12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063 |
- // Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
- //
- // Licensed under the OpenSSL license (the "License"). You may not use
- // this file except in compliance with the License. You can obtain a copy
- // in the file LICENSE in the source distribution or at
- // https://www.openssl.org/source/license.html
- // ====================================================================
- // Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
- // project. The module is, however, dual licensed under OpenSSL and
- // CRYPTOGAMS licenses depending on where you obtain it. For further
- // details see http://www.openssl.org/~appro/cryptogams/.
- //
- // Permission to use under GPLv2 terms is granted.
- // ====================================================================
- //
- // SHA256/512 for ARMv8.
- //
- // Performance in cycles per processed byte and improvement coefficient
- // over code generated with "default" compiler:
- //
- // SHA256-hw SHA256(*) SHA512
- // Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
- // Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***))
- // Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
- // Denver 2.01 10.5 (+26%) 6.70 (+8%)
- // X-Gene 20.0 (+100%) 12.8 (+300%(***))
- // Mongoose 2.36 13.0 (+50%) 8.36 (+33%)
- // Kryo 1.92 17.4 (+30%) 11.2 (+8%)
- //
- // (*) Software SHA256 results are of lesser relevance, presented
- // mostly for informational purposes.
- // (**) The result is a trade-off: it's possible to improve it by
- // 10% (or by 1 cycle per round), but at the cost of 20% loss
- // on Cortex-A53 (or by 4 cycles per round).
- // (***) Super-impressive coefficients over gcc-generated code are
- // indication of some compiler "pathology", most notably code
- // generated with -mgeneral-regs-only is significantly faster
- // and the gap is only 40-90%.
- //
- // October 2016.
- //
- // Originally it was reckoned that it makes no sense to implement NEON
- // version of SHA256 for 64-bit processors. This is because performance
- // improvement on most wide-spread Cortex-A5x processors was observed
- // to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
- // observed that 32-bit NEON SHA256 performs significantly better than
- // 64-bit scalar version on *some* of the more recent processors. As
- // result 64-bit NEON version of SHA256 was added to provide best
- // all-round performance. For example it executes ~30% faster on X-Gene
- // and Mongoose. [For reference, NEON version of SHA512 is bound to
- // deliver much less improvement, likely *negative* on Cortex-A5x.
- // Which is why NEON support is limited to SHA256.]
- #ifndef __KERNEL__
- # include "arm_arch.h"
- #endif
- .text
- .private_extern _OPENSSL_armcap_P
- .globl _sha256_block_data_order
- .align 6
- _sha256_block_data_order:
- #ifndef __KERNEL__
- # ifdef __ILP32__
- ldrsw x16,LOPENSSL_armcap_P
- # else
- ldr x16,LOPENSSL_armcap_P
- # endif
- adr x17,LOPENSSL_armcap_P
- add x16,x16,x17
- ldr w16,[x16]
- tst w16,#ARMV8_SHA256
- b.ne Lv8_entry
- tst w16,#ARMV7_NEON
- b.ne Lneon_entry
- #endif
- .long 0xd503233f // paciasp
- stp x29,x30,[sp,#-128]!
- add x29,sp,#0
- stp x19,x20,[sp,#16]
- stp x21,x22,[sp,#32]
- stp x23,x24,[sp,#48]
- stp x25,x26,[sp,#64]
- stp x27,x28,[sp,#80]
- sub sp,sp,#4*4
- ldp w20,w21,[x0] // load context
- ldp w22,w23,[x0,#2*4]
- ldp w24,w25,[x0,#4*4]
- add x2,x1,x2,lsl#6 // end of input
- ldp w26,w27,[x0,#6*4]
- adr x30,LK256
- stp x0,x2,[x29,#96]
- Loop:
- ldp w3,w4,[x1],#2*4
- ldr w19,[x30],#4 // *K++
- eor w28,w21,w22 // magic seed
- str x1,[x29,#112]
- #ifndef __AARCH64EB__
- rev w3,w3 // 0
- #endif
- ror w16,w24,#6
- add w27,w27,w19 // h+=K[i]
- eor w6,w24,w24,ror#14
- and w17,w25,w24
- bic w19,w26,w24
- add w27,w27,w3 // h+=X[i]
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w20,w21 // a^b, b^c in next round
- eor w16,w16,w6,ror#11 // Sigma1(e)
- ror w6,w20,#2
- add w27,w27,w17 // h+=Ch(e,f,g)
- eor w17,w20,w20,ror#9
- add w27,w27,w16 // h+=Sigma1(e)
- and w28,w28,w19 // (b^c)&=(a^b)
- add w23,w23,w27 // d+=h
- eor w28,w28,w21 // Maj(a,b,c)
- eor w17,w6,w17,ror#13 // Sigma0(a)
- add w27,w27,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- //add w27,w27,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w4,w4 // 1
- #endif
- ldp w5,w6,[x1],#2*4
- add w27,w27,w17 // h+=Sigma0(a)
- ror w16,w23,#6
- add w26,w26,w28 // h+=K[i]
- eor w7,w23,w23,ror#14
- and w17,w24,w23
- bic w28,w25,w23
- add w26,w26,w4 // h+=X[i]
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w27,w20 // a^b, b^c in next round
- eor w16,w16,w7,ror#11 // Sigma1(e)
- ror w7,w27,#2
- add w26,w26,w17 // h+=Ch(e,f,g)
- eor w17,w27,w27,ror#9
- add w26,w26,w16 // h+=Sigma1(e)
- and w19,w19,w28 // (b^c)&=(a^b)
- add w22,w22,w26 // d+=h
- eor w19,w19,w20 // Maj(a,b,c)
- eor w17,w7,w17,ror#13 // Sigma0(a)
- add w26,w26,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- //add w26,w26,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w5,w5 // 2
- #endif
- add w26,w26,w17 // h+=Sigma0(a)
- ror w16,w22,#6
- add w25,w25,w19 // h+=K[i]
