(FVTy->getElementType());
- }
- if (Constant *C = dyn_cast<Constant>(V))
- return C->getAggregateElement(EltNo);
- if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
- // If this is an insert to a variable element, we don't know what it is.
- if (!isa<ConstantInt>(III->getOperand(2)))
- return nullptr;
- unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
- // If this is an insert to the element we are looking for, return the
- // inserted value.
- if (EltNo == IIElt)
- return III->getOperand(1);
- // Guard against infinite loop on malformed, unreachable IR.
- if (III == III->getOperand(0))
- return nullptr;
- // Otherwise, the insertelement doesn't modify the value, recurse on its
- // vector input.
- return findScalarElement(III->getOperand(0), EltNo);
- }
- ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
- // Restrict the following transformation to fixed-length vector.
- if (SVI && isa<FixedVectorType>(SVI->getType())) {
- unsigned LHSWidth =
- cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
- int InEl = SVI->getMaskValue(EltNo);
- if (InEl < 0)
- return UndefValue::get(VTy->getElementType());
- if (InEl < (int)LHSWidth)
- return findScalarElement(SVI->getOperand(0), InEl);
- return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
- }
- // Extract a value from a vector add operation with a constant zero.
- // TODO: Use getBinOpIdentity() to generalize this.
- Value *Val; Constant *C;
- if (match(V, m_Add(m_Value(Val), m_Constant(C))))
- if (Constant *Elt = C->getAggregateElement(EltNo))
- if (Elt->isNullValue())
- return findScalarElement(Val, EltNo);
- // If the vector is a splat then we can trivially find the scalar element.
- if (isa<ScalableVectorType>(VTy))
- if (Value *Splat = getSplatValue(V))
- if (EltNo < VTy->getElementCount().getKnownMinValue())
- return Splat;
- // Otherwise, we don't know.
- return nullptr;
- }
- int llvm::getSplatIndex(ArrayRef<int> Mask) {
- int SplatIndex = -1;
- for (int M : Mask) {
- // Ignore invalid (undefined) mask elements.
- if (M < 0)
- continue;
- // There can be only 1 non-negative mask element value if this is a splat.
- if (SplatIndex != -1 && SplatIndex != M)
- return -1;
- // Initialize the splat index to the 1st non-negative mask element.
- SplatIndex = M;
- }
- assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
- return SplatIndex;
- }
- /// Get splat value if the input is a splat vector or return nullptr.
- /// This function is not fully general. It checks only 2 cases:
- /// the input value is (1) a splat constant vector or (2) a sequence
- /// of instructions that broadcasts a scalar at element 0.
- Value *llvm::getSplatValue(const Value *V) {
- if (isa<VectorType>(V->getType()))
- if (auto *C = dyn_cast<Constant>(V))
- return C->getSplatValue();
- // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
- Value *Splat;
- if (match(V,
- m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
- m_Value(), m_ZeroMask())))
- return Splat;
- return nullptr;
- }
- bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
- assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
- if (isa<VectorType>(V->getType())) {
- if (isa<UndefValue>(V))
- return true;
- // FIXME: We can allow undefs, but if Index was specified, we may want to
- // check that the constant is defined at that index.
- if (auto *C = dyn_cast<Constant>(V))
- return C->getSplatValue() != nullptr;
- }
- if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
- // FIXME: We can safely allow undefs here. If Index was specified, we will
- // check that the mask elt is defined at the required index.
- if (!is_splat(Shuf->getShuffleMask()))
- return false;
- // Match any index.
- if (Index == -1)
- return true;
- // Match a specific element. The mask should be defined at and match the
- // specified index.
- return Shuf->getMaskValue(Index) == Index;
- }
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth++ == MaxAnalysisRecursionDepth)
- return false;
- // If both operands of a binop are splats, the result is a splat.
- Value *X, *Y, *Z;
- if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
- return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
- // If all operands of a select are splats, the result is a splat.
- if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
- return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
- isSplatValue(Z, Index, Depth);
- // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
- return false;
- }
- void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
- SmallVectorImpl<int> &ScaledMask) {
- assert(Scale > 0 && "Unexpected scaling factor");
- // Fast-path: if no scaling, then it is just a copy.
- if (Scale == 1) {
- ScaledMask.assign(Mask.begin(), Mask.end());
- return;
- }
- ScaledMask.clear();
- for (int MaskElt : Mask) {
- if (MaskElt >= 0) {
- assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
- "Overflowed 32-bits");
- }
- for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
- ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
- }
- }
- bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
- SmallVectorImpl<int> &ScaledMask) {
- assert(Scale > 0 && "Unexpected scaling factor");
- // Fast-path: if no scaling, then it is just a copy.
