123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685 |
- //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the MemorySSA class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/iterator.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/CFGPrinter.h"
- #include "llvm/Analysis/IteratedDominanceFrontier.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/IR/AssemblyAnnotationWriter.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/Use.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/AtomicOrdering.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/FormattedStream.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdlib>
- #include <iterator>
- #include <memory>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "memoryssa"
- static cl::opt<std::string>
- DotCFGMSSA("dot-cfg-mssa",
- cl::value_desc("file name for generated dot file"),
- cl::desc("file name for generated dot file"), cl::init(""));
- INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
- true)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
- true)
- INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
- "Memory SSA Printer", false, false)
- INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
- INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
- "Memory SSA Printer", false, false)
- static cl::opt<unsigned> MaxCheckLimit(
- "memssa-check-limit", cl::Hidden, cl::init(100),
- cl::desc("The maximum number of stores/phis MemorySSA"
- "will consider trying to walk past (default = 100)"));
- // Always verify MemorySSA if expensive checking is enabled.
- #ifdef EXPENSIVE_CHECKS
- bool llvm::VerifyMemorySSA = true;
- #else
- bool llvm::VerifyMemorySSA = false;
- #endif
- static cl::opt<bool, true>
- VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
- cl::Hidden, cl::desc("Enable verification of MemorySSA."));
- const static char LiveOnEntryStr[] = "liveOnEntry";
- namespace {
- /// An assembly annotator class to print Memory SSA information in
- /// comments.
- class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
- const MemorySSA *MSSA;
- public:
- MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
- void emitBasicBlockStartAnnot(const BasicBlock *BB,
- formatted_raw_ostream &OS) override {
- if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
- OS << "; " << *MA << "\n";
- }
- void emitInstructionAnnot(const Instruction *I,
- formatted_raw_ostream &OS) override {
- if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
- OS << "; " << *MA << "\n";
- }
- };
- /// An assembly annotator class to print Memory SSA information in
- /// comments.
- class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter {
- MemorySSA *MSSA;
- MemorySSAWalker *Walker;
- public:
- MemorySSAWalkerAnnotatedWriter(MemorySSA *M)
- : MSSA(M), Walker(M->getWalker()) {}
- void emitInstructionAnnot(const Instruction *I,
- formatted_raw_ostream &OS) override {
- if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
- MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA);
- OS << "; " << *MA;
- if (Clobber) {
- OS << " - clobbered by ";
- if (MSSA->isLiveOnEntryDef(Clobber))
- OS << LiveOnEntryStr;
- else
- OS << *Clobber;
- }
- OS << "\n";
- }
- }
- };
- } // namespace
- namespace {
- /// Our current alias analysis API differentiates heavily between calls and
- /// non-calls, and functions called on one usually assert on the other.
- /// This class encapsulates the distinction to simplify other code that wants
- /// "Memory affecting instructions and related data" to use as a key.
- /// For example, this class is used as a densemap key in the use optimizer.
- class MemoryLocOrCall {
- public:
- bool IsCall = false;
- MemoryLocOrCall(MemoryUseOrDef *MUD)
- : MemoryLocOrCall(MUD->getMemoryInst()) {}
- MemoryLocOrCall(const MemoryUseOrDef *MUD)
- : MemoryLocOrCall(MUD->getMemoryInst()) {}
- MemoryLocOrCall(Instruction *Inst) {
- if (auto *C = dyn_cast<CallBase>(Inst)) {
- IsCall = true;
- Call = C;
- } else {
- IsCall = false;
- // There is no such thing as a memorylocation for a fence inst, and it is
- // unique in that regard.
- if (!isa<FenceInst>(Inst))
- Loc = MemoryLocation::get(Inst);
- }
- }
- explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
- const CallBase *getCall() const {
- assert(IsCall);
- return Call;
- }
- MemoryLocation getLoc() const {
- assert(!IsCall);
- return Loc;
- }
- bool operator==(const MemoryLocOrCall &Other) const {
- if (IsCall != Other.IsCall)
- return false;
- if (!IsCall)
- return Loc == Other.Loc;
- if (Call->getCalledOperand() != Other.Call->getCalledOperand())
- return false;
- return Call->arg_size() == Other.Call->arg_size() &&
- std::equal(Call->arg_begin(), Call->arg_end(),
- Other.Call->arg_begin());
- }
- private:
- union {
- const CallBase *Call;
- MemoryLocation Loc;
- };
- };
- } // end anonymous namespace
- namespace llvm {
- template <> struct DenseMapInfo<MemoryLocOrCall> {
- static inline MemoryLocOrCall getEmptyKey() {
- return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
- }
- static inline MemoryLocOrCall getTombstoneKey() {
- return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
- }
- static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
- if (!MLOC.IsCall)
- return hash_combine(
- MLOC.IsCall,
- DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
- hash_code hash =
- hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
- MLOC.getCall()->getCalledOperand()));
- for (const Value *Arg : MLOC.getCall()->args())
- hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
- return hash;
- }
- static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
- return LHS == RHS;
- }
- };
- } // end namespace llvm
- /// This does one-way checks to see if Use could theoretically be hoisted above
- /// MayClobber. This will not check the other way around.
- ///
- /// This assumes that, for the purposes of MemorySSA, Use comes directly after
- /// MayClobber, with no potentially clobbering operations in between them.
- /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
- static bool areLoadsReorderable(const LoadInst *Use,
- const LoadInst *MayClobber) {
- bool VolatileUse = Use->isVolatile();
- bool VolatileClobber = MayClobber->isVolatile();
- // Volatile operations may never be reordered with other volatile operations.
- if (VolatileUse && VolatileClobber)
- return false;
- // Otherwise, volatile doesn't matter here. From the language reference:
- // 'optimizers may change the order of volatile operations relative to
- // non-volatile operations.'"
- // If a load is seq_cst, it cannot be moved above other loads. If its ordering
- // is weaker, it can be moved above other loads. We just need to be sure that
- // MayClobber isn't an acquire load, because loads can't be moved above
- // acquire loads.
- //
- // Note that this explicitly *does* allow the free reordering of monotonic (or
- // weaker) loads of the same address.
- bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
- bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
- AtomicOrdering::Acquire);
- return !(SeqCstUse || MayClobberIsAcquire);
- }
- namespace {
- struct ClobberAlias {
- bool IsClobber;
- Optional<AliasResult> AR;
- };
- } // end anonymous namespace
- // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
- // ignored if IsClobber = false.
- template <typename AliasAnalysisType>
- static ClobberAlias
- instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
- const Instruction *UseInst, AliasAnalysisType &AA) {
- Instruction *DefInst = MD->getMemoryInst();
- assert(DefInst && "Defining instruction not actually an instruction");
- Optional<AliasResult> AR;
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
- // These intrinsics will show up as affecting memory, but they are just
- // markers, mostly.
- //
- // FIXME: We probably don't actually want MemorySSA to model these at all
- // (including creating MemoryAccesses for them): we just end up inventing
- // clobbers where they don't really exist at all. Please see D43269 for
- // context.
- switch (II->getIntrinsicID()) {
- case Intrinsic::invariant_start:
- case Intrinsic::invariant_end:
- case Intrinsic::assume:
- case Intrinsic::experimental_noalias_scope_decl:
- case Intrinsic::pseudoprobe:
- return {false, AliasResult(AliasResult::NoAlias)};
- case Intrinsic::dbg_addr:
- case Intrinsic::dbg_declare:
- case Intrinsic::dbg_label:
- case Intrinsic::dbg_value:
- llvm_unreachable("debuginfo shouldn't have associated defs!");
- default:
- break;
- }
- }
- if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) {
- ModRefInfo I = AA.getModRefInfo(DefInst, CB);
- AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias;
- return {isModOrRefSet(I), AR};
- }
- if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
- if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst))
- return {!areLoadsReorderable(UseLoad, DefLoad),
- AliasResult(AliasResult::MayAlias)};
- ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
- AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias;
- return {isModSet(I), AR};
- }
- template <typename AliasAnalysisType>
- static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
- const MemoryUseOrDef *MU,
- const MemoryLocOrCall &UseMLOC,
- AliasAnalysisType &AA) {
- // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
- // to exist while MemoryLocOrCall is pushed through places.
- if (UseMLOC.IsCall)
- return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
- AA);
- return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
- AA);
- }
- // Return true when MD may alias MU, return false otherwise.
- bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
- AliasAnalysis &AA) {
- return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
- }
- namespace {
- struct UpwardsMemoryQuery {
- // True if our original query started off as a call
- bool IsCall = false;
- // The pointer location we started the query with. This will be empty if
- // IsCall is true.
- MemoryLocation StartingLoc;
- // This is the instruction we were querying about.
- const Instruction *Inst = nullptr;
- // The MemoryAccess we actually got called with, used to test local domination
- const MemoryAccess *OriginalAccess = nullptr;
- Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias);
- bool SkipSelfAccess = false;
- UpwardsMemoryQuery() = default;
- UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
- : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
- if (!IsCall)
- StartingLoc = MemoryLocation::get(Inst);
- }
- };
- } // end anonymous namespace
- template <typename AliasAnalysisType>
- static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
- const Instruction *I) {
- // If the memory can't be changed, then loads of the memory can't be
- // clobbered.
- if (auto *LI = dyn_cast<LoadInst>(I))
- return I->hasMetadata(LLVMContext::MD_invariant_load) ||
- AA.pointsToConstantMemory(MemoryLocation::get(LI));
- return false;
- }
- /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
- /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
- ///
- /// This is meant to be as simple and self-contained as possible. Because it
- /// uses no cache, etc., it can be relatively expensive.
- ///
- /// \param Start The MemoryAccess that we want to walk from.
- /// \param ClobberAt A clobber for Start.
- /// \param StartLoc The MemoryLocation for Start.
- /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
- /// \param Query The UpwardsMemoryQuery we used for our search.
- /// \param AA The AliasAnalysis we used for our search.