- eor w8,w22,w22,ror#14
- and w17,w23,w22
- bic w19,w24,w22
- add w25,w25,w5 // h+=X[i]
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w26,w27 // a^b, b^c in next round
- eor w16,w16,w8,ror#11 // Sigma1(e)
- ror w8,w26,#2
- add w25,w25,w17 // h+=Ch(e,f,g)
- eor w17,w26,w26,ror#9
- add w25,w25,w16 // h+=Sigma1(e)
- and w28,w28,w19 // (b^c)&=(a^b)
- add w21,w21,w25 // d+=h
- eor w28,w28,w27 // Maj(a,b,c)
- eor w17,w8,w17,ror#13 // Sigma0(a)
- add w25,w25,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- //add w25,w25,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w6,w6 // 3
- #endif
- ldp w7,w8,[x1],#2*4
- add w25,w25,w17 // h+=Sigma0(a)
- ror w16,w21,#6
- add w24,w24,w28 // h+=K[i]
- eor w9,w21,w21,ror#14
- and w17,w22,w21
- bic w28,w23,w21
- add w24,w24,w6 // h+=X[i]
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w25,w26 // a^b, b^c in next round
- eor w16,w16,w9,ror#11 // Sigma1(e)
- ror w9,w25,#2
- add w24,w24,w17 // h+=Ch(e,f,g)
- eor w17,w25,w25,ror#9
- add w24,w24,w16 // h+=Sigma1(e)
- and w19,w19,w28 // (b^c)&=(a^b)
- add w20,w20,w24 // d+=h
- eor w19,w19,w26 // Maj(a,b,c)
- eor w17,w9,w17,ror#13 // Sigma0(a)
- add w24,w24,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- //add w24,w24,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w7,w7 // 4
- #endif
- add w24,w24,w17 // h+=Sigma0(a)
- ror w16,w20,#6
- add w23,w23,w19 // h+=K[i]
- eor w10,w20,w20,ror#14
- and w17,w21,w20
- bic w19,w22,w20
- add w23,w23,w7 // h+=X[i]
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w24,w25 // a^b, b^c in next round
- eor w16,w16,w10,ror#11 // Sigma1(e)
- ror w10,w24,#2
- add w23,w23,w17 // h+=Ch(e,f,g)
- eor w17,w24,w24,ror#9
- add w23,w23,w16 // h+=Sigma1(e)
- and w28,w28,w19 // (b^c)&=(a^b)
- add w27,w27,w23 // d+=h
- eor w28,w28,w25 // Maj(a,b,c)
- eor w17,w10,w17,ror#13 // Sigma0(a)
- add w23,w23,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- //add w23,w23,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w8,w8 // 5
- #endif
- ldp w9,w10,[x1],#2*4
- add w23,w23,w17 // h+=Sigma0(a)
- ror w16,w27,#6
- add w22,w22,w28 // h+=K[i]
- eor w11,w27,w27,ror#14
- and w17,w20,w27
- bic w28,w21,w27
- add w22,w22,w8 // h+=X[i]
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w23,w24 // a^b, b^c in next round
- eor w16,w16,w11,ror#11 // Sigma1(e)
- ror w11,w23,#2
- add w22,w22,w17 // h+=Ch(e,f,g)
- eor w17,w23,w23,ror#9
- add w22,w22,w16 // h+=Sigma1(e)
- and w19,w19,w28 // (b^c)&=(a^b)
- add w26,w26,w22 // d+=h
- eor w19,w19,w24 // Maj(a,b,c)
- eor w17,w11,w17,ror#13 // Sigma0(a)
- add w22,w22,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- //add w22,w22,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w9,w9 // 6
- #endif
- add w22,w22,w17 // h+=Sigma0(a)
- ror w16,w26,#6
- add w21,w21,w19 // h+=K[i]
- eor w12,w26,w26,ror#14
- and w17,w27,w26
- bic w19,w20,w26
- add w21,w21,w9 // h+=X[i]
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w22,w23 // a^b, b^c in next round
- eor w16,w16,w12,ror#11 // Sigma1(e)
- ror w12,w22,#2
- add w21,w21,w17 // h+=Ch(e,f,g)
- eor w17,w22,w22,ror#9
- add w21,w21,w16 // h+=Sigma1(e)
- and w28,w28,w19 // (b^c)&=(a^b)
- add w25,w25,w21 // d+=h
- eor w28,w28,w23 // Maj(a,b,c)
- eor w17,w12,w17,ror#13 // Sigma0(a)
- add w21,w21,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- //add w21,w21,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w10,w10 // 7
- #endif
- ldp w11,w12,[x1],#2*4
- add w21,w21,w17 // h+=Sigma0(a)
- ror w16,w25,#6
- add w20,w20,w28 // h+=K[i]
- eor w13,w25,w25,ror#14
- and w17,w26,w25
- bic w28,w27,w25
- add w20,w20,w10 // h+=X[i]
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w21,w22 // a^b, b^c in next round
- eor w16,w16,w13,ror#11 // Sigma1(e)
- ror w13,w21,#2
- add w20,w20,w17 // h+=Ch(e,f,g)
- eor w17,w21,w21,ror#9
- add w20,w20,w16 // h+=Sigma1(e)
- and w19,w19,w28 // (b^c)&=(a^b)
- add w24,w24,w20 // d+=h
- eor w19,w19,w22 // Maj(a,b,c)
- eor w17,w13,w17,ror#13 // Sigma0(a)
- add w20,w20,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- //add w20,w20,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w11,w11 // 8
- #endif
- add w20,w20,w17 // h+=Sigma0(a)
- ror w16,w24,#6
- add w27,w27,w19 // h+=K[i]
- eor w14,w24,w24,ror#14
- and w17,w25,w24
- bic w19,w26,w24
- add w27,w27,w11 // h+=X[i]
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w20,w21 // a^b, b^c in next round
- eor w16,w16,w14,ror#11 // Sigma1(e)
- ror w14,w20,#2
- add w27,w27,w17 // h+=Ch(e,f,g)
- eor w17,w20,w20,ror#9
- add w27,w27,w16 // h+=Sigma1(e)
- and w28,w28,w19 // (b^c)&=(a^b)
- add w23,w23,w27 // d+=h
- eor w28,w28,w21 // Maj(a,b,c)
- eor w17,w14,w17,ror#13 // Sigma0(a)
- add w27,w27,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- //add w27,w27,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w12,w12 // 9
- #endif
- ldp w13,w14,[x1],#2*4
- add w27,w27,w17 // h+=Sigma0(a)
- ror w16,w23,#6
- add w26,w26,w28 // h+=K[i]
- eor w15,w23,w23,ror#14
- and w17,w24,w23
- bic w28,w25,w23
- add w26,w26,w12 // h+=X[i]
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w27,w20 // a^b, b^c in next round
- eor w16,w16,w15,ror#11 // Sigma1(e)
