123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187 |
- //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
- //
- //===----------------------------------------------------------------------===//
- #include "CGCXXABI.h"
- #include "CGCleanup.h"
- #include "CGDebugInfo.h"
- #include "CGObjCRuntime.h"
- #include "CGOpenMPRuntime.h"
- #include "CodeGenFunction.h"
- #include "CodeGenModule.h"
- #include "ConstantEmitter.h"
- #include "TargetInfo.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/Attr.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/AST/Expr.h"
- #include "clang/AST/RecordLayout.h"
- #include "clang/AST/StmtVisitor.h"
- #include "clang/Basic/CodeGenOptions.h"
- #include "clang/Basic/TargetInfo.h"
- #include "llvm/ADT/APFixedPoint.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/FixedPointBuilder.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/IntrinsicsPowerPC.h"
- #include "llvm/IR/MatrixBuilder.h"
- #include "llvm/IR/Module.h"
- #include <cstdarg>
- using namespace clang;
- using namespace CodeGen;
- using llvm::Value;
- //===----------------------------------------------------------------------===//
- // Scalar Expression Emitter
- //===----------------------------------------------------------------------===//
- namespace {
- /// Determine whether the given binary operation may overflow.
- /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
- /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
- /// the returned overflow check is precise. The returned value is 'true' for
- /// all other opcodes, to be conservative.
- bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
- BinaryOperator::Opcode Opcode, bool Signed,
- llvm::APInt &Result) {
- // Assume overflow is possible, unless we can prove otherwise.
- bool Overflow = true;
- const auto &LHSAP = LHS->getValue();
- const auto &RHSAP = RHS->getValue();
- if (Opcode == BO_Add) {
- if (Signed)
- Result = LHSAP.sadd_ov(RHSAP, Overflow);
- else
- Result = LHSAP.uadd_ov(RHSAP, Overflow);
- } else if (Opcode == BO_Sub) {
- if (Signed)
- Result = LHSAP.ssub_ov(RHSAP, Overflow);
- else
- Result = LHSAP.usub_ov(RHSAP, Overflow);
- } else if (Opcode == BO_Mul) {
- if (Signed)
- Result = LHSAP.smul_ov(RHSAP, Overflow);
- else
- Result = LHSAP.umul_ov(RHSAP, Overflow);
- } else if (Opcode == BO_Div || Opcode == BO_Rem) {
- if (Signed && !RHS->isZero())
- Result = LHSAP.sdiv_ov(RHSAP, Overflow);
- else
- return false;
- }
- return Overflow;
- }
- struct BinOpInfo {
- Value *LHS;
- Value *RHS;
- QualType Ty; // Computation Type.
- BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
- FPOptions FPFeatures;
- const Expr *E; // Entire expr, for error unsupported. May not be binop.
- /// Check if the binop can result in integer overflow.
- bool mayHaveIntegerOverflow() const {
- // Without constant input, we can't rule out overflow.
- auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
- auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
- if (!LHSCI || !RHSCI)
- return true;
- llvm::APInt Result;
- return ::mayHaveIntegerOverflow(
- LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
- }
- /// Check if the binop computes a division or a remainder.
- bool isDivremOp() const {
- return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
- Opcode == BO_RemAssign;
- }
- /// Check if the binop can result in an integer division by zero.
- bool mayHaveIntegerDivisionByZero() const {
- if (isDivremOp())
- if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
- return CI->isZero();
- return true;
- }
- /// Check if the binop can result in a float division by zero.
- bool mayHaveFloatDivisionByZero() const {
- if (isDivremOp())
- if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
- return CFP->isZero();
- return true;
- }
- /// Check if at least one operand is a fixed point type. In such cases, this
- /// operation did not follow usual arithmetic conversion and both operands
- /// might not be of the same type.
- bool isFixedPointOp() const {
- // We cannot simply check the result type since comparison operations return
- // an int.
- if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
- QualType LHSType = BinOp->getLHS()->getType();
- QualType RHSType = BinOp->getRHS()->getType();
- return LHSType->isFixedPointType() || RHSType->isFixedPointType();
- }
- if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
- return UnOp->getSubExpr()->getType()->isFixedPointType();
- return false;
- }
- };
- static bool MustVisitNullValue(const Expr *E) {
- // If a null pointer expression's type is the C++0x nullptr_t, then
- // it's not necessarily a simple constant and it must be evaluated
- // for its potential side effects.
- return E->getType()->isNullPtrType();
- }
- /// If \p E is a widened promoted integer, get its base (unpromoted) type.
- static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
- const Expr *E) {
- const Expr *Base = E->IgnoreImpCasts();
- if (E == Base)
- return llvm::None;
- QualType BaseTy = Base->getType();
- if (!BaseTy->isPromotableIntegerType() ||
- Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
- return llvm::None;
- return BaseTy;
- }
- /// Check if \p E is a widened promoted integer.
- static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
- return getUnwidenedIntegerType(Ctx, E).hasValue();
- }
- /// Check if we can skip the overflow check for \p Op.
- static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
- assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
- "Expected a unary or binary operator");
- // If the binop has constant inputs and we can prove there is no overflow,
- // we can elide the overflow check.
- if (!Op.mayHaveIntegerOverflow())
- return true;
- // If a unary op has a widened operand, the op cannot overflow.
- if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
- return !UO->canOverflow();
- // We usually don't need overflow checks for binops with widened operands.
- // Multiplication with promoted unsigned operands is a special case.
- const auto *BO = cast<BinaryOperator>(Op.E);
- auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
- if (!OptionalLHSTy)
- return false;
- auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
- if (!OptionalRHSTy)
- return false;
- QualType LHSTy = *OptionalLHSTy;
- QualType RHSTy = *OptionalRHSTy;
- // This is the simple case: binops without unsigned multiplication, and with
- // widened operands. No overflow check is needed here.
- if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
- !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
- return true;
- // For unsigned multiplication the overflow check can be elided if either one
- // of the unpromoted types are less than half the size of the promoted type.
- unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
- return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
- (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
- }
- class ScalarExprEmitter
- : public StmtVisitor<ScalarExprEmitter, Value*> {
- CodeGenFunction &CGF;
- CGBuilderTy &Builder;
- bool IgnoreResultAssign;
- llvm::LLVMContext &VMContext;
- public:
- ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
- : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
- VMContext(cgf.getLLVMContext()) {
- }
- //===--------------------------------------------------------------------===//
- // Utilities
- //===--------------------------------------------------------------------===//
- bool TestAndClearIgnoreResultAssign() {
- bool I = IgnoreResultAssign;
- IgnoreResultAssign = false;
- return I;
- }
- llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
- LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
- LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
- return CGF.EmitCheckedLValue(E, TCK);
- }
- void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
- const BinOpInfo &Info);
- Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
- return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
- }
- void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
- const AlignValueAttr *AVAttr = nullptr;
- if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
- const ValueDecl *VD = DRE->getDecl();
- if (VD->getType()->isReferenceType()) {
- if (const auto *TTy =
- dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
- AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
- } else {
- // Assumptions for function parameters are emitted at the start of the
- // function, so there is no need to repeat that here,
- // unless the alignment-assumption sanitizer is enabled,
- // then we prefer the assumption over alignment attribute
- // on IR function param.
- if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
- return;
- AVAttr = VD->getAttr<AlignValueAttr>();
- }
- }
- if (!AVAttr)
- if (const auto *TTy =
- dyn_cast<TypedefType>(E->getType()))
- AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
- if (!AVAttr)
- return;
- Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
- llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
- CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
- }
- /// EmitLoadOfLValue - Given an expression with complex type that represents a
- /// value l-value, this method emits the address of the l-value, then loads
- /// and returns the result.
- Value *EmitLoadOfLValue(const Expr *E) {
- Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
- E->getExprLoc());
- EmitLValueAlignmentAssumption(E, V);
- return V;
- }
- /// EmitConversionToBool - Convert the specified expression value to a
- /// boolean (i1) truth value. This is equivalent to "Val != 0".
- Value *EmitConversionToBool(Value *Src, QualType DstTy);
- /// Emit a check that a conversion from a floating-point type does not
- /// overflow.
- void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
- Value *Src, QualType SrcType, QualType DstType,
- llvm::Type *DstTy, SourceLocation Loc);
- /// Known implicit conversion check kinds.
- /// Keep in sync with the enum of the same name in ubsan_handlers.h
- enum ImplicitConversionCheckKind : unsigned char {
- ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
- ICCK_UnsignedIntegerTruncation = 1,
- ICCK_SignedIntegerTruncation = 2,
- ICCK_IntegerSignChange = 3,
- ICCK_SignedIntegerTruncationOrSignChange = 4,
- };
- /// Emit a check that an [implicit] truncation of an integer does not
- /// discard any bits. It is not UB, so we use the value after truncation.
- void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
- QualType DstType, SourceLocation Loc);
- /// Emit a check that an [implicit] conversion of an integer does not change
- /// the sign of the value. It is not UB, so we use the value after conversion.
- /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
- void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
- QualType DstType, SourceLocation Loc);
- /// Emit a conversion from the specified type to the specified destination
- /// type, both of which are LLVM scalar types.
- struct ScalarConversionOpts {
- bool TreatBooleanAsSigned;
- bool EmitImplicitIntegerTruncationChecks;
- bool EmitImplicitIntegerSignChangeChecks;
- ScalarConversionOpts()
- : TreatBooleanAsSigned(false),
- EmitImplicitIntegerTruncationChecks(false),
- EmitImplicitIntegerSignChangeChecks(false) {}
- ScalarConversionOpts(clang::SanitizerSet SanOpts)
- : TreatBooleanAsSigned(false),
- EmitImplicitIntegerTruncationChecks(
- SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
- EmitImplicitIntegerSignChangeChecks(
- SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
- };
- Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
- llvm::Type *SrcTy, llvm::Type *DstTy,
- ScalarConversionOpts Opts);
- Value *
- EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
- SourceLocation Loc,
- ScalarConversionOpts Opts = ScalarConversionOpts());
- /// Convert between either a fixed point and other fixed point or fixed point
- /// and an integer.
- Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
- SourceLocation Loc);
- /// Emit a conversion from the specified complex type to the specified
- /// destination type, where the destination type is an LLVM scalar type.
- Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
- QualType SrcTy, QualType DstTy,
- SourceLocation Loc);
- /// EmitNullValue - Emit a value that corresponds to null for the given type.
- Value *EmitNullValue(QualType Ty);
- /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
- Value *EmitFloatToBoolConversion(Value *V) {
- // Compare against 0.0 for fp scalars.
- llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
- return Builder.CreateFCmpUNE(V, Zero, "tobool");
- }
- /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
- Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
- Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
- return Builder.CreateICmpNE(V, Zero, "tobool");
- }
- Value *EmitIntToBoolConversion(Value *V) {
- // Because of the type rules of C, we often end up computing a
- // logical value, then zero extending it to int, then wanting it
- // as a logical value again. Optimize this common case.
- if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
- if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
- Value *Result = ZI->getOperand(0);
- // If there aren't any more uses, zap the instruction to save space.
- // Note that there can be more uses, for example if this
- // is the result of an assignment.
- if (ZI->use_empty())
- ZI->eraseFromParent();
- return Result;
- }
- }
- return Builder.CreateIsNotNull(V, "tobool");
- }
- //===--------------------------------------------------------------------===//
- // Visitor Methods
- //===--------------------------------------------------------------------===//
- Value *Visit(Expr *E) {
- ApplyDebugLocation DL(CGF, E);
- return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
- }
- Value *VisitStmt(Stmt *S) {
- S->dump(llvm::errs(), CGF.getContext());
- llvm_unreachable("Stmt can't have complex result type!");
- }
- Value *VisitExpr(Expr *S);
- Value *VisitConstantExpr(ConstantExpr *E) {
- // A constant expression of type 'void' generates no code and produces no
- // value.
- if (E->getType()->isVoidType())
- return nullptr;
- if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
- if (E->isGLValue())
- return CGF.Builder.CreateLoad(Address(
- Result, CGF.getContext().getTypeAlignInChars(E->getType())));
- return Result;
- }
- return Visit(E->getSubExpr());
- }
- Value *VisitParenExpr(ParenExpr *PE) {
- return Visit(PE->getSubExpr());
- }
- Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
- return Visit(E->getReplacement());
- }
- Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
- return Visit(GE->getResultExpr());
- }
- Value *VisitCoawaitExpr(CoawaitExpr *S) {
- return CGF.EmitCoawaitExpr(*S).getScalarVal();
- }
- Value *VisitCoyieldExpr(CoyieldExpr *S) {
- return CGF.EmitCoyieldExpr(*S).getScalarVal();
- }
- Value *VisitUnaryCoawait(const UnaryOperator *E) {
- return Visit(E->getSubExpr());
- }
- // Leaves.
- Value *VisitIntegerLiteral(const IntegerLiteral *E) {
- return Builder.getInt(E->getValue());
- }
- Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
- return Builder.getInt(E->getValue());
- }
- Value *VisitFloatingLiteral(const FloatingLiteral *E) {
- return llvm::ConstantFP::get(VMContext, E->getValue());
- }
- Value *VisitCharacterLiteral(const CharacterLiteral *E) {
- return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
- }
- Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
- return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
- }
- Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
- return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
- }
- Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
- return EmitNullValue(E->getType());
- }
- Value *VisitGNUNullExpr(const GNUNullExpr *E) {
- return EmitNullValue(E->getType());
- }
- Value *VisitOffsetOfExpr(OffsetOfExpr *E);
- Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
- Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
- llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
- return Builder.CreateBitCast(V, ConvertType(E->getType()));
- }
- Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
- return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
- }
- Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
- return CGF.EmitPseudoObjectRValue(E).getScalarVal();
- }
- Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
- Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
- if (E->isGLValue())
- return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
- E->getExprLoc());
- // Otherwise, assume the mapping is the scalar directly.
- return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
- }
- // l-values.
- Value *VisitDeclRefExpr(DeclRefExpr *E) {
- if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
- return CGF.emitScalarConstant(Constant, E);
- return EmitLoadOfLValue(E);
- }
- Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
- return CGF.EmitObjCSelectorExpr(E);
- }
- Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
- return CGF.EmitObjCProtocolExpr(E);
- }
- Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
- return EmitLoadOfLValue(E);
- }
- Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
- if (E->getMethodDecl() &&
- E->getMethodDecl()->getReturnType()->isReferenceType())
- return EmitLoadOfLValue(E);
- return CGF.EmitObjCMessageExpr(E).getScalarVal();
- }
- Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
- LValue LV = CGF.EmitObjCIsaExpr(E);
- Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
- return V;
- }
- Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
- VersionTuple Version = E->getVersion();
- // If we're checking for a platform older than our minimum deployment
- // target, we can fold the check away.
- if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
- return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
- return CGF.EmitBuiltinAvailable(Version);
- }
- Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
- Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
- Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
- Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
- Value *VisitMemberExpr(MemberExpr *E);
- Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
- Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
- // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
- // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
- // literals aren't l-values in C++. We do so simply because that's the
- // cleanest way to handle compound literals in C++.
- // See the discussion here: https://reviews.llvm.org/D64464
- return EmitLoadOfLValue(E);
- }
- Value *VisitInitListExpr(InitListExpr *E);
- Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
- assert(CGF.getArrayInitIndex() &&
- "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
- return CGF.getArrayInitIndex();
- }
- Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
- return EmitNullValue(E->getType());
- }
- Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
- CGF.CGM.EmitExplicitCastExprType(E, &CGF);
- return VisitCastExpr(E);
- }
- Value *VisitCastExpr(CastExpr *E);
- Value *VisitCallExpr(const CallExpr *E) {
- if (E->getCallReturnType(CGF.getContext())->isReferenceType())
- return EmitLoadOfLValue(E);
- Value *V = CGF.EmitCallExpr(E).getScalarVal();
- EmitLValueAlignmentAssumption(E, V);
- return V;
- }
- Value *VisitStmtExpr(const StmtExpr *E);
- // Unary Operators.
- Value *VisitUnaryPostDec(const UnaryOperator *E) {
- LValue LV = EmitLValue(E->getSubExpr());
- return EmitScalarPrePostIncDec(E, LV, false, false);
- }
- Value *VisitUnaryPostInc(const UnaryOperator *E) {
- LValue LV = EmitLValue(E->getSubExpr());
- return EmitScalarPrePostIncDec(E, LV, true, false);
- }
- Value *VisitUnaryPreDec(const UnaryOperator *E) {
- LValue LV = EmitLValue(E->getSubExpr());
- return EmitScalarPrePostIncDec(E, LV, false, true);
- }
- Value *VisitUnaryPreInc(const UnaryOperator *E) {
- LValue LV = EmitLValue(E->getSubExpr());
- return EmitScalarPrePostIncDec(E, LV, true, true);
- }
- llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
- llvm::Value *InVal,
- bool IsInc);
- llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
- bool isInc, bool isPre);
- Value *VisitUnaryAddrOf(const UnaryOperator *E) {
- if (isa<MemberPointerType>(E->getType())) // never sugared
- return CGF.CGM.getMemberPointerConstant(E);
- return EmitLValue(E->getSubExpr()).getPointer(CGF);
- }
- Value *VisitUnaryDeref(const UnaryOperator *E) {
- if (E->getType()->isVoidType())
- return Visit(E->getSubExpr()); // the actual value should be unused
- return EmitLoadOfLValue(E);
- }
- Value *VisitUnaryPlus(const UnaryOperator *E) {
- // This differs from gcc, though, most likely due to a bug in gcc.
- TestAndClearIgnoreResultAssign();
- return Visit(E->getSubExpr());
- }
- Value *VisitUnaryMinus (const UnaryOperator *E);
- Value *VisitUnaryNot (const UnaryOperator *E);
- Value *VisitUnaryLNot (const UnaryOperator *E);
- Value *VisitUnaryReal (const UnaryOperator *E);
- Value *VisitUnaryImag (const UnaryOperator *E);
- Value *VisitUnaryExtension(const UnaryOperator *E) {
- return Visit(E->getSubExpr());
- }
- // C++
- Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
- return EmitLoadOfLValue(E);
- }
- Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
- auto &Ctx = CGF.getContext();
- APValue Evaluated =
- SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
- return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
- SLE->getType());
- }
- Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
- CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
- return Visit(DAE->getExpr());
- }
- Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
- CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
- return Visit(DIE->getExpr());
- }
- Value *VisitCXXThisExpr(CXXThisExpr *TE) {
- return CGF.LoadCXXThis();
- }
- Value *VisitExprWithCleanups(ExprWithCleanups *E);
- Value *VisitCXXNewExpr(const CXXNewExpr *E) {
- return CGF.EmitCXXNewExpr(E);
- }
- Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
- CGF.EmitCXXDeleteExpr(E);
- return nullptr;
- }
- Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
- return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
- }
- Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
- return Builder.getInt1(E->isSatisfied());
- }
- Value *VisitRequiresExpr(const RequiresExpr *E) {
- return Builder.getInt1(E->isSatisfied());
- }
- Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
- return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
- }
- Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
- return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
- }
- Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
- // C++ [expr.pseudo]p1:
- // The result shall only be used as the operand for the function call
- // operator (), and the result of such a call has type void. The only
- // effect is the evaluation of the postfix-expression before the dot or
- // arrow.