- if (Scale == 1) {
- ScaledMask.assign(Mask.begin(), Mask.end());
- return true;
- }
- // We must map the original elements down evenly to a type with less elements.
- int NumElts = Mask.size();
- if (NumElts % Scale != 0)
- return false;
- ScaledMask.clear();
- ScaledMask.reserve(NumElts / Scale);
- // Step through the input mask by splitting into Scale-sized slices.
- do {
- ArrayRef<int> MaskSlice = Mask.take_front(Scale);
- assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
- // The first element of the slice determines how we evaluate this slice.
- int SliceFront = MaskSlice.front();
- if (SliceFront < 0) {
- // Negative values (undef or other "sentinel" values) must be equal across
- // the entire slice.
- if (!is_splat(MaskSlice))
- return false;
- ScaledMask.push_back(SliceFront);
- } else {
- // A positive mask element must be cleanly divisible.
- if (SliceFront % Scale != 0)
- return false;
- // Elements of the slice must be consecutive.
- for (int i = 1; i < Scale; ++i)
- if (MaskSlice[i] != SliceFront + i)
- return false;
- ScaledMask.push_back(SliceFront / Scale);
- }
- Mask = Mask.drop_front(Scale);
- } while (!Mask.empty());
- assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
- // All elements of the original mask can be scaled down to map to the elements
- // of a mask with wider elements.
- return true;
- }
- MapVector<Instruction *, uint64_t>
- llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
- const TargetTransformInfo *TTI) {
- // DemandedBits will give us every value's live-out bits. But we want
- // to ensure no extra casts would need to be inserted, so every DAG
- // of connected values must have the same minimum bitwidth.
- EquivalenceClasses<Value *> ECs;
- SmallVector<Value *, 16> Worklist;
- SmallPtrSet<Value *, 4> Roots;
- SmallPtrSet<Value *, 16> Visited;
- DenseMap<Value *, uint64_t> DBits;
- SmallPtrSet<Instruction *, 4> InstructionSet;
- MapVector<Instruction *, uint64_t> MinBWs;
- // Determine the roots. We work bottom-up, from truncs or icmps.
- bool SeenExtFromIllegalType = false;
- for (auto *BB : Blocks)
- for (auto &I : *BB) {
- InstructionSet.insert(&I);
- if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
- !TTI->isTypeLegal(I.getOperand(0)->getType()))
- SeenExtFromIllegalType = true;
- // Only deal with non-vector integers up to 64-bits wide.
- if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
- !I.getType()->isVectorTy() &&
- I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
- // Don't make work for ourselves. If we know the loaded type is legal,
- // don't add it to the worklist.
- if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
- continue;
- Worklist.push_back(&I);
- Roots.insert(&I);
- }
- }
- // Early exit.
- if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
- return MinBWs;
- // Now proceed breadth-first, unioning values together.
- while (!Worklist.empty()) {
- Value *Val = Worklist.pop_back_val();
- Value *Leader = ECs.getOrInsertLeaderValue(Val);
- if (Visited.count(Val))
- continue;
- Visited.insert(Val);
- // Non-instructions terminate a chain successfully.
- if (!isa<Instruction>(Val))
- continue;
- Instruction *I = cast<Instruction>(Val);
- // If we encounter a type that is larger than 64 bits, we can't represent
- // it so bail out.
- if (DB.getDemandedBits(I).getBitWidth() > 64)
- return MapVector<Instruction *, uint64_t>();
- uint64_t V = DB.getDemandedBits(I).getZExtValue();
- DBits[Leader] |= V;
- DBits[I] = V;
- // Casts, loads and instructions outside of our range terminate a chain
- // successfully.
- if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
- !InstructionSet.count(I))
- continue;
- // Unsafe casts terminate a chain unsuccessfully. We can't do anything
- // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
- // transform anything that relies on them.
- if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
- !I->getType()->isIntegerTy()) {
- DBits[Leader] |= ~0ULL;
- continue;
- }
- // We don't modify the types of PHIs. Reductions will already have been
- // truncated if possible, and inductions' sizes will have been chosen by
- // indvars.
- if (isa<PHINode>(I))
- continue;
- if (DBits[Leader] == ~0ULL)
- // All bits demanded, no point continuing.