- ror w15,w27,#2
- add w26,w26,w17 // h+=Ch(e,f,g)
- eor w17,w27,w27,ror#9
- add w26,w26,w16 // h+=Sigma1(e)
- and w19,w19,w28 // (b^c)&=(a^b)
- add w22,w22,w26 // d+=h
- eor w19,w19,w20 // Maj(a,b,c)
- eor w17,w15,w17,ror#13 // Sigma0(a)
- add w26,w26,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- //add w26,w26,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w13,w13 // 10
- #endif
- add w26,w26,w17 // h+=Sigma0(a)
- ror w16,w22,#6
- add w25,w25,w19 // h+=K[i]
- eor w0,w22,w22,ror#14
- and w17,w23,w22
- bic w19,w24,w22
- add w25,w25,w13 // h+=X[i]
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w26,w27 // a^b, b^c in next round
- eor w16,w16,w0,ror#11 // Sigma1(e)
- ror w0,w26,#2
- add w25,w25,w17 // h+=Ch(e,f,g)
- eor w17,w26,w26,ror#9
- add w25,w25,w16 // h+=Sigma1(e)
- and w28,w28,w19 // (b^c)&=(a^b)
- add w21,w21,w25 // d+=h
- eor w28,w28,w27 // Maj(a,b,c)
- eor w17,w0,w17,ror#13 // Sigma0(a)
- add w25,w25,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- //add w25,w25,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w14,w14 // 11
- #endif
- ldp w15,w0,[x1],#2*4
- add w25,w25,w17 // h+=Sigma0(a)
- str w6,[sp,#12]
- ror w16,w21,#6
- add w24,w24,w28 // h+=K[i]
- eor w6,w21,w21,ror#14
- and w17,w22,w21
- bic w28,w23,w21
- add w24,w24,w14 // h+=X[i]
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w25,w26 // a^b, b^c in next round
- eor w16,w16,w6,ror#11 // Sigma1(e)
- ror w6,w25,#2
- add w24,w24,w17 // h+=Ch(e,f,g)
- eor w17,w25,w25,ror#9
- add w24,w24,w16 // h+=Sigma1(e)
- and w19,w19,w28 // (b^c)&=(a^b)
- add w20,w20,w24 // d+=h
- eor w19,w19,w26 // Maj(a,b,c)
- eor w17,w6,w17,ror#13 // Sigma0(a)
- add w24,w24,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- //add w24,w24,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w15,w15 // 12
- #endif
- add w24,w24,w17 // h+=Sigma0(a)
- str w7,[sp,#0]
- ror w16,w20,#6
- add w23,w23,w19 // h+=K[i]
- eor w7,w20,w20,ror#14
- and w17,w21,w20
- bic w19,w22,w20
- add w23,w23,w15 // h+=X[i]
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w24,w25 // a^b, b^c in next round
- eor w16,w16,w7,ror#11 // Sigma1(e)
- ror w7,w24,#2
- add w23,w23,w17 // h+=Ch(e,f,g)
- eor w17,w24,w24,ror#9
- add w23,w23,w16 // h+=Sigma1(e)
- and w28,w28,w19 // (b^c)&=(a^b)
- add w27,w27,w23 // d+=h
- eor w28,w28,w25 // Maj(a,b,c)
- eor w17,w7,w17,ror#13 // Sigma0(a)
- add w23,w23,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- //add w23,w23,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w0,w0 // 13
- #endif
- ldp w1,w2,[x1]
- add w23,w23,w17 // h+=Sigma0(a)
- str w8,[sp,#4]
- ror w16,w27,#6
- add w22,w22,w28 // h+=K[i]
- eor w8,w27,w27,ror#14
- and w17,w20,w27
- bic w28,w21,w27
- add w22,w22,w0 // h+=X[i]
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w23,w24 // a^b, b^c in next round
- eor w16,w16,w8,ror#11 // Sigma1(e)
- ror w8,w23,#2
- add w22,w22,w17 // h+=Ch(e,f,g)
- eor w17,w23,w23,ror#9
- add w22,w22,w16 // h+=Sigma1(e)
- and w19,w19,w28 // (b^c)&=(a^b)
- add w26,w26,w22 // d+=h
- eor w19,w19,w24 // Maj(a,b,c)
- eor w17,w8,w17,ror#13 // Sigma0(a)
- add w22,w22,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- //add w22,w22,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w1,w1 // 14
- #endif
- ldr w6,[sp,#12]
- add w22,w22,w17 // h+=Sigma0(a)
- str w9,[sp,#8]
- ror w16,w26,#6
- add w21,w21,w19 // h+=K[i]
- eor w9,w26,w26,ror#14
- and w17,w27,w26
- bic w19,w20,w26
- add w21,w21,w1 // h+=X[i]
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w22,w23 // a^b, b^c in next round
- eor w16,w16,w9,ror#11 // Sigma1(e)
- ror w9,w22,#2
- add w21,w21,w17 // h+=Ch(e,f,g)
- eor w17,w22,w22,ror#9
- add w21,w21,w16 // h+=Sigma1(e)
- and w28,w28,w19 // (b^c)&=(a^b)
- add w25,w25,w21 // d+=h
- eor w28,w28,w23 // Maj(a,b,c)
- eor w17,w9,w17,ror#13 // Sigma0(a)
- add w21,w21,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- //add w21,w21,w17 // h+=Sigma0(a)
- #ifndef __AARCH64EB__
- rev w2,w2 // 15
- #endif
- ldr w7,[sp,#0]
- add w21,w21,w17 // h+=Sigma0(a)
- str w10,[sp,#12]
- ror w16,w25,#6
- add w20,w20,w28 // h+=K[i]
- ror w9,w4,#7
- and w17,w26,w25
- ror w8,w1,#17
- bic w28,w27,w25
- ror w10,w21,#2
- add w20,w20,w2 // h+=X[i]
- eor w16,w16,w25,ror#11
- eor w9,w9,w4,ror#18
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w21,w22 // a^b, b^c in next round
- eor w16,w16,w25,ror#25 // Sigma1(e)
- eor w10,w10,w21,ror#13
- add w20,w20,w17 // h+=Ch(e,f,g)
- and w19,w19,w28 // (b^c)&=(a^b)
- eor w8,w8,w1,ror#19
- eor w9,w9,w4,lsr#3 // sigma0(X[i+1])
- add w20,w20,w16 // h+=Sigma1(e)
- eor w19,w19,w22 // Maj(a,b,c)
- eor w17,w10,w21,ror#22 // Sigma0(a)
- eor w8,w8,w1,lsr#10 // sigma1(X[i+14])
- add w3,w3,w12
- add w24,w24,w20 // d+=h
- add w20,w20,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- add w3,w3,w9
- add w20,w20,w17 // h+=Sigma0(a)
- add w3,w3,w8
- Loop_16_xx:
- ldr w8,[sp,#4]
- str w11,[sp,#0]
- ror w16,w24,#6
- add w27,w27,w19 // h+=K[i]
- ror w10,w5,#7
- and w17,w25,w24
- ror w9,w2,#17
- bic w19,w26,w24
- ror w11,w20,#2
- add w27,w27,w3 // h+=X[i]
- eor w16,w16,w24,ror#11
- eor w10,w10,w5,ror#18