- CGF.EmitScalarExpr(E->getBase());
- return nullptr;
- }
- Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
- return EmitNullValue(E->getType());
- }
- Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
- CGF.EmitCXXThrowExpr(E);
- return nullptr;
- }
- Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
- return Builder.getInt1(E->getValue());
- }
- // Binary Operators.
- Value *EmitMul(const BinOpInfo &Ops) {
- if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
- switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
- case LangOptions::SOB_Defined:
- return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
- case LangOptions::SOB_Undefined:
- if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
- return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
- LLVM_FALLTHROUGH;
- case LangOptions::SOB_Trapping:
- if (CanElideOverflowCheck(CGF.getContext(), Ops))
- return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
- return EmitOverflowCheckedBinOp(Ops);
- }
- }
- if (Ops.Ty->isConstantMatrixType()) {
- llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
- // We need to check the types of the operands of the operator to get the
- // correct matrix dimensions.
- auto *BO = cast<BinaryOperator>(Ops.E);
- auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
- BO->getLHS()->getType().getCanonicalType());
- auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
- BO->getRHS()->getType().getCanonicalType());
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
- if (LHSMatTy && RHSMatTy)
- return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
- LHSMatTy->getNumColumns(),
- RHSMatTy->getNumColumns());
- return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
- }
- if (Ops.Ty->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
- !CanElideOverflowCheck(CGF.getContext(), Ops))
- return EmitOverflowCheckedBinOp(Ops);
- if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
- // Preserve the old values
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
- return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
- }
- if (Ops.isFixedPointOp())
- return EmitFixedPointBinOp(Ops);
- return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
- }
- /// Create a binary op that checks for overflow.
- /// Currently only supports +, - and *.
- Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
- // Check for undefined division and modulus behaviors.
- void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
- llvm::Value *Zero,bool isDiv);
- // Common helper for getting how wide LHS of shift is.
- static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
- // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
- // non powers of two.
- Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
- Value *EmitDiv(const BinOpInfo &Ops);
- Value *EmitRem(const BinOpInfo &Ops);
- Value *EmitAdd(const BinOpInfo &Ops);
- Value *EmitSub(const BinOpInfo &Ops);
- Value *EmitShl(const BinOpInfo &Ops);
- Value *EmitShr(const BinOpInfo &Ops);
- Value *EmitAnd(const BinOpInfo &Ops) {
- return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
- }
- Value *EmitXor(const BinOpInfo &Ops) {
- return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
- }
- Value *EmitOr (const BinOpInfo &Ops) {
- return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
- }
- // Helper functions for fixed point binary operations.
- Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
- BinOpInfo EmitBinOps(const BinaryOperator *E);
- LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
- Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
- Value *&Result);
- Value *EmitCompoundAssign(const CompoundAssignOperator *E,
- Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
- // Binary operators and binary compound assignment operators.
- #define HANDLEBINOP(OP) \
- Value *VisitBin ## OP(const BinaryOperator *E) { \
- return Emit ## OP(EmitBinOps(E)); \
- } \
- Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
- return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
- }
- HANDLEBINOP(Mul)
- HANDLEBINOP(Div)
- HANDLEBINOP(Rem)
- HANDLEBINOP(Add)
- HANDLEBINOP(Sub)
- HANDLEBINOP(Shl)
- HANDLEBINOP(Shr)
- HANDLEBINOP(And)
- HANDLEBINOP(Xor)
- HANDLEBINOP(Or)
- #undef HANDLEBINOP
- // Comparisons.
- Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
- llvm::CmpInst::Predicate SICmpOpc,
- llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
- #define VISITCOMP(CODE, UI, SI, FP, SIG) \
- Value *VisitBin##CODE(const BinaryOperator *E) { \
- return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
- llvm::FCmpInst::FP, SIG); }
- VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
- VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
- VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
- VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
- VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
- VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
- #undef VISITCOMP
- Value *VisitBinAssign (const BinaryOperator *E);
- Value *VisitBinLAnd (const BinaryOperator *E);
- Value *VisitBinLOr (const BinaryOperator *E);
- Value *VisitBinComma (const BinaryOperator *E);
- Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
- Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
- Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
- return Visit(E->getSemanticForm());
- }
- // Other Operators.
- Value *VisitBlockExpr(const BlockExpr *BE);
- Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
- Value *VisitChooseExpr(ChooseExpr *CE);
- Value *VisitVAArgExpr(VAArgExpr *VE);
- Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
- return CGF.EmitObjCStringLiteral(E);
- }
- Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
- return CGF.EmitObjCBoxedExpr(E);
- }
- Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
- return CGF.EmitObjCArrayLiteral(E);
- }
- Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
- return CGF.EmitObjCDictionaryLiteral(E);
- }
- Value *VisitAsTypeExpr(AsTypeExpr *CE);
- Value *VisitAtomicExpr(AtomicExpr *AE);
- };
- } // end anonymous namespace.
- //===----------------------------------------------------------------------===//
- // Utilities
- //===----------------------------------------------------------------------===//
- /// EmitConversionToBool - Convert the specified expression value to a
- /// boolean (i1) truth value. This is equivalent to "Val != 0".
- Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
- assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
- if (SrcType->isRealFloatingType())
- return EmitFloatToBoolConversion(Src);
- if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
- return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
- assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
- "Unknown scalar type to convert");
- if (isa<llvm::IntegerType>(Src->getType()))
- return EmitIntToBoolConversion(Src);
- assert(isa<llvm::PointerType>(Src->getType()));
- return EmitPointerToBoolConversion(Src, SrcType);
- }
- void ScalarExprEmitter::EmitFloatConversionCheck(
- Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
- QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
- assert(SrcType->isFloatingType() && "not a conversion from floating point");
- if (!isa<llvm::IntegerType>(DstTy))
- return;
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- using llvm::APFloat;
- using llvm::APSInt;
- llvm::Value *Check = nullptr;
- const llvm::fltSemantics &SrcSema =
- CGF.getContext().getFloatTypeSemantics(OrigSrcType);
- // Floating-point to integer. This has undefined behavior if the source is
- // +-Inf, NaN, or doesn't fit into the destination type (after truncation
- // to an integer).
- unsigned Width = CGF.getContext().getIntWidth(DstType);
- bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
- APSInt Min = APSInt::getMinValue(Width, Unsigned);
- APFloat MinSrc(SrcSema, APFloat::uninitialized);
- if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
- APFloat::opOverflow)
- // Don't need an overflow check for lower bound. Just check for
- // -Inf/NaN.
- MinSrc = APFloat::getInf(SrcSema, true);
- else
- // Find the largest value which is too small to represent (before
- // truncation toward zero).
- MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
- APSInt Max = APSInt::getMaxValue(Width, Unsigned);
- APFloat MaxSrc(SrcSema, APFloat::uninitialized);
- if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
- APFloat::opOverflow)
- // Don't need an overflow check for upper bound. Just check for
- // +Inf/NaN.
- MaxSrc = APFloat::getInf(SrcSema, false);
- else
- // Find the smallest value which is too large to represent (before
- // truncation toward zero).
- MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
- // If we're converting from __half, convert the range to float to match
- // the type of src.
- if (OrigSrcType->isHalfType()) {
- const llvm::fltSemantics &Sema =
- CGF.getContext().getFloatTypeSemantics(SrcType);
- bool IsInexact;
- MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
- MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
- }
- llvm::Value *GE =
- Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
- llvm::Value *LE =
- Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
- Check = Builder.CreateAnd(GE, LE);
- llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
- CGF.EmitCheckTypeDescriptor(OrigSrcType),
- CGF.EmitCheckTypeDescriptor(DstType)};
- CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
- SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
- }
- // Should be called within CodeGenFunction::SanitizerScope RAII scope.
- // Returns 'i1 false' when the truncation Src -> Dst was lossy.
- static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
- std::pair<llvm::Value *, SanitizerMask>>
- EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
- QualType DstType, CGBuilderTy &Builder) {
- llvm::Type *SrcTy = Src->getType();
- llvm::Type *DstTy = Dst->getType();
- (void)DstTy; // Only used in assert()
- // This should be truncation of integral types.
- assert(Src != Dst);
- assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
- assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
- "non-integer llvm type");
- bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
- bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
- // If both (src and dst) types are unsigned, then it's an unsigned truncation.
- // Else, it is a signed truncation.
- ScalarExprEmitter::ImplicitConversionCheckKind Kind;
- SanitizerMask Mask;
- if (!SrcSigned && !DstSigned) {
- Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
- Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
- } else {
- Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
- Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
- }
- llvm::Value *Check = nullptr;
- // 1. Extend the truncated value back to the same width as the Src.
- Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
- // 2. Equality-compare with the original source value
- Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
- // If the comparison result is 'i1 false', then the truncation was lossy.
- return std::make_pair(Kind, std::make_pair(Check, Mask));
- }
- static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
- QualType SrcType, QualType DstType) {
- return SrcType->isIntegerType() && DstType->isIntegerType();
- }
- void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
- Value *Dst, QualType DstType,
- SourceLocation Loc) {
- if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
- return;
- // We only care about int->int conversions here.
- // We ignore conversions to/from pointer and/or bool.
- if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
- DstType))
- return;
- unsigned SrcBits = Src->getType()->getScalarSizeInBits();
- unsigned DstBits = Dst->getType()->getScalarSizeInBits();
- // This must be truncation. Else we do not care.
- if (SrcBits <= DstBits)
- return;
- assert(!DstType->isBooleanType() && "we should not get here with booleans.");
- // If the integer sign change sanitizer is enabled,
- // and we are truncating from larger unsigned type to smaller signed type,
- // let that next sanitizer deal with it.
- bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
- bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
- if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
- (!SrcSigned && DstSigned))
- return;
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
- std::pair<llvm::Value *, SanitizerMask>>
- Check =
- EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
- // If the comparison result is 'i1 false', then the truncation was lossy.
- // Do we care about this type of truncation?
- if (!CGF.SanOpts.has(Check.second.second))
- return;
- llvm::Constant *StaticArgs[] = {
- CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
- CGF.EmitCheckTypeDescriptor(DstType),
- llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
- CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
- {Src, Dst});
- }
- // Should be called within CodeGenFunction::SanitizerScope RAII scope.
- // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
- static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
- std::pair<llvm::Value *, SanitizerMask>>
- EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
- QualType DstType, CGBuilderTy &Builder) {
- llvm::Type *SrcTy = Src->getType();
- llvm::Type *DstTy = Dst->getType();
- assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
- "non-integer llvm type");
- bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
- bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
- (void)SrcSigned; // Only used in assert()
- (void)DstSigned; // Only used in assert()
- unsigned SrcBits = SrcTy->getScalarSizeInBits();
- unsigned DstBits = DstTy->getScalarSizeInBits();
- (void)SrcBits; // Only used in assert()
- (void)DstBits; // Only used in assert()
- assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
- "either the widths should be different, or the signednesses.");
- // NOTE: zero value is considered to be non-negative.
- auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
- const char *Name) -> Value * {
- // Is this value a signed type?
- bool VSigned = VType->isSignedIntegerOrEnumerationType();
- llvm::Type *VTy = V->getType();
- if (!VSigned) {
- // If the value is unsigned, then it is never negative.
- // FIXME: can we encounter non-scalar VTy here?
- return llvm::ConstantInt::getFalse(VTy->getContext());
- }
- // Get the zero of the same type with which we will be comparing.
- llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
- // %V.isnegative = icmp slt %V, 0
- // I.e is %V *strictly* less than zero, does it have negative value?
- return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
- llvm::Twine(Name) + "." + V->getName() +
- ".negativitycheck");
- };
- // 1. Was the old Value negative?
- llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
- // 2. Is the new Value negative?
- llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
- // 3. Now, was the 'negativity status' preserved during the conversion?
- // NOTE: conversion from negative to zero is considered to change the sign.
- // (We want to get 'false' when the conversion changed the sign)
- // So we should just equality-compare the negativity statuses.
- llvm::Value *Check = nullptr;
- Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
- // If the comparison result is 'false', then the conversion changed the sign.
- return std::make_pair(
- ScalarExprEmitter::ICCK_IntegerSignChange,
- std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
- }
- void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
- Value *Dst, QualType DstType,
- SourceLocation Loc) {
- if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
- return;
- llvm::Type *SrcTy = Src->getType();
- llvm::Type *DstTy = Dst->getType();
- // We only care about int->int conversions here.
- // We ignore conversions to/from pointer and/or bool.
- if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
- DstType))
- return;
- bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
- bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
- unsigned SrcBits = SrcTy->getScalarSizeInBits();
- unsigned DstBits = DstTy->getScalarSizeInBits();
- // Now, we do not need to emit the check in *all* of the cases.
- // We can avoid emitting it in some obvious cases where it would have been
- // dropped by the opt passes (instcombine) always anyways.
- // If it's a cast between effectively the same type, no check.
- // NOTE: this is *not* equivalent to checking the canonical types.
- if (SrcSigned == DstSigned && SrcBits == DstBits)
- return;
- // At least one of the values needs to have signed type.
- // If both are unsigned, then obviously, neither of them can be negative.
- if (!SrcSigned && !DstSigned)
- return;
- // If the conversion is to *larger* *signed* type, then no check is needed.
- // Because either sign-extension happens (so the sign will remain),
- // or zero-extension will happen (the sign bit will be zero.)
- if ((DstBits > SrcBits) && DstSigned)
- return;
- if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
- (SrcBits > DstBits) && SrcSigned) {
- // If the signed integer truncation sanitizer is enabled,
- // and this is a truncation from signed type, then no check is needed.
- // Because here sign change check is interchangeable with truncation check.
- return;
- }
- // That's it. We can't rule out any more cases with the data we have.
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
- std::pair<llvm::Value *, SanitizerMask>>
- Check;
- // Each of these checks needs to return 'false' when an issue was detected.
- ImplicitConversionCheckKind CheckKind;
- llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
- // So we can 'and' all the checks together, and still get 'false',
- // if at least one of the checks detected an issue.
- Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
- CheckKind = Check.first;
- Checks.emplace_back(Check.second);
- if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
- (SrcBits > DstBits) && !SrcSigned && DstSigned) {
- // If the signed integer truncation sanitizer was enabled,
- // and we are truncating from larger unsigned type to smaller signed type,
- // let's handle the case we skipped in that check.
- Check =
- EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
- CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
- Checks.emplace_back(Check.second);
- // If the comparison result is 'i1 false', then the truncation was lossy.
- }
- llvm::Constant *StaticArgs[] = {
- CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
- CGF.EmitCheckTypeDescriptor(DstType),
- llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
- // EmitCheck() will 'and' all the checks together.
- CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
- {Src, Dst});
- }
- Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
- QualType DstType, llvm::Type *SrcTy,
- llvm::Type *DstTy,
- ScalarConversionOpts Opts) {
- // The Element types determine the type of cast to perform.
- llvm::Type *SrcElementTy;
- llvm::Type *DstElementTy;
- QualType SrcElementType;
- QualType DstElementType;
- if (SrcType->isMatrixType() && DstType->isMatrixType()) {
- SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
- DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
- SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
- DstElementType = DstType->castAs<MatrixType>()->getElementType();
- } else {
- assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
- "cannot cast between matrix and non-matrix types");
- SrcElementTy = SrcTy;
- DstElementTy = DstTy;
- SrcElementType = SrcType;
- DstElementType = DstType;
- }
- if (isa<llvm::IntegerType>(SrcElementTy)) {
- bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
- if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
- InputSigned = true;
- }
- if (isa<llvm::IntegerType>(DstElementTy))
- return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
- if (InputSigned)
- return Builder.CreateSIToFP(Src, DstTy, "conv");
- return Builder.CreateUIToFP(Src, DstTy, "conv");
- }
- if (isa<llvm::IntegerType>(DstElementTy)) {
- assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
- bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
- // If we can't recognize overflow as undefined behavior, assume that
- // overflow saturates. This protects against normal optimizations if we are
- // compiling with non-standard FP semantics.
- if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
- llvm::Intrinsic::ID IID =
- IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
- return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
- }
- if (IsSigned)
- return Builder.CreateFPToSI(Src, DstTy, "conv");
- return Builder.CreateFPToUI(Src, DstTy, "conv");
- }
- if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
- return Builder.CreateFPTrunc(Src, DstTy, "conv");
- return Builder.CreateFPExt(Src, DstTy, "conv");
- }
- /// Emit a conversion from the specified type to the specified destination type,
- /// both of which are LLVM scalar types.
- Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
- QualType DstType,
- SourceLocation Loc,
- ScalarConversionOpts Opts) {
- // All conversions involving fixed point types should be handled by the
- // EmitFixedPoint family functions. This is done to prevent bloating up this
- // function more, and although fixed point numbers are represented by
- // integers, we do not want to follow any logic that assumes they should be
- // treated as integers.
- // TODO(leonardchan): When necessary, add another if statement checking for
- // conversions to fixed point types from other types.
- if (SrcType->isFixedPointType()) {
- if (DstType->isBooleanType())
- // It is important that we check this before checking if the dest type is
- // an integer because booleans are technically integer types.
- // We do not need to check the padding bit on unsigned types if unsigned
- // padding is enabled because overflow into this bit is undefined
- // behavior.
- return Builder.CreateIsNotNull(Src, "tobool");
- if (DstType->isFixedPointType() || DstType->isIntegerType() ||
- DstType->isRealFloatingType())
- return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
- llvm_unreachable(
- "Unhandled scalar conversion from a fixed point type to another type.");
- } else if (DstType->isFixedPointType()) {
- if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
- // This also includes converting booleans and enums to fixed point types.