- continue;
- for (Value *O : cast<User>(I)->operands()) {
- ECs.unionSets(Leader, O);
- Worklist.push_back(O);
- }
- }
- // Now we've discovered all values, walk them to see if there are
- // any users we didn't see. If there are, we can't optimize that
- // chain.
- for (auto &I : DBits)
- for (auto *U : I.first->users())
- if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
- DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
- for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
- uint64_t LeaderDemandedBits = 0;
- for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
- LeaderDemandedBits |= DBits[M];
- uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
- llvm::countLeadingZeros(LeaderDemandedBits);
- // Round up to a power of 2
- if (!isPowerOf2_64((uint64_t)MinBW))
- MinBW = NextPowerOf2(MinBW);
- // We don't modify the types of PHIs. Reductions will already have been
- // truncated if possible, and inductions' sizes will have been chosen by
- // indvars.
- // If we are required to shrink a PHI, abandon this entire equivalence class.
- bool Abort = false;
- for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
- if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
- Abort = true;
- break;
- }
- if (Abort)
- continue;
- for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
- if (!isa<Instruction>(M))
- continue;
- Type *Ty = M->getType();
- if (Roots.count(M))
- Ty = cast<Instruction>(M)->getOperand(0)->getType();
- if (MinBW < Ty->getScalarSizeInBits())
- MinBWs[cast<Instruction>(M)] = MinBW;
- }
- }
- return MinBWs;
- }
- /// Add all access groups in @p AccGroups to @p List.
- template <typename ListT>
- static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
- // Interpret an access group as a list containing itself.
- if (AccGroups->getNumOperands() == 0) {
- assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
- List.insert(AccGroups);
- return;
- }
- for (auto &AccGroupListOp : AccGroups->operands()) {
- auto *Item = cast<MDNode>(AccGroupListOp.get());
- assert(isValidAsAccessGroup(Item) && "List item must be an access group");
- List.insert(Item);
- }
- }
- MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
- if (!AccGroups1)
- return AccGroups2;
- if (!AccGroups2)
- return AccGroups1;
- if (AccGroups1 == AccGroups2)
- return AccGroups1;
- SmallSetVector<Metadata *, 4> Union;
- addToAccessGroupList(Union, AccGroups1);
- addToAccessGroupList(Union, AccGroups2);
- if (Union.size() == 0)
- return nullptr;
- if (Union.size() == 1)
- return cast<MDNode>(Union.front());
- LLVMContext &Ctx = AccGroups1->getContext();
- return MDNode::get(Ctx, Union.getArrayRef());
- }
- MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
- const Instruction *Inst2) {
- bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
- bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
- if (!MayAccessMem1 && !MayAccessMem2)
- return nullptr;
- if (!MayAccessMem1)
- return Inst2->getMetadata(LLVMContext::MD_access_group);
- if (!MayAccessMem2)
- return Inst1->getMetadata(LLVMContext::MD_access_group);
- MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
- MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
- if (!MD1 || !MD2)
- return nullptr;
- if (MD1 == MD2)
- return MD1;
- // Use set for scalable 'contains' check.
- SmallPtrSet<Metadata *, 4> AccGroupSet2;
- addToAccessGroupList(AccGroupSet2, MD2);
- SmallVector<Metadata *, 4> Intersection;
- if (MD1->getNumOperands() == 0) {
- assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
- if (AccGroupSet2.count(MD1))
- Intersection.push_back(MD1);
- } else {
- for (const MDOperand &Node : MD1->operands()) {
- auto *Item = cast<MDNode>(Node.get());
- assert(isValidAsAccessGroup(Item) && "List item must be an access group");
- if (AccGroupSet2.count(Item))
- Intersection.push_back(Item);
- }
- }
- if (Intersection.size() == 0)
- return nullptr;
- if (Intersection.size() == 1)
- return cast<MDNode>(Intersection.front());
- LLVMContext &Ctx = Inst1->getContext();
- return MDNode::get(Ctx, Intersection);
- }
- /// \returns \p I after propagating metadata from \p VL.
- Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
- if (VL.empty())
- return Inst;
- Instruction *I0 = cast<Instruction>(VL[0]);
- SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
- I0->getAllMetadataOtherThanDebugLoc(Metadata);
- for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
- LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
- LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
- LLVMContext::MD_access_group}) {
- MDNode *MD = I0->getMetadata(Kind);
- for (int J = 1, E = VL.size(); MD && J != E; ++J) {
- const Instruction *IJ = cast<Instruction>(VL[J]);
- MDNode *IMD = IJ->getMetadata(Kind);
- switch (Kind) {
- case LLVMContext::MD_tbaa:
- MD = MDNode::getMostGenericTBAA(MD, IMD);
- break;
- case LLVMContext::MD_alias_scope:
- MD = MDNode::getMostGenericAliasScope(MD, IMD);
- break;
- case LLVMContext::MD_fpmath:
- MD = MDNode::getMostGenericFPMath(MD, IMD);
- break;
- case LLVMContext::MD_noalias:
- case LLVMContext::MD_nontemporal:
- case LLVMContext::MD_invariant_load:
- MD = MDNode::intersect(MD, IMD);
- break;
- case LLVMContext::MD_access_group:
- MD = intersectAccessGroups(Inst, IJ);
- break;
- default:
- llvm_unreachable("unhandled metadata");
- }
- }
- Inst->setMetadata(Kind, MD);
- }
- return Inst;
- }
- Constant *
- llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
- const InterleaveGroup<Instruction> &Group) {
- // All 1's means mask is not needed.
- if (Group.getNumMembers() == Group.getFactor())
- return nullptr;
- // TODO: support reversed access.
- assert(!Group.isReverse() && "Reversed group not supported.");
- SmallVector<Constant *, 16> Mask;
- for (unsigned i = 0; i < VF; i++)
- for (unsigned j = 0; j < Group.getFactor(); ++j) {
- unsigned HasMember = Group.getMember(j) ? 1 : 0;
- Mask.push_back(Builder.getInt1(HasMember));
- }
- return ConstantVector::get(Mask);
- }
- llvm::SmallVector<int, 16>
- llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
- SmallVector<int, 16> MaskVec;
- for (unsigned i = 0; i < VF; i++)
- for (unsigned j = 0; j < ReplicationFactor; j++)
- MaskVec.push_back(i);
- return MaskVec;
- }
- llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
- unsigned NumVecs) {
- SmallVector<int, 16> Mask;
- for (unsigned i = 0; i < VF; i++)
- for (unsigned j = 0; j < NumVecs; j++)
- Mask.push_back(j * VF + i);
- return Mask;
- }
- llvm::SmallVector<int, 16>
- llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
- SmallVector<int, 16> Mask;
- for (unsigned i = 0; i < VF; i++)
- Mask.push_back(Start + i * Stride);
- return Mask;
- }
- llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
- unsigned NumInts,
- unsigned NumUndefs) {
- SmallVector<int, 16> Mask;
- for (unsigned i = 0; i < NumInts; i++)
- Mask.push_back(Start + i);
- for (unsigned i = 0; i < NumUndefs; i++)
- Mask.push_back(-1);
- return Mask;
- }
- llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask,
- unsigned NumElts) {
- // Avoid casts in the loop and make sure we have a reasonable number.
- int NumEltsSigned = NumElts;
- assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
- // If the mask chooses an element from operand 1, reduce it to choose from the
- // corresponding element of operand 0. Undef mask elements are unchanged.
- SmallVector<int, 16> UnaryMask;
- for (int MaskElt : Mask) {
- assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
- int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
- UnaryMask.push_back(UnaryElt);
- }
- return UnaryMask;
- }
- /// A helper function for concatenating vectors. This function concatenates two
- /// vectors having the same element type. If the second vector has fewer
- /// elements than the first, it is padded with undefs.
- static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
- Value *V2) {
- VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
- VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
- assert(VecTy1 && VecTy2 &&
- VecTy1->getScalarType() == VecTy2->getScalarType() &&
- "Expect two vectors with the same element type");
- unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
- unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
- assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
- if (NumElts1 > NumElts2) {
- // Extend with UNDEFs.
- V2 = Builder.CreateShuffleVector(
- V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
- }
- return Builder.CreateShuffleVector(
- V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
- }
- Value *llvm::concatenateVectors(IRBuilderBase &Builder,
- ArrayRef<Value *> Vecs) {
- unsigned NumVecs = Vecs.size();
- assert(NumVecs > 1 && "Should be at least two vectors");
- SmallVector<Value *, 8> ResList;
- ResList.append(Vecs.begin(), Vecs.end());
- do {
- SmallVector<Value *, 8> TmpList;
- for (unsigned i = 0; i < NumVecs - 1; i += 2) {
- Value *V0 = ResList[i], *V1 = ResList[i + 1];
- assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
- "Only the last vector may have a different type");
- TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
- }
- // Push the last vector if the total number of vectors is odd.