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w20,w21 // a^b, b^c in next round
- eor w16,w16,w24,ror#25 // Sigma1(e)
- eor w11,w11,w20,ror#13
- add w27,w27,w17 // h+=Ch(e,f,g)
- and w28,w28,w19 // (b^c)&=(a^b)
- eor w9,w9,w2,ror#19
- eor w10,w10,w5,lsr#3 // sigma0(X[i+1])
- add w27,w27,w16 // h+=Sigma1(e)
- eor w28,w28,w21 // Maj(a,b,c)
- eor w17,w11,w20,ror#22 // Sigma0(a)
- eor w9,w9,w2,lsr#10 // sigma1(X[i+14])
- add w4,w4,w13
- add w23,w23,w27 // d+=h
- add w27,w27,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- add w4,w4,w10
- add w27,w27,w17 // h+=Sigma0(a)
- add w4,w4,w9
- ldr w9,[sp,#8]
- str w12,[sp,#4]
- ror w16,w23,#6
- add w26,w26,w28 // h+=K[i]
- ror w11,w6,#7
- and w17,w24,w23
- ror w10,w3,#17
- bic w28,w25,w23
- ror w12,w27,#2
- add w26,w26,w4 // h+=X[i]
- eor w16,w16,w23,ror#11
- eor w11,w11,w6,ror#18
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w27,w20 // a^b, b^c in next round
- eor w16,w16,w23,ror#25 // Sigma1(e)
- eor w12,w12,w27,ror#13
- add w26,w26,w17 // h+=Ch(e,f,g)
- and w19,w19,w28 // (b^c)&=(a^b)
- eor w10,w10,w3,ror#19
- eor w11,w11,w6,lsr#3 // sigma0(X[i+1])
- add w26,w26,w16 // h+=Sigma1(e)
- eor w19,w19,w20 // Maj(a,b,c)
- eor w17,w12,w27,ror#22 // Sigma0(a)
- eor w10,w10,w3,lsr#10 // sigma1(X[i+14])
- add w5,w5,w14
- add w22,w22,w26 // d+=h
- add w26,w26,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- add w5,w5,w11
- add w26,w26,w17 // h+=Sigma0(a)
- add w5,w5,w10
- ldr w10,[sp,#12]
- str w13,[sp,#8]
- ror w16,w22,#6
- add w25,w25,w19 // h+=K[i]
- ror w12,w7,#7
- and w17,w23,w22
- ror w11,w4,#17
- bic w19,w24,w22
- ror w13,w26,#2
- add w25,w25,w5 // h+=X[i]
- eor w16,w16,w22,ror#11
- eor w12,w12,w7,ror#18
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w26,w27 // a^b, b^c in next round
- eor w16,w16,w22,ror#25 // Sigma1(e)
- eor w13,w13,w26,ror#13
- add w25,w25,w17 // h+=Ch(e,f,g)
- and w28,w28,w19 // (b^c)&=(a^b)
- eor w11,w11,w4,ror#19
- eor w12,w12,w7,lsr#3 // sigma0(X[i+1])
- add w25,w25,w16 // h+=Sigma1(e)
- eor w28,w28,w27 // Maj(a,b,c)
- eor w17,w13,w26,ror#22 // Sigma0(a)
- eor w11,w11,w4,lsr#10 // sigma1(X[i+14])
- add w6,w6,w15
- add w21,w21,w25 // d+=h
- add w25,w25,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- add w6,w6,w12
- add w25,w25,w17 // h+=Sigma0(a)
- add w6,w6,w11
- ldr w11,[sp,#0]
- str w14,[sp,#12]
- ror w16,w21,#6
- add w24,w24,w28 // h+=K[i]
- ror w13,w8,#7
- and w17,w22,w21
- ror w12,w5,#17
- bic w28,w23,w21
- ror w14,w25,#2
- add w24,w24,w6 // h+=X[i]
- eor w16,w16,w21,ror#11
- eor w13,w13,w8,ror#18
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w25,w26 // a^b, b^c in next round
- eor w16,w16,w21,ror#25 // Sigma1(e)
- eor w14,w14,w25,ror#13
- add w24,w24,w17 // h+=Ch(e,f,g)
- and w19,w19,w28 // (b^c)&=(a^b)
- eor w12,w12,w5,ror#19
- eor w13,w13,w8,lsr#3 // sigma0(X[i+1])
- add w24,w24,w16 // h+=Sigma1(e)
- eor w19,w19,w26 // Maj(a,b,c)
- eor w17,w14,w25,ror#22 // Sigma0(a)
- eor w12,w12,w5,lsr#10 // sigma1(X[i+14])
- add w7,w7,w0
- add w20,w20,w24 // d+=h
- add w24,w24,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- add w7,w7,w13
- add w24,w24,w17 // h+=Sigma0(a)
- add w7,w7,w12
- ldr w12,[sp,#4]
- str w15,[sp,#0]
- ror w16,w20,#6
- add w23,w23,w19 // h+=K[i]
- ror w14,w9,#7
- and w17,w21,w20
- ror w13,w6,#17
- bic w19,w22,w20
- ror w15,w24,#2
- add w23,w23,w7 // h+=X[i]
- eor w16,w16,w20,ror#11
- eor w14,w14,w9,ror#18
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w24,w25 // a^b, b^c in next round
- eor w16,w16,w20,ror#25 // Sigma1(e)
- eor w15,w15,w24,ror#13
- add w23,w23,w17 // h+=Ch(e,f,g)
- and w28,w28,w19 // (b^c)&=(a^b)
- eor w13,w13,w6,ror#19
- eor w14,w14,w9,lsr#3 // sigma0(X[i+1])
- add w23,w23,w16 // h+=Sigma1(e)
- eor w28,w28,w25 // Maj(a,b,c)
- eor w17,w15,w24,ror#22 // Sigma0(a)
- eor w13,w13,w6,lsr#10 // sigma1(X[i+14])
- add w8,w8,w1
- add w27,w27,w23 // d+=h
- add w23,w23,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- add w8,w8,w14
- add w23,w23,w17 // h+=Sigma0(a)
- add w8,w8,w13
- ldr w13,[sp,#8]
- str w0,[sp,#4]
- ror w16,w27,#6
- add w22,w22,w28 // h+=K[i]
- ror w15,w10,#7
- and w17,w20,w27
- ror w14,w7,#17
- bic w28,w21,w27
- ror w0,w23,#2
- add w22,w22,w8 // h+=X[i]
- eor w16,w16,w27,ror#11
- eor w15,w15,w10,ror#18
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w23,w24 // a^b, b^c in next round
- eor w16,w16,w27,ror#25 // Sigma1(e)
- eor w0,w0,w23,ror#13
- add w22,w22,w17 // h+=Ch(e,f,g)
- and w19,w19,w28 // (b^c)&=(a^b)
- eor w14,w14,w7,ror#19
- eor w15,w15,w10,lsr#3 // sigma0(X[i+1])
- add w22,w22,w16 // h+=Sigma1(e)
- eor w19,w19,w24 // Maj(a,b,c)
- eor w17,w0,w23,ror#22 // Sigma0(a)
- eor w14,w14,w7,lsr#10 // sigma1(X[i+14])
- add w9,w9,w2
- add w26,w26,w22 // d+=h
- add w22,w22,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- add w9,w9,w15
- add w22,w22,w17 // h+=Sigma0(a)
- add w9,w9,w14
- ldr w14,[sp,#12]
- str w1,[sp,#8]
- ror w16,w26,#6
- add w21,w21,w19 // h+=K[i]
- ror w0,w11,#7
- and w17,w27,w26
- ror w15,w8,#17
- bic w19,w20,w26
- ror w1,w22,#2
- add w21,w21,w9 // h+=X[i]
- eor w16,w16,w26,ror#11
- eor w0,w0,w11,ror#18
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w22,w23 // a^b, b^c in next round