- return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
- llvm_unreachable(
- "Unhandled scalar conversion to a fixed point type from another type.");
- }
- QualType NoncanonicalSrcType = SrcType;
- QualType NoncanonicalDstType = DstType;
- SrcType = CGF.getContext().getCanonicalType(SrcType);
- DstType = CGF.getContext().getCanonicalType(DstType);
- if (SrcType == DstType) return Src;
- if (DstType->isVoidType()) return nullptr;
- llvm::Value *OrigSrc = Src;
- QualType OrigSrcType = SrcType;
- llvm::Type *SrcTy = Src->getType();
- // Handle conversions to bool first, they are special: comparisons against 0.
- if (DstType->isBooleanType())
- return EmitConversionToBool(Src, SrcType);
- llvm::Type *DstTy = ConvertType(DstType);
- // Cast from half through float if half isn't a native type.
- if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
- // Cast to FP using the intrinsic if the half type itself isn't supported.
- if (DstTy->isFloatingPointTy()) {
- if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
- return Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
- Src);
- } else {
- // Cast to other types through float, using either the intrinsic or FPExt,
- // depending on whether the half type itself is supported
- // (as opposed to operations on half, available with NativeHalfType).
- if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
- Src = Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
- CGF.CGM.FloatTy),
- Src);
- } else {
- Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
- }
- SrcType = CGF.getContext().FloatTy;
- SrcTy = CGF.FloatTy;
- }
- }
- // Ignore conversions like int -> uint.
- if (SrcTy == DstTy) {
- if (Opts.EmitImplicitIntegerSignChangeChecks)
- EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
- NoncanonicalDstType, Loc);
- return Src;
- }
- // Handle pointer conversions next: pointers can only be converted to/from
- // other pointers and integers. Check for pointer types in terms of LLVM, as
- // some native types (like Obj-C id) may map to a pointer type.
- if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
- // The source value may be an integer, or a pointer.
- if (isa<llvm::PointerType>(SrcTy))
- return Builder.CreateBitCast(Src, DstTy, "conv");
- assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
- // First, convert to the correct width so that we control the kind of
- // extension.
- llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
- bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
- llvm::Value* IntResult =
- Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
- // Then, cast to pointer.
- return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
- }
- if (isa<llvm::PointerType>(SrcTy)) {
- // Must be an ptr to int cast.
- assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
- return Builder.CreatePtrToInt(Src, DstTy, "conv");
- }
- // A scalar can be splatted to an extended vector of the same element type
- if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
- // Sema should add casts to make sure that the source expression's type is
- // the same as the vector's element type (sans qualifiers)
- assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
- SrcType.getTypePtr() &&
- "Splatted expr doesn't match with vector element type?");
- // Splat the element across to all elements
- unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
- return Builder.CreateVectorSplat(NumElements, Src, "splat");
- }
- if (SrcType->isMatrixType() && DstType->isMatrixType())
- return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
- if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
- // Allow bitcast from vector to integer/fp of the same size.
- unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
- unsigned DstSize = DstTy->getPrimitiveSizeInBits();
- if (SrcSize == DstSize)
- return Builder.CreateBitCast(Src, DstTy, "conv");
- // Conversions between vectors of different sizes are not allowed except
- // when vectors of half are involved. Operations on storage-only half
- // vectors require promoting half vector operands to float vectors and
- // truncating the result, which is either an int or float vector, to a
- // short or half vector.
- // Source and destination are both expected to be vectors.
- llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
- llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
- (void)DstElementTy;
- assert(((SrcElementTy->isIntegerTy() &&
- DstElementTy->isIntegerTy()) ||
- (SrcElementTy->isFloatingPointTy() &&
- DstElementTy->isFloatingPointTy())) &&
- "unexpected conversion between a floating-point vector and an "
- "integer vector");
- // Truncate an i32 vector to an i16 vector.
- if (SrcElementTy->isIntegerTy())
- return Builder.CreateIntCast(Src, DstTy, false, "conv");
- // Truncate a float vector to a half vector.
- if (SrcSize > DstSize)
- return Builder.CreateFPTrunc(Src, DstTy, "conv");
- // Promote a half vector to a float vector.
- return Builder.CreateFPExt(Src, DstTy, "conv");
- }
- // Finally, we have the arithmetic types: real int/float.
- Value *Res = nullptr;
- llvm::Type *ResTy = DstTy;
- // An overflowing conversion has undefined behavior if either the source type
- // or the destination type is a floating-point type. However, we consider the
- // range of representable values for all floating-point types to be
- // [-inf,+inf], so no overflow can ever happen when the destination type is a
- // floating-point type.
- if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
- OrigSrcType->isFloatingType())
- EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
- Loc);
- // Cast to half through float if half isn't a native type.
- if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
- // Make sure we cast in a single step if from another FP type.
- if (SrcTy->isFloatingPointTy()) {
- // Use the intrinsic if the half type itself isn't supported
- // (as opposed to operations on half, available with NativeHalfType).
- if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
- return Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
- // If the half type is supported, just use an fptrunc.
- return Builder.CreateFPTrunc(Src, DstTy);
- }
- DstTy = CGF.FloatTy;
- }
- Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
- if (DstTy != ResTy) {
- if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
- assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
- Res = Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
- Res);
- } else {
- Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
- }
- }
- if (Opts.EmitImplicitIntegerTruncationChecks)
- EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
- NoncanonicalDstType, Loc);
- if (Opts.EmitImplicitIntegerSignChangeChecks)
- EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
- NoncanonicalDstType, Loc);
- return Res;
- }
- Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
- QualType DstTy,
- SourceLocation Loc) {
- llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
- llvm::Value *Result;
- if (SrcTy->isRealFloatingType())
- Result = FPBuilder.CreateFloatingToFixed(Src,
- CGF.getContext().getFixedPointSemantics(DstTy));
- else if (DstTy->isRealFloatingType())
- Result = FPBuilder.CreateFixedToFloating(Src,
- CGF.getContext().getFixedPointSemantics(SrcTy),
- ConvertType(DstTy));
- else {
- auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
- auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
- if (DstTy->isIntegerType())
- Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
- DstFPSema.getWidth(),
- DstFPSema.isSigned());
- else if (SrcTy->isIntegerType())
- Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
- DstFPSema);
- else
- Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
- }
- return Result;
- }
- /// Emit a conversion from the specified complex type to the specified
- /// destination type, where the destination type is an LLVM scalar type.
- Value *ScalarExprEmitter::EmitComplexToScalarConversion(
- CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
- SourceLocation Loc) {
- // Get the source element type.
- SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
- // Handle conversions to bool first, they are special: comparisons against 0.
- if (DstTy->isBooleanType()) {
- // Complex != 0 -> (Real != 0) | (Imag != 0)
- Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
- Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
- return Builder.CreateOr(Src.first, Src.second, "tobool");
- }
- // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
- // the imaginary part of the complex value is discarded and the value of the
- // real part is converted according to the conversion rules for the
- // corresponding real type.
- return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
- }
- Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
- return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
- }
- /// Emit a sanitization check for the given "binary" operation (which
- /// might actually be a unary increment which has been lowered to a binary
- /// operation). The check passes if all values in \p Checks (which are \c i1),
- /// are \c true.
- void ScalarExprEmitter::EmitBinOpCheck(
- ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
- assert(CGF.IsSanitizerScope);
- SanitizerHandler Check;
- SmallVector<llvm::Constant *, 4> StaticData;
- SmallVector<llvm::Value *, 2> DynamicData;
- BinaryOperatorKind Opcode = Info.Opcode;
- if (BinaryOperator::isCompoundAssignmentOp(Opcode))
- Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
- StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
- const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
- if (UO && UO->getOpcode() == UO_Minus) {
- Check = SanitizerHandler::NegateOverflow;
- StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
- DynamicData.push_back(Info.RHS);
- } else {
- if (BinaryOperator::isShiftOp(Opcode)) {
- // Shift LHS negative or too large, or RHS out of bounds.
- Check = SanitizerHandler::ShiftOutOfBounds;
- const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
- StaticData.push_back(
- CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
- StaticData.push_back(
- CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
- } else if (Opcode == BO_Div || Opcode == BO_Rem) {
- // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
- Check = SanitizerHandler::DivremOverflow;
- StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
- } else {
- // Arithmetic overflow (+, -, *).
- switch (Opcode) {
- case BO_Add: Check = SanitizerHandler::AddOverflow; break;
- case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
- case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
- default: llvm_unreachable("unexpected opcode for bin op check");
- }
- StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
- }
- DynamicData.push_back(Info.LHS);
- DynamicData.push_back(Info.RHS);
- }
- CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
- }
- //===----------------------------------------------------------------------===//
- // Visitor Methods
- //===----------------------------------------------------------------------===//
- Value *ScalarExprEmitter::VisitExpr(Expr *E) {
- CGF.ErrorUnsupported(E, "scalar expression");
- if (E->getType()->isVoidType())
- return nullptr;
- return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
- }
- Value *
- ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
- ASTContext &Context = CGF.getContext();
- llvm::Optional<LangAS> GlobalAS =
- Context.getTargetInfo().getConstantAddressSpace();
- llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
- E->ComputeName(Context), "__usn_str",
- static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default)));
- unsigned ExprAS = Context.getTargetAddressSpace(E->getType());
- if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS)
- return GlobalConstStr;
- llvm::PointerType *PtrTy = cast<llvm::PointerType>(GlobalConstStr->getType());
- llvm::PointerType *NewPtrTy =
- llvm::PointerType::getWithSamePointeeType(PtrTy, ExprAS);
- return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast");
- }
- Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
- // Vector Mask Case
- if (E->getNumSubExprs() == 2) {
- Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
- Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
- Value *Mask;
- auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
- unsigned LHSElts = LTy->getNumElements();
- Mask = RHS;
- auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
- // Mask off the high bits of each shuffle index.
- Value *MaskBits =
- llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
- Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
- // newv = undef
- // mask = mask & maskbits
- // for each elt
- // n = extract mask i
- // x = extract val n
- // newv = insert newv, x, i
- auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
- MTy->getNumElements());
- Value* NewV = llvm::UndefValue::get(RTy);
- for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
- Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
- Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
- Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
- NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
- }
- return NewV;
- }
- Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
- Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
- SmallVector<int, 32> Indices;
- for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
- llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
- // Check for -1 and output it as undef in the IR.
- if (Idx.isSigned() && Idx.isAllOnes())
- Indices.push_back(-1);
- else
- Indices.push_back(Idx.getZExtValue());
- }
- return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
- }
- Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
- QualType SrcType = E->getSrcExpr()->getType(),
- DstType = E->getType();
- Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
- SrcType = CGF.getContext().getCanonicalType(SrcType);
- DstType = CGF.getContext().getCanonicalType(DstType);
- if (SrcType == DstType) return Src;
- assert(SrcType->isVectorType() &&
- "ConvertVector source type must be a vector");
- assert(DstType->isVectorType() &&
- "ConvertVector destination type must be a vector");
- llvm::Type *SrcTy = Src->getType();
- llvm::Type *DstTy = ConvertType(DstType);
- // Ignore conversions like int -> uint.
- if (SrcTy == DstTy)
- return Src;
- QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
- DstEltType = DstType->castAs<VectorType>()->getElementType();
- assert(SrcTy->isVectorTy() &&
- "ConvertVector source IR type must be a vector");
- assert(DstTy->isVectorTy() &&
- "ConvertVector destination IR type must be a vector");
- llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
- *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
- if (DstEltType->isBooleanType()) {
- assert((SrcEltTy->isFloatingPointTy() ||
- isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
- llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
- if (SrcEltTy->isFloatingPointTy()) {
- return Builder.CreateFCmpUNE(Src, Zero, "tobool");
- } else {
- return Builder.CreateICmpNE(Src, Zero, "tobool");
- }
- }
- // We have the arithmetic types: real int/float.
- Value *Res = nullptr;
- if (isa<llvm::IntegerType>(SrcEltTy)) {
- bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
- if (isa<llvm::IntegerType>(DstEltTy))
- Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
- else if (InputSigned)
- Res = Builder.CreateSIToFP(Src, DstTy, "conv");
- else
- Res = Builder.CreateUIToFP(Src, DstTy, "conv");
- } else if (isa<llvm::IntegerType>(DstEltTy)) {
- assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
- if (DstEltType->isSignedIntegerOrEnumerationType())
- Res = Builder.CreateFPToSI(Src, DstTy, "conv");
- else
- Res = Builder.CreateFPToUI(Src, DstTy, "conv");
- } else {
- assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
- "Unknown real conversion");
- if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
- Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
- else
- Res = Builder.CreateFPExt(Src, DstTy, "conv");
- }
- return Res;
- }
- Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
- if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
- CGF.EmitIgnoredExpr(E->getBase());
- return CGF.emitScalarConstant(Constant, E);
- } else {
- Expr::EvalResult Result;
- if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
- llvm::APSInt Value = Result.Val.getInt();
- CGF.EmitIgnoredExpr(E->getBase());
- return Builder.getInt(Value);
- }
- }
- return EmitLoadOfLValue(E);
- }
- Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
- TestAndClearIgnoreResultAssign();
- // Emit subscript expressions in rvalue context's. For most cases, this just
- // loads the lvalue formed by the subscript expr. However, we have to be
- // careful, because the base of a vector subscript is occasionally an rvalue,
- // so we can't get it as an lvalue.
- if (!E->getBase()->getType()->isVectorType())
- return EmitLoadOfLValue(E);
- // Handle the vector case. The base must be a vector, the index must be an
- // integer value.
- Value *Base = Visit(E->getBase());
- Value *Idx = Visit(E->getIdx());
- QualType IdxTy = E->getIdx()->getType();
- if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
- CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
- return Builder.CreateExtractElement(Base, Idx, "vecext");
- }
- Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
- TestAndClearIgnoreResultAssign();
- // Handle the vector case. The base must be a vector, the index must be an
- // integer value.
- Value *RowIdx = Visit(E->getRowIdx());
- Value *ColumnIdx = Visit(E->getColumnIdx());
- const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
- unsigned NumRows = MatrixTy->getNumRows();
- llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
- Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
- if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
- MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
- Value *Matrix = Visit(E->getBase());
- // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
- return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
- }
- static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
- unsigned Off) {
- int MV = SVI->getMaskValue(Idx);
- if (MV == -1)
- return -1;
- return Off + MV;
- }
- static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
- assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
- "Index operand too large for shufflevector mask!");
- return C->getZExtValue();
- }
- Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
- bool Ignore = TestAndClearIgnoreResultAssign();
- (void)Ignore;
- assert (Ignore == false && "init list ignored");
- unsigned NumInitElements = E->getNumInits();
- if (E->hadArrayRangeDesignator())
- CGF.ErrorUnsupported(E, "GNU array range designator extension");
- llvm::VectorType *VType =
- dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
- if (!VType) {
- if (NumInitElements == 0) {
- // C++11 value-initialization for the scalar.
- return EmitNullValue(E->getType());
- }
- // We have a scalar in braces. Just use the first element.
- return Visit(E->getInit(0));
- }
- unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
- // Loop over initializers collecting the Value for each, and remembering
- // whether the source was swizzle (ExtVectorElementExpr). This will allow
- // us to fold the shuffle for the swizzle into the shuffle for the vector
- // initializer, since LLVM optimizers generally do not want to touch
- // shuffles.
- unsigned CurIdx = 0;
- bool VIsUndefShuffle = false;
- llvm::Value *V = llvm::UndefValue::get(VType);
- for (unsigned i = 0; i != NumInitElements; ++i) {
- Expr *IE = E->getInit(i);
- Value *Init = Visit(IE);
- SmallVector<int, 16> Args;
- llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
- // Handle scalar elements. If the scalar initializer is actually one
- // element of a different vector of the same width, use shuffle instead of
- // extract+insert.
- if (!VVT) {
- if (isa<ExtVectorElementExpr>(IE)) {
- llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
- if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
- ->getNumElements() == ResElts) {
- llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
- Value *LHS = nullptr, *RHS = nullptr;
- if (CurIdx == 0) {
- // insert into undef -> shuffle (src, undef)
- // shufflemask must use an i32
- Args.push_back(getAsInt32(C, CGF.Int32Ty));
- Args.resize(ResElts, -1);
- LHS = EI->getVectorOperand();
- RHS = V;
- VIsUndefShuffle = true;
- } else if (VIsUndefShuffle) {
- // insert into undefshuffle && size match -> shuffle (v, src)
- llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
- for (unsigned j = 0; j != CurIdx; ++j)
- Args.push_back(getMaskElt(SVV, j, 0));
- Args.push_back(ResElts + C->getZExtValue());
- Args.resize(ResElts, -1);
- LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
- RHS = EI->getVectorOperand();
- VIsUndefShuffle = false;
- }
- if (!Args.empty()) {
- V = Builder.CreateShuffleVector(LHS, RHS, Args);
- ++CurIdx;
- continue;
- }
- }
- }
- V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
- "vecinit");
- VIsUndefShuffle = false;
- ++CurIdx;
- continue;
- }
- unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
- // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
- // input is the same width as the vector being constructed, generate an
- // optimized shuffle of the swizzle input into the result.
- unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
- if (isa<ExtVectorElementExpr>(IE)) {
- llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
- Value *SVOp = SVI->getOperand(0);
- auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
- if (OpTy->getNumElements() == ResElts) {
- for (unsigned j = 0; j != CurIdx; ++j) {
- // If the current vector initializer is a shuffle with undef, merge
- // this shuffle directly into it.
- if (VIsUndefShuffle) {
- Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
- } else {
- Args.push_back(j);
- }
- }
- for (unsigned j = 0, je = InitElts; j != je; ++j)
- Args.push_back(getMaskElt(SVI, j, Offset));
- Args.resize(ResElts, -1);
- if (VIsUndefShuffle)
- V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
- Init = SVOp;
- }
- }
- // Extend init to result vector length, and then shuffle its contribution
- // to the vector initializer into V.
- if (Args.empty()) {
- for (unsigned j = 0; j != InitElts; ++j)
- Args.push_back(j);
- Args.resize(ResElts, -1);
- Init = Builder.CreateShuffleVector(Init, Args, "vext");
- Args.clear();
- for (unsigned j = 0; j != CurIdx; ++j)
- Args.push_back(j);
- for (unsigned j = 0; j != InitElts; ++j)
- Args.push_back(j + Offset);
- Args.resize(ResElts, -1);
- }
- // If V is undef, make sure it ends up on the RHS of the shuffle to aid
- // merging subsequent shuffles into this one.