- if (NumVecs % 2 != 0)
- TmpList.push_back(ResList[NumVecs - 1]);
- ResList = TmpList;
- NumVecs = ResList.size();
- } while (NumVecs > 1);
- return ResList[0];
- }
- bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
- assert(isa<VectorType>(Mask->getType()) &&
- isa<IntegerType>(Mask->getType()->getScalarType()) &&
- cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
- 1 &&
- "Mask must be a vector of i1");
- auto *ConstMask = dyn_cast<Constant>(Mask);
- if (!ConstMask)
- return false;
- if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
- return true;
- if (isa<ScalableVectorType>(ConstMask->getType()))
- return false;
- for (unsigned
- I = 0,
- E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
- I != E; ++I) {
- if (auto *MaskElt = ConstMask->getAggregateElement(I))
- if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
- continue;
- return false;
- }
- return true;
- }
- bool llvm::maskIsAllOneOrUndef(Value *Mask) {
- assert(isa<VectorType>(Mask->getType()) &&
- isa<IntegerType>(Mask->getType()->getScalarType()) &&
- cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
- 1 &&
- "Mask must be a vector of i1");
- auto *ConstMask = dyn_cast<Constant>(Mask);
- if (!ConstMask)
- return false;
- if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
- return true;
- if (isa<ScalableVectorType>(ConstMask->getType()))
- return false;
- for (unsigned
- I = 0,
- E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
- I != E; ++I) {
- if (auto *MaskElt = ConstMask->getAggregateElement(I))
- if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
- continue;
- return false;
- }
- return true;
- }
- /// TODO: This is a lot like known bits, but for
- /// vectors. Is there something we can common this with?
- APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
- assert(isa<FixedVectorType>(Mask->getType()) &&
- isa<IntegerType>(Mask->getType()->getScalarType()) &&
- cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
- 1 &&
- "Mask must be a fixed width vector of i1");
- const unsigned VWidth =
- cast<FixedVectorType>(Mask->getType())->getNumElements();
- APInt DemandedElts = APInt::getAllOnes(VWidth);
- if (auto *CV = dyn_cast<ConstantVector>(Mask))
- for (unsigned i = 0; i < VWidth; i++)
- if (CV->getAggregateElement(i)->isNullValue())
- DemandedElts.clearBit(i);
- return DemandedElts;
- }
- bool InterleavedAccessInfo::isStrided(int Stride) {
- unsigned Factor = std::abs(Stride);
- return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
- }
- void InterleavedAccessInfo::collectConstStrideAccesses(
- MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
- const ValueToValueMap &Strides) {
- auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
- // Since it's desired that the load/store instructions be maintained in
- // "program order" for the interleaved access analysis, we have to visit the
- // blocks in the loop in reverse postorder (i.e., in a topological order).
- // Such an ordering will ensure that any load/store that may be executed
- // before a second load/store will precede the second load/store in
- // AccessStrideInfo.
- LoopBlocksDFS DFS(TheLoop);
- DFS.perform(LI);
- for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
- for (auto &I : *BB) {
- Value *Ptr = getLoadStorePointerOperand(&I);
- if (!Ptr)
- continue;
- Type *ElementTy = getLoadStoreType(&I);
- // We don't check wrapping here because we don't know yet if Ptr will be
- // part of a full group or a group with gaps. Checking wrapping for all
- // pointers (even those that end up in groups with no gaps) will be overly
- // conservative. For full groups, wrapping should be ok since if we would
- // wrap around the address space we would do a memory access at nullptr
- // even without the transformation. The wrapping checks are therefore
- // deferred until after we've formed the interleaved groups.
- int64_t Stride = getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
- /*Assume=*/true, /*ShouldCheckWrap=*/false);
- const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
- uint64_t Size = DL.getTypeAllocSize(ElementTy);
- AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
- getLoadStoreAlignment(&I));
- }
- }
- // Analyze interleaved accesses and collect them into interleaved load and
- // store groups.
- //
- // When generating code for an interleaved load group, we effectively hoist all
- // loads in the group to the location of the first load in program order. When
- // generating code for an interleaved store group, we sink all stores to the
- // location of the last store. This code motion can change the order of load
- // and store instructions and may break dependences.
- //
- // The code generation strategy mentioned above ensures that we won't violate
- // any write-after-read (WAR) dependences.
- //
- // E.g., for the WAR dependence: a = A[i]; // (1)
- // A[i] = b; // (2)
- //
- // The store group of (2) is always inserted at or below (2), and the load
- // group of (1) is always inserted at or above (1). Thus, the instructions will
- // never be reordered. All other dependences are checked to ensure the
- // correctness of the instruction reordering.