- eor w16,w16,w26,ror#25 // Sigma1(e)
- eor w1,w1,w22,ror#13
- add w21,w21,w17 // h+=Ch(e,f,g)
- and w28,w28,w19 // (b^c)&=(a^b)
- eor w15,w15,w8,ror#19
- eor w0,w0,w11,lsr#3 // sigma0(X[i+1])
- add w21,w21,w16 // h+=Sigma1(e)
- eor w28,w28,w23 // Maj(a,b,c)
- eor w17,w1,w22,ror#22 // Sigma0(a)
- eor w15,w15,w8,lsr#10 // sigma1(X[i+14])
- add w10,w10,w3
- add w25,w25,w21 // d+=h
- add w21,w21,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- add w10,w10,w0
- add w21,w21,w17 // h+=Sigma0(a)
- add w10,w10,w15
- ldr w15,[sp,#0]
- str w2,[sp,#12]
- ror w16,w25,#6
- add w20,w20,w28 // h+=K[i]
- ror w1,w12,#7
- and w17,w26,w25
- ror w0,w9,#17
- bic w28,w27,w25
- ror w2,w21,#2
- add w20,w20,w10 // h+=X[i]
- eor w16,w16,w25,ror#11
- eor w1,w1,w12,ror#18
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w21,w22 // a^b, b^c in next round
- eor w16,w16,w25,ror#25 // Sigma1(e)
- eor w2,w2,w21,ror#13
- add w20,w20,w17 // h+=Ch(e,f,g)
- and w19,w19,w28 // (b^c)&=(a^b)
- eor w0,w0,w9,ror#19
- eor w1,w1,w12,lsr#3 // sigma0(X[i+1])
- add w20,w20,w16 // h+=Sigma1(e)
- eor w19,w19,w22 // Maj(a,b,c)
- eor w17,w2,w21,ror#22 // Sigma0(a)
- eor w0,w0,w9,lsr#10 // sigma1(X[i+14])
- add w11,w11,w4
- add w24,w24,w20 // d+=h
- add w20,w20,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- add w11,w11,w1
- add w20,w20,w17 // h+=Sigma0(a)
- add w11,w11,w0
- ldr w0,[sp,#4]
- str w3,[sp,#0]
- ror w16,w24,#6
- add w27,w27,w19 // h+=K[i]
- ror w2,w13,#7
- and w17,w25,w24
- ror w1,w10,#17
- bic w19,w26,w24
- ror w3,w20,#2
- add w27,w27,w11 // h+=X[i]
- eor w16,w16,w24,ror#11
- eor w2,w2,w13,ror#18
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w20,w21 // a^b, b^c in next round
- eor w16,w16,w24,ror#25 // Sigma1(e)
- eor w3,w3,w20,ror#13
- add w27,w27,w17 // h+=Ch(e,f,g)
- and w28,w28,w19 // (b^c)&=(a^b)
- eor w1,w1,w10,ror#19
- eor w2,w2,w13,lsr#3 // sigma0(X[i+1])
- add w27,w27,w16 // h+=Sigma1(e)
- eor w28,w28,w21 // Maj(a,b,c)
- eor w17,w3,w20,ror#22 // Sigma0(a)
- eor w1,w1,w10,lsr#10 // sigma1(X[i+14])
- add w12,w12,w5
- add w23,w23,w27 // d+=h
- add w27,w27,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- add w12,w12,w2
- add w27,w27,w17 // h+=Sigma0(a)
- add w12,w12,w1
- ldr w1,[sp,#8]
- str w4,[sp,#4]
- ror w16,w23,#6
- add w26,w26,w28 // h+=K[i]
- ror w3,w14,#7
- and w17,w24,w23
- ror w2,w11,#17
- bic w28,w25,w23
- ror w4,w27,#2
- add w26,w26,w12 // h+=X[i]
- eor w16,w16,w23,ror#11
- eor w3,w3,w14,ror#18
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w27,w20 // a^b, b^c in next round
- eor w16,w16,w23,ror#25 // Sigma1(e)
- eor w4,w4,w27,ror#13
- add w26,w26,w17 // h+=Ch(e,f,g)
- and w19,w19,w28 // (b^c)&=(a^b)
- eor w2,w2,w11,ror#19
- eor w3,w3,w14,lsr#3 // sigma0(X[i+1])
- add w26,w26,w16 // h+=Sigma1(e)
- eor w19,w19,w20 // Maj(a,b,c)
- eor w17,w4,w27,ror#22 // Sigma0(a)
- eor w2,w2,w11,lsr#10 // sigma1(X[i+14])
- add w13,w13,w6
- add w22,w22,w26 // d+=h
- add w26,w26,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- add w13,w13,w3
- add w26,w26,w17 // h+=Sigma0(a)
- add w13,w13,w2
- ldr w2,[sp,#12]
- str w5,[sp,#8]
- ror w16,w22,#6
- add w25,w25,w19 // h+=K[i]
- ror w4,w15,#7
- and w17,w23,w22
- ror w3,w12,#17
- bic w19,w24,w22
- ror w5,w26,#2
- add w25,w25,w13 // h+=X[i]
- eor w16,w16,w22,ror#11
- eor w4,w4,w15,ror#18
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w26,w27 // a^b, b^c in next round
- eor w16,w16,w22,ror#25 // Sigma1(e)
- eor w5,w5,w26,ror#13
- add w25,w25,w17 // h+=Ch(e,f,g)
- and w28,w28,w19 // (b^c)&=(a^b)
- eor w3,w3,w12,ror#19
- eor w4,w4,w15,lsr#3 // sigma0(X[i+1])
- add w25,w25,w16 // h+=Sigma1(e)
- eor w28,w28,w27 // Maj(a,b,c)
- eor w17,w5,w26,ror#22 // Sigma0(a)
- eor w3,w3,w12,lsr#10 // sigma1(X[i+14])
- add w14,w14,w7
- add w21,w21,w25 // d+=h
- add w25,w25,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- add w14,w14,w4
- add w25,w25,w17 // h+=Sigma0(a)
- add w14,w14,w3
- ldr w3,[sp,#0]
- str w6,[sp,#12]
- ror w16,w21,#6
- add w24,w24,w28 // h+=K[i]
- ror w5,w0,#7
- and w17,w22,w21
- ror w4,w13,#17
- bic w28,w23,w21
- ror w6,w25,#2
- add w24,w24,w14 // h+=X[i]
- eor w16,w16,w21,ror#11
- eor w5,w5,w0,ror#18
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w25,w26 // a^b, b^c in next round
- eor w16,w16,w21,ror#25 // Sigma1(e)
- eor w6,w6,w25,ror#13
- add w24,w24,w17 // h+=Ch(e,f,g)
- and w19,w19,w28 // (b^c)&=(a^b)
- eor w4,w4,w13,ror#19
- eor w5,w5,w0,lsr#3 // sigma0(X[i+1])
- add w24,w24,w16 // h+=Sigma1(e)
- eor w19,w19,w26 // Maj(a,b,c)
- eor w17,w6,w25,ror#22 // Sigma0(a)
- eor w4,w4,w13,lsr#10 // sigma1(X[i+14])
- add w15,w15,w8
- add w20,w20,w24 // d+=h
- add w24,w24,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- add w15,w15,w5
- add w24,w24,w17 // h+=Sigma0(a)
- add w15,w15,w4
- ldr w4,[sp,#4]
- str w7,[sp,#0]
- ror w16,w20,#6
- add w23,w23,w19 // h+=K[i]
- ror w6,w1,#7
- and w17,w21,w20
- ror w5,w14,#17
- bic w19,w22,w20
- ror w7,w24,#2
- add w23,w23,w15 // h+=X[i]
- eor w16,w16,w20,ror#11
- eor w6,w6,w1,ror#18
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w24,w25 // a^b, b^c in next round
- eor w16,w16,w20,ror#25 // Sigma1(e)