- if (CurIdx == 0)
- std::swap(V, Init);
- V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
- VIsUndefShuffle = isa<llvm::UndefValue>(Init);
- CurIdx += InitElts;
- }
- // FIXME: evaluate codegen vs. shuffling against constant null vector.
- // Emit remaining default initializers.
- llvm::Type *EltTy = VType->getElementType();
- // Emit remaining default initializers
- for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
- Value *Idx = Builder.getInt32(CurIdx);
- llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
- V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
- }
- return V;
- }
- bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
- const Expr *E = CE->getSubExpr();
- if (CE->getCastKind() == CK_UncheckedDerivedToBase)
- return false;
- if (isa<CXXThisExpr>(E->IgnoreParens())) {
- // We always assume that 'this' is never null.
- return false;
- }
- if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
- // And that glvalue casts are never null.
- if (ICE->isGLValue())
- return false;
- }
- return true;
- }
- // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
- // have to handle a more broad range of conversions than explicit casts, as they
- // handle things like function to ptr-to-function decay etc.
- Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
- Expr *E = CE->getSubExpr();
- QualType DestTy = CE->getType();
- CastKind Kind = CE->getCastKind();
- // These cases are generally not written to ignore the result of
- // evaluating their sub-expressions, so we clear this now.
- bool Ignored = TestAndClearIgnoreResultAssign();
- // Since almost all cast kinds apply to scalars, this switch doesn't have
- // a default case, so the compiler will warn on a missing case. The cases
- // are in the same order as in the CastKind enum.
- switch (Kind) {
- case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
- case CK_BuiltinFnToFnPtr:
- llvm_unreachable("builtin functions are handled elsewhere");
- case CK_LValueBitCast:
- case CK_ObjCObjectLValueCast: {
- Address Addr = EmitLValue(E).getAddress(CGF);
- Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
- LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
- return EmitLoadOfLValue(LV, CE->getExprLoc());
- }
- case CK_LValueToRValueBitCast: {
- LValue SourceLVal = CGF.EmitLValue(E);
- Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
- CGF.ConvertTypeForMem(DestTy));
- LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
- DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
- return EmitLoadOfLValue(DestLV, CE->getExprLoc());
- }
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_BitCast: {
- Value *Src = Visit(const_cast<Expr*>(E));
- llvm::Type *SrcTy = Src->getType();
- llvm::Type *DstTy = ConvertType(DestTy);
- if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
- SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
- llvm_unreachable("wrong cast for pointers in different address spaces"
- "(must be an address space cast)!");
- }
- if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
- if (auto PT = DestTy->getAs<PointerType>())
- CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
- /*MayBeNull=*/true,
- CodeGenFunction::CFITCK_UnrelatedCast,
- CE->getBeginLoc());
- }
- if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
- const QualType SrcType = E->getType();
- if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
- // Casting to pointer that could carry dynamic information (provided by
- // invariant.group) requires launder.
- Src = Builder.CreateLaunderInvariantGroup(Src);
- } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
- // Casting to pointer that does not carry dynamic information (provided
- // by invariant.group) requires stripping it. Note that we don't do it
- // if the source could not be dynamic type and destination could be
- // dynamic because dynamic information is already laundered. It is
- // because launder(strip(src)) == launder(src), so there is no need to
- // add extra strip before launder.
- Src = Builder.CreateStripInvariantGroup(Src);
- }
- }
- // Update heapallocsite metadata when there is an explicit pointer cast.
- if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
- if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
- QualType PointeeType = DestTy->getPointeeType();
- if (!PointeeType.isNull())
- CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
- CE->getExprLoc());
- }
- }
- // If Src is a fixed vector and Dst is a scalable vector, and both have the
- // same element type, use the llvm.experimental.vector.insert intrinsic to
- // perform the bitcast.
- if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
- if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
- // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
- // vector, use a vector insert and bitcast the result.
- bool NeedsBitCast = false;
- auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
- llvm::Type *OrigType = DstTy;
- if (ScalableDst == PredType &&
- FixedSrc->getElementType() == Builder.getInt8Ty()) {
- DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
- ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy);
- NeedsBitCast = true;
- }
- if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
- llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
- llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
- llvm::Value *Result = Builder.CreateInsertVector(
- DstTy, UndefVec, Src, Zero, "castScalableSve");
- if (NeedsBitCast)
- Result = Builder.CreateBitCast(Result, OrigType);
- return Result;
- }
- }
- }
- // If Src is a scalable vector and Dst is a fixed vector, and both have the
- // same element type, use the llvm.experimental.vector.extract intrinsic to
- // perform the bitcast.
- if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
- if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
- // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
- // vector, bitcast the source and use a vector extract.
- auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
- if (ScalableSrc == PredType &&
- FixedDst->getElementType() == Builder.getInt8Ty()) {
- SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
- ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy);
- Src = Builder.CreateBitCast(Src, SrcTy);
- }
- if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
- llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
- return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
- }
- }
- }
- // Perform VLAT <-> VLST bitcast through memory.
- // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
- // require the element types of the vectors to be the same, we
- // need to keep this around for bitcasts between VLAT <-> VLST where
- // the element types of the vectors are not the same, until we figure
- // out a better way of doing these casts.
- if ((isa<llvm::FixedVectorType>(SrcTy) &&
- isa<llvm::ScalableVectorType>(DstTy)) ||
- (isa<llvm::ScalableVectorType>(SrcTy) &&
- isa<llvm::FixedVectorType>(DstTy))) {
- Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
- LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
- CGF.EmitStoreOfScalar(Src, LV);
- Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
- "castFixedSve");
- LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
- DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
- return EmitLoadOfLValue(DestLV, CE->getExprLoc());
- }
- return Builder.CreateBitCast(Src, DstTy);
- }
- case CK_AddressSpaceConversion: {
- Expr::EvalResult Result;
- if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
- Result.Val.isNullPointer()) {
- // If E has side effect, it is emitted even if its final result is a
- // null pointer. In that case, a DCE pass should be able to
- // eliminate the useless instructions emitted during translating E.
- if (Result.HasSideEffects)
- Visit(E);
- return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
- ConvertType(DestTy)), DestTy);
- }
- // Since target may map different address spaces in AST to the same address
- // space, an address space conversion may end up as a bitcast.
- return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
- CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
- DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
- }
- case CK_AtomicToNonAtomic:
- case CK_NonAtomicToAtomic:
- case CK_UserDefinedConversion:
- return Visit(const_cast<Expr*>(E));
- case CK_NoOp: {
- llvm::Value *V = Visit(const_cast<Expr *>(E));
- if (V) {
- // CK_NoOp can model a pointer qualification conversion, which can remove
- // an array bound and change the IR type.
- // FIXME: Once pointee types are removed from IR, remove this.
- llvm::Type *T = ConvertType(DestTy);
- if (T != V->getType())
- V = Builder.CreateBitCast(V, T);
- }
- return V;
- }
- case CK_BaseToDerived: {
- const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
- assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
- Address Base = CGF.EmitPointerWithAlignment(E);
- Address Derived =
- CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
- CE->path_begin(), CE->path_end(),
- CGF.ShouldNullCheckClassCastValue(CE));
- // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
- // performed and the object is not of the derived type.
- if (CGF.sanitizePerformTypeCheck())
- CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
- Derived.getPointer(), DestTy->getPointeeType());
- if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
- CGF.EmitVTablePtrCheckForCast(
- DestTy->getPointeeType(), Derived.getPointer(),
- /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
- CE->getBeginLoc());
- return Derived.getPointer();
- }
- case CK_UncheckedDerivedToBase:
- case CK_DerivedToBase: {
- // The EmitPointerWithAlignment path does this fine; just discard
- // the alignment.
- return CGF.EmitPointerWithAlignment(CE).getPointer();
- }
- case CK_Dynamic: {
- Address V = CGF.EmitPointerWithAlignment(E);
- const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
- return CGF.EmitDynamicCast(V, DCE);
- }
- case CK_ArrayToPointerDecay:
- return CGF.EmitArrayToPointerDecay(E).getPointer();
- case CK_FunctionToPointerDecay:
- return EmitLValue(E).getPointer(CGF);
- case CK_NullToPointer:
- if (MustVisitNullValue(E))
- CGF.EmitIgnoredExpr(E);
- return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
- DestTy);
- case CK_NullToMemberPointer: {
- if (MustVisitNullValue(E))
- CGF.EmitIgnoredExpr(E);
- const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
- return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
- }
- case CK_ReinterpretMemberPointer:
- case CK_BaseToDerivedMemberPointer:
- case CK_DerivedToBaseMemberPointer: {
- Value *Src = Visit(E);
- // Note that the AST doesn't distinguish between checked and
- // unchecked member pointer conversions, so we always have to
- // implement checked conversions here. This is inefficient when
- // actual control flow may be required in order to perform the
- // check, which it is for data member pointers (but not member
- // function pointers on Itanium and ARM).
- return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
- }
- case CK_ARCProduceObject:
- return CGF.EmitARCRetainScalarExpr(E);
- case CK_ARCConsumeObject:
- return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
- case CK_ARCReclaimReturnedObject:
- return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
- case CK_ARCExtendBlockObject:
- return CGF.EmitARCExtendBlockObject(E);
- case CK_CopyAndAutoreleaseBlockObject:
- return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
- case CK_FloatingRealToComplex:
- case CK_FloatingComplexCast:
- case CK_IntegralRealToComplex:
- case CK_IntegralComplexCast:
- case CK_IntegralComplexToFloatingComplex:
- case CK_FloatingComplexToIntegralComplex:
- case CK_ConstructorConversion:
- case CK_ToUnion:
- llvm_unreachable("scalar cast to non-scalar value");
- case CK_LValueToRValue:
- assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
- assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
- return Visit(const_cast<Expr*>(E));
- case CK_IntegralToPointer: {
- Value *Src = Visit(const_cast<Expr*>(E));
- // First, convert to the correct width so that we control the kind of
- // extension.
- auto DestLLVMTy = ConvertType(DestTy);
- llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
- bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
- llvm::Value* IntResult =
- Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
- auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
- if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
- // Going from integer to pointer that could be dynamic requires reloading
- // dynamic information from invariant.group.
- if (DestTy.mayBeDynamicClass())
- IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
- }
- return IntToPtr;
- }
- case CK_PointerToIntegral: {
- assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
- auto *PtrExpr = Visit(E);
- if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
- const QualType SrcType = E->getType();
- // Casting to integer requires stripping dynamic information as it does
- // not carries it.
- if (SrcType.mayBeDynamicClass())
- PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
- }
- return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
- }
- case CK_ToVoid: {
- CGF.EmitIgnoredExpr(E);
- return nullptr;
- }
- case CK_MatrixCast: {
- return EmitScalarConversion(Visit(E), E->getType(), DestTy,
- CE->getExprLoc());
- }
- case CK_VectorSplat: {
- llvm::Type *DstTy = ConvertType(DestTy);
- Value *Elt = Visit(const_cast<Expr*>(E));
- // Splat the element across to all elements
- unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
- return Builder.CreateVectorSplat(NumElements, Elt, "splat");
- }
- case CK_FixedPointCast:
- return EmitScalarConversion(Visit(E), E->getType(), DestTy,
- CE->getExprLoc());
- case CK_FixedPointToBoolean:
- assert(E->getType()->isFixedPointType() &&
- "Expected src type to be fixed point type");
- assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
- return EmitScalarConversion(Visit(E), E->getType(), DestTy,
- CE->getExprLoc());
- case CK_FixedPointToIntegral:
- assert(E->getType()->isFixedPointType() &&
- "Expected src type to be fixed point type");
- assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
- return EmitScalarConversion(Visit(E), E->getType(), DestTy,
- CE->getExprLoc());
- case CK_IntegralToFixedPoint:
- assert(E->getType()->isIntegerType() &&
- "Expected src type to be an integer");
- assert(DestTy->isFixedPointType() &&
- "Expected dest type to be fixed point type");
- return EmitScalarConversion(Visit(E), E->getType(), DestTy,
- CE->getExprLoc());
- case CK_IntegralCast: {
- ScalarConversionOpts Opts;
- if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
- if (!ICE->isPartOfExplicitCast())
- Opts = ScalarConversionOpts(CGF.SanOpts);
- }
- return EmitScalarConversion(Visit(E), E->getType(), DestTy,
- CE->getExprLoc(), Opts);
- }
- case CK_IntegralToFloating:
- case CK_FloatingToIntegral:
- case CK_FloatingCast:
- case CK_FixedPointToFloating:
- case CK_FloatingToFixedPoint: {
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
- return EmitScalarConversion(Visit(E), E->getType(), DestTy,
- CE->getExprLoc());
- }
- case CK_BooleanToSignedIntegral: {
- ScalarConversionOpts Opts;
- Opts.TreatBooleanAsSigned = true;
- return EmitScalarConversion(Visit(E), E->getType(), DestTy,
- CE->getExprLoc(), Opts);
- }
- case CK_IntegralToBoolean:
- return EmitIntToBoolConversion(Visit(E));
- case CK_PointerToBoolean:
- return EmitPointerToBoolConversion(Visit(E), E->getType());
- case CK_FloatingToBoolean: {
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
- return EmitFloatToBoolConversion(Visit(E));
- }
- case CK_MemberPointerToBoolean: {
- llvm::Value *MemPtr = Visit(E);
- const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
- return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
- }
- case CK_FloatingComplexToReal:
- case CK_IntegralComplexToReal:
- return CGF.EmitComplexExpr(E, false, true).first;
- case CK_FloatingComplexToBoolean:
- case CK_IntegralComplexToBoolean: {
- CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
- // TODO: kill this function off, inline appropriate case here
- return EmitComplexToScalarConversion(V, E->getType(), DestTy,
- CE->getExprLoc());
- }
- case CK_ZeroToOCLOpaqueType: {
- assert((DestTy->isEventT() || DestTy->isQueueT() ||
- DestTy->isOCLIntelSubgroupAVCType()) &&
- "CK_ZeroToOCLEvent cast on non-event type");
- return llvm::Constant::getNullValue(ConvertType(DestTy));
- }
- case CK_IntToOCLSampler:
- return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
- } // end of switch
- llvm_unreachable("unknown scalar cast");
- }
- Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
- CodeGenFunction::StmtExprEvaluation eval(CGF);
- Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
- !E->getType()->isVoidType());
- if (!RetAlloca.isValid())
- return nullptr;
- return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
- E->getExprLoc());
- }
- Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
- CodeGenFunction::RunCleanupsScope Scope(CGF);
- Value *V = Visit(E->getSubExpr());
- // Defend against dominance problems caused by jumps out of expression
- // evaluation through the shared cleanup block.
- Scope.ForceCleanup({&V});
- return V;
- }
- //===----------------------------------------------------------------------===//
- // Unary Operators
- //===----------------------------------------------------------------------===//
- static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
- llvm::Value *InVal, bool IsInc,
- FPOptions FPFeatures) {
- BinOpInfo BinOp;
- BinOp.LHS = InVal;
- BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
- BinOp.Ty = E->getType();
- BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
- BinOp.FPFeatures = FPFeatures;
- BinOp.E = E;
- return BinOp;
- }
- llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
- const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
- llvm::Value *Amount =
- llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
- StringRef Name = IsInc ? "inc" : "dec";
- switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
- case LangOptions::SOB_Defined:
- return Builder.CreateAdd(InVal, Amount, Name);
- case LangOptions::SOB_Undefined:
- if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
- return Builder.CreateNSWAdd(InVal, Amount, Name);
- LLVM_FALLTHROUGH;
- case LangOptions::SOB_Trapping:
- if (!E->canOverflow())
- return Builder.CreateNSWAdd(InVal, Amount, Name);
- return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
- E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
- }
- llvm_unreachable("Unknown SignedOverflowBehaviorTy");
- }
- namespace {
- /// Handles check and update for lastprivate conditional variables.
- class OMPLastprivateConditionalUpdateRAII {
- private:
- CodeGenFunction &CGF;
- const UnaryOperator *E;
- public:
- OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
- const UnaryOperator *E)
- : CGF(CGF), E(E) {}
- ~OMPLastprivateConditionalUpdateRAII() {
- if (CGF.getLangOpts().OpenMP)
- CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
- CGF, E->getSubExpr());
- }
- };
- } // namespace
- llvm::Value *
- ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
- bool isInc, bool isPre) {
- OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
- QualType type = E->getSubExpr()->getType();
- llvm::PHINode *atomicPHI = nullptr;
- llvm::Value *value;
- llvm::Value *input;
- int amount = (isInc ? 1 : -1);
- bool isSubtraction = !isInc;
- if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
- type = atomicTy->getValueType();
- if (isInc && type->isBooleanType()) {
- llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
- if (isPre) {
- Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
- ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
- return Builder.getTrue();
- }
- // For atomic bool increment, we just store true and return it for
- // preincrement, do an atomic swap with true for postincrement
- return Builder.CreateAtomicRMW(
- llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
- llvm::AtomicOrdering::SequentiallyConsistent);
- }
- // Special case for atomic increment / decrement on integers, emit
- // atomicrmw instructions. We skip this if we want to be doing overflow
- // checking, and fall into the slow path with the atomic cmpxchg loop.
- if (!type->isBooleanType() && type->isIntegerType() &&
- !(type->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
- CGF.getLangOpts().getSignedOverflowBehavior() !=
- LangOptions::SOB_Trapping) {
- llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
- llvm::AtomicRMWInst::Sub;
- llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
- llvm::Instruction::Sub;
- llvm::Value *amt = CGF.EmitToMemory(
- llvm::ConstantInt::get(ConvertType(type), 1, true), type);
- llvm::Value *old =
- Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
- llvm::AtomicOrdering::SequentiallyConsistent);
- return isPre ? Builder.CreateBinOp(op, old, amt) : old;
- }
- value = EmitLoadOfLValue(LV, E->getExprLoc());
- input = value;
- // For every other atomic operation, we need to emit a load-op-cmpxchg loop
- llvm::BasicBlock *startBB = Builder.GetInsertBlock();
- llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
- value = CGF.EmitToMemory(value, type);
- Builder.CreateBr(opBB);
- Builder.SetInsertPoint(opBB);
- atomicPHI = Builder.CreatePHI(value->getType(), 2);
- atomicPHI->addIncoming(value, startBB);
- value = atomicPHI;
- } else {
- value = EmitLoadOfLValue(LV, E->getExprLoc());
- input = value;
- }
- // Special case of integer increment that we have to check first: bool++.