- //
- // The algorithm visits all memory accesses in the loop in bottom-up program
- // order. Program order is established by traversing the blocks in the loop in
- // reverse postorder when collecting the accesses.
- //
- // We visit the memory accesses in bottom-up order because it can simplify the
- // construction of store groups in the presence of write-after-write (WAW)
- // dependences.
- //
- // E.g., for the WAW dependence: A[i] = a; // (1)
- // A[i] = b; // (2)
- // A[i + 1] = c; // (3)
- //
- // We will first create a store group with (3) and (2). (1) can't be added to
- // this group because it and (2) are dependent. However, (1) can be grouped
- // with other accesses that may precede it in program order. Note that a
- // bottom-up order does not imply that WAW dependences should not be checked.
- void InterleavedAccessInfo::analyzeInterleaving(
- bool EnablePredicatedInterleavedMemAccesses) {
- LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
- const ValueToValueMap &Strides = LAI->getSymbolicStrides();
- // Holds all accesses with a constant stride.
- MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
- collectConstStrideAccesses(AccessStrideInfo, Strides);
- if (AccessStrideInfo.empty())
- return;
- // Collect the dependences in the loop.
- collectDependences();
- // Holds all interleaved store groups temporarily.
- SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
- // Holds all interleaved load groups temporarily.
- SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
- // Search in bottom-up program order for pairs of accesses (A and B) that can
- // form interleaved load or store groups. In the algorithm below, access A
- // precedes access B in program order. We initialize a group for B in the
- // outer loop of the algorithm, and then in the inner loop, we attempt to
- // insert each A into B's group if:
- //
- // 1. A and B have the same stride,
- // 2. A and B have the same memory object size, and
- // 3. A belongs in B's group according to its distance from B.
- //
- // Special care is taken to ensure group formation will not break any
- // dependences.
- for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
- BI != E; ++BI) {
- Instruction *B = BI->first;
- StrideDescriptor DesB = BI->second;
- // Initialize a group for B if it has an allowable stride. Even if we don't
- // create a group for B, we continue with the bottom-up algorithm to ensure
- // we don't break any of B's dependences.
- InterleaveGroup<Instruction> *Group = nullptr;
- if (isStrided(DesB.Stride) &&
- (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
- Group = getInterleaveGroup(B);
- if (!Group) {
- LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
- << '\n');
- Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
- }
- if (B->mayWriteToMemory())
- StoreGroups.insert(Group);
- else
- LoadGroups.insert(Group);
- }
- for (auto AI = std::next(BI); AI != E; ++AI) {
- Instruction *A = AI->first;
- StrideDescriptor DesA = AI->second;
- // Our code motion strategy implies that we can't have dependences
- // between accesses in an interleaved group and other accesses located
- // between the first and last member of the group. Note that this also
- // means that a group can't have more than one member at a given offset.
- // The accesses in a group can have dependences with other accesses, but
- // we must ensure we don't extend the boundaries of the group such that
- // we encompass those dependent accesses.
- //
- // For example, assume we have the sequence of accesses shown below in a
- // stride-2 loop:
- //
- // (1, 2) is a group | A[i] = a; // (1)
- // | A[i-1] = b; // (2) |
- // A[i-3] = c; // (3)
- // A[i] = d; // (4) | (2, 4) is not a group
- //
- // Because accesses (2) and (3) are dependent, we can group (2) with (1)
- // but not with (4). If we did, the dependent access (3) would be within
- // the boundaries of the (2, 4) group.
- if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
- // If a dependence exists and A is already in a group, we know that A
- // must be a store since A precedes B and WAR dependences are allowed.
- // Thus, A would be sunk below B. We release A's group to prevent this
- // illegal code motion. A will then be free to form another group with
- // instructions that precede it.
- if (isInterleaved(A)) {
- InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
- LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
- "dependence between " << *A << " and "<< *B << '\n');
- StoreGroups.remove(StoreGroup);
- releaseGroup(StoreGroup);
- }
- // If a dependence exists and A is not already in a group (or it was
- // and we just released it), B might be hoisted above A (if B is a
- // load) or another store might be sunk below A (if B is a store). In
- // either case, we can't add additional instructions to B's group. B
- // will only form a group with instructions that it precedes.
- break;
- }
- // At this point, we've checked for illegal code motion. If either A or B
- // isn't strided, there's nothing left to do.
- if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
- continue;
- // Ignore A if it's already in a group or isn't the same kind of memory
- // operation as B.