- eor w7,w7,w24,ror#13
- add w23,w23,w17 // h+=Ch(e,f,g)
- and w28,w28,w19 // (b^c)&=(a^b)
- eor w5,w5,w14,ror#19
- eor w6,w6,w1,lsr#3 // sigma0(X[i+1])
- add w23,w23,w16 // h+=Sigma1(e)
- eor w28,w28,w25 // Maj(a,b,c)
- eor w17,w7,w24,ror#22 // Sigma0(a)
- eor w5,w5,w14,lsr#10 // sigma1(X[i+14])
- add w0,w0,w9
- add w27,w27,w23 // d+=h
- add w23,w23,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- add w0,w0,w6
- add w23,w23,w17 // h+=Sigma0(a)
- add w0,w0,w5
- ldr w5,[sp,#8]
- str w8,[sp,#4]
- ror w16,w27,#6
- add w22,w22,w28 // h+=K[i]
- ror w7,w2,#7
- and w17,w20,w27
- ror w6,w15,#17
- bic w28,w21,w27
- ror w8,w23,#2
- add w22,w22,w0 // h+=X[i]
- eor w16,w16,w27,ror#11
- eor w7,w7,w2,ror#18
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w23,w24 // a^b, b^c in next round
- eor w16,w16,w27,ror#25 // Sigma1(e)
- eor w8,w8,w23,ror#13
- add w22,w22,w17 // h+=Ch(e,f,g)
- and w19,w19,w28 // (b^c)&=(a^b)
- eor w6,w6,w15,ror#19
- eor w7,w7,w2,lsr#3 // sigma0(X[i+1])
- add w22,w22,w16 // h+=Sigma1(e)
- eor w19,w19,w24 // Maj(a,b,c)
- eor w17,w8,w23,ror#22 // Sigma0(a)
- eor w6,w6,w15,lsr#10 // sigma1(X[i+14])
- add w1,w1,w10
- add w26,w26,w22 // d+=h
- add w22,w22,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- add w1,w1,w7
- add w22,w22,w17 // h+=Sigma0(a)
- add w1,w1,w6
- ldr w6,[sp,#12]
- str w9,[sp,#8]
- ror w16,w26,#6
- add w21,w21,w19 // h+=K[i]
- ror w8,w3,#7
- and w17,w27,w26
- ror w7,w0,#17
- bic w19,w20,w26
- ror w9,w22,#2
- add w21,w21,w1 // h+=X[i]
- eor w16,w16,w26,ror#11
- eor w8,w8,w3,ror#18
- orr w17,w17,w19 // Ch(e,f,g)
- eor w19,w22,w23 // a^b, b^c in next round
- eor w16,w16,w26,ror#25 // Sigma1(e)
- eor w9,w9,w22,ror#13
- add w21,w21,w17 // h+=Ch(e,f,g)
- and w28,w28,w19 // (b^c)&=(a^b)
- eor w7,w7,w0,ror#19
- eor w8,w8,w3,lsr#3 // sigma0(X[i+1])
- add w21,w21,w16 // h+=Sigma1(e)
- eor w28,w28,w23 // Maj(a,b,c)
- eor w17,w9,w22,ror#22 // Sigma0(a)
- eor w7,w7,w0,lsr#10 // sigma1(X[i+14])
- add w2,w2,w11
- add w25,w25,w21 // d+=h
- add w21,w21,w28 // h+=Maj(a,b,c)
- ldr w28,[x30],#4 // *K++, w19 in next round
- add w2,w2,w8
- add w21,w21,w17 // h+=Sigma0(a)
- add w2,w2,w7
- ldr w7,[sp,#0]
- str w10,[sp,#12]
- ror w16,w25,#6
- add w20,w20,w28 // h+=K[i]
- ror w9,w4,#7
- and w17,w26,w25
- ror w8,w1,#17
- bic w28,w27,w25
- ror w10,w21,#2
- add w20,w20,w2 // h+=X[i]
- eor w16,w16,w25,ror#11
- eor w9,w9,w4,ror#18
- orr w17,w17,w28 // Ch(e,f,g)
- eor w28,w21,w22 // a^b, b^c in next round
- eor w16,w16,w25,ror#25 // Sigma1(e)
- eor w10,w10,w21,ror#13
- add w20,w20,w17 // h+=Ch(e,f,g)
- and w19,w19,w28 // (b^c)&=(a^b)
- eor w8,w8,w1,ror#19
- eor w9,w9,w4,lsr#3 // sigma0(X[i+1])
- add w20,w20,w16 // h+=Sigma1(e)
- eor w19,w19,w22 // Maj(a,b,c)
- eor w17,w10,w21,ror#22 // Sigma0(a)
- eor w8,w8,w1,lsr#10 // sigma1(X[i+14])
- add w3,w3,w12
- add w24,w24,w20 // d+=h
- add w20,w20,w19 // h+=Maj(a,b,c)
- ldr w19,[x30],#4 // *K++, w28 in next round
- add w3,w3,w9
- add w20,w20,w17 // h+=Sigma0(a)
- add w3,w3,w8
- cbnz w19,Loop_16_xx
- ldp x0,x2,[x29,#96]
- ldr x1,[x29,#112]
- sub x30,x30,#260 // rewind
- ldp w3,w4,[x0]
- ldp w5,w6,[x0,#2*4]
- add x1,x1,#14*4 // advance input pointer
- ldp w7,w8,[x0,#4*4]
- add w20,w20,w3
- ldp w9,w10,[x0,#6*4]
- add w21,w21,w4
- add w22,w22,w5
- add w23,w23,w6
- stp w20,w21,[x0]
- add w24,w24,w7
- add w25,w25,w8
- stp w22,w23,[x0,#2*4]
- add w26,w26,w9
- add w27,w27,w10
- cmp x1,x2
- stp w24,w25,[x0,#4*4]
- stp w26,w27,[x0,#6*4]
- b.ne Loop
- ldp x19,x20,[x29,#16]
- add sp,sp,#4*4
- ldp x21,x22,[x29,#32]
- ldp x23,x24,[x29,#48]
- ldp x25,x26,[x29,#64]
- ldp x27,x28,[x29,#80]
- ldp x29,x30,[sp],#128
- .long 0xd50323bf // autiasp
- ret
- .align 6
- LK256:
- .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
- .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
- .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
- .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
- .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
- .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
- .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
- .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
- .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
- .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
- .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
- .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
- .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
- .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
- .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
- .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
- .long 0 //terminator
- #ifndef __KERNEL__
- .align 3
- LOPENSSL_armcap_P:
- # ifdef __ILP32__
- .long _OPENSSL_armcap_P-.
- # else
- .quad _OPENSSL_armcap_P-.
- # endif
- #endif
- .byte 83,72,65,50,53,54,32,98,108,111,99,107,32,116,114,97,110,115,102,111,114,109,32,102,111,114,32,65,82,77,118,56,44,32,67,82,89,80,84,79,71,65,77,83,32,98,121,32,60,97,112,112,114,111,64,111,112,101,110,115,115,108,46,111,114,103,62,0
- .align 2
- .align 2
- #ifndef __KERNEL__
- .align 6
- sha256_block_armv8:
- Lv8_entry:
- stp x29,x30,[sp,#-16]!