- // Due to promotion rules, we get:
- // bool++ -> bool = bool + 1
- // -> bool = (int)bool + 1
- // -> bool = ((int)bool + 1 != 0)
- // An interesting aspect of this is that increment is always true.
- // Decrement does not have this property.
- if (isInc && type->isBooleanType()) {
- value = Builder.getTrue();
- // Most common case by far: integer increment.
- } else if (type->isIntegerType()) {
- QualType promotedType;
- bool canPerformLossyDemotionCheck = false;
- if (type->isPromotableIntegerType()) {
- promotedType = CGF.getContext().getPromotedIntegerType(type);
- assert(promotedType != type && "Shouldn't promote to the same type.");
- canPerformLossyDemotionCheck = true;
- canPerformLossyDemotionCheck &=
- CGF.getContext().getCanonicalType(type) !=
- CGF.getContext().getCanonicalType(promotedType);
- canPerformLossyDemotionCheck &=
- PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
- type, promotedType);
- assert((!canPerformLossyDemotionCheck ||
- type->isSignedIntegerOrEnumerationType() ||
- promotedType->isSignedIntegerOrEnumerationType() ||
- ConvertType(type)->getScalarSizeInBits() ==
- ConvertType(promotedType)->getScalarSizeInBits()) &&
- "The following check expects that if we do promotion to different "
- "underlying canonical type, at least one of the types (either "
- "base or promoted) will be signed, or the bitwidths will match.");
- }
- if (CGF.SanOpts.hasOneOf(
- SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
- canPerformLossyDemotionCheck) {
- // While `x += 1` (for `x` with width less than int) is modeled as
- // promotion+arithmetics+demotion, and we can catch lossy demotion with
- // ease; inc/dec with width less than int can't overflow because of
- // promotion rules, so we omit promotion+demotion, which means that we can
- // not catch lossy "demotion". Because we still want to catch these cases
- // when the sanitizer is enabled, we perform the promotion, then perform
- // the increment/decrement in the wider type, and finally
- // perform the demotion. This will catch lossy demotions.
- value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
- Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
- value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
- // Do pass non-default ScalarConversionOpts so that sanitizer check is
- // emitted.
- value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
- ScalarConversionOpts(CGF.SanOpts));
- // Note that signed integer inc/dec with width less than int can't
- // overflow because of promotion rules; we're just eliding a few steps
- // here.
- } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
- value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
- } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
- value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
- E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
- } else {
- llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
- value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
- }
- // Next most common: pointer increment.
- } else if (const PointerType *ptr = type->getAs<PointerType>()) {
- QualType type = ptr->getPointeeType();
- // VLA types don't have constant size.
- if (const VariableArrayType *vla
- = CGF.getContext().getAsVariableArrayType(type)) {
- llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
- if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
- llvm::Type *elemTy = value->getType()->getPointerElementType();
- if (CGF.getLangOpts().isSignedOverflowDefined())
- value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
- else
- value = CGF.EmitCheckedInBoundsGEP(
- elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
- E->getExprLoc(), "vla.inc");
- // Arithmetic on function pointers (!) is just +-1.
- } else if (type->isFunctionType()) {
- llvm::Value *amt = Builder.getInt32(amount);
- value = CGF.EmitCastToVoidPtr(value);
- if (CGF.getLangOpts().isSignedOverflowDefined())
- value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
- else
- value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
- /*SignedIndices=*/false,
- isSubtraction, E->getExprLoc(),
- "incdec.funcptr");
- value = Builder.CreateBitCast(value, input->getType());
- // For everything else, we can just do a simple increment.
- } else {
- llvm::Value *amt = Builder.getInt32(amount);
- llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
- if (CGF.getLangOpts().isSignedOverflowDefined())
- value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
- else
- value = CGF.EmitCheckedInBoundsGEP(
- elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
- E->getExprLoc(), "incdec.ptr");
- }
- // Vector increment/decrement.
- } else if (type->isVectorType()) {
- if (type->hasIntegerRepresentation()) {
- llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
- value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
- } else {
- value = Builder.CreateFAdd(
- value,
- llvm::ConstantFP::get(value->getType(), amount),
- isInc ? "inc" : "dec");
- }
- // Floating point.
- } else if (type->isRealFloatingType()) {
- // Add the inc/dec to the real part.
- llvm::Value *amt;
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
- if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
- // Another special case: half FP increment should be done via float
- if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
- value = Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
- CGF.CGM.FloatTy),
- input, "incdec.conv");
- } else {
- value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
- }
- }
- if (value->getType()->isFloatTy())
- amt = llvm::ConstantFP::get(VMContext,
- llvm::APFloat(static_cast<float>(amount)));
- else if (value->getType()->isDoubleTy())
- amt = llvm::ConstantFP::get(VMContext,
- llvm::APFloat(static_cast<double>(amount)));
- else {
- // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
- // from float.
- llvm::APFloat F(static_cast<float>(amount));
- bool ignored;
- const llvm::fltSemantics *FS;
- // Don't use getFloatTypeSemantics because Half isn't
- // necessarily represented using the "half" LLVM type.
- if (value->getType()->isFP128Ty())
- FS = &CGF.getTarget().getFloat128Format();
- else if (value->getType()->isHalfTy())
- FS = &CGF.getTarget().getHalfFormat();
- else if (value->getType()->isPPC_FP128Ty())
- FS = &CGF.getTarget().getIbm128Format();
- else
- FS = &CGF.getTarget().getLongDoubleFormat();
- F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
- amt = llvm::ConstantFP::get(VMContext, F);
- }
- value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
- if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
- if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
- value = Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
- CGF.CGM.FloatTy),
- value, "incdec.conv");
- } else {
- value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
- }
- }
- // Fixed-point types.
- } else if (type->isFixedPointType()) {
- // Fixed-point types are tricky. In some cases, it isn't possible to
- // represent a 1 or a -1 in the type at all. Piggyback off of
- // EmitFixedPointBinOp to avoid having to reimplement saturation.
- BinOpInfo Info;
- Info.E = E;
- Info.Ty = E->getType();
- Info.Opcode = isInc ? BO_Add : BO_Sub;
- Info.LHS = value;
- Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
- // If the type is signed, it's better to represent this as +(-1) or -(-1),
- // since -1 is guaranteed to be representable.
- if (type->isSignedFixedPointType()) {
- Info.Opcode = isInc ? BO_Sub : BO_Add;
- Info.RHS = Builder.CreateNeg(Info.RHS);
- }
- // Now, convert from our invented integer literal to the type of the unary
- // op. This will upscale and saturate if necessary. This value can become
- // undef in some cases.
- llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
- auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
- Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
- value = EmitFixedPointBinOp(Info);
- // Objective-C pointer types.
- } else {
- const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
- value = CGF.EmitCastToVoidPtr(value);
- CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
- if (!isInc) size = -size;
- llvm::Value *sizeValue =
- llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
- if (CGF.getLangOpts().isSignedOverflowDefined())
- value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
- else
- value = CGF.EmitCheckedInBoundsGEP(
- CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
- E->getExprLoc(), "incdec.objptr");
- value = Builder.CreateBitCast(value, input->getType());
- }
- if (atomicPHI) {
- llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
- llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
- auto Pair = CGF.EmitAtomicCompareExchange(
- LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
- llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
- llvm::Value *success = Pair.second;
- atomicPHI->addIncoming(old, curBlock);
- Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
- Builder.SetInsertPoint(contBB);
- return isPre ? value : input;
- }
- // Store the updated result through the lvalue.
- if (LV.isBitField())
- CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
- else
- CGF.EmitStoreThroughLValue(RValue::get(value), LV);
- // If this is a postinc, return the value read from memory, otherwise use the
- // updated value.
- return isPre ? value : input;
- }
- Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
- TestAndClearIgnoreResultAssign();
- Value *Op = Visit(E->getSubExpr());
- // Generate a unary FNeg for FP ops.
- if (Op->getType()->isFPOrFPVectorTy())
- return Builder.CreateFNeg(Op, "fneg");
- // Emit unary minus with EmitSub so we handle overflow cases etc.
- BinOpInfo BinOp;
- BinOp.RHS = Op;
- BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
- BinOp.Ty = E->getType();
- BinOp.Opcode = BO_Sub;
- BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
- BinOp.E = E;
- return EmitSub(BinOp);
- }
- Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
- TestAndClearIgnoreResultAssign();
- Value *Op = Visit(E->getSubExpr());
- return Builder.CreateNot(Op, "neg");
- }
- Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
- // Perform vector logical not on comparison with zero vector.
- if (E->getType()->isVectorType() &&
- E->getType()->castAs<VectorType>()->getVectorKind() ==
- VectorType::GenericVector) {
- Value *Oper = Visit(E->getSubExpr());
- Value *Zero = llvm::Constant::getNullValue(Oper->getType());
- Value *Result;
- if (Oper->getType()->isFPOrFPVectorTy()) {
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
- CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
- Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
- } else
- Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
- return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
- }
- // Compare operand to zero.
- Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
- // Invert value.
- // TODO: Could dynamically modify easy computations here. For example, if
- // the operand is an icmp ne, turn into icmp eq.
- BoolVal = Builder.CreateNot(BoolVal, "lnot");
- // ZExt result to the expr type.
- return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
- }
- Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
- // Try folding the offsetof to a constant.
- Expr::EvalResult EVResult;
- if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
- llvm::APSInt Value = EVResult.Val.getInt();
- return Builder.getInt(Value);
- }
- // Loop over the components of the offsetof to compute the value.
- unsigned n = E->getNumComponents();
- llvm::Type* ResultType = ConvertType(E->getType());
- llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
- QualType CurrentType = E->getTypeSourceInfo()->getType();
- for (unsigned i = 0; i != n; ++i) {
- OffsetOfNode ON = E->getComponent(i);
- llvm::Value *Offset = nullptr;
- switch (ON.getKind()) {
- case OffsetOfNode::Array: {
- // Compute the index
- Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
- llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
- bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
- Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
- // Save the element type
- CurrentType =
- CGF.getContext().getAsArrayType(CurrentType)->getElementType();
- // Compute the element size
- llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
- CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
- // Multiply out to compute the result
- Offset = Builder.CreateMul(Idx, ElemSize);
- break;
- }
- case OffsetOfNode::Field: {
- FieldDecl *MemberDecl = ON.getField();
- RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
- const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
- // Compute the index of the field in its parent.
- unsigned i = 0;
- // FIXME: It would be nice if we didn't have to loop here!
- for (RecordDecl::field_iterator Field = RD->field_begin(),
- FieldEnd = RD->field_end();
- Field != FieldEnd; ++Field, ++i) {
- if (*Field == MemberDecl)
- break;
- }
- assert(i < RL.getFieldCount() && "offsetof field in wrong type");
- // Compute the offset to the field
- int64_t OffsetInt = RL.getFieldOffset(i) /
- CGF.getContext().getCharWidth();
- Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
- // Save the element type.
- CurrentType = MemberDecl->getType();
- break;
- }
- case OffsetOfNode::Identifier:
- llvm_unreachable("dependent __builtin_offsetof");
- case OffsetOfNode::Base: {
- if (ON.getBase()->isVirtual()) {
- CGF.ErrorUnsupported(E, "virtual base in offsetof");
- continue;
- }
- RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
- const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
- // Save the element type.
- CurrentType = ON.getBase()->getType();
- // Compute the offset to the base.
- const RecordType *BaseRT = CurrentType->getAs<RecordType>();
- CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
- CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
- Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
- break;
- }
- }
- Result = Builder.CreateAdd(Result, Offset);
- }
- return Result;
- }
- /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
- /// argument of the sizeof expression as an integer.
- Value *
- ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
- const UnaryExprOrTypeTraitExpr *E) {
- QualType TypeToSize = E->getTypeOfArgument();
- if (E->getKind() == UETT_SizeOf) {
- if (const VariableArrayType *VAT =
- CGF.getContext().getAsVariableArrayType(TypeToSize)) {
- if (E->isArgumentType()) {
- // sizeof(type) - make sure to emit the VLA size.
- CGF.EmitVariablyModifiedType(TypeToSize);
- } else {
- // C99 6.5.3.4p2: If the argument is an expression of type
- // VLA, it is evaluated.
- CGF.EmitIgnoredExpr(E->getArgumentExpr());
- }
- auto VlaSize = CGF.getVLASize(VAT);
- llvm::Value *size = VlaSize.NumElts;
- // Scale the number of non-VLA elements by the non-VLA element size.
- CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
- if (!eltSize.isOne())
- size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
- return size;
- }
- } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
- auto Alignment =
- CGF.getContext()
- .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
- E->getTypeOfArgument()->getPointeeType()))
- .getQuantity();
- return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
- }
- // If this isn't sizeof(vla), the result must be constant; use the constant
- // folding logic so we don't have to duplicate it here.
- return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
- }
- Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
- Expr *Op = E->getSubExpr();
- if (Op->getType()->isAnyComplexType()) {
- // If it's an l-value, load through the appropriate subobject l-value.
- // Note that we have to ask E because Op might be an l-value that
- // this won't work for, e.g. an Obj-C property.
- if (E->isGLValue())
- return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
- E->getExprLoc()).getScalarVal();
- // Otherwise, calculate and project.
- return CGF.EmitComplexExpr(Op, false, true).first;
- }
- return Visit(Op);
- }
- Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
- Expr *Op = E->getSubExpr();
- if (Op->getType()->isAnyComplexType()) {
- // If it's an l-value, load through the appropriate subobject l-value.
- // Note that we have to ask E because Op might be an l-value that
- // this won't work for, e.g. an Obj-C property.
- if (Op->isGLValue())
- return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
- E->getExprLoc()).getScalarVal();
- // Otherwise, calculate and project.
- return CGF.EmitComplexExpr(Op, true, false).second;
- }
- // __imag on a scalar returns zero. Emit the subexpr to ensure side
- // effects are evaluated, but not the actual value.
- if (Op->isGLValue())
- CGF.EmitLValue(Op);
- else
- CGF.EmitScalarExpr(Op, true);
- return llvm::Constant::getNullValue(ConvertType(E->getType()));
- }
- //===----------------------------------------------------------------------===//
- // Binary Operators
- //===----------------------------------------------------------------------===//
- BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
- TestAndClearIgnoreResultAssign();
- BinOpInfo Result;
- Result.LHS = Visit(E->getLHS());
- Result.RHS = Visit(E->getRHS());
- Result.Ty = E->getType();
- Result.Opcode = E->getOpcode();
- Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
- Result.E = E;
- return Result;
- }
- LValue ScalarExprEmitter::EmitCompoundAssignLValue(
- const CompoundAssignOperator *E,
- Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
- Value *&Result) {
- QualType LHSTy = E->getLHS()->getType();
- BinOpInfo OpInfo;
- if (E->getComputationResultType()->isAnyComplexType())
- return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
- // Emit the RHS first. __block variables need to have the rhs evaluated
- // first, plus this should improve codegen a little.
- OpInfo.RHS = Visit(E->getRHS());
- OpInfo.Ty = E->getComputationResultType();
- OpInfo.Opcode = E->getOpcode();
- OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
- OpInfo.E = E;
- // Load/convert the LHS.
- LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
- llvm::PHINode *atomicPHI = nullptr;
- if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
- QualType type = atomicTy->getValueType();
- if (!type->isBooleanType() && type->isIntegerType() &&
- !(type->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
- CGF.getLangOpts().getSignedOverflowBehavior() !=
- LangOptions::SOB_Trapping) {
- llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
- llvm::Instruction::BinaryOps Op;
- switch (OpInfo.Opcode) {
- // We don't have atomicrmw operands for *, %, /, <<, >>
- case BO_MulAssign: case BO_DivAssign:
- case BO_RemAssign:
- case BO_ShlAssign:
- case BO_ShrAssign:
- break;
- case BO_AddAssign:
- AtomicOp = llvm::AtomicRMWInst::Add;
- Op = llvm::Instruction::Add;
- break;
- case BO_SubAssign:
- AtomicOp = llvm::AtomicRMWInst::Sub;
- Op = llvm::Instruction::Sub;
- break;
- case BO_AndAssign:
- AtomicOp = llvm::AtomicRMWInst::And;
- Op = llvm::Instruction::And;
- break;
- case BO_XorAssign:
- AtomicOp = llvm::AtomicRMWInst::Xor;
- Op = llvm::Instruction::Xor;
- break;
- case BO_OrAssign:
- AtomicOp = llvm::AtomicRMWInst::Or;
- Op = llvm::Instruction::Or;
- break;
- default:
- llvm_unreachable("Invalid compound assignment type");
- }
- if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
- llvm::Value *Amt = CGF.EmitToMemory(
- EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
- E->getExprLoc()),
- LHSTy);
- Value *OldVal = Builder.CreateAtomicRMW(
- AtomicOp, LHSLV.getPointer(CGF), Amt,
- llvm::AtomicOrdering::SequentiallyConsistent);
- // Since operation is atomic, the result type is guaranteed to be the
- // same as the input in LLVM terms.
- Result = Builder.CreateBinOp(Op, OldVal, Amt);
- return LHSLV;
- }
- }
- // FIXME: For floating point types, we should be saving and restoring the
- // floating point environment in the loop.
- llvm::BasicBlock *startBB = Builder.GetInsertBlock();
- llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
- OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
- OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
- Builder.CreateBr(opBB);
- Builder.SetInsertPoint(opBB);
- atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
- atomicPHI->addIncoming(OpInfo.LHS, startBB);
- OpInfo.LHS = atomicPHI;
- }
- else
- OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
- SourceLocation Loc = E->getExprLoc();
- OpInfo.LHS =
- EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
- // Expand the binary operator.
- Result = (this->*Func)(OpInfo);
- // Convert the result back to the LHS type,
- // potentially with Implicit Conversion sanitizer check.
- Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
- Loc, ScalarConversionOpts(CGF.SanOpts));
- if (atomicPHI) {
- llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
- llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
- auto Pair = CGF.EmitAtomicCompareExchange(
- LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
- llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
- llvm::Value *success = Pair.second;
- atomicPHI->addIncoming(old, curBlock);
- Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
- Builder.SetInsertPoint(contBB);
- return LHSLV;
- }
- // Store the result value into the LHS lvalue. Bit-fields are handled
- // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
- // 'An assignment expression has the value of the left operand after the
- // assignment...'.
- if (LHSLV.isBitField())
- CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
- else
- CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
- if (CGF.getLangOpts().OpenMP)
- CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
- E->getLHS());
- return LHSLV;
- }
- Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
- Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
- bool Ignore = TestAndClearIgnoreResultAssign();
- Value *RHS = nullptr;
- LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
- // If the result is clearly ignored, return now.