- /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
- template <typename AliasAnalysisType>
- LLVM_ATTRIBUTE_UNUSED static void
- checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
- const MemoryLocation &StartLoc, const MemorySSA &MSSA,
- const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
- bool AllowImpreciseClobber = false) {
- assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
- if (MSSA.isLiveOnEntryDef(Start)) {
- assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
- "liveOnEntry must clobber itself");
- return;
- }
- bool FoundClobber = false;
- DenseSet<ConstMemoryAccessPair> VisitedPhis;
- SmallVector<ConstMemoryAccessPair, 8> Worklist;
- Worklist.emplace_back(Start, StartLoc);
- // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
- // is found, complain.
- while (!Worklist.empty()) {
- auto MAP = Worklist.pop_back_val();
- // All we care about is that nothing from Start to ClobberAt clobbers Start.
- // We learn nothing from revisiting nodes.
- if (!VisitedPhis.insert(MAP).second)
- continue;
- for (const auto *MA : def_chain(MAP.first)) {
- if (MA == ClobberAt) {
- if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
- // instructionClobbersQuery isn't essentially free, so don't use `|=`,
- // since it won't let us short-circuit.
- //
- // Also, note that this can't be hoisted out of the `Worklist` loop,
- // since MD may only act as a clobber for 1 of N MemoryLocations.
- FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
- if (!FoundClobber) {
- ClobberAlias CA =
- instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
- if (CA.IsClobber) {
- FoundClobber = true;
- // Not used: CA.AR;
- }
- }
- }
- break;
- }
- // We should never hit liveOnEntry, unless it's the clobber.
- assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
- if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
- // If Start is a Def, skip self.
- if (MD == Start)
- continue;
- assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
- .IsClobber &&
- "Found clobber before reaching ClobberAt!");
- continue;
- }
- if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
- (void)MU;
- assert (MU == Start &&
- "Can only find use in def chain if Start is a use");
- continue;
- }
- assert(isa<MemoryPhi>(MA));
- // Add reachable phi predecessors
- for (auto ItB = upward_defs_begin(
- {const_cast<MemoryAccess *>(MA), MAP.second},
- MSSA.getDomTree()),
- ItE = upward_defs_end();
- ItB != ItE; ++ItB)
- if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock()))
- Worklist.emplace_back(*ItB);
- }
- }
- // If the verify is done following an optimization, it's possible that
- // ClobberAt was a conservative clobbering, that we can now infer is not a
- // true clobbering access. Don't fail the verify if that's the case.
- // We do have accesses that claim they're optimized, but could be optimized
- // further. Updating all these can be expensive, so allow it for now (FIXME).
- if (AllowImpreciseClobber)
- return;
- // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
- // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
- assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
- "ClobberAt never acted as a clobber");
- }
- namespace {
- /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
- /// in one class.
- template <class AliasAnalysisType> class ClobberWalker {
- /// Save a few bytes by using unsigned instead of size_t.
- using ListIndex = unsigned;
- /// Represents a span of contiguous MemoryDefs, potentially ending in a
- /// MemoryPhi.
- struct DefPath {
- MemoryLocation Loc;
- // Note that, because we always walk in reverse, Last will always dominate
- // First. Also note that First and Last are inclusive.
- MemoryAccess *First;
- MemoryAccess *Last;
- Optional<ListIndex> Previous;
- DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
- Optional<ListIndex> Previous)
- : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
- DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
- Optional<ListIndex> Previous)
- : DefPath(Loc, Init, Init, Previous) {}
- };
- const MemorySSA &MSSA;
- AliasAnalysisType &AA;
- DominatorTree &DT;
- UpwardsMemoryQuery *Query;
- unsigned *UpwardWalkLimit;
- // Phi optimization bookkeeping:
- // List of DefPath to process during the current phi optimization walk.
- SmallVector<DefPath, 32> Paths;
- // List of visited <Access, Location> pairs; we can skip paths already
- // visited with the same memory location.
- DenseSet<ConstMemoryAccessPair> VisitedPhis;
- // Record if phi translation has been performed during the current phi
- // optimization walk, as merging alias results after phi translation can
- // yield incorrect results. Context in PR46156.
- bool PerformedPhiTranslation = false;
- /// Find the nearest def or phi that `From` can legally be optimized to.
- const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
- assert(From->getNumOperands() && "Phi with no operands?");
- BasicBlock *BB = From->getBlock();
- MemoryAccess *Result = MSSA.getLiveOnEntryDef();
- DomTreeNode *Node = DT.getNode(BB);
- while ((Node = Node->getIDom())) {
- auto *Defs = MSSA.getBlockDefs(Node->getBlock());
- if (Defs)
- return &*Defs->rbegin();
- }
- return Result;
- }
- /// Result of calling walkToPhiOrClobber.
- struct UpwardsWalkResult {
- /// The "Result" of the walk. Either a clobber, the last thing we walked, or
- /// both. Include alias info when clobber found.
- MemoryAccess *Result;
- bool IsKnownClobber;
- Optional<AliasResult> AR;
- };
- /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
- /// This will update Desc.Last as it walks. It will (optionally) also stop at
- /// StopAt.
- ///
- /// This does not test for whether StopAt is a clobber
- UpwardsWalkResult
- walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
- const MemoryAccess *SkipStopAt = nullptr) const {
- assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
- assert(UpwardWalkLimit && "Need a valid walk limit");
- bool LimitAlreadyReached = false;
- // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
- // it to 1. This will not do any alias() calls. It either returns in the
- // first iteration in the loop below, or is set back to 0 if all def chains
- // are free of MemoryDefs.
- if (!*UpwardWalkLimit) {
- *UpwardWalkLimit = 1;
- LimitAlreadyReached = true;
- }
- for (MemoryAccess *Current : def_chain(Desc.Last)) {
- Desc.Last = Current;
- if (Current == StopAt || Current == SkipStopAt)
- return {Current, false, AliasResult(AliasResult::MayAlias)};
- if (auto *MD = dyn_cast<MemoryDef>(Current)) {
- if (MSSA.isLiveOnEntryDef(MD))
- return {MD, true, AliasResult(AliasResult::MustAlias)};
- if (!--*UpwardWalkLimit)
- return {Current, true, AliasResult(AliasResult::MayAlias)};
- ClobberAlias CA =
- instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
- if (CA.IsClobber)
- return {MD, true, CA.AR};
- }
- }
- if (LimitAlreadyReached)
- *UpwardWalkLimit = 0;
- assert(isa<MemoryPhi>(Desc.Last) &&
- "Ended at a non-clobber that's not a phi?");
- return {Desc.Last, false, AliasResult(AliasResult::MayAlias)};
- }
- void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
- ListIndex PriorNode) {
- auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT,
- &PerformedPhiTranslation);
- auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end());
- for (const MemoryAccessPair &P : UpwardDefs) {
- PausedSearches.push_back(Paths.size());
- Paths.emplace_back(P.second, P.first, PriorNode);
- }
- }
- /// Represents a search that terminated after finding a clobber. This clobber
- /// may or may not be present in the path of defs from LastNode..SearchStart,
- /// since it may have been retrieved from cache.
- struct TerminatedPath {
- MemoryAccess *Clobber;
- ListIndex LastNode;
- };
- /// Get an access that keeps us from optimizing to the given phi.
- ///
- /// PausedSearches is an array of indices into the Paths array. Its incoming
- /// value is the indices of searches that stopped at the last phi optimization
- /// target. It's left in an unspecified state.
- ///
- /// If this returns None, NewPaused is a vector of searches that terminated
- /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
- Optional<TerminatedPath>
- getBlockingAccess(const MemoryAccess *StopWhere,
- SmallVectorImpl<ListIndex> &PausedSearches,
- SmallVectorImpl<ListIndex> &NewPaused,
- SmallVectorImpl<TerminatedPath> &Terminated) {
- assert(!PausedSearches.empty() && "No searches to continue?");
- // BFS vs DFS really doesn't make a difference here, so just do a DFS with
- // PausedSearches as our stack.
- while (!PausedSearches.empty()) {
- ListIndex PathIndex = PausedSearches.pop_back_val();
- DefPath &Node = Paths[PathIndex];
- // If we've already visited this path with this MemoryLocation, we don't
- // need to do so again.
- //
- // NOTE: That we just drop these paths on the ground makes caching
- // behavior sporadic. e.g. given a diamond:
- // A
- // B C
- // D
- //
- // ...If we walk D, B, A, C, we'll only cache the result of phi
- // optimization for A, B, and D; C will be skipped because it dies here.
- // This arguably isn't the worst thing ever, since:
- // - We generally query things in a top-down order, so if we got below D
- // without needing cache entries for {C, MemLoc}, then chances are
- // that those cache entries would end up ultimately unused.
- // - We still cache things for A, so C only needs to walk up a bit.
- // If this behavior becomes problematic, we can fix without a ton of extra
- // work.
- if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) {
- if (PerformedPhiTranslation) {
- // If visiting this path performed Phi translation, don't continue,
- // since it may not be correct to merge results from two paths if one
- // relies on the phi translation.
- TerminatedPath Term{Node.Last, PathIndex};
- return Term;
- }
- continue;
- }
- const MemoryAccess *SkipStopWhere = nullptr;
- if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
- assert(isa<MemoryDef>(Query->OriginalAccess));
- SkipStopWhere = Query->OriginalAccess;
- }
- UpwardsWalkResult Res = walkToPhiOrClobber(Node,
- /*StopAt=*/StopWhere,
- /*SkipStopAt=*/SkipStopWhere);
- if (Res.IsKnownClobber) {
- assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
- // If this wasn't a cache hit, we hit a clobber when walking. That's a
- // failure.
- TerminatedPath Term{Res.Result, PathIndex};
- if (!MSSA.dominates(Res.Result, StopWhere))
- return Term;
- // Otherwise, it's a valid thing to potentially optimize to.
- Terminated.push_back(Term);
- continue;
- }
- if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
- // We've hit our target. Save this path off for if we want to continue
- // walking. If we are in the mode of skipping the OriginalAccess, and
- // we've reached back to the OriginalAccess, do not save path, we've
- // just looped back to self.