- add x29,sp,#0
- ld1 {v0.4s,v1.4s},[x0]
- adr x3,LK256
- Loop_hw:
- ld1 {v4.16b,v5.16b,v6.16b,v7.16b},[x1],#64
- sub x2,x2,#1
- ld1 {v16.4s},[x3],#16
- rev32 v4.16b,v4.16b
- rev32 v5.16b,v5.16b
- rev32 v6.16b,v6.16b
- rev32 v7.16b,v7.16b
- orr v18.16b,v0.16b,v0.16b // offload
- orr v19.16b,v1.16b,v1.16b
- ld1 {v17.4s},[x3],#16
- add v16.4s,v16.4s,v4.4s
- .long 0x5e2828a4 //sha256su0 v4.16b,v5.16b
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e104020 //sha256h v0.16b,v1.16b,v16.4s
- .long 0x5e105041 //sha256h2 v1.16b,v2.16b,v16.4s
- .long 0x5e0760c4 //sha256su1 v4.16b,v6.16b,v7.16b
- ld1 {v16.4s},[x3],#16
- add v17.4s,v17.4s,v5.4s
- .long 0x5e2828c5 //sha256su0 v5.16b,v6.16b
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e114020 //sha256h v0.16b,v1.16b,v17.4s
- .long 0x5e115041 //sha256h2 v1.16b,v2.16b,v17.4s
- .long 0x5e0460e5 //sha256su1 v5.16b,v7.16b,v4.16b
- ld1 {v17.4s},[x3],#16
- add v16.4s,v16.4s,v6.4s
- .long 0x5e2828e6 //sha256su0 v6.16b,v7.16b
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e104020 //sha256h v0.16b,v1.16b,v16.4s
- .long 0x5e105041 //sha256h2 v1.16b,v2.16b,v16.4s
- .long 0x5e056086 //sha256su1 v6.16b,v4.16b,v5.16b
- ld1 {v16.4s},[x3],#16
- add v17.4s,v17.4s,v7.4s
- .long 0x5e282887 //sha256su0 v7.16b,v4.16b
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e114020 //sha256h v0.16b,v1.16b,v17.4s
- .long 0x5e115041 //sha256h2 v1.16b,v2.16b,v17.4s
- .long 0x5e0660a7 //sha256su1 v7.16b,v5.16b,v6.16b
- ld1 {v17.4s},[x3],#16
- add v16.4s,v16.4s,v4.4s
- .long 0x5e2828a4 //sha256su0 v4.16b,v5.16b
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e104020 //sha256h v0.16b,v1.16b,v16.4s
- .long 0x5e105041 //sha256h2 v1.16b,v2.16b,v16.4s
- .long 0x5e0760c4 //sha256su1 v4.16b,v6.16b,v7.16b
- ld1 {v16.4s},[x3],#16
- add v17.4s,v17.4s,v5.4s
- .long 0x5e2828c5 //sha256su0 v5.16b,v6.16b
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e114020 //sha256h v0.16b,v1.16b,v17.4s
- .long 0x5e115041 //sha256h2 v1.16b,v2.16b,v17.4s
- .long 0x5e0460e5 //sha256su1 v5.16b,v7.16b,v4.16b
- ld1 {v17.4s},[x3],#16
- add v16.4s,v16.4s,v6.4s
- .long 0x5e2828e6 //sha256su0 v6.16b,v7.16b
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e104020 //sha256h v0.16b,v1.16b,v16.4s
- .long 0x5e105041 //sha256h2 v1.16b,v2.16b,v16.4s
- .long 0x5e056086 //sha256su1 v6.16b,v4.16b,v5.16b
- ld1 {v16.4s},[x3],#16
- add v17.4s,v17.4s,v7.4s
- .long 0x5e282887 //sha256su0 v7.16b,v4.16b
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e114020 //sha256h v0.16b,v1.16b,v17.4s
- .long 0x5e115041 //sha256h2 v1.16b,v2.16b,v17.4s
- .long 0x5e0660a7 //sha256su1 v7.16b,v5.16b,v6.16b
- ld1 {v17.4s},[x3],#16
- add v16.4s,v16.4s,v4.4s
- .long 0x5e2828a4 //sha256su0 v4.16b,v5.16b
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e104020 //sha256h v0.16b,v1.16b,v16.4s
- .long 0x5e105041 //sha256h2 v1.16b,v2.16b,v16.4s
- .long 0x5e0760c4 //sha256su1 v4.16b,v6.16b,v7.16b
- ld1 {v16.4s},[x3],#16
- add v17.4s,v17.4s,v5.4s
- .long 0x5e2828c5 //sha256su0 v5.16b,v6.16b
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e114020 //sha256h v0.16b,v1.16b,v17.4s
- .long 0x5e115041 //sha256h2 v1.16b,v2.16b,v17.4s
- .long 0x5e0460e5 //sha256su1 v5.16b,v7.16b,v4.16b
- ld1 {v17.4s},[x3],#16
- add v16.4s,v16.4s,v6.4s
- .long 0x5e2828e6 //sha256su0 v6.16b,v7.16b
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e104020 //sha256h v0.16b,v1.16b,v16.4s
- .long 0x5e105041 //sha256h2 v1.16b,v2.16b,v16.4s
- .long 0x5e056086 //sha256su1 v6.16b,v4.16b,v5.16b
- ld1 {v16.4s},[x3],#16
- add v17.4s,v17.4s,v7.4s
- .long 0x5e282887 //sha256su0 v7.16b,v4.16b
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e114020 //sha256h v0.16b,v1.16b,v17.4s
- .long 0x5e115041 //sha256h2 v1.16b,v2.16b,v17.4s
- .long 0x5e0660a7 //sha256su1 v7.16b,v5.16b,v6.16b
- ld1 {v17.4s},[x3],#16
- add v16.4s,v16.4s,v4.4s
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e104020 //sha256h v0.16b,v1.16b,v16.4s
- .long 0x5e105041 //sha256h2 v1.16b,v2.16b,v16.4s
- ld1 {v16.4s},[x3],#16
- add v17.4s,v17.4s,v5.4s
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e114020 //sha256h v0.16b,v1.16b,v17.4s
- .long 0x5e115041 //sha256h2 v1.16b,v2.16b,v17.4s
- ld1 {v17.4s},[x3]
- add v16.4s,v16.4s,v6.4s
- sub x3,x3,#64*4-16 // rewind
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e104020 //sha256h v0.16b,v1.16b,v16.4s
- .long 0x5e105041 //sha256h2 v1.16b,v2.16b,v16.4s
- add v17.4s,v17.4s,v7.4s
- orr v2.16b,v0.16b,v0.16b
- .long 0x5e114020 //sha256h v0.16b,v1.16b,v17.4s
- .long 0x5e115041 //sha256h2 v1.16b,v2.16b,v17.4s
- add v0.4s,v0.4s,v18.4s
- add v1.4s,v1.4s,v19.4s
- cbnz x2,Loop_hw
- st1 {v0.4s,v1.4s},[x0]
- ldr x29,[sp],#16
- ret
- #endif
- #ifdef __KERNEL__
- .globl _sha256_block_neon
- #endif
- .align 4
- _sha256_block_neon:
- Lneon_entry:
- stp x29, x30, [sp, #-16]!