- if (Ignore)
- return nullptr;
- // The result of an assignment in C is the assigned r-value.
- if (!CGF.getLangOpts().CPlusPlus)
- return RHS;
- // If the lvalue is non-volatile, return the computed value of the assignment.
- if (!LHS.isVolatileQualified())
- return RHS;
- // Otherwise, reload the value.
- return EmitLoadOfLValue(LHS, E->getExprLoc());
- }
- void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
- const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
- SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
- if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
- Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
- SanitizerKind::IntegerDivideByZero));
- }
- const auto *BO = cast<BinaryOperator>(Ops.E);
- if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
- Ops.Ty->hasSignedIntegerRepresentation() &&
- !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
- Ops.mayHaveIntegerOverflow()) {
- llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
- llvm::Value *IntMin =
- Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
- llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
- llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
- llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
- llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
- Checks.push_back(
- std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
- }
- if (Checks.size() > 0)
- EmitBinOpCheck(Checks, Ops);
- }
- Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
- {
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
- CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
- Ops.Ty->isIntegerType() &&
- (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
- llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
- EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
- } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
- Ops.Ty->isRealFloatingType() &&
- Ops.mayHaveFloatDivisionByZero()) {
- llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
- llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
- EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
- Ops);
- }
- }
- if (Ops.Ty->isConstantMatrixType()) {
- llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
- // We need to check the types of the operands of the operator to get the
- // correct matrix dimensions.
- auto *BO = cast<BinaryOperator>(Ops.E);
- (void)BO;
- assert(
- isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
- "first operand must be a matrix");
- assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
- "second operand must be an arithmetic type");
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
- return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
- Ops.Ty->hasUnsignedIntegerRepresentation());
- }
- if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
- llvm::Value *Val;
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
- Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
- if ((CGF.getLangOpts().OpenCL &&
- !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
- (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
- !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
- // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
- // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
- // build option allows an application to specify that single precision
- // floating-point divide (x/y and 1/x) and sqrt used in the program
- // source are correctly rounded.
- llvm::Type *ValTy = Val->getType();
- if (ValTy->isFloatTy() ||
- (isa<llvm::VectorType>(ValTy) &&
- cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
- CGF.SetFPAccuracy(Val, 2.5);
- }
- return Val;
- }
- else if (Ops.isFixedPointOp())
- return EmitFixedPointBinOp(Ops);
- else if (Ops.Ty->hasUnsignedIntegerRepresentation())
- return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
- else
- return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
- }
- Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
- // Rem in C can't be a floating point type: C99 6.5.5p2.
- if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
- CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
- Ops.Ty->isIntegerType() &&
- (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
- EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
- }
- if (Ops.Ty->hasUnsignedIntegerRepresentation())
- return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
- else
- return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
- }
- Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
- unsigned IID;
- unsigned OpID = 0;
- SanitizerHandler OverflowKind;
- bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
- switch (Ops.Opcode) {
- case BO_Add:
- case BO_AddAssign:
- OpID = 1;
- IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
- llvm::Intrinsic::uadd_with_overflow;
- OverflowKind = SanitizerHandler::AddOverflow;
- break;
- case BO_Sub:
- case BO_SubAssign:
- OpID = 2;
- IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
- llvm::Intrinsic::usub_with_overflow;
- OverflowKind = SanitizerHandler::SubOverflow;
- break;
- case BO_Mul:
- case BO_MulAssign:
- OpID = 3;
- IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
- llvm::Intrinsic::umul_with_overflow;
- OverflowKind = SanitizerHandler::MulOverflow;
- break;
- default:
- llvm_unreachable("Unsupported operation for overflow detection");
- }
- OpID <<= 1;
- if (isSigned)
- OpID |= 1;
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
- llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
- Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
- Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
- Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
- // Handle overflow with llvm.trap if no custom handler has been specified.
- const std::string *handlerName =
- &CGF.getLangOpts().OverflowHandler;
- if (handlerName->empty()) {
- // If the signed-integer-overflow sanitizer is enabled, emit a call to its
- // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
- if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
- llvm::Value *NotOverflow = Builder.CreateNot(overflow);
- SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
- : SanitizerKind::UnsignedIntegerOverflow;
- EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
- } else
- CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
- return result;
- }
- // Branch in case of overflow.
- llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
- llvm::BasicBlock *continueBB =
- CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
- llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
- Builder.CreateCondBr(overflow, overflowBB, continueBB);
- // If an overflow handler is set, then we want to call it and then use its
- // result, if it returns.
- Builder.SetInsertPoint(overflowBB);
- // Get the overflow handler.
- llvm::Type *Int8Ty = CGF.Int8Ty;
- llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
- llvm::FunctionType *handlerTy =
- llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
- llvm::FunctionCallee handler =
- CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
- // Sign extend the args to 64-bit, so that we can use the same handler for
- // all types of overflow.
- llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
- llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
- // Call the handler with the two arguments, the operation, and the size of
- // the result.
- llvm::Value *handlerArgs[] = {
- lhs,
- rhs,
- Builder.getInt8(OpID),
- Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
- };
- llvm::Value *handlerResult =
- CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
- // Truncate the result back to the desired size.
- handlerResult = Builder.CreateTrunc(handlerResult, opTy);
- Builder.CreateBr(continueBB);
- Builder.SetInsertPoint(continueBB);
- llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
- phi->addIncoming(result, initialBB);
- phi->addIncoming(handlerResult, overflowBB);
- return phi;
- }
- /// Emit pointer + index arithmetic.
- static Value *emitPointerArithmetic(CodeGenFunction &CGF,
- const BinOpInfo &op,
- bool isSubtraction) {
- // Must have binary (not unary) expr here. Unary pointer
- // increment/decrement doesn't use this path.
- const BinaryOperator *expr = cast<BinaryOperator>(op.E);
- Value *pointer = op.LHS;
- Expr *pointerOperand = expr->getLHS();
- Value *index = op.RHS;
- Expr *indexOperand = expr->getRHS();
- // In a subtraction, the LHS is always the pointer.
- if (!isSubtraction && !pointer->getType()->isPointerTy()) {
- std::swap(pointer, index);
- std::swap(pointerOperand, indexOperand);
- }
- bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
- unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
- auto &DL = CGF.CGM.getDataLayout();
- auto PtrTy = cast<llvm::PointerType>(pointer->getType());
- // Some versions of glibc and gcc use idioms (particularly in their malloc
- // routines) that add a pointer-sized integer (known to be a pointer value)
- // to a null pointer in order to cast the value back to an integer or as
- // part of a pointer alignment algorithm. This is undefined behavior, but
- // we'd like to be able to compile programs that use it.
- //
- // Normally, we'd generate a GEP with a null-pointer base here in response
- // to that code, but it's also UB to dereference a pointer created that
- // way. Instead (as an acknowledged hack to tolerate the idiom) we will
- // generate a direct cast of the integer value to a pointer.
- //
- // The idiom (p = nullptr + N) is not met if any of the following are true:
- //
- // The operation is subtraction.
- // The index is not pointer-sized.
- // The pointer type is not byte-sized.
- //
- if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
- op.Opcode,
- expr->getLHS(),
- expr->getRHS()))
- return CGF.Builder.CreateIntToPtr(index, pointer->getType());
- if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
- // Zero-extend or sign-extend the pointer value according to
- // whether the index is signed or not.
- index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
- "idx.ext");
- }
- // If this is subtraction, negate the index.
- if (isSubtraction)
- index = CGF.Builder.CreateNeg(index, "idx.neg");
- if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
- CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
- /*Accessed*/ false);
- const PointerType *pointerType
- = pointerOperand->getType()->getAs<PointerType>();
- if (!pointerType) {
- QualType objectType = pointerOperand->getType()
- ->castAs<ObjCObjectPointerType>()
- ->getPointeeType();
- llvm::Value *objectSize
- = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
- index = CGF.Builder.CreateMul(index, objectSize);
- Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
- result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
- return CGF.Builder.CreateBitCast(result, pointer->getType());
- }
- QualType elementType = pointerType->getPointeeType();
- if (const VariableArrayType *vla
- = CGF.getContext().getAsVariableArrayType(elementType)) {
- // The element count here is the total number of non-VLA elements.
- llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
- // Effectively, the multiply by the VLA size is part of the GEP.
- // GEP indexes are signed, and scaling an index isn't permitted to
- // signed-overflow, so we use the same semantics for our explicit
- // multiply. We suppress this if overflow is not undefined behavior.
- llvm::Type *elemTy = pointer->getType()->getPointerElementType();
- if (CGF.getLangOpts().isSignedOverflowDefined()) {
- index = CGF.Builder.CreateMul(index, numElements, "vla.index");
- pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
- } else {
- index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
- pointer = CGF.EmitCheckedInBoundsGEP(
- elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
- "add.ptr");
- }
- return pointer;
- }
- // Explicitly handle GNU void* and function pointer arithmetic extensions. The
- // GNU void* casts amount to no-ops since our void* type is i8*, but this is
- // future proof.
- if (elementType->isVoidType() || elementType->isFunctionType()) {
- Value *result = CGF.EmitCastToVoidPtr(pointer);
- result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
- return CGF.Builder.CreateBitCast(result, pointer->getType());
- }
- llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType);
- if (CGF.getLangOpts().isSignedOverflowDefined())
- return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
- return CGF.EmitCheckedInBoundsGEP(
- elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
- "add.ptr");
- }
- // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
- // Addend. Use negMul and negAdd to negate the first operand of the Mul or
- // the add operand respectively. This allows fmuladd to represent a*b-c, or
- // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
- // efficient operations.
- static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
- const CodeGenFunction &CGF, CGBuilderTy &Builder,
- bool negMul, bool negAdd) {
- assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
- Value *MulOp0 = MulOp->getOperand(0);
- Value *MulOp1 = MulOp->getOperand(1);
- if (negMul)
- MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
- if (negAdd)
- Addend = Builder.CreateFNeg(Addend, "neg");
- Value *FMulAdd = nullptr;
- if (Builder.getIsFPConstrained()) {
- assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
- "Only constrained operation should be created when Builder is in FP "
- "constrained mode");
- FMulAdd = Builder.CreateConstrainedFPCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
- Addend->getType()),
- {MulOp0, MulOp1, Addend});
- } else {
- FMulAdd = Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
- {MulOp0, MulOp1, Addend});
- }
- MulOp->eraseFromParent();
- return FMulAdd;
- }
- // Check whether it would be legal to emit an fmuladd intrinsic call to
- // represent op and if so, build the fmuladd.
- //
- // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
- // Does NOT check the type of the operation - it's assumed that this function
- // will be called from contexts where it's known that the type is contractable.
- static Value* tryEmitFMulAdd(const BinOpInfo &op,
- const CodeGenFunction &CGF, CGBuilderTy &Builder,
- bool isSub=false) {
- assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
- op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
- "Only fadd/fsub can be the root of an fmuladd.");
- // Check whether this op is marked as fusable.
- if (!op.FPFeatures.allowFPContractWithinStatement())
- return nullptr;
- // We have a potentially fusable op. Look for a mul on one of the operands.
- // Also, make sure that the mul result isn't used directly. In that case,
- // there's no point creating a muladd operation.
- if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
- if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
- LHSBinOp->use_empty())
- return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
- }
- if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
- if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
- RHSBinOp->use_empty())
- return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
- }
- if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
- if (LHSBinOp->getIntrinsicID() ==
- llvm::Intrinsic::experimental_constrained_fmul &&
- LHSBinOp->use_empty())
- return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
- }
- if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
- if (RHSBinOp->getIntrinsicID() ==
- llvm::Intrinsic::experimental_constrained_fmul &&
- RHSBinOp->use_empty())
- return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
- }
- return nullptr;
- }
- Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
- if (op.LHS->getType()->isPointerTy() ||
- op.RHS->getType()->isPointerTy())
- return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
- if (op.Ty->isSignedIntegerOrEnumerationType()) {
- switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
- case LangOptions::SOB_Defined:
- return Builder.CreateAdd(op.LHS, op.RHS, "add");
- case LangOptions::SOB_Undefined:
- if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
- return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
- LLVM_FALLTHROUGH;
- case LangOptions::SOB_Trapping:
- if (CanElideOverflowCheck(CGF.getContext(), op))
- return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
- return EmitOverflowCheckedBinOp(op);
- }
- }
- if (op.Ty->isConstantMatrixType()) {
- llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
- return MB.CreateAdd(op.LHS, op.RHS);
- }
- if (op.Ty->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
- !CanElideOverflowCheck(CGF.getContext(), op))
- return EmitOverflowCheckedBinOp(op);
- if (op.LHS->getType()->isFPOrFPVectorTy()) {
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
- // Try to form an fmuladd.
- if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
- return FMulAdd;
- return Builder.CreateFAdd(op.LHS, op.RHS, "add");
- }
- if (op.isFixedPointOp())
- return EmitFixedPointBinOp(op);
- return Builder.CreateAdd(op.LHS, op.RHS, "add");
- }
- /// The resulting value must be calculated with exact precision, so the operands
- /// may not be the same type.
- Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
- using llvm::APSInt;
- using llvm::ConstantInt;
- // This is either a binary operation where at least one of the operands is
- // a fixed-point type, or a unary operation where the operand is a fixed-point
- // type. The result type of a binary operation is determined by
- // Sema::handleFixedPointConversions().
- QualType ResultTy = op.Ty;
- QualType LHSTy, RHSTy;
- if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
- RHSTy = BinOp->getRHS()->getType();
- if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
- // For compound assignment, the effective type of the LHS at this point
- // is the computation LHS type, not the actual LHS type, and the final
- // result type is not the type of the expression but rather the
- // computation result type.
- LHSTy = CAO->getComputationLHSType();
- ResultTy = CAO->getComputationResultType();
- } else
- LHSTy = BinOp->getLHS()->getType();
- } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
- LHSTy = UnOp->getSubExpr()->getType();
- RHSTy = UnOp->getSubExpr()->getType();
- }
- ASTContext &Ctx = CGF.getContext();
- Value *LHS = op.LHS;
- Value *RHS = op.RHS;
- auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
- auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
- auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
- auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
- // Perform the actual operation.
- Value *Result;
- llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
- switch (op.Opcode) {
- case BO_AddAssign:
- case BO_Add:
- Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
- break;
- case BO_SubAssign:
- case BO_Sub:
- Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
- break;
- case BO_MulAssign:
- case BO_Mul:
- Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
- break;
- case BO_DivAssign:
- case BO_Div:
- Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
- break;
- case BO_ShlAssign:
- case BO_Shl:
- Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
- break;
- case BO_ShrAssign:
- case BO_Shr:
- Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
- break;
- case BO_LT:
- return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
- case BO_GT:
- return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
- case BO_LE:
- return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
- case BO_GE:
- return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
- case BO_EQ:
- // For equality operations, we assume any padding bits on unsigned types are
- // zero'd out. They could be overwritten through non-saturating operations
- // that cause overflow, but this leads to undefined behavior.
- return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
- case BO_NE:
- return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
- case BO_Cmp:
- case BO_LAnd:
- case BO_LOr:
- llvm_unreachable("Found unimplemented fixed point binary operation");
- case BO_PtrMemD:
- case BO_PtrMemI:
- case BO_Rem:
- case BO_Xor:
- case BO_And:
- case BO_Or:
- case BO_Assign:
- case BO_RemAssign:
- case BO_AndAssign:
- case BO_XorAssign:
- case BO_OrAssign:
- case BO_Comma:
- llvm_unreachable("Found unsupported binary operation for fixed point types.");
- }
- bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
- BinaryOperator::isShiftAssignOp(op.Opcode);
- // Convert to the result type.
- return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
- : CommonFixedSema,
- ResultFixedSema);
- }
- Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
- // The LHS is always a pointer if either side is.
- if (!op.LHS->getType()->isPointerTy()) {
- if (op.Ty->isSignedIntegerOrEnumerationType()) {
- switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
- case LangOptions::SOB_Defined:
- return Builder.CreateSub(op.LHS, op.RHS, "sub");
- case LangOptions::SOB_Undefined:
- if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
- return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
- LLVM_FALLTHROUGH;
- case LangOptions::SOB_Trapping:
- if (CanElideOverflowCheck(CGF.getContext(), op))
- return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
- return EmitOverflowCheckedBinOp(op);
- }
- }
- if (op.Ty->isConstantMatrixType()) {
- llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
- return MB.CreateSub(op.LHS, op.RHS);
- }
- if (op.Ty->isUnsignedIntegerType() &&
- CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
- !CanElideOverflowCheck(CGF.getContext(), op))
- return EmitOverflowCheckedBinOp(op);
- if (op.LHS->getType()->isFPOrFPVectorTy()) {
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
- // Try to form an fmuladd.
- if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
- return FMulAdd;
- return Builder.CreateFSub(op.LHS, op.RHS, "sub");
- }
- if (op.isFixedPointOp())
- return EmitFixedPointBinOp(op);
- return Builder.CreateSub(op.LHS, op.RHS, "sub");
- }
- // If the RHS is not a pointer, then we have normal pointer
- // arithmetic.
- if (!op.RHS->getType()->isPointerTy())
- return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
- // Otherwise, this is a pointer subtraction.
- // Do the raw subtraction part.
- llvm::Value *LHS
- = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
- llvm::Value *RHS
- = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
- Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
- // Okay, figure out the element size.
- const BinaryOperator *expr = cast<BinaryOperator>(op.E);
- QualType elementType = expr->getLHS()->getType()->getPointeeType();
- llvm::Value *divisor = nullptr;
- // For a variable-length array, this is going to be non-constant.
- if (const VariableArrayType *vla
- = CGF.getContext().getAsVariableArrayType(elementType)) {
- auto VlaSize = CGF.getVLASize(vla);
- elementType = VlaSize.Type;
- divisor = VlaSize.NumElts;
- // Scale the number of non-VLA elements by the non-VLA element size.
- CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
- if (!eltSize.isOne())
- divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
- // For everything elese, we can just compute it, safe in the
- // assumption that Sema won't let anything through that we can't
- // safely compute the size of.
- } else {
- CharUnits elementSize;
- // Handle GCC extension for pointer arithmetic on void* and
- // function pointer types.
- if (elementType->isVoidType() || elementType->isFunctionType())
- elementSize = CharUnits::One();
- else
- elementSize = CGF.getContext().getTypeSizeInChars(elementType);
- // Don't even emit the divide for element size of 1.