- if (Res.Result != SkipStopWhere)
- NewPaused.push_back(PathIndex);
- continue;
- }
- assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
- addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
- }
- return None;
- }
- template <typename T, typename Walker>
- struct generic_def_path_iterator
- : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
- std::forward_iterator_tag, T *> {
- generic_def_path_iterator() {}
- generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
- T &operator*() const { return curNode(); }
- generic_def_path_iterator &operator++() {
- N = curNode().Previous;
- return *this;
- }
- bool operator==(const generic_def_path_iterator &O) const {
- if (N.hasValue() != O.N.hasValue())
- return false;
- return !N.hasValue() || *N == *O.N;
- }
- private:
- T &curNode() const { return W->Paths[*N]; }
- Walker *W = nullptr;
- Optional<ListIndex> N = None;
- };
- using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
- using const_def_path_iterator =
- generic_def_path_iterator<const DefPath, const ClobberWalker>;
- iterator_range<def_path_iterator> def_path(ListIndex From) {
- return make_range(def_path_iterator(this, From), def_path_iterator());
- }
- iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
- return make_range(const_def_path_iterator(this, From),
- const_def_path_iterator());
- }
- struct OptznResult {
- /// The path that contains our result.
- TerminatedPath PrimaryClobber;
- /// The paths that we can legally cache back from, but that aren't
- /// necessarily the result of the Phi optimization.
- SmallVector<TerminatedPath, 4> OtherClobbers;
- };
- ListIndex defPathIndex(const DefPath &N) const {
- // The assert looks nicer if we don't need to do &N
- const DefPath *NP = &N;
- assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
- "Out of bounds DefPath!");
- return NP - &Paths.front();
- }
- /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
- /// that act as legal clobbers. Note that this won't return *all* clobbers.
- ///
- /// Phi optimization algorithm tl;dr:
- /// - Find the earliest def/phi, A, we can optimize to
- /// - Find if all paths from the starting memory access ultimately reach A
- /// - If not, optimization isn't possible.
- /// - Otherwise, walk from A to another clobber or phi, A'.
- /// - If A' is a def, we're done.
- /// - If A' is a phi, try to optimize it.
- ///
- /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
- /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
- OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
- const MemoryLocation &Loc) {
- assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation &&
- "Reset the optimization state.");
- Paths.emplace_back(Loc, Start, Phi, None);
- // Stores how many "valid" optimization nodes we had prior to calling
- // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
- auto PriorPathsSize = Paths.size();
- SmallVector<ListIndex, 16> PausedSearches;
- SmallVector<ListIndex, 8> NewPaused;
- SmallVector<TerminatedPath, 4> TerminatedPaths;
- addSearches(Phi, PausedSearches, 0);
- // Moves the TerminatedPath with the "most dominated" Clobber to the end of
- // Paths.
- auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
- assert(!Paths.empty() && "Need a path to move");
- auto Dom = Paths.begin();
- for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
- if (!MSSA.dominates(I->Clobber, Dom->Clobber))
- Dom = I;
- auto Last = Paths.end() - 1;
- if (Last != Dom)
- std::iter_swap(Last, Dom);
- };
- MemoryPhi *Current = Phi;
- while (true) {
- assert(!MSSA.isLiveOnEntryDef(Current) &&
- "liveOnEntry wasn't treated as a clobber?");
- const auto *Target = getWalkTarget(Current);
- // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
- // optimization for the prior phi.
- assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
- return MSSA.dominates(P.Clobber, Target);
- }));
- // FIXME: This is broken, because the Blocker may be reported to be
- // liveOnEntry, and we'll happily wait for that to disappear (read: never)
- // For the moment, this is fine, since we do nothing with blocker info.
- if (Optional<TerminatedPath> Blocker = getBlockingAccess(
- Target, PausedSearches, NewPaused, TerminatedPaths)) {
- // Find the node we started at. We can't search based on N->Last, since
- // we may have gone around a loop with a different MemoryLocation.
- auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
- return defPathIndex(N) < PriorPathsSize;
- });
- assert(Iter != def_path_iterator());
- DefPath &CurNode = *Iter;
- assert(CurNode.Last == Current);
- // Two things:
- // A. We can't reliably cache all of NewPaused back. Consider a case
- // where we have two paths in NewPaused; one of which can't optimize
- // above this phi, whereas the other can. If we cache the second path
- // back, we'll end up with suboptimal cache entries. We can handle
- // cases like this a bit better when we either try to find all
- // clobbers that block phi optimization, or when our cache starts
- // supporting unfinished searches.
- // B. We can't reliably cache TerminatedPaths back here without doing
- // extra checks; consider a case like:
- // T
- // / \
- // D C
- // \ /
- // S
- // Where T is our target, C is a node with a clobber on it, D is a
- // diamond (with a clobber *only* on the left or right node, N), and
- // S is our start. Say we walk to D, through the node opposite N
- // (read: ignoring the clobber), and see a cache entry in the top
- // node of D. That cache entry gets put into TerminatedPaths. We then
- // walk up to C (N is later in our worklist), find the clobber, and
- // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
- // the bottom part of D to the cached clobber, ignoring the clobber
- // in N. Again, this problem goes away if we start tracking all
- // blockers for a given phi optimization.
- TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
- return {Result, {}};
- }
- // If there's nothing left to search, then all paths led to valid clobbers
- // that we got from our cache; pick the nearest to the start, and allow
- // the rest to be cached back.
- if (NewPaused.empty()) {
- MoveDominatedPathToEnd(TerminatedPaths);
- TerminatedPath Result = TerminatedPaths.pop_back_val();
- return {Result, std::move(TerminatedPaths)};
- }
- MemoryAccess *DefChainEnd = nullptr;
- SmallVector<TerminatedPath, 4> Clobbers;
- for (ListIndex Paused : NewPaused) {
- UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
- if (WR.IsKnownClobber)
- Clobbers.push_back({WR.Result, Paused});
- else
- // Micro-opt: If we hit the end of the chain, save it.
- DefChainEnd = WR.Result;
- }
- if (!TerminatedPaths.empty()) {
- // If we couldn't find the dominating phi/liveOnEntry in the above loop,
- // do it now.
- if (!DefChainEnd)
- for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
- DefChainEnd = MA;
- assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");
- // If any of the terminated paths don't dominate the phi we'll try to
- // optimize, we need to figure out what they are and quit.
- const BasicBlock *ChainBB = DefChainEnd->getBlock();
- for (const TerminatedPath &TP : TerminatedPaths) {
- // Because we know that DefChainEnd is as "high" as we can go, we
- // don't need local dominance checks; BB dominance is sufficient.
- if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
- Clobbers.push_back(TP);
- }
- }
- // If we have clobbers in the def chain, find the one closest to Current
- // and quit.
- if (!Clobbers.empty()) {
- MoveDominatedPathToEnd(Clobbers);
- TerminatedPath Result = Clobbers.pop_back_val();
- return {Result, std::move(Clobbers)};
- }
- assert(all_of(NewPaused,
- [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
- // Because liveOnEntry is a clobber, this must be a phi.
- auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
- PriorPathsSize = Paths.size();
- PausedSearches.clear();
- for (ListIndex I : NewPaused)
- addSearches(DefChainPhi, PausedSearches, I);
- NewPaused.clear();
- Current = DefChainPhi;
- }
- }
- void verifyOptResult(const OptznResult &R) const {
- assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
- return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
- }));
- }
- void resetPhiOptznState() {
- Paths.clear();
- VisitedPhis.clear();
- PerformedPhiTranslation = false;
- }
- public:
- ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
- : MSSA(MSSA), AA(AA), DT(DT) {}
- AliasAnalysisType *getAA() { return &AA; }
- /// Finds the nearest clobber for the given query, optimizing phis if
- /// possible.
- MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
- unsigned &UpWalkLimit) {
- Query = &Q;
- UpwardWalkLimit = &UpWalkLimit;
- // Starting limit must be > 0.
- if (!UpWalkLimit)
- UpWalkLimit++;
- MemoryAccess *Current = Start;
- // This walker pretends uses don't exist. If we're handed one, silently grab
- // its def. (This has the nice side-effect of ensuring we never cache uses)
- if (auto *MU = dyn_cast<MemoryUse>(Start))
- Current = MU->getDefiningAccess();
- DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
- // Fast path for the overly-common case (no crazy phi optimization
- // necessary)
- UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
- MemoryAccess *Result;
- if (WalkResult.IsKnownClobber) {
- Result = WalkResult.Result;
- Q.AR = WalkResult.AR;
- } else {
- OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
- Current, Q.StartingLoc);
- verifyOptResult(OptRes);
- resetPhiOptznState();
- Result = OptRes.PrimaryClobber.Clobber;
- }
- #ifdef EXPENSIVE_CHECKS
- if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
- checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
- #endif
- return Result;
- }
- };
- struct RenamePassData {
- DomTreeNode *DTN;
- DomTreeNode::const_iterator ChildIt;
- MemoryAccess *IncomingVal;
- RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
- MemoryAccess *M)
- : DTN(D), ChildIt(It), IncomingVal(M) {}
- void swap(RenamePassData &RHS) {
- std::swap(DTN, RHS.DTN);
- std::swap(ChildIt, RHS.ChildIt);
- std::swap(IncomingVal, RHS.IncomingVal);
- }
- };
- } // end anonymous namespace
- namespace llvm {
- template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
- ClobberWalker<AliasAnalysisType> Walker;
- MemorySSA *MSSA;
- public:
- ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
- : Walker(*M, *A, *D), MSSA(M) {}
- MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
- const MemoryLocation &,
- unsigned &);
- // Third argument (bool), defines whether the clobber search should skip the
- // original queried access. If true, there will be a follow-up query searching
- // for a clobber access past "self". Note that the Optimized access is not
- // updated if a new clobber is found by this SkipSelf search. If this
- // additional query becomes heavily used we may decide to cache the result.
- // Walker instantiations will decide how to set the SkipSelf bool.
- MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool,
- bool UseInvariantGroup = true);
- };
- /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
- /// longer does caching on its own, but the name has been retained for the
- /// moment.
- template <class AliasAnalysisType>
- class MemorySSA::CachingWalker final : public MemorySSAWalker {
- ClobberWalkerBase<AliasAnalysisType> *Walker;
- public:
- CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
- : MemorySSAWalker(M), Walker(W) {}
- ~CachingWalker() override = default;
- using MemorySSAWalker::getClobberingMemoryAccess;
- MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
- return Walker->getClobberingMemoryAccessBase(MA, UWL, false);
- }
- MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
- const MemoryLocation &Loc,
- unsigned &UWL) {
- return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
- }
- // This method is not accessible outside of this file.
- MemoryAccess *getClobberingMemoryAccessWithoutInvariantGroup(MemoryAccess *MA,
- unsigned &UWL) {
- return Walker->getClobberingMemoryAccessBase(MA, UWL, false, false);
- }
- MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
- unsigned UpwardWalkLimit = MaxCheckLimit;
- return getClobberingMemoryAccess(MA, UpwardWalkLimit);
- }
- MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
- const MemoryLocation &Loc) override {
- unsigned UpwardWalkLimit = MaxCheckLimit;
- return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
- }
- void invalidateInfo(MemoryAccess *MA) override {
- if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
- MUD->resetOptimized();
- }
- };
- template <class AliasAnalysisType>
- class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
- ClobberWalkerBase<AliasAnalysisType> *Walker;
- public:
- SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
- : MemorySSAWalker(M), Walker(W) {}
- ~SkipSelfWalker() override = default;
- using MemorySSAWalker::getClobberingMemoryAccess;
- MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
- return Walker->getClobberingMemoryAccessBase(MA, UWL, true);
- }
- MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
- const MemoryLocation &Loc,
- unsigned &UWL) {
- return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
- }
- MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
- unsigned UpwardWalkLimit = MaxCheckLimit;
- return getClobberingMemoryAccess(MA, UpwardWalkLimit);
- }
- MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
- const MemoryLocation &Loc) override {
- unsigned UpwardWalkLimit = MaxCheckLimit;
- return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
- }
- void invalidateInfo(MemoryAccess *MA) override {
- if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
- MUD->resetOptimized();
- }
- };
- } // end namespace llvm
- void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
- bool RenameAllUses) {
- // Pass through values to our successors
- for (const BasicBlock *S : successors(BB)) {
- auto It = PerBlockAccesses.find(S);
- // Rename the phi nodes in our successor block
- if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
- continue;
- AccessList *Accesses = It->second.get();
- auto *Phi = cast<MemoryPhi>(&Accesses->front());
- if (RenameAllUses) {
- bool ReplacementDone = false;
- for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
- if (Phi->getIncomingBlock(I) == BB) {
- Phi->setIncomingValue(I, IncomingVal);
- ReplacementDone = true;
- }
- (void) ReplacementDone;
- assert(ReplacementDone && "Incomplete phi during partial rename");
- } else
- Phi->addIncoming(IncomingVal, BB);
- }
- }
- /// Rename a single basic block into MemorySSA form.
- /// Uses the standard SSA renaming algorithm.
- /// \returns The new incoming value.
- MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
- bool RenameAllUses) {
- auto It = PerBlockAccesses.find(BB);
- // Skip most processing if the list is empty.
- if (It != PerBlockAccesses.end()) {
- AccessList *Accesses = It->second.get();
- for (MemoryAccess &L : *Accesses) {
- if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
- if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
- MUD->setDefiningAccess(IncomingVal);
- if (isa<MemoryDef>(&L))
- IncomingVal = &L;
- } else {
- IncomingVal = &L;
- }
- }
- }
- return IncomingVal;
- }
- /// This is the standard SSA renaming algorithm.
- ///
- /// We walk the dominator tree in preorder, renaming accesses, and then filling
- /// in phi nodes in our successors.
- void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
- SmallPtrSetImpl<BasicBlock *> &Visited,
- bool SkipVisited, bool RenameAllUses) {
- assert(Root && "Trying to rename accesses in an unreachable block");
- SmallVector<RenamePassData, 32> WorkStack;
- // Skip everything if we already renamed this block and we are skipping.
- // Note: You can't sink this into the if, because we need it to occur
- // regardless of whether we skip blocks or not.
- bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
- if (SkipVisited && AlreadyVisited)
- return;
- IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
- renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
- WorkStack.push_back({Root, Root->begin(), IncomingVal});
- while (!WorkStack.empty()) {
- DomTreeNode *Node = WorkStack.back().DTN;
- DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
- IncomingVal = WorkStack.back().IncomingVal;
- if (ChildIt == Node->end()) {
- WorkStack.pop_back();
- } else {
- DomTreeNode *Child = *ChildIt;
- ++WorkStack.back().ChildIt;
- BasicBlock *BB = Child->getBlock();
- // Note: You can't sink this into the if, because we need it to occur
- // regardless of whether we skip blocks or not.
- AlreadyVisited = !Visited.insert(BB).second;
- if (SkipVisited && AlreadyVisited) {
- // We already visited this during our renaming, which can happen when
- // being asked to rename multiple blocks. Figure out the incoming val,
- // which is the last def.
- // Incoming value can only change if there is a block def, and in that
- // case, it's the last block def in the list.
- if (auto *BlockDefs = getWritableBlockDefs(BB))
- IncomingVal = &*BlockDefs->rbegin();
- } else
- IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
- renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
- WorkStack.push_back({Child, Child->begin(), IncomingVal});
- }
- }
- }
- /// This handles unreachable block accesses by deleting phi nodes in
- /// unreachable blocks, and marking all other unreachable MemoryAccess's as
- /// being uses of the live on entry definition.
- void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
- assert(!DT->isReachableFromEntry(BB) &&
- "Reachable block found while handling unreachable blocks");
- // Make sure phi nodes in our reachable successors end up with a
- // LiveOnEntryDef for our incoming edge, even though our block is forward
- // unreachable. We could just disconnect these blocks from the CFG fully,
- // but we do not right now.
- for (const BasicBlock *S : successors(BB)) {
- if (!DT->isReachableFromEntry(S))
- continue;
- auto It = PerBlockAccesses.find(S);
- // Rename the phi nodes in our successor block
- if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
- continue;
- AccessList *Accesses = It->second.get();
- auto *Phi = cast<MemoryPhi>(&Accesses->front());
- Phi->addIncoming(LiveOnEntryDef.get(), BB);
- }
- auto It = PerBlockAccesses.find(BB);
- if (It == PerBlockAccesses.end())
- return;
- auto &Accesses = It->second;
- for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
- auto Next = std::next(AI);
- // If we have a phi, just remove it. We are going to replace all
- // users with live on entry.
- if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
- UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
- else
- Accesses->erase(AI);
- AI = Next;
- }
- }
- MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
- : DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
- SkipWalker(nullptr) {
- // Build MemorySSA using a batch alias analysis. This reuses the internal
- // state that AA collects during an alias()/getModRefInfo() call. This is
- // safe because there are no CFG changes while building MemorySSA and can
- // significantly reduce the time spent by the compiler in AA, because we will
- // make queries about all the instructions in the Function.
- assert(AA && "No alias analysis?");
- BatchAAResults BatchAA(*AA);
- buildMemorySSA(BatchAA);
- // Intentionally leave AA to nullptr while building so we don't accidently
- // use non-batch AliasAnalysis.
- this->AA = AA;
- // Also create the walker here.
- getWalker();
- }
- MemorySSA::~MemorySSA() {
- // Drop all our references
- for (const auto &Pair : PerBlockAccesses)
- for (MemoryAccess &MA : *Pair.second)
- MA.dropAllReferences();
- }
- MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
- auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
- if (Res.second)
- Res.first->second = std::make_unique<AccessList>();
- return Res.first->second.get();
- }
- MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
- auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
- if (Res.second)
- Res.first->second = std::make_unique<DefsList>();
- return Res.first->second.get();
- }
- namespace llvm {
- /// This class is a batch walker of all MemoryUse's in the program, and points
- /// their defining access at the thing that actually clobbers them. Because it
- /// is a batch walker that touches everything, it does not operate like the
- /// other walkers. This walker is basically performing a top-down SSA renaming
- /// pass, where the version stack is used as the cache. This enables it to be
- /// significantly more time and memory efficient than using the regular walker,
- /// which is walking bottom-up.
- class MemorySSA::OptimizeUses {
- public:
- OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker,
- BatchAAResults *BAA, DominatorTree *DT)
- : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
- void optimizeUses();
- private:
- /// This represents where a given memorylocation is in the stack.
- struct MemlocStackInfo {
- // This essentially is keeping track of versions of the stack. Whenever
- // the stack changes due to pushes or pops, these versions increase.
- unsigned long StackEpoch;
- unsigned long PopEpoch;
- // This is the lower bound of places on the stack to check. It is equal to
- // the place the last stack walk ended.
- // Note: Correctness depends on this being initialized to 0, which densemap
- // does
- unsigned long LowerBound;
- const BasicBlock *LowerBoundBlock;
- // This is where the last walk for this memory location ended.
- unsigned long LastKill;
- bool LastKillValid;
- Optional<AliasResult> AR;
- };
- void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
- SmallVectorImpl<MemoryAccess *> &,
- DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
- MemorySSA *MSSA;
- CachingWalker<BatchAAResults> *Walker;
- BatchAAResults *AA;
- DominatorTree *DT;
- };
- } // end namespace llvm
- /// Optimize the uses in a given block This is basically the SSA renaming
- /// algorithm, with one caveat: We are able to use a single stack for all
- /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
- /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
- /// going to be some position in that stack of possible ones.
- ///
- /// We track the stack positions that each MemoryLocation needs
- /// to check, and last ended at. This is because we only want to check the
- /// things that changed since last time. The same MemoryLocation should
- /// get clobbered by the same store (getModRefInfo does not use invariantness or
- /// things like this, and if they start, we can modify MemoryLocOrCall to
- /// include relevant data)
- void MemorySSA::OptimizeUses::optimizeUsesInBlock(
- const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
- SmallVectorImpl<MemoryAccess *> &VersionStack,
- DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
- /// If no accesses, nothing to do.
- MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
- if (Accesses == nullptr)
- return;
- // Pop everything that doesn't dominate the current block off the stack,
- // increment the PopEpoch to account for this.
- while (true) {
- assert(
- !VersionStack.empty() &&
- "Version stack should have liveOnEntry sentinel dominating everything");
- BasicBlock *BackBlock = VersionStack.back()->getBlock();
- if (DT->dominates(BackBlock, BB))
- break;
- while (VersionStack.back()->getBlock() == BackBlock)
- VersionStack.pop_back();
- ++PopEpoch;
- }
- for (MemoryAccess &MA : *Accesses) {
- auto *MU = dyn_cast<MemoryUse>(&MA);
- if (!MU) {
- VersionStack.push_back(&MA);
- ++StackEpoch;
- continue;
- }
- if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
- MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
- continue;
- }
- MemoryLocOrCall UseMLOC(MU);
- auto &LocInfo = LocStackInfo[UseMLOC];
- // If the pop epoch changed, it means we've removed stuff from top of
- // stack due to changing blocks. We may have to reset the lower bound or
- // last kill info.
- if (LocInfo.PopEpoch != PopEpoch) {
- LocInfo.PopEpoch = PopEpoch;
- LocInfo.StackEpoch = StackEpoch;
- // If the lower bound was in something that no longer dominates us, we
- // have to reset it.
- // We can't simply track stack size, because the stack may have had
- // pushes/pops in the meantime.
- // XXX: This is non-optimal, but only is slower cases with heavily
- // branching dominator trees. To get the optimal number of queries would
- // be to make lowerbound and lastkill a per-loc stack, and pop it until
- // the top of that stack dominates us. This does not seem worth it ATM.
- // A much cheaper optimization would be to always explore the deepest
- // branch of the dominator tree first. This will guarantee this resets on
- // the smallest set of blocks.
- if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
- !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
- // Reset the lower bound of things to check.
- // TODO: Some day we should be able to reset to last kill, rather than
- // 0.
- LocInfo.LowerBound = 0;
- LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
- LocInfo.LastKillValid = false;
- }
- } else if (LocInfo.StackEpoch != StackEpoch) {
- // If all that has changed is the StackEpoch, we only have to check the
- // new things on the stack, because we've checked everything before. In
- // this case, the lower bound of things to check remains the same.
- LocInfo.PopEpoch = PopEpoch;
- LocInfo.StackEpoch = StackEpoch;
- }
- if (!LocInfo.LastKillValid) {
- LocInfo.LastKill = VersionStack.size() - 1;
- LocInfo.LastKillValid = true;
- LocInfo.AR = AliasResult::MayAlias;
- }
- // At this point, we should have corrected last kill and LowerBound to be
- // in bounds.
- assert(LocInfo.LowerBound < VersionStack.size() &&
- "Lower bound out of range");
- assert(LocInfo.LastKill < VersionStack.size() &&
- "Last kill info out of range");
- // In any case, the new upper bound is the top of the stack.
- unsigned long UpperBound = VersionStack.size() - 1;
- if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
- LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
- << *(MU->getMemoryInst()) << ")"
- << " because there are "
- << UpperBound - LocInfo.LowerBound
- << " stores to disambiguate\n");
- // Because we did not walk, LastKill is no longer valid, as this may
- // have been a kill.
- LocInfo.LastKillValid = false;
- continue;
- }
- bool FoundClobberResult = false;
- unsigned UpwardWalkLimit = MaxCheckLimit;
- while (UpperBound > LocInfo.LowerBound) {
- if (isa<MemoryPhi>(VersionStack[UpperBound])) {
- // For phis, use the walker, see where we ended up, go there.
- // The invariant.group handling in MemorySSA is ad-hoc and doesn't
- // support updates, so don't use it to optimize uses.
- MemoryAccess *Result =
- Walker->getClobberingMemoryAccessWithoutInvariantGroup(
- MU, UpwardWalkLimit);
- // We are guaranteed to find it or something is wrong.
- while (VersionStack[UpperBound] != Result) {
- assert(UpperBound != 0);
- --UpperBound;
- }
- FoundClobberResult = true;
- break;
- }
- MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
- ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
- if (CA.IsClobber) {
- FoundClobberResult = true;
- LocInfo.AR = CA.AR;
- break;
- }
- --UpperBound;
- }
- // Note: Phis always have AliasResult AR set to MayAlias ATM.
- // At the end of this loop, UpperBound is either a clobber, or lower bound
- // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
- if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
- // We were last killed now by where we got to
- if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
- LocInfo.AR = None;
- MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
- LocInfo.LastKill = UpperBound;
- } else {
- // Otherwise, we checked all the new ones, and now we know we can get to
- // LastKill.
- MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
- }
- LocInfo.LowerBound = VersionStack.size() - 1;
- LocInfo.LowerBoundBlock = BB;
- }
- }
- /// Optimize uses to point to their actual clobbering definitions.
- void MemorySSA::OptimizeUses::optimizeUses() {
- SmallVector<MemoryAccess *, 16> VersionStack;
- DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
- VersionStack.push_back(MSSA->getLiveOnEntryDef());
- unsigned long StackEpoch = 1;
- unsigned long PopEpoch = 1;
- // We perform a non-recursive top-down dominator tree walk.
- for (const auto *DomNode : depth_first(DT->getRootNode()))
- optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
- LocStackInfo);
- }
- void MemorySSA::placePHINodes(
- const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
- // Determine where our MemoryPhi's should go
- ForwardIDFCalculator IDFs(*DT);
- IDFs.setDefiningBlocks(DefiningBlocks);
- SmallVector<BasicBlock *, 32> IDFBlocks;
- IDFs.calculate(IDFBlocks);
- // Now place MemoryPhi nodes.
- for (auto &BB : IDFBlocks)
- createMemoryPhi(BB);
- }
- void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
- // We create an access to represent "live on entry", for things like
- // arguments or users of globals, where the memory they use is defined before
- // the beginning of the function. We do not actually insert it into the IR.
- // We do not define a live on exit for the immediate uses, and thus our
- // semantics do *not* imply that something with no immediate uses can simply
- // be removed.
- BasicBlock &StartingPoint = F.getEntryBlock();
- LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
- &StartingPoint, NextID++));
- // We maintain lists of memory accesses per-block, trading memory for time. We
- // could just look up the memory access for every possible instruction in the
- // stream.
- SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
- // Go through each block, figure out where defs occur, and chain together all
- // the accesses.
- for (BasicBlock &B : F) {
- bool InsertIntoDef = false;
- AccessList *Accesses = nullptr;
- DefsList *Defs = nullptr;
- for (Instruction &I : B) {
- MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
- if (!MUD)
- continue;
- if (!Accesses)
- Accesses = getOrCreateAccessList(&B);
- Accesses->push_back(MUD);
- if (isa<MemoryDef>(MUD)) {
- InsertIntoDef = true;
- if (!Defs)
- Defs = getOrCreateDefsList(&B);
- Defs->push_back(*MUD);
- }
- }
- if (InsertIntoDef)
- DefiningBlocks.insert(&B);
- }
- placePHINodes(DefiningBlocks);
- // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
- // filled in with all blocks.
- SmallPtrSet<BasicBlock *, 16> Visited;
- renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
- ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT);
- CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
- OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses();
- // Mark the uses in unreachable blocks as live on entry, so that they go
- // somewhere.
- for (auto &BB : F)
- if (!Visited.count(&BB))
- markUnreachableAsLiveOnEntry(&BB);
- }
- MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
- MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
- if (Walker)
- return Walker.get();
- if (!WalkerBase)
- WalkerBase =
- std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
- Walker =
- std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
- return Walker.get();
- }
- MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
- if (SkipWalker)
- return SkipWalker.get();
- if (!WalkerBase)
- WalkerBase =
- std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
- SkipWalker =
- std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
- return SkipWalker.get();
- }
- // This is a helper function used by the creation routines. It places NewAccess
- // into the access and defs lists for a given basic block, at the given
- // insertion point.
- void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
- const BasicBlock *BB,
- InsertionPlace Point) {
- auto *Accesses = getOrCreateAccessList(BB);
- if (Point == Beginning) {
- // If it's a phi node, it goes first, otherwise, it goes after any phi
- // nodes.
- if (isa<MemoryPhi>(NewAccess)) {
- Accesses->push_front(NewAccess);
- auto *Defs = getOrCreateDefsList(BB);
- Defs->push_front(*NewAccess);
- } else {
- auto AI = find_if_not(
- *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
- Accesses->insert(AI, NewAccess);
- if (!isa<MemoryUse>(NewAccess)) {
- auto *Defs = getOrCreateDefsList(BB);
- auto DI = find_if_not(
- *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
- Defs->insert(DI, *NewAccess);
- }
- }
- } else {
- Accesses->push_back(NewAccess);
- if (!isa<MemoryUse>(NewAccess)) {
- auto *Defs = getOrCreateDefsList(BB);
- Defs->push_back(*NewAccess);
- }
- }
- BlockNumberingValid.erase(BB);
- }
- void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
- AccessList::iterator InsertPt) {
- auto *Accesses = getWritableBlockAccesses(BB);
- bool WasEnd = InsertPt == Accesses->end();
- Accesses->insert(AccessList::iterator(InsertPt), What);
- if (!isa<MemoryUse>(What)) {
- auto *Defs = getOrCreateDefsList(BB);
- // If we got asked to insert at the end, we have an easy job, just shove it
- // at the end. If we got asked to insert before an existing def, we also get
- // an iterator. If we got asked to insert before a use, we have to hunt for
- // the next def.