- // Note that mayReadFromMemory() isn't mutually exclusive to
- // mayWriteToMemory in the case of atomic loads. We shouldn't see those
- // here, canVectorizeMemory() should have returned false - except for the
- // case we asked for optimization remarks.
- if (isInterleaved(A) ||
- (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
- (A->mayWriteToMemory() != B->mayWriteToMemory()))
- continue;
- // Check rules 1 and 2. Ignore A if its stride or size is different from
- // that of B.
- if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
- continue;
- // Ignore A if the memory object of A and B don't belong to the same
- // address space
- if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
- continue;
- // Calculate the distance from A to B.
- const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
- PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
- if (!DistToB)
- continue;
- int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
- // Check rule 3. Ignore A if its distance to B is not a multiple of the
- // size.
- if (DistanceToB % static_cast<int64_t>(DesB.Size))
- continue;
- // All members of a predicated interleave-group must have the same predicate,
- // and currently must reside in the same BB.
- BasicBlock *BlockA = A->getParent();
- BasicBlock *BlockB = B->getParent();
- if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
- (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
- continue;
- // The index of A is the index of B plus A's distance to B in multiples
- // of the size.
- int IndexA =
- Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
- // Try to insert A into B's group.
- if (Group->insertMember(A, IndexA, DesA.Alignment)) {
- LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
- << " into the interleave group with" << *B
- << '\n');
- InterleaveGroupMap[A] = Group;
- // Set the first load in program order as the insert position.
- if (A->mayReadFromMemory())
- Group->setInsertPos(A);
- }
- } // Iteration over A accesses.
- } // Iteration over B accesses.
- auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
- int Index,
- std::string FirstOrLast) -> bool {
- Instruction *Member = Group->getMember(Index);
- assert(Member && "Group member does not exist");
- Value *MemberPtr = getLoadStorePointerOperand(Member);
- Type *AccessTy = getLoadStoreType(Member);
- if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
- /*Assume=*/false, /*ShouldCheckWrap=*/true))
- return false;
- LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
- << FirstOrLast
- << " group member potentially pointer-wrapping.\n");
- releaseGroup(Group);
- return true;
- };
- // Remove interleaved groups with gaps whose memory
- // accesses may wrap around. We have to revisit the getPtrStride analysis,
- // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
- // not check wrapping (see documentation there).
- // FORNOW we use Assume=false;
- // TODO: Change to Assume=true but making sure we don't exceed the threshold
- // of runtime SCEV assumptions checks (thereby potentially failing to
- // vectorize altogether).
- // Additional optional optimizations:
- // TODO: If we are peeling the loop and we know that the first pointer doesn't
- // wrap then we can deduce that all pointers in the group don't wrap.
- // This means that we can forcefully peel the loop in order to only have to
- // check the first pointer for no-wrap. When we'll change to use Assume=true
- // we'll only need at most one runtime check per interleaved group.
- for (auto *Group : LoadGroups) {
- // Case 1: A full group. Can Skip the checks; For full groups, if the wide
- // load would wrap around the address space we would do a memory access at
- // nullptr even without the transformation.
- if (Group->getNumMembers() == Group->getFactor())
- continue;
- // Case 2: If first and last members of the group don't wrap this implies
- // that all the pointers in the group don't wrap.
- // So we check only group member 0 (which is always guaranteed to exist),
- // and group member Factor - 1; If the latter doesn't exist we rely on
- // peeling (if it is a non-reversed accsess -- see Case 3).
- if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
- continue;
- if (Group->getMember(Group->getFactor() - 1))
- InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1,
- std::string("last"));
- else {
- // Case 3: A non-reversed interleaved load group with gaps: We need
- // to execute at least one scalar epilogue iteration. This will ensure
- // we don't speculatively access memory out-of-bounds. We only need
- // to look for a member at index factor - 1, since every group must have
- // a member at index zero.
- if (Group->isReverse()) {
- LLVM_DEBUG(
- dbgs() << "LV: Invalidate candidate interleaved group due to "
- "a reverse access with gaps.\n");
- releaseGroup(Group);
- continue;
- }
- LLVM_DEBUG(
- dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
- RequiresScalarEpilogue = true;
- }
- }
- for (auto *Group : StoreGroups) {
- // Case 1: A full group. Can Skip the checks; For full groups, if the wide
- // store would wrap around the address space we would do a memory access at
- // nullptr even without the transformation.
- if (Group->getNumMembers() == Group->getFactor())
- continue;
- // Interleave-store-group with gaps is implemented using masked wide store.