- if (elementSize.isOne())
- return diffInChars;
- divisor = CGF.CGM.getSize(elementSize);
- }
- // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
- // pointer difference in C is only defined in the case where both operands
- // are pointing to elements of an array.
- return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
- }
- Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
- llvm::IntegerType *Ty;
- if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
- Ty = cast<llvm::IntegerType>(VT->getElementType());
- else
- Ty = cast<llvm::IntegerType>(LHS->getType());
- return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
- }
- Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
- const Twine &Name) {
- llvm::IntegerType *Ty;
- if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
- Ty = cast<llvm::IntegerType>(VT->getElementType());
- else
- Ty = cast<llvm::IntegerType>(LHS->getType());
- if (llvm::isPowerOf2_64(Ty->getBitWidth()))
- return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
- return Builder.CreateURem(
- RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
- }
- Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
- // TODO: This misses out on the sanitizer check below.
- if (Ops.isFixedPointOp())
- return EmitFixedPointBinOp(Ops);
- // LLVM requires the LHS and RHS to be the same type: promote or truncate the
- // RHS to the same size as the LHS.
- Value *RHS = Ops.RHS;
- if (Ops.LHS->getType() != RHS->getType())
- RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
- bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
- Ops.Ty->hasSignedIntegerRepresentation() &&
- !CGF.getLangOpts().isSignedOverflowDefined() &&
- !CGF.getLangOpts().CPlusPlus20;
- bool SanitizeUnsignedBase =
- CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
- Ops.Ty->hasUnsignedIntegerRepresentation();
- bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
- bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
- // OpenCL 6.3j: shift values are effectively % word size of LHS.
- if (CGF.getLangOpts().OpenCL)
- RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
- else if ((SanitizeBase || SanitizeExponent) &&
- isa<llvm::IntegerType>(Ops.LHS->getType())) {
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
- llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
- llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
- if (SanitizeExponent) {
- Checks.push_back(
- std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
- }
- if (SanitizeBase) {
- // Check whether we are shifting any non-zero bits off the top of the
- // integer. We only emit this check if exponent is valid - otherwise
- // instructions below will have undefined behavior themselves.
- llvm::BasicBlock *Orig = Builder.GetInsertBlock();
- llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
- llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
- Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
- llvm::Value *PromotedWidthMinusOne =
- (RHS == Ops.RHS) ? WidthMinusOne
- : GetWidthMinusOneValue(Ops.LHS, RHS);
- CGF.EmitBlock(CheckShiftBase);
- llvm::Value *BitsShiftedOff = Builder.CreateLShr(
- Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
- /*NUW*/ true, /*NSW*/ true),
- "shl.check");
- if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
- // In C99, we are not permitted to shift a 1 bit into the sign bit.
- // Under C++11's rules, shifting a 1 bit into the sign bit is
- // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
- // define signed left shifts, so we use the C99 and C++11 rules there).
- // Unsigned shifts can always shift into the top bit.
- llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
- BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
- }
- llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
- llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
- CGF.EmitBlock(Cont);
- llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
- BaseCheck->addIncoming(Builder.getTrue(), Orig);
- BaseCheck->addIncoming(ValidBase, CheckShiftBase);
- Checks.push_back(std::make_pair(
- BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
- : SanitizerKind::UnsignedShiftBase));
- }
- assert(!Checks.empty());
- EmitBinOpCheck(Checks, Ops);
- }
- return Builder.CreateShl(Ops.LHS, RHS, "shl");
- }
- Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
- // TODO: This misses out on the sanitizer check below.
- if (Ops.isFixedPointOp())
- return EmitFixedPointBinOp(Ops);
- // LLVM requires the LHS and RHS to be the same type: promote or truncate the
- // RHS to the same size as the LHS.
- Value *RHS = Ops.RHS;
- if (Ops.LHS->getType() != RHS->getType())
- RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
- // OpenCL 6.3j: shift values are effectively % word size of LHS.
- if (CGF.getLangOpts().OpenCL)
- RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
- else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
- isa<llvm::IntegerType>(Ops.LHS->getType())) {
- CodeGenFunction::SanitizerScope SanScope(&CGF);
- llvm::Value *Valid =
- Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
- EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
- }
- if (Ops.Ty->hasUnsignedIntegerRepresentation())
- return Builder.CreateLShr(Ops.LHS, RHS, "shr");
- return Builder.CreateAShr(Ops.LHS, RHS, "shr");
- }
- enum IntrinsicType { VCMPEQ, VCMPGT };
- // return corresponding comparison intrinsic for given vector type
- static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
- BuiltinType::Kind ElemKind) {
- switch (ElemKind) {
- default: llvm_unreachable("unexpected element type");
- case BuiltinType::Char_U:
- case BuiltinType::UChar:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
- case BuiltinType::Char_S:
- case BuiltinType::SChar:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
- case BuiltinType::UShort:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
- case BuiltinType::Short:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
- case BuiltinType::UInt:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
- case BuiltinType::Int:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
- case BuiltinType::ULong:
- case BuiltinType::ULongLong:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
- case BuiltinType::Long:
- case BuiltinType::LongLong:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
- case BuiltinType::Float:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
- llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
- case BuiltinType::Double:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
- llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
- case BuiltinType::UInt128:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
- : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
- case BuiltinType::Int128:
- return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
- : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
- }
- }
- Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
- llvm::CmpInst::Predicate UICmpOpc,
- llvm::CmpInst::Predicate SICmpOpc,
- llvm::CmpInst::Predicate FCmpOpc,
- bool IsSignaling) {
- TestAndClearIgnoreResultAssign();
- Value *Result;
- QualType LHSTy = E->getLHS()->getType();
- QualType RHSTy = E->getRHS()->getType();
- if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
- assert(E->getOpcode() == BO_EQ ||
- E->getOpcode() == BO_NE);
- Value *LHS = CGF.EmitScalarExpr(E->getLHS());
- Value *RHS = CGF.EmitScalarExpr(E->getRHS());
- Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
- CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
- } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
- BinOpInfo BOInfo = EmitBinOps(E);
- Value *LHS = BOInfo.LHS;
- Value *RHS = BOInfo.RHS;
- // If AltiVec, the comparison results in a numeric type, so we use
- // intrinsics comparing vectors and giving 0 or 1 as a result
- if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
- // constants for mapping CR6 register bits to predicate result
- enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
- llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
- // in several cases vector arguments order will be reversed
- Value *FirstVecArg = LHS,
- *SecondVecArg = RHS;
- QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
- BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
- switch(E->getOpcode()) {
- default: llvm_unreachable("is not a comparison operation");
- case BO_EQ:
- CR6 = CR6_LT;
- ID = GetIntrinsic(VCMPEQ, ElementKind);
- break;
- case BO_NE:
- CR6 = CR6_EQ;
- ID = GetIntrinsic(VCMPEQ, ElementKind);
- break;
- case BO_LT:
- CR6 = CR6_LT;
- ID = GetIntrinsic(VCMPGT, ElementKind);
- std::swap(FirstVecArg, SecondVecArg);
- break;
- case BO_GT:
- CR6 = CR6_LT;
- ID = GetIntrinsic(VCMPGT, ElementKind);
- break;
- case BO_LE:
- if (ElementKind == BuiltinType::Float) {
- CR6 = CR6_LT;
- ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
- std::swap(FirstVecArg, SecondVecArg);
- }
- else {
- CR6 = CR6_EQ;
- ID = GetIntrinsic(VCMPGT, ElementKind);
- }
- break;
- case BO_GE:
- if (ElementKind == BuiltinType::Float) {
- CR6 = CR6_LT;
- ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
- }
- else {
- CR6 = CR6_EQ;
- ID = GetIntrinsic(VCMPGT, ElementKind);
- std::swap(FirstVecArg, SecondVecArg);
- }
- break;
- }
- Value *CR6Param = Builder.getInt32(CR6);
- llvm::Function *F = CGF.CGM.getIntrinsic(ID);
- Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
- // The result type of intrinsic may not be same as E->getType().
- // If E->getType() is not BoolTy, EmitScalarConversion will do the
- // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
- // do nothing, if ResultTy is not i1 at the same time, it will cause
- // crash later.
- llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
- if (ResultTy->getBitWidth() > 1 &&
- E->getType() == CGF.getContext().BoolTy)
- Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
- return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
- E->getExprLoc());
- }
- if (BOInfo.isFixedPointOp()) {
- Result = EmitFixedPointBinOp(BOInfo);
- } else if (LHS->getType()->isFPOrFPVectorTy()) {
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
- if (!IsSignaling)
- Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
- else
- Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
- } else if (LHSTy->hasSignedIntegerRepresentation()) {
- Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
- } else {
- // Unsigned integers and pointers.
- if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
- !isa<llvm::ConstantPointerNull>(LHS) &&
- !isa<llvm::ConstantPointerNull>(RHS)) {
- // Dynamic information is required to be stripped for comparisons,
- // because it could leak the dynamic information. Based on comparisons
- // of pointers to dynamic objects, the optimizer can replace one pointer
- // with another, which might be incorrect in presence of invariant
- // groups. Comparison with null is safe because null does not carry any
- // dynamic information.
- if (LHSTy.mayBeDynamicClass())
- LHS = Builder.CreateStripInvariantGroup(LHS);
- if (RHSTy.mayBeDynamicClass())
- RHS = Builder.CreateStripInvariantGroup(RHS);
- }
- Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
- }
- // If this is a vector comparison, sign extend the result to the appropriate
- // vector integer type and return it (don't convert to bool).
- if (LHSTy->isVectorType())
- return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
- } else {
- // Complex Comparison: can only be an equality comparison.
- CodeGenFunction::ComplexPairTy LHS, RHS;
- QualType CETy;
- if (auto *CTy = LHSTy->getAs<ComplexType>()) {
- LHS = CGF.EmitComplexExpr(E->getLHS());
- CETy = CTy->getElementType();
- } else {
- LHS.first = Visit(E->getLHS());
- LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
- CETy = LHSTy;
- }
- if (auto *CTy = RHSTy->getAs<ComplexType>()) {
- RHS = CGF.EmitComplexExpr(E->getRHS());
- assert(CGF.getContext().hasSameUnqualifiedType(CETy,
- CTy->getElementType()) &&
- "The element types must always match.");
- (void)CTy;
- } else {
- RHS.first = Visit(E->getRHS());
- RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
- assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
- "The element types must always match.");
- }
- Value *ResultR, *ResultI;
- if (CETy->isRealFloatingType()) {
- // As complex comparisons can only be equality comparisons, they
- // are never signaling comparisons.
- ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
- ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
- } else {
- // Complex comparisons can only be equality comparisons. As such, signed
- // and unsigned opcodes are the same.
- ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
- ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
- }
- if (E->getOpcode() == BO_EQ) {
- Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
- } else {
- assert(E->getOpcode() == BO_NE &&
- "Complex comparison other than == or != ?");
- Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
- }
- }
- return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
- E->getExprLoc());
- }
- Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
- bool Ignore = TestAndClearIgnoreResultAssign();
- Value *RHS;
- LValue LHS;
- switch (E->getLHS()->getType().getObjCLifetime()) {
- case Qualifiers::OCL_Strong:
- std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
- break;
- case Qualifiers::OCL_Autoreleasing:
- std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
- break;
- case Qualifiers::OCL_ExplicitNone:
- std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
- break;
- case Qualifiers::OCL_Weak:
- RHS = Visit(E->getRHS());
- LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
- RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
- break;
- case Qualifiers::OCL_None:
- // __block variables need to have the rhs evaluated first, plus
- // this should improve codegen just a little.
- RHS = Visit(E->getRHS());
- LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
- // Store the value into the LHS. Bit-fields are handled specially
- // because the result is altered by the store, i.e., [C99 6.5.16p1]
- // 'An assignment expression has the value of the left operand after
- // the assignment...'.
- if (LHS.isBitField()) {
- CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
- } else {
- CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
- CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
- }
- }
- // If the result is clearly ignored, return now.
- if (Ignore)
- return nullptr;
- // The result of an assignment in C is the assigned r-value.
- if (!CGF.getLangOpts().CPlusPlus)
- return RHS;
- // If the lvalue is non-volatile, return the computed value of the assignment.
- if (!LHS.isVolatileQualified())
- return RHS;
- // Otherwise, reload the value.
- return EmitLoadOfLValue(LHS, E->getExprLoc());
- }
- Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
- // Perform vector logical and on comparisons with zero vectors.
- if (E->getType()->isVectorType()) {
- CGF.incrementProfileCounter(E);
- Value *LHS = Visit(E->getLHS());
- Value *RHS = Visit(E->getRHS());
- Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
- if (LHS->getType()->isFPOrFPVectorTy()) {
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
- CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
- LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
- RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
- } else {
- LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
- RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
- }
- Value *And = Builder.CreateAnd(LHS, RHS);
- return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
- }
- bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
- llvm::Type *ResTy = ConvertType(E->getType());
- // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
- // If we have 1 && X, just emit X without inserting the control flow.
- bool LHSCondVal;
- if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
- if (LHSCondVal) { // If we have 1 && X, just emit X.
- CGF.incrementProfileCounter(E);
- Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
- // If we're generating for profiling or coverage, generate a branch to a
- // block that increments the RHS counter needed to track branch condition
- // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
- // "FalseBlock" after the increment is done.
- if (InstrumentRegions &&
- CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
- llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
- llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
- Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
- CGF.EmitBlock(RHSBlockCnt);
- CGF.incrementProfileCounter(E->getRHS());
- CGF.EmitBranch(FBlock);
- CGF.EmitBlock(FBlock);
- }
- // ZExt result to int or bool.
- return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
- }
- // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
- if (!CGF.ContainsLabel(E->getRHS()))
- return llvm::Constant::getNullValue(ResTy);
- }
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
- llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
- CodeGenFunction::ConditionalEvaluation eval(CGF);
- // Branch on the LHS first. If it is false, go to the failure (cont) block.
- CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
- CGF.getProfileCount(E->getRHS()));
- // Any edges into the ContBlock are now from an (indeterminate number of)
- // edges from this first condition. All of these values will be false. Start
- // setting up the PHI node in the Cont Block for this.
- llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
- "", ContBlock);
- for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
- PI != PE; ++PI)
- PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
- eval.begin(CGF);
- CGF.EmitBlock(RHSBlock);
- CGF.incrementProfileCounter(E);
- Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
- eval.end(CGF);
- // Reaquire the RHS block, as there may be subblocks inserted.
- RHSBlock = Builder.GetInsertBlock();
- // If we're generating for profiling or coverage, generate a branch on the
- // RHS to a block that increments the RHS true counter needed to track branch
- // condition coverage.
- if (InstrumentRegions &&
- CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
- llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
- Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
- CGF.EmitBlock(RHSBlockCnt);
- CGF.incrementProfileCounter(E->getRHS());
- CGF.EmitBranch(ContBlock);
- PN->addIncoming(RHSCond, RHSBlockCnt);
- }
- // Emit an unconditional branch from this block to ContBlock.
- {
- // There is no need to emit line number for unconditional branch.
- auto NL = ApplyDebugLocation::CreateEmpty(CGF);
- CGF.EmitBlock(ContBlock);
- }
- // Insert an entry into the phi node for the edge with the value of RHSCond.
- PN->addIncoming(RHSCond, RHSBlock);
- // Artificial location to preserve the scope information
- {
- auto NL = ApplyDebugLocation::CreateArtificial(CGF);
- PN->setDebugLoc(Builder.getCurrentDebugLocation());
- }
- // ZExt result to int.
- return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
- }
- Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
- // Perform vector logical or on comparisons with zero vectors.
- if (E->getType()->isVectorType()) {
- CGF.incrementProfileCounter(E);
- Value *LHS = Visit(E->getLHS());
- Value *RHS = Visit(E->getRHS());
- Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
- if (LHS->getType()->isFPOrFPVectorTy()) {
- CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
- CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
- LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
- RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
- } else {
- LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
- RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
- }
- Value *Or = Builder.CreateOr(LHS, RHS);
- return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
- }
- bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
- llvm::Type *ResTy = ConvertType(E->getType());
- // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
- // If we have 0 || X, just emit X without inserting the control flow.
- bool LHSCondVal;
- if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
- if (!LHSCondVal) { // If we have 0 || X, just emit X.
- CGF.incrementProfileCounter(E);
- Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
- // If we're generating for profiling or coverage, generate a branch to a
- // block that increments the RHS counter need to track branch condition
- // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
- // "FalseBlock" after the increment is done.
- if (InstrumentRegions &&
- CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
- llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
- llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
- Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
- CGF.EmitBlock(RHSBlockCnt);
- CGF.incrementProfileCounter(E->getRHS());
- CGF.EmitBranch(FBlock);
- CGF.EmitBlock(FBlock);
- }
- // ZExt result to int or bool.
- return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
- }
- // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
- if (!CGF.ContainsLabel(E->getRHS()))
- return llvm::ConstantInt::get(ResTy, 1);
- }
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
- llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
- CodeGenFunction::ConditionalEvaluation eval(CGF);
- // Branch on the LHS first. If it is true, go to the success (cont) block.
- CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
- CGF.getCurrentProfileCount() -
- CGF.getProfileCount(E->getRHS()));
- // Any edges into the ContBlock are now from an (indeterminate number of)
- // edges from this first condition. All of these values will be true. Start
- // setting up the PHI node in the Cont Block for this.
- llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
- "", ContBlock);
- for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
- PI != PE; ++PI)
- PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
- eval.begin(CGF);
- // Emit the RHS condition as a bool value.
- CGF.EmitBlock(RHSBlock);
- CGF.incrementProfileCounter(E);
- Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
- eval.end(CGF);
- // Reaquire the RHS block, as there may be subblocks inserted.
- RHSBlock = Builder.GetInsertBlock();
- // If we're generating for profiling or coverage, generate a branch on the
- // RHS to a block that increments the RHS true counter needed to track branch
- // condition coverage.
- if (InstrumentRegions &&
- CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
- llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
- Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
- CGF.EmitBlock(RHSBlockCnt);
- CGF.incrementProfileCounter(E->getRHS());
- CGF.EmitBranch(ContBlock);
- PN->addIncoming(RHSCond, RHSBlockCnt);
- }
- // Emit an unconditional branch from this block to ContBlock. Insert an entry
- // into the phi node for the edge with the value of RHSCond.
- CGF.EmitBlock(ContBlock);
- PN->addIncoming(RHSCond, RHSBlock);
- // ZExt result to int.