- if (WasEnd) {
- Defs->push_back(*What);
- } else if (isa<MemoryDef>(InsertPt)) {
- Defs->insert(InsertPt->getDefsIterator(), *What);
- } else {
- while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
- ++InsertPt;
- // Either we found a def, or we are inserting at the end
- if (InsertPt == Accesses->end())
- Defs->push_back(*What);
- else
- Defs->insert(InsertPt->getDefsIterator(), *What);
- }
- }
- BlockNumberingValid.erase(BB);
- }
- void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
- // Keep it in the lookup tables, remove from the lists
- removeFromLists(What, false);
- // Note that moving should implicitly invalidate the optimized state of a
- // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
- // MemoryDef.
- if (auto *MD = dyn_cast<MemoryDef>(What))
- MD->resetOptimized();
- What->setBlock(BB);
- }
- // Move What before Where in the IR. The end result is that What will belong to
- // the right lists and have the right Block set, but will not otherwise be
- // correct. It will not have the right defining access, and if it is a def,
- // things below it will not properly be updated.
- void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
- AccessList::iterator Where) {
- prepareForMoveTo(What, BB);
- insertIntoListsBefore(What, BB, Where);
- }
- void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
- InsertionPlace Point) {
- if (isa<MemoryPhi>(What)) {
- assert(Point == Beginning &&
- "Can only move a Phi at the beginning of the block");
- // Update lookup table entry
- ValueToMemoryAccess.erase(What->getBlock());
- bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
- (void)Inserted;
- assert(Inserted && "Cannot move a Phi to a block that already has one");
- }
- prepareForMoveTo(What, BB);
- insertIntoListsForBlock(What, BB, Point);
- }
- MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
- assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
- MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
- // Phi's always are placed at the front of the block.
- insertIntoListsForBlock(Phi, BB, Beginning);
- ValueToMemoryAccess[BB] = Phi;
- return Phi;
- }
- MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
- MemoryAccess *Definition,
- const MemoryUseOrDef *Template,
- bool CreationMustSucceed) {
- assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
- MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
- if (CreationMustSucceed)
- assert(NewAccess != nullptr && "Tried to create a memory access for a "
- "non-memory touching instruction");
- if (NewAccess) {
- assert((!Definition || !isa<MemoryUse>(Definition)) &&
- "A use cannot be a defining access");
- NewAccess->setDefiningAccess(Definition);
- }
- return NewAccess;
- }
- // Return true if the instruction has ordering constraints.
- // Note specifically that this only considers stores and loads
- // because others are still considered ModRef by getModRefInfo.
- static inline bool isOrdered(const Instruction *I) {
- if (auto *SI = dyn_cast<StoreInst>(I)) {
- if (!SI->isUnordered())
- return true;
- } else if (auto *LI = dyn_cast<LoadInst>(I)) {
- if (!LI->isUnordered())
- return true;
- }
- return false;
- }
- /// Helper function to create new memory accesses
- template <typename AliasAnalysisType>
- MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
- AliasAnalysisType *AAP,
- const MemoryUseOrDef *Template) {
- // The assume intrinsic has a control dependency which we model by claiming
- // that it writes arbitrarily. Debuginfo intrinsics may be considered
- // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
- // dependencies here.
- // FIXME: Replace this special casing with a more accurate modelling of
- // assume's control dependency.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default:
- break;
- case Intrinsic::assume:
- case Intrinsic::experimental_noalias_scope_decl:
- case Intrinsic::pseudoprobe:
- return nullptr;
- }
- }
- // Using a nonstandard AA pipelines might leave us with unexpected modref
- // results for I, so add a check to not model instructions that may not read
- // from or write to memory. This is necessary for correctness.
- if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
- return nullptr;
- bool Def, Use;
- if (Template) {
- Def = isa<MemoryDef>(Template);
- Use = isa<MemoryUse>(Template);
- #if !defined(NDEBUG)
- ModRefInfo ModRef = AAP->getModRefInfo(I, None);
- bool DefCheck, UseCheck;
- DefCheck = isModSet(ModRef) || isOrdered(I);
- UseCheck = isRefSet(ModRef);
- assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
- #endif
- } else {
- // Find out what affect this instruction has on memory.
- ModRefInfo ModRef = AAP->getModRefInfo(I, None);
- // The isOrdered check is used to ensure that volatiles end up as defs
- // (atomics end up as ModRef right now anyway). Until we separate the
- // ordering chain from the memory chain, this enables people to see at least
- // some relative ordering to volatiles. Note that getClobberingMemoryAccess
- // will still give an answer that bypasses other volatile loads. TODO:
- // Separate memory aliasing and ordering into two different chains so that
- // we can precisely represent both "what memory will this read/write/is
- // clobbered by" and "what instructions can I move this past".
- Def = isModSet(ModRef) || isOrdered(I);
- Use = isRefSet(ModRef);
- }
- // It's possible for an instruction to not modify memory at all. During
- // construction, we ignore them.
- if (!Def && !Use)
- return nullptr;
- MemoryUseOrDef *MUD;
- if (Def)
- MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
- else
- MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
- ValueToMemoryAccess[I] = MUD;
- return MUD;
- }
- /// Properly remove \p MA from all of MemorySSA's lookup tables.
- void MemorySSA::removeFromLookups(MemoryAccess *MA) {
- assert(MA->use_empty() &&
- "Trying to remove memory access that still has uses");
- BlockNumbering.erase(MA);
- if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
- MUD->setDefiningAccess(nullptr);
- // Invalidate our walker's cache if necessary
- if (!isa<MemoryUse>(MA))
- getWalker()->invalidateInfo(MA);
- Value *MemoryInst;
- if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
- MemoryInst = MUD->getMemoryInst();
- else
- MemoryInst = MA->getBlock();
- auto VMA = ValueToMemoryAccess.find(MemoryInst);
- if (VMA->second == MA)
- ValueToMemoryAccess.erase(VMA);
- }
- /// Properly remove \p MA from all of MemorySSA's lists.
- ///
- /// Because of the way the intrusive list and use lists work, it is important to
- /// do removal in the right order.
- /// ShouldDelete defaults to true, and will cause the memory access to also be
- /// deleted, not just removed.
- void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
- BasicBlock *BB = MA->getBlock();
- // The access list owns the reference, so we erase it from the non-owning list
- // first.
- if (!isa<MemoryUse>(MA)) {
- auto DefsIt = PerBlockDefs.find(BB);
- std::unique_ptr<DefsList> &Defs = DefsIt->second;
- Defs->remove(*MA);
- if (Defs->empty())
- PerBlockDefs.erase(DefsIt);
- }
- // The erase call here will delete it. If we don't want it deleted, we call
- // remove instead.
- auto AccessIt = PerBlockAccesses.find(BB);
- std::unique_ptr<AccessList> &Accesses = AccessIt->second;
- if (ShouldDelete)
- Accesses->erase(MA);
- else
- Accesses->remove(MA);
- if (Accesses->empty()) {
- PerBlockAccesses.erase(AccessIt);
- BlockNumberingValid.erase(BB);
- }
- }
- void MemorySSA::print(raw_ostream &OS) const {
- MemorySSAAnnotatedWriter Writer(this);
- F.print(OS, &Writer);
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
- #endif
- void MemorySSA::verifyMemorySSA(VerificationLevel VL) const {
- #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
- VL = VerificationLevel::Full;
- #endif
- #ifndef NDEBUG
- verifyOrderingDominationAndDefUses(F, VL);
- verifyDominationNumbers(F);
- if (VL == VerificationLevel::Full)
- verifyPrevDefInPhis(F);
- #endif
- // Previously, the verification used to also verify that the clobberingAccess
- // cached by MemorySSA is the same as the clobberingAccess found at a later
- // query to AA. This does not hold true in general due to the current fragility
- // of BasicAA which has arbitrary caps on the things it analyzes before giving
- // up. As a result, transformations that are correct, will lead to BasicAA
- // returning different Alias answers before and after that transformation.
- // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
- // random, in the worst case we'd need to rebuild MemorySSA from scratch after
- // every transformation, which defeats the purpose of using it. For such an
- // example, see test4 added in D51960.
- }
- void MemorySSA::verifyPrevDefInPhis(Function &F) const {
- for (const BasicBlock &BB : F) {
- if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
- for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
- auto *Pred = Phi->getIncomingBlock(I);
- auto *IncAcc = Phi->getIncomingValue(I);
- // If Pred has no unreachable predecessors, get last def looking at
- // IDoms. If, while walkings IDoms, any of these has an unreachable
- // predecessor, then the incoming def can be any access.
- if (auto *DTNode = DT->getNode(Pred)) {
- while (DTNode) {
- if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
- auto *LastAcc = &*(--DefList->end());
- assert(LastAcc == IncAcc &&
- "Incorrect incoming access into phi.");
- (void)IncAcc;
- (void)LastAcc;
- break;
- }
- DTNode = DTNode->getIDom();
- }
- } else {
- // If Pred has unreachable predecessors, but has at least a Def, the
- // incoming access can be the last Def in Pred, or it could have been
- // optimized to LoE. After an update, though, the LoE may have been
- // replaced by another access, so IncAcc may be any access.
- // If Pred has unreachable predecessors and no Defs, incoming access
- // should be LoE; However, after an update, it may be any access.
- }
- }
- }
- }
- }
- /// Verify that all of the blocks we believe to have valid domination numbers
- /// actually have valid domination numbers.
- void MemorySSA::verifyDominationNumbers(const Function &F) const {
- if (BlockNumberingValid.empty())
- return;
- SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
- for (const BasicBlock &BB : F) {
- if (!ValidBlocks.count(&BB))
- continue;
- ValidBlocks.erase(&BB);
- const AccessList *Accesses = getBlockAccesses(&BB);
- // It's correct to say an empty block has valid numbering.
- if (!Accesses)
- continue;
- // Block numbering starts at 1.
- unsigned long LastNumber = 0;
- for (const MemoryAccess &MA : *Accesses) {
- auto ThisNumberIter = BlockNumbering.find(&MA);
- assert(ThisNumberIter != BlockNumbering.end() &&
- "MemoryAccess has no domination number in a valid block!");
- unsigned long ThisNumber = ThisNumberIter->second;
- assert(ThisNumber > LastNumber &&
- "Domination numbers should be strictly increasing!");
- (void)LastNumber;
- LastNumber = ThisNumber;
- }
- }
- assert(ValidBlocks.empty() &&
- "All valid BasicBlocks should exist in F -- dangling pointers?");
- }
- /// Verify ordering: the order and existence of MemoryAccesses matches the
- /// order and existence of memory affecting instructions.