- // Remove interleaved store groups with gaps if
- // masked-interleaved-accesses are not enabled by the target.
- if (!EnablePredicatedInterleavedMemAccesses) {
- LLVM_DEBUG(
- dbgs() << "LV: Invalidate candidate interleaved store group due "
- "to gaps.\n");
- releaseGroup(Group);
- continue;
- }
- // Case 2: If first and last members of the group don't wrap this implies
- // that all the pointers in the group don't wrap.
- // So we check only group member 0 (which is always guaranteed to exist),
- // and the last group member. Case 3 (scalar epilog) is not relevant for
- // stores with gaps, which are implemented with masked-store (rather than
- // speculative access, as in loads).
- if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
- continue;
- for (int Index = Group->getFactor() - 1; Index > 0; Index--)
- if (Group->getMember(Index)) {
- InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last"));
- break;
- }
- }
- }
- void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
- // If no group had triggered the requirement to create an epilogue loop,
- // there is nothing to do.
- if (!requiresScalarEpilogue())
- return;
- bool ReleasedGroup = false;
- // Release groups requiring scalar epilogues. Note that this also removes them
- // from InterleaveGroups.
- for (auto *Group : make_early_inc_range(InterleaveGroups)) {
- if (!Group->requiresScalarEpilogue())
- continue;
- LLVM_DEBUG(
- dbgs()
- << "LV: Invalidate candidate interleaved group due to gaps that "
- "require a scalar epilogue (not allowed under optsize) and cannot "
- "be masked (not enabled). \n");
- releaseGroup(Group);
- ReleasedGroup = true;
- }
- assert(ReleasedGroup && "At least one group must be invalidated, as a "
- "scalar epilogue was required");
- (void)ReleasedGroup;
- RequiresScalarEpilogue = false;
- }
- template <typename InstT>
- void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
- llvm_unreachable("addMetadata can only be used for Instruction");
- }
- namespace llvm {
- template <>
- void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
- SmallVector<Value *, 4> VL;
- std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
- [](std::pair<int, Instruction *> p) { return p.second; });
- propagateMetadata(NewInst, VL);
- }
- }
- std::string VFABI::mangleTLIVectorName(StringRef VectorName,
- StringRef ScalarName, unsigned numArgs,
- ElementCount VF) {
- SmallString<256> Buffer;
- llvm::raw_svector_ostream Out(Buffer);
- Out << "_ZGV" << VFABI::_LLVM_ << "N";
- if (VF.isScalable())
- Out << 'x';
- else
- Out << VF.getFixedValue();
- for (unsigned I = 0; I < numArgs; ++I)
- Out << "v";
- Out << "_" << ScalarName << "(" << VectorName << ")";
- return std::string(Out.str());
- }
- void VFABI::getVectorVariantNames(
- const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
- const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString();
- if (S.empty())
- return;
- SmallVector<StringRef, 8> ListAttr;
- S.split(ListAttr, ",");
- for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
- #ifndef NDEBUG
- LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
- Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
- assert(Info.hasValue() && "Invalid name for a VFABI variant.");
- assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
- "Vector function is missing.");
- #endif
- VariantMappings.push_back(std::string(S));
- }
- }
- bool VFShape::hasValidParameterList() const {
- for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
- ++Pos) {
- assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
- switch (Parameters[Pos].ParamKind) {
- default: // Nothing to check.
- break;
- case VFParamKind::OMP_Linear:
- case VFParamKind::OMP_LinearRef:
- case VFParamKind::OMP_LinearVal:
- case VFParamKind::OMP_LinearUVal:
- // Compile time linear steps must be non-zero.
- if (Parameters[Pos].LinearStepOrPos == 0)
- return false;
- break;
- case VFParamKind::OMP_LinearPos:
- case VFParamKind::OMP_LinearRefPos:
- case VFParamKind::OMP_LinearValPos:
- case VFParamKind::OMP_LinearUValPos:
- // The runtime linear step must be referring to some other
- // parameters in the signature.
- if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
- return false;
- // The linear step parameter must be marked as uniform.
- if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
- VFParamKind::OMP_Uniform)
- return false;
- // The linear step parameter can't point at itself.
- if (Parameters[Pos].LinearStepOrPos == int(Pos))
- return false;
- break;
- case VFParamKind::GlobalPredicate:
- // The global predicate must be the unique. Can be placed anywhere in the
- // signature.
- for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
- if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
- return false;
- break;
- }
- }
- return true;
- }
|