- return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
- }
- Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
- CGF.EmitIgnoredExpr(E->getLHS());
- CGF.EnsureInsertPoint();
- return Visit(E->getRHS());
- }
- //===----------------------------------------------------------------------===//
- // Other Operators
- //===----------------------------------------------------------------------===//
- /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
- /// expression is cheap enough and side-effect-free enough to evaluate
- /// unconditionally instead of conditionally. This is used to convert control
- /// flow into selects in some cases.
- static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
- CodeGenFunction &CGF) {
- // Anything that is an integer or floating point constant is fine.
- return E->IgnoreParens()->isEvaluatable(CGF.getContext());
- // Even non-volatile automatic variables can't be evaluated unconditionally.
- // Referencing a thread_local may cause non-trivial initialization work to
- // occur. If we're inside a lambda and one of the variables is from the scope
- // outside the lambda, that function may have returned already. Reading its
- // locals is a bad idea. Also, these reads may introduce races there didn't
- // exist in the source-level program.
- }
- Value *ScalarExprEmitter::
- VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
- TestAndClearIgnoreResultAssign();
- // Bind the common expression if necessary.
- CodeGenFunction::OpaqueValueMapping binding(CGF, E);
- Expr *condExpr = E->getCond();
- Expr *lhsExpr = E->getTrueExpr();
- Expr *rhsExpr = E->getFalseExpr();
- // If the condition constant folds and can be elided, try to avoid emitting
- // the condition and the dead arm.
- bool CondExprBool;
- if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
- Expr *live = lhsExpr, *dead = rhsExpr;
- if (!CondExprBool) std::swap(live, dead);
- // If the dead side doesn't have labels we need, just emit the Live part.
- if (!CGF.ContainsLabel(dead)) {
- if (CondExprBool)
- CGF.incrementProfileCounter(E);
- Value *Result = Visit(live);
- // If the live part is a throw expression, it acts like it has a void
- // type, so evaluating it returns a null Value*. However, a conditional
- // with non-void type must return a non-null Value*.
- if (!Result && !E->getType()->isVoidType())
- Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
- return Result;
- }
- }
- // OpenCL: If the condition is a vector, we can treat this condition like
- // the select function.
- if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
- condExpr->getType()->isExtVectorType()) {
- CGF.incrementProfileCounter(E);
- llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
- llvm::Value *LHS = Visit(lhsExpr);
- llvm::Value *RHS = Visit(rhsExpr);
- llvm::Type *condType = ConvertType(condExpr->getType());
- auto *vecTy = cast<llvm::FixedVectorType>(condType);
- unsigned numElem = vecTy->getNumElements();
- llvm::Type *elemType = vecTy->getElementType();
- llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
- llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
- llvm::Value *tmp = Builder.CreateSExt(
- TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
- llvm::Value *tmp2 = Builder.CreateNot(tmp);
- // Cast float to int to perform ANDs if necessary.
- llvm::Value *RHSTmp = RHS;
- llvm::Value *LHSTmp = LHS;
- bool wasCast = false;
- llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
- if (rhsVTy->getElementType()->isFloatingPointTy()) {
- RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
- LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
- wasCast = true;
- }
- llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
- llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
- llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
- if (wasCast)
- tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
- return tmp5;
- }
- if (condExpr->getType()->isVectorType()) {
- CGF.incrementProfileCounter(E);
- llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
- llvm::Value *LHS = Visit(lhsExpr);
- llvm::Value *RHS = Visit(rhsExpr);
- llvm::Type *CondType = ConvertType(condExpr->getType());
- auto *VecTy = cast<llvm::VectorType>(CondType);
- llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
- CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
- return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
- }
- // If this is a really simple expression (like x ? 4 : 5), emit this as a
- // select instead of as control flow. We can only do this if it is cheap and
- // safe to evaluate the LHS and RHS unconditionally.
- if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
- isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
- llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
- llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
- CGF.incrementProfileCounter(E, StepV);
- llvm::Value *LHS = Visit(lhsExpr);
- llvm::Value *RHS = Visit(rhsExpr);
- if (!LHS) {
- // If the conditional has void type, make sure we return a null Value*.
- assert(!RHS && "LHS and RHS types must match");
- return nullptr;
- }
- return Builder.CreateSelect(CondV, LHS, RHS, "cond");
- }
- llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
- llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
- CodeGenFunction::ConditionalEvaluation eval(CGF);
- CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
- CGF.getProfileCount(lhsExpr));
- CGF.EmitBlock(LHSBlock);
- CGF.incrementProfileCounter(E);
- eval.begin(CGF);
- Value *LHS = Visit(lhsExpr);
- eval.end(CGF);
- LHSBlock = Builder.GetInsertBlock();
- Builder.CreateBr(ContBlock);
- CGF.EmitBlock(RHSBlock);
- eval.begin(CGF);
- Value *RHS = Visit(rhsExpr);
- eval.end(CGF);
- RHSBlock = Builder.GetInsertBlock();
- CGF.EmitBlock(ContBlock);
- // If the LHS or RHS is a throw expression, it will be legitimately null.
- if (!LHS)
- return RHS;
- if (!RHS)
- return LHS;
- // Create a PHI node for the real part.
- llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
- PN->addIncoming(LHS, LHSBlock);
- PN->addIncoming(RHS, RHSBlock);
- return PN;
- }
- Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
- return Visit(E->getChosenSubExpr());
- }
- Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
- QualType Ty = VE->getType();
- if (Ty->isVariablyModifiedType())
- CGF.EmitVariablyModifiedType(Ty);
- Address ArgValue = Address::invalid();
- Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
- llvm::Type *ArgTy = ConvertType(VE->getType());
- // If EmitVAArg fails, emit an error.
- if (!ArgPtr.isValid()) {
- CGF.ErrorUnsupported(VE, "va_arg expression");
- return llvm::UndefValue::get(ArgTy);
- }
- // FIXME Volatility.
- llvm::Value *Val = Builder.CreateLoad(ArgPtr);
- // If EmitVAArg promoted the type, we must truncate it.
- if (ArgTy != Val->getType()) {
- if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
- Val = Builder.CreateIntToPtr(Val, ArgTy);
- else
- Val = Builder.CreateTrunc(Val, ArgTy);
- }
- return Val;
- }
- Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
- return CGF.EmitBlockLiteral(block);
- }
- // Convert a vec3 to vec4, or vice versa.
- static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
- Value *Src, unsigned NumElementsDst) {
- static constexpr int Mask[] = {0, 1, 2, -1};
- return Builder.CreateShuffleVector(Src,
- llvm::makeArrayRef(Mask, NumElementsDst));
- }
- // Create cast instructions for converting LLVM value \p Src to LLVM type \p
- // DstTy. \p Src has the same size as \p DstTy. Both are single value types
- // but could be scalar or vectors of different lengths, and either can be
- // pointer.
- // There are 4 cases:
- // 1. non-pointer -> non-pointer : needs 1 bitcast
- // 2. pointer -> pointer : needs 1 bitcast or addrspacecast
- // 3. pointer -> non-pointer
- // a) pointer -> intptr_t : needs 1 ptrtoint
- // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
- // 4. non-pointer -> pointer
- // a) intptr_t -> pointer : needs 1 inttoptr
- // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
- // Note: for cases 3b and 4b two casts are required since LLVM casts do not
- // allow casting directly between pointer types and non-integer non-pointer
- // types.
- static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
- const llvm::DataLayout &DL,
- Value *Src, llvm::Type *DstTy,
- StringRef Name = "") {
- auto SrcTy = Src->getType();
- // Case 1.
- if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
- return Builder.CreateBitCast(Src, DstTy, Name);
- // Case 2.
- if (SrcTy->isPointerTy() && DstTy->isPointerTy())
- return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
- // Case 3.
- if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
- // Case 3b.
- if (!DstTy->isIntegerTy())
- Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
- // Cases 3a and 3b.
- return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
- }
- // Case 4b.
- if (!SrcTy->isIntegerTy())
- Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
- // Cases 4a and 4b.
- return Builder.CreateIntToPtr(Src, DstTy, Name);
- }
- Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
- Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
- llvm::Type *DstTy = ConvertType(E->getType());
- llvm::Type *SrcTy = Src->getType();
- unsigned NumElementsSrc =
- isa<llvm::VectorType>(SrcTy)
- ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
- : 0;
- unsigned NumElementsDst =
- isa<llvm::VectorType>(DstTy)
- ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
- : 0;
- // Going from vec3 to non-vec3 is a special case and requires a shuffle
- // vector to get a vec4, then a bitcast if the target type is different.
- if (NumElementsSrc == 3 && NumElementsDst != 3) {
- Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
- Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
- DstTy);
- Src->setName("astype");
- return Src;
- }
- // Going from non-vec3 to vec3 is a special case and requires a bitcast
- // to vec4 if the original type is not vec4, then a shuffle vector to
- // get a vec3.
- if (NumElementsSrc != 3 && NumElementsDst == 3) {
- auto *Vec4Ty = llvm::FixedVectorType::get(
- cast<llvm::VectorType>(DstTy)->getElementType(), 4);
- Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
- Vec4Ty);
- Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
- Src->setName("astype");
- return Src;
- }
- return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
- Src, DstTy, "astype");
- }
- Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
- return CGF.EmitAtomicExpr(E).getScalarVal();
- }
- //===----------------------------------------------------------------------===//
- // Entry Point into this File
- //===----------------------------------------------------------------------===//
- /// Emit the computation of the specified expression of scalar type, ignoring
- /// the result.
- Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
- assert(E && hasScalarEvaluationKind(E->getType()) &&
- "Invalid scalar expression to emit");
- return ScalarExprEmitter(*this, IgnoreResultAssign)
- .Visit(const_cast<Expr *>(E));
- }
- /// Emit a conversion from the specified type to the specified destination type,
- /// both of which are LLVM scalar types.
- Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
- QualType DstTy,
- SourceLocation Loc) {
- assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
- "Invalid scalar expression to emit");
- return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
- }
- /// Emit a conversion from the specified complex type to the specified
- /// destination type, where the destination type is an LLVM scalar type.
- Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
- QualType SrcTy,
- QualType DstTy,
- SourceLocation Loc) {
- assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
- "Invalid complex -> scalar conversion");
- return ScalarExprEmitter(*this)
- .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
- }
- llvm::Value *CodeGenFunction::
- EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
- bool isInc, bool isPre) {
- return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
- }
- LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
- // object->isa or (*object).isa
- // Generate code as for: *(Class*)object
- Expr *BaseExpr = E->getBase();
- Address Addr = Address::invalid();
- if (BaseExpr->isPRValue()) {
- Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
- } else {
- Addr = EmitLValue(BaseExpr).getAddress(*this);
- }
- // Cast the address to Class*.
- Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
- return MakeAddrLValue(Addr, E->getType());
- }
- LValue CodeGenFunction::EmitCompoundAssignmentLValue(
- const CompoundAssignOperator *E) {
- ScalarExprEmitter Scalar(*this);
- Value *Result = nullptr;
- switch (E->getOpcode()) {
- #define COMPOUND_OP(Op) \
- case BO_##Op##Assign: \
- return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
- Result)
- COMPOUND_OP(Mul);
- COMPOUND_OP(Div);
- COMPOUND_OP(Rem);
- COMPOUND_OP(Add);
- COMPOUND_OP(Sub);
- COMPOUND_OP(Shl);
- COMPOUND_OP(Shr);
- COMPOUND_OP(And);
- COMPOUND_OP(Xor);
- COMPOUND_OP(Or);
- #undef COMPOUND_OP
- case BO_PtrMemD:
- case BO_PtrMemI:
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_Add:
- case BO_Sub:
- case BO_Shl:
- case BO_Shr:
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- case BO_Cmp:
- case BO_And:
- case BO_Xor:
- case BO_Or:
- case BO_LAnd:
- case BO_LOr:
- case BO_Assign:
- case BO_Comma:
- llvm_unreachable("Not valid compound assignment operators");
- }
- llvm_unreachable("Unhandled compound assignment operator");
- }
- struct GEPOffsetAndOverflow {
- // The total (signed) byte offset for the GEP.
- llvm::Value *TotalOffset;
- // The offset overflow flag - true if the total offset overflows.
- llvm::Value *OffsetOverflows;
- };
- /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
- /// and compute the total offset it applies from it's base pointer BasePtr.
- /// Returns offset in bytes and a boolean flag whether an overflow happened
- /// during evaluation.
- static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
- llvm::LLVMContext &VMContext,
- CodeGenModule &CGM,
- CGBuilderTy &Builder) {
- const auto &DL = CGM.getDataLayout();
- // The total (signed) byte offset for the GEP.
- llvm::Value *TotalOffset = nullptr;
- // Was the GEP already reduced to a constant?
- if (isa<llvm::Constant>(GEPVal)) {
- // Compute the offset by casting both pointers to integers and subtracting:
- // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
- Value *BasePtr_int =
- Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
- Value *GEPVal_int =
- Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
- TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
- return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
- }
- auto *GEP = cast<llvm::GEPOperator>(GEPVal);
- assert(GEP->getPointerOperand() == BasePtr &&
- "BasePtr must be the base of the GEP.");
- assert(GEP->isInBounds() && "Expected inbounds GEP");
- auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
- // Grab references to the signed add/mul overflow intrinsics for intptr_t.
- auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
- auto *SAddIntrinsic =
- CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
- auto *SMulIntrinsic =
- CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
- // The offset overflow flag - true if the total offset overflows.
- llvm::Value *OffsetOverflows = Builder.getFalse();
- /// Return the result of the given binary operation.
- auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
- llvm::Value *RHS) -> llvm::Value * {
- assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
- // If the operands are constants, return a constant result.
- if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
- if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
- llvm::APInt N;
- bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
- /*Signed=*/true, N);
- if (HasOverflow)
- OffsetOverflows = Builder.getTrue();
- return llvm::ConstantInt::get(VMContext, N);
- }
- }
- // Otherwise, compute the result with checked arithmetic.
- auto *ResultAndOverflow = Builder.CreateCall(
- (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
- OffsetOverflows = Builder.CreateOr(
- Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
- return Builder.CreateExtractValue(ResultAndOverflow, 0);
- };
- // Determine the total byte offset by looking at each GEP operand.
- for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
- GTI != GTE; ++GTI) {
- llvm::Value *LocalOffset;
- auto *Index = GTI.getOperand();
- // Compute the local offset contributed by this indexing step:
- if (auto *STy = GTI.getStructTypeOrNull()) {
- // For struct indexing, the local offset is the byte position of the
- // specified field.
- unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
- LocalOffset = llvm::ConstantInt::get(
- IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
- } else {
- // Otherwise this is array-like indexing. The local offset is the index
- // multiplied by the element size.
- auto *ElementSize = llvm::ConstantInt::get(
- IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
- auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
- LocalOffset = eval(BO_Mul, ElementSize, IndexS);
- }
- // If this is the first offset, set it as the total offset. Otherwise, add
- // the local offset into the running total.
- if (!TotalOffset || TotalOffset == Zero)
- TotalOffset = LocalOffset;
- else
- TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
- }
- return {TotalOffset, OffsetOverflows};
- }
- Value *
- CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
- ArrayRef<Value *> IdxList,
- bool SignedIndices, bool IsSubtraction,
- SourceLocation Loc, const Twine &Name) {
- llvm::Type *PtrTy = Ptr->getType();
- Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name);
- // If the pointer overflow sanitizer isn't enabled, do nothing.
- if (!SanOpts.has(SanitizerKind::PointerOverflow))
- return GEPVal;
- // Perform nullptr-and-offset check unless the nullptr is defined.
- bool PerformNullCheck = !NullPointerIsDefined(
- Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
- // Check for overflows unless the GEP got constant-folded,
- // and only in the default address space
- bool PerformOverflowCheck =
- !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
- if (!(PerformNullCheck || PerformOverflowCheck))
- return GEPVal;
- const auto &DL = CGM.getDataLayout();
- SanitizerScope SanScope(this);
- llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
- GEPOffsetAndOverflow EvaluatedGEP =
- EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
- assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
- EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
- "If the offset got constant-folded, we don't expect that there was an "
- "overflow.");
- auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
- // Common case: if the total offset is zero, and we are using C++ semantics,
- // where nullptr+0 is defined, don't emit a check.
- if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
- return GEPVal;
- // Now that we've computed the total offset, add it to the base pointer (with
- // wrapping semantics).
- auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
- auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
- llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
- if (PerformNullCheck) {
- // In C++, if the base pointer evaluates to a null pointer value,
- // the only valid pointer this inbounds GEP can produce is also
- // a null pointer, so the offset must also evaluate to zero.
- // Likewise, if we have non-zero base pointer, we can not get null pointer
- // as a result, so the offset can not be -intptr_t(BasePtr).
- // In other words, both pointers are either null, or both are non-null,
- // or the behaviour is undefined.
- //
- // C, however, is more strict in this regard, and gives more
- // optimization opportunities: in C, additionally, nullptr+0 is undefined.
- // So both the input to the 'gep inbounds' AND the output must not be null.
- auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
- auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
- auto *Valid =
- CGM.getLangOpts().CPlusPlus
- ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
- : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
- Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
- }
- if (PerformOverflowCheck) {
- // The GEP is valid if:
- // 1) The total offset doesn't overflow, and
- // 2) The sign of the difference between the computed address and the base
- // pointer matches the sign of the total offset.
- llvm::Value *ValidGEP;
- auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
- if (SignedIndices) {
- // GEP is computed as `unsigned base + signed offset`, therefore:
- // * If offset was positive, then the computed pointer can not be
- // [unsigned] less than the base pointer, unless it overflowed.
- // * If offset was negative, then the computed pointer can not be
- // [unsigned] greater than the bas pointere, unless it overflowed.
- auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
- auto *PosOrZeroOffset =
- Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
- llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
- ValidGEP =
- Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
- } else if (!IsSubtraction) {
- // GEP is computed as `unsigned base + unsigned offset`, therefore the
- // computed pointer can not be [unsigned] less than base pointer,
- // unless there was an overflow.
- // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
- ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
- } else {
- // GEP is computed as `unsigned base - unsigned offset`, therefore the
- // computed pointer can not be [unsigned] greater than base pointer,
- // unless there was an overflow.
- // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
- ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
- }
- ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
- Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
- }
- assert(!Checks.empty() && "Should have produced some checks.");
- llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
- // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
- llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
- EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
- return GEPVal;
- }
|