- /// Verify domination: each definition dominates all of its uses.
- /// Verify def-uses: the immediate use information - walk all the memory
- /// accesses and verifying that, for each use, it appears in the appropriate
- /// def's use list
- void MemorySSA::verifyOrderingDominationAndDefUses(Function &F,
- VerificationLevel VL) const {
- // Walk all the blocks, comparing what the lookups think and what the access
- // lists think, as well as the order in the blocks vs the order in the access
- // lists.
- SmallVector<MemoryAccess *, 32> ActualAccesses;
- SmallVector<MemoryAccess *, 32> ActualDefs;
- for (BasicBlock &B : F) {
- const AccessList *AL = getBlockAccesses(&B);
- const auto *DL = getBlockDefs(&B);
- MemoryPhi *Phi = getMemoryAccess(&B);
- if (Phi) {
- // Verify ordering.
- ActualAccesses.push_back(Phi);
- ActualDefs.push_back(Phi);
- // Verify domination
- for (const Use &U : Phi->uses()) {
- assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses");
- (void)U;
- }
- // Verify def-uses for full verify.
- if (VL == VerificationLevel::Full) {
- assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
- pred_begin(&B), pred_end(&B))) &&
- "Incomplete MemoryPhi Node");
- for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
- verifyUseInDefs(Phi->getIncomingValue(I), Phi);
- assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) &&
- "Incoming phi block not a block predecessor");
- }
- }
- }
- for (Instruction &I : B) {
- MemoryUseOrDef *MA = getMemoryAccess(&I);
- assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
- "We have memory affecting instructions "
- "in this block but they are not in the "
- "access list or defs list");
- if (MA) {
- // Verify ordering.
- ActualAccesses.push_back(MA);
- if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) {
- // Verify ordering.
- ActualDefs.push_back(MA);
- // Verify domination.
- for (const Use &U : MD->uses()) {
- assert(dominates(MD, U) &&
- "Memory Def does not dominate it's uses");
- (void)U;
- }
- }
- // Verify def-uses for full verify.
- if (VL == VerificationLevel::Full)
- verifyUseInDefs(MA->getDefiningAccess(), MA);
- }
- }
- // Either we hit the assert, really have no accesses, or we have both
- // accesses and an access list. Same with defs.
- if (!AL && !DL)
- continue;
- // Verify ordering.
- assert(AL->size() == ActualAccesses.size() &&
- "We don't have the same number of accesses in the block as on the "
- "access list");
- assert((DL || ActualDefs.size() == 0) &&
- "Either we should have a defs list, or we should have no defs");
- assert((!DL || DL->size() == ActualDefs.size()) &&
- "We don't have the same number of defs in the block as on the "
- "def list");
- auto ALI = AL->begin();
- auto AAI = ActualAccesses.begin();
- while (ALI != AL->end() && AAI != ActualAccesses.end()) {
- assert(&*ALI == *AAI && "Not the same accesses in the same order");
- ++ALI;
- ++AAI;
- }
- ActualAccesses.clear();
- if (DL) {
- auto DLI = DL->begin();
- auto ADI = ActualDefs.begin();
- while (DLI != DL->end() && ADI != ActualDefs.end()) {
- assert(&*DLI == *ADI && "Not the same defs in the same order");
- ++DLI;
- ++ADI;
- }
- }
- ActualDefs.clear();
- }
- }
- /// Verify the def-use lists in MemorySSA, by verifying that \p Use
- /// appears in the use list of \p Def.
- void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
- // The live on entry use may cause us to get a NULL def here
- if (!Def)
- assert(isLiveOnEntryDef(Use) &&
- "Null def but use not point to live on entry def");
- else
- assert(is_contained(Def->users(), Use) &&
- "Did not find use in def's use list");
- }
- /// Perform a local numbering on blocks so that instruction ordering can be
- /// determined in constant time.
- /// TODO: We currently just number in order. If we numbered by N, we could
- /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
- /// log2(N) sequences of mixed before and after) without needing to invalidate
- /// the numbering.
- void MemorySSA::renumberBlock(const BasicBlock *B) const {
- // The pre-increment ensures the numbers really start at 1.
- unsigned long CurrentNumber = 0;
- const AccessList *AL = getBlockAccesses(B);
- assert(AL != nullptr && "Asking to renumber an empty block");
- for (const auto &I : *AL)
- BlockNumbering[&I] = ++CurrentNumber;
- BlockNumberingValid.insert(B);
- }
- /// Determine, for two memory accesses in the same block,
- /// whether \p Dominator dominates \p Dominatee.
- /// \returns True if \p Dominator dominates \p Dominatee.
- bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
- const MemoryAccess *Dominatee) const {
- const BasicBlock *DominatorBlock = Dominator->getBlock();
- assert((DominatorBlock == Dominatee->getBlock()) &&
- "Asking for local domination when accesses are in different blocks!");
- // A node dominates itself.
- if (Dominatee == Dominator)
- return true;
- // When Dominatee is defined on function entry, it is not dominated by another
- // memory access.
- if (isLiveOnEntryDef(Dominatee))
- return false;
- // When Dominator is defined on function entry, it dominates the other memory
- // access.
- if (isLiveOnEntryDef(Dominator))
- return true;
- if (!BlockNumberingValid.count(DominatorBlock))
- renumberBlock(DominatorBlock);
- unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
- // All numbers start with 1
- assert(DominatorNum != 0 && "Block was not numbered properly");
- unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
- assert(DominateeNum != 0 && "Block was not numbered properly");
- return DominatorNum < DominateeNum;
- }
- bool MemorySSA::dominates(const MemoryAccess *Dominator,
- const MemoryAccess *Dominatee) const {
- if (Dominator == Dominatee)
- return true;
- if (isLiveOnEntryDef(Dominatee))
- return false;
- if (Dominator->getBlock() != Dominatee->getBlock())
- return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
- return locallyDominates(Dominator, Dominatee);
- }
- bool MemorySSA::dominates(const MemoryAccess *Dominator,
- const Use &Dominatee) const {
- if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
- BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
- // The def must dominate the incoming block of the phi.
- if (UseBB != Dominator->getBlock())
- return DT->dominates(Dominator->getBlock(), UseBB);
- // If the UseBB and the DefBB are the same, compare locally.
- return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
- }
- // If it's not a PHI node use, the normal dominates can already handle it.
- return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
- }
- void MemoryAccess::print(raw_ostream &OS) const {
- switch (getValueID()) {
- case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
- case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
- case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
- }
- llvm_unreachable("invalid value id");
- }
- void MemoryDef::print(raw_ostream &OS) const {
- MemoryAccess *UO = getDefiningAccess();
- auto printID = [&OS](MemoryAccess *A) {
- if (A && A->getID())
- OS << A->getID();
- else
- OS << LiveOnEntryStr;
- };
- OS << getID() << " = MemoryDef(";
- printID(UO);
- OS << ")";
- if (isOptimized()) {
- OS << "->";
- printID(getOptimized());
- if (Optional<AliasResult> AR = getOptimizedAccessType())
- OS << " " << *AR;
- }
- }
- void MemoryPhi::print(raw_ostream &OS) const {
- ListSeparator LS(",");
- OS << getID() << " = MemoryPhi(";
- for (const auto &Op : operands()) {
- BasicBlock *BB = getIncomingBlock(Op);
- MemoryAccess *MA = cast<MemoryAccess>(Op);
- OS << LS << '{';
- if (BB->hasName())
- OS << BB->getName();
- else
- BB->printAsOperand(OS, false);
- OS << ',';
- if (unsigned ID = MA->getID())
- OS << ID;
- else
- OS << LiveOnEntryStr;
- OS << '}';
- }
- OS << ')';
- }
- void MemoryUse::print(raw_ostream &OS) const {
- MemoryAccess *UO = getDefiningAccess();
- OS << "MemoryUse(";
- if (UO && UO->getID())
- OS << UO->getID();
- else
- OS << LiveOnEntryStr;
- OS << ')';
- if (Optional<AliasResult> AR = getOptimizedAccessType())
- OS << " " << *AR;
- }
- void MemoryAccess::dump() const {
- // Cannot completely remove virtual function even in release mode.
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- print(dbgs());
- dbgs() << "\n";
- #endif
- }
- char MemorySSAPrinterLegacyPass::ID = 0;
- MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
- initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<MemorySSAWrapperPass>();
- }
- class DOTFuncMSSAInfo {
- private:
- const Function &F;
- MemorySSAAnnotatedWriter MSSAWriter;
- public:
- DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA)
- : F(F), MSSAWriter(&MSSA) {}
- const Function *getFunction() { return &F; }
- MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; }
- };
- namespace llvm {
- template <>
- struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> {
- static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) {
- return &(CFGInfo->getFunction()->getEntryBlock());
- }
- // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
- using nodes_iterator = pointer_iterator<Function::const_iterator>;
- static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) {
- return nodes_iterator(CFGInfo->getFunction()->begin());
- }
- static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) {
- return nodes_iterator(CFGInfo->getFunction()->end());
- }
- static size_t size(DOTFuncMSSAInfo *CFGInfo) {
- return CFGInfo->getFunction()->size();
- }
- };
- template <>
- struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits {
- DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
- static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) {
- return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() +
- "' function";
- }
- std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) {
- return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel(
- Node, nullptr,
- [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void {
- BB.print(OS, &CFGInfo->getWriter(), true, true);
- },
- [](std::string &S, unsigned &I, unsigned Idx) -> void {
- std::string Str = S.substr(I, Idx - I);
- StringRef SR = Str;
- if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") ||
- SR.count("MemoryUse("))
- return;
- DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx);
- });
- }
- static std::string getEdgeSourceLabel(const BasicBlock *Node,
- const_succ_iterator I) {
- return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I);
- }
- /// Display the raw branch weights from PGO.
- std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I,
- DOTFuncMSSAInfo *CFGInfo) {
- return "";
- }
- std::string getNodeAttributes(const BasicBlock *Node,
- DOTFuncMSSAInfo *CFGInfo) {
- return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos
- ? "style=filled, fillcolor=lightpink"
- : "";
- }
- };
- } // namespace llvm
- bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
- auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
- if (DotCFGMSSA != "") {
- DOTFuncMSSAInfo CFGInfo(F, MSSA);
- WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
- } else
- MSSA.print(dbgs());
- if (VerifyMemorySSA)
- MSSA.verifyMemorySSA();
- return false;
- }
- AnalysisKey MemorySSAAnalysis::Key;
- MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &AA = AM.getResult<AAManager>(F);
- return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
- }
- bool MemorySSAAnalysis::Result::invalidate(
- Function &F, const PreservedAnalyses &PA,
- FunctionAnalysisManager::Invalidator &Inv) {
- auto PAC = PA.getChecker<MemorySSAAnalysis>();
- return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
- Inv.invalidate<AAManager>(F, PA) ||
- Inv.invalidate<DominatorTreeAnalysis>(F, PA);
- }
- PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
- if (DotCFGMSSA != "") {
- DOTFuncMSSAInfo CFGInfo(F, MSSA);
- WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
- } else {
- OS << "MemorySSA for function: " << F.getName() << "\n";
- MSSA.print(OS);
- }
- return PreservedAnalyses::all();
- }
- PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
- OS << "MemorySSA (walker) for function: " << F.getName() << "\n";
- MemorySSAWalkerAnnotatedWriter Writer(&MSSA);
- F.print(OS, &Writer);
- return PreservedAnalyses::all();
- }
- PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
- return PreservedAnalyses::all();
- }
- char MemorySSAWrapperPass::ID = 0;
- MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
- initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
- }
- void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
- void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequiredTransitive<DominatorTreeWrapperPass>();
- AU.addRequiredTransitive<AAResultsWrapperPass>();
- }
- bool MemorySSAWrapperPass::runOnFunction(Function &F) {
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
- MSSA.reset(new MemorySSA(F, &AA, &DT));
- return false;
- }
- void MemorySSAWrapperPass::verifyAnalysis() const {
- if (VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- }
- void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
- MSSA->print(OS);
- }
- MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
- /// Walk the use-def chains starting at \p StartingAccess and find
- /// the MemoryAccess that actually clobbers Loc.
- ///
- /// \returns our clobbering memory access
- template <typename AliasAnalysisType>
- MemoryAccess *
- MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
- MemoryAccess *StartingAccess, const MemoryLocation &Loc,
- unsigned &UpwardWalkLimit) {
- assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access");
- Instruction *I = nullptr;
- if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) {
- if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
- return StartingUseOrDef;
- I = StartingUseOrDef->getMemoryInst();
- // Conservatively, fences are always clobbers, so don't perform the walk if
- // we hit a fence.
- if (!isa<CallBase>(I) && I->isFenceLike())
- return StartingUseOrDef;
- }
- UpwardsMemoryQuery Q;
- Q.OriginalAccess = StartingAccess;
- Q.StartingLoc = Loc;
- Q.Inst = nullptr;
- Q.IsCall = false;
- // Unlike the other function, do not walk to the def of a def, because we are
- // handed something we already believe is the clobbering access.
- // We never set SkipSelf to true in Q in this method.
- MemoryAccess *Clobber =
- Walker.findClobber(StartingAccess, Q, UpwardWalkLimit);
- LLVM_DEBUG({
- dbgs() << "Clobber starting at access " << *StartingAccess << "\n";
- if (I)
- dbgs() << " for instruction " << *I << "\n";
- dbgs() << " is " << *Clobber << "\n";
- });
- return Clobber;
- }
- static const Instruction *
- getInvariantGroupClobberingInstruction(Instruction &I, DominatorTree &DT) {
- if (!I.hasMetadata(LLVMContext::MD_invariant_group) || I.isVolatile())
- return nullptr;
- // We consider bitcasts and zero GEPs to be the same pointer value. Start by
- // stripping bitcasts and zero GEPs, then we will recursively look at loads
- // and stores through bitcasts and zero GEPs.
- Value *PointerOperand = getLoadStorePointerOperand(&I)->stripPointerCasts();
- // It's not safe to walk the use list of a global value because function
- // passes aren't allowed to look outside their functions.
- // FIXME: this could be fixed by filtering instructions from outside of
- // current function.
- if (isa<Constant>(PointerOperand))
- return nullptr;
- // Queue to process all pointers that are equivalent to load operand.
- SmallVector<const Value *, 8> PointerUsesQueue;
- PointerUsesQueue.push_back(PointerOperand);
- const Instruction *MostDominatingInstruction = &I;
- // FIXME: This loop is O(n^2) because dominates can be O(n) and in worst case
- // we will see all the instructions. It may not matter in practice. If it
- // does, we will have to support MemorySSA construction and updates.
- while (!PointerUsesQueue.empty()) {
- const Value *Ptr = PointerUsesQueue.pop_back_val();
- assert(Ptr && !isa<GlobalValue>(Ptr) &&
- "Null or GlobalValue should not be inserted");
- for (const User *Us : Ptr->users()) {
- auto *U = dyn_cast<Instruction>(Us);
- if (!U || U == &I || !DT.dominates(U, MostDominatingInstruction))
- continue;
- // Add bitcasts and zero GEPs to queue.
- if (isa<BitCastInst>(U)) {
- PointerUsesQueue.push_back(U);
- continue;
- }
- if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
- if (GEP->hasAllZeroIndices())
- PointerUsesQueue.push_back(U);
- continue;
- }
- // If we hit a load/store with an invariant.group metadata and the same
- // pointer operand, we can assume that value pointed to by the pointer
- // operand didn't change.
- if (U->hasMetadata(LLVMContext::MD_invariant_group) &&
- getLoadStorePointerOperand(U) == Ptr && !U->isVolatile()) {
- MostDominatingInstruction = U;
- }
- }
- }
- return MostDominatingInstruction == &I ? nullptr : MostDominatingInstruction;
- }
- template <typename AliasAnalysisType>
- MemoryAccess *
- MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
- MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf,
- bool UseInvariantGroup) {
- auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
- // If this is a MemoryPhi, we can't do anything.
- if (!StartingAccess)
- return MA;
- if (UseInvariantGroup) {
- if (auto *I = getInvariantGroupClobberingInstruction(
- *StartingAccess->getMemoryInst(), MSSA->getDomTree())) {
- assert(isa<LoadInst>(I) || isa<StoreInst>(I));
- auto *ClobberMA = MSSA->getMemoryAccess(I);
- assert(ClobberMA);
- if (isa<MemoryUse>(ClobberMA))
- return ClobberMA->getDefiningAccess();
- return ClobberMA;
- }
- }
- bool IsOptimized = false;
- // If this is an already optimized use or def, return the optimized result.
- // Note: Currently, we store the optimized def result in a separate field,
- // since we can't use the defining access.
- if (StartingAccess->isOptimized()) {
- if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
- return StartingAccess->getOptimized();
- IsOptimized = true;
- }
- const Instruction *I = StartingAccess->getMemoryInst();
- // We can't sanely do anything with a fence, since they conservatively clobber
- // all memory, and have no locations to get pointers from to try to
- // disambiguate.
- if (!isa<CallBase>(I) && I->isFenceLike())
- return StartingAccess;
- UpwardsMemoryQuery Q(I, StartingAccess);
- if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
- MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
- StartingAccess->setOptimized(LiveOnEntry);
- StartingAccess->setOptimizedAccessType(None);
- return LiveOnEntry;
- }
- MemoryAccess *OptimizedAccess;
- if (!IsOptimized) {
- // Start with the thing we already think clobbers this location
- MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
- // At this point, DefiningAccess may be the live on entry def.
- // If it is, we will not get a better result.
- if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
- StartingAccess->setOptimized(DefiningAccess);
- StartingAccess->setOptimizedAccessType(None);
- return DefiningAccess;
- }
- OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
- StartingAccess->setOptimized(OptimizedAccess);
- if (MSSA->isLiveOnEntryDef(OptimizedAccess))
- StartingAccess->setOptimizedAccessType(None);
- else if (Q.AR && *Q.AR == AliasResult::MustAlias)
- StartingAccess->setOptimizedAccessType(
- AliasResult(AliasResult::MustAlias));
- } else
- OptimizedAccess = StartingAccess->getOptimized();
- LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
- LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
- LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
- LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
- MemoryAccess *Result;
- if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
- isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
- assert(isa<MemoryDef>(Q.OriginalAccess));
- Q.SkipSelfAccess = true;
- Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit);
- } else
- Result = OptimizedAccess;
- LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
- LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
- return Result;
- }
- MemoryAccess *
- DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
- if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
- return Use->getDefiningAccess();
- return MA;
- }
- MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
- MemoryAccess *StartingAccess, const MemoryLocation &) {
- if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
- return Use->getDefiningAccess();
- return StartingAccess;
- }
- void MemoryPhi::deleteMe(DerivedUser *Self) {
- delete static_cast<MemoryPhi *>(Self);
- }
- void MemoryDef::deleteMe(DerivedUser *Self) {
- delete static_cast<MemoryDef *>(Self);
- }
- void MemoryUse::deleteMe(DerivedUser *Self) {
- delete static_cast<MemoryUse *>(Self);
- }
- bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const {
- auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) {
- Ptr = Ptr->stripPointerCasts();
- if (!isa<Instruction>(Ptr))
- return true;
- return isa<AllocaInst>(Ptr);
- };
- Ptr = Ptr->stripPointerCasts();
- if (auto *I = dyn_cast<Instruction>(Ptr)) {
- if (I->getParent()->isEntryBlock())
- return true;
- }
- if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
- return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) &&
- GEP->hasAllConstantIndices();
- }
- return IsGuaranteedLoopInvariantBase(Ptr);
- }
|