- mov x29, sp
- sub sp,sp,#16*4
- adr x16,LK256
- add x2,x1,x2,lsl#6 // len to point at the end of inp
- ld1 {v0.16b},[x1], #16
- ld1 {v1.16b},[x1], #16
- ld1 {v2.16b},[x1], #16
- ld1 {v3.16b},[x1], #16
- ld1 {v4.4s},[x16], #16
- ld1 {v5.4s},[x16], #16
- ld1 {v6.4s},[x16], #16
- ld1 {v7.4s},[x16], #16
- rev32 v0.16b,v0.16b // yes, even on
- rev32 v1.16b,v1.16b // big-endian
- rev32 v2.16b,v2.16b
- rev32 v3.16b,v3.16b
- mov x17,sp
- add v4.4s,v4.4s,v0.4s
- add v5.4s,v5.4s,v1.4s
- add v6.4s,v6.4s,v2.4s
- st1 {v4.4s,v5.4s},[x17], #32
- add v7.4s,v7.4s,v3.4s
- st1 {v6.4s,v7.4s},[x17]
- sub x17,x17,#32
- ldp w3,w4,[x0]
- ldp w5,w6,[x0,#8]
- ldp w7,w8,[x0,#16]
- ldp w9,w10,[x0,#24]
- ldr w12,[sp,#0]
- mov w13,wzr
- eor w14,w4,w5
- mov w15,wzr
- b L_00_48
- .align 4
- L_00_48:
- ext v4.16b,v0.16b,v1.16b,#4
- add w10,w10,w12
- add w3,w3,w15
- and w12,w8,w7
- bic w15,w9,w7
- ext v7.16b,v2.16b,v3.16b,#4
- eor w11,w7,w7,ror#5
- add w3,w3,w13
- mov d19,v3.d[1]
- orr w12,w12,w15
- eor w11,w11,w7,ror#19
- ushr v6.4s,v4.4s,#7
- eor w15,w3,w3,ror#11
- ushr v5.4s,v4.4s,#3
- add w10,w10,w12
- add v0.4s,v0.4s,v7.4s
- ror w11,w11,#6
- sli v6.4s,v4.4s,#25
- eor w13,w3,w4
- eor w15,w15,w3,ror#20
- ushr v7.4s,v4.4s,#18
- add w10,w10,w11
- ldr w12,[sp,#4]
- and w14,w14,w13
- eor v5.16b,v5.16b,v6.16b
- ror w15,w15,#2
- add w6,w6,w10
- sli v7.4s,v4.4s,#14
- eor w14,w14,w4
- ushr v16.4s,v19.4s,#17
- add w9,w9,w12
- add w10,w10,w15
- and w12,w7,w6
- eor v5.16b,v5.16b,v7.16b
- bic w15,w8,w6
- eor w11,w6,w6,ror#5
- sli v16.4s,v19.4s,#15
- add w10,w10,w14
- orr w12,w12,w15
- ushr v17.4s,v19.4s,#10
- eor w11,w11,w6,ror#19
- eor w15,w10,w10,ror#11
- ushr v7.4s,v19.4s,#19
- add w9,w9,w12
- ror w11,w11,#6
- add v0.4s,v0.4s,v5.4s
- eor w14,w10,w3
- eor w15,w15,w10,ror#20
- sli v7.4s,v19.4s,#13
- add w9,w9,w11
- ldr w12,[sp,#8]
- and w13,w13,w14
- eor v17.16b,v17.16b,v16.16b
- ror w15,w15,#2
- add w5,w5,w9
- eor w13,w13,w3
- eor v17.16b,v17.16b,v7.16b
- add w8,w8,w12
- add w9,w9,w15
- and w12,w6,w5
- add v0.4s,v0.4s,v17.4s
- bic w15,w7,w5
- eor w11,w5,w5,ror#5
- add w9,w9,w13
- ushr v18.4s,v0.4s,#17
- orr w12,w12,w15
- ushr v19.4s,v0.4s,#10
- eor w11,w11,w5,ror#19
- eor w15,w9,w9,ror#11
- sli v18.4s,v0.4s,#15
- add w8,w8,w12
- ushr v17.4s,v0.4s,#19
- ror w11,w11,#6
- eor w13,w9,w10
- eor v19.16b,v19.16b,v18.16b
- eor w15,w15,w9,ror#20
- add w8,w8,w11
- sli v17.4s,v0.4s,#13
- ldr w12,[sp,#12]
- and w14,w14,w13
- ror w15,w15,#2
- ld1 {v4.4s},[x16], #16
- add w4,w4,w8
- eor v19.16b,v19.16b,v17.16b
- eor w14,w14,w10
- eor v17.16b,v17.16b,v17.16b
- add w7,w7,w12
- add w8,w8,w15
- and w12,w5,w4
- mov v17.d[1],v19.d[0]
- bic w15,w6,w4
- eor w11,w4,w4,ror#5
- add w8,w8,w14
- add v0.4s,v0.4s,v17.4s
- orr w12,w12,w15
- eor w11,w11,w4,ror#19
- eor w15,w8,w8,ror#11
- add v4.4s,v4.4s,v0.4s
- add w7,w7,w12
- ror w11,w11,#6
- eor w14,w8,w9
- eor w15,w15,w8,ror#20
- add w7,w7,w11
- ldr w12,[sp,#16]
- and w13,w13,w14
- ror w15,w15,#2
- add w3,w3,w7
- eor w13,w13,w9
- st1 {v4.4s},[x17], #16
- ext v4.16b,v1.16b,v2.16b,#4
- add w6,w6,w12
- add w7,w7,w15
- and w12,w4,w3
- bic w15,w5,w3
- ext v7.16b,v3.16b,v0.16b,#4
- eor w11,w3,w3,ror#5
- add w7,w7,w13
- mov d19,v0.d[1]
- orr w12,w12,w15
- eor w11,w11,w3,ror#19
- ushr v6.4s,v4.4s,#7
- eor w15,w7,w7,ror#11
- ushr v5.4s,v4.4s,#3
- add w6,w6,w12
- add v1.4s,v1.4s,v7.4s
- ror w11,w11,#6
- sli v6.4s,v4.4s,#25
- eor w13,w7,w8
- eor w15,w15,w7,ror#20
- ushr v7.4s,v4.4s,#18
- add w6,w6,w11
- ldr w12,[sp,#20]
- and w14,w14,w13
- eor v5.16b,v5.16b,v6.16b
- ror w15,w15,#2
- add w10,w10,w6
- sli v7.4s,v4.4s,#14
- eor w14,w14,w8
- ushr v16.4s,v19.4s,#17
- add w5,w5,w12
- add w6,w6,w15
- and w12,w3,w10
- eor v5.16b,v5.16b,v7.16b
- bic w15,w4,w10
- eor w11,w10,w10,ror#5
- sli v16.4s,v19.4s,#15
- add w6,w6,w14
- orr w12,w12,w15
- ushr v17.4s,v19.4s,#10
- eor w11,w11,w10,ror#19
- eor w15,w6,w6,ror#11
- ushr v7.4s,v19.4s,#19
- add w5,w5,w12
- ror w11,w11,#6
- add v1.4s,v1.4s,v5.4s
- eor w14,w6,w7
- eor w15,w15,w6,ror#20
- sli v7.4s,v19.4s,#13
- add w5,w5,w11
- ldr w12,[sp,#24]
- and w13,w13,w14
- eor v17.16b,v17.16b,v16.16b
- ror w15,w15,#2
- add w9,w9,w5
- eor w13,w13,w7
- eor v17.16b,v17.16b,v7.16b
- add w4,w4,w12
- add w5,w5,w15
- and w12,w10,w9
- add v1.4s,v1.4s,v17.4s
- bic w15,w3,w9
- eor w11,w9,w9,ror#5
- add w5,w5,w13
- ushr v18.4s,v1.4s,#17
- orr w12,w12,w15
- ushr v19.4s,v1.4s,#10
- eor w11,w11,w9,ror#19
- eor w15,w5,w5,ror#11
- sli v18.4s,v1.4s,#15
- add w4,w4,w12
- ushr v17.4s,v1.4s,#19
- ror w11,w11,#6
- eor w13,w5,w6
- eor v19.16b,v19.16b,v18.16b
- eor w15,w15,w5,ror#20
- add w4,w4,w11
- sli v17.4s,v1.4s,#13
- ldr w12,[sp,#28]
- and w14,w14,w13
- ror w15,w15,#2
- ld1 {v4.4s},[x16], #16
- add w8,w8,w4
- eor v19.16b,v19.16b,v17.16b
- eor w14,w14,w6
- eor v17.16b,v17.16b,v17.16b
- add w3,w3,w12
- add w4,w4,w15
- and w12,w9,w8
- mov v17.d[1],v19.d[0]
- bic w15,w10,w8
- eor w11,w8,w8,ror#5
- add w4,w4,w14
- add v1.4s,v1.4s,v17.4s
- orr w12,w12,w15
- eor w11,w11,w8,ror#19
- eor w15,w4,w4,ror#11
- add v4.4s,v4.4s,v1.4s
- add w3,w3,w12
- ror w11,w11,#6
- eor w14,w4,w5
- eor w15,w15,w4,ror#20
- add w3,w3,w11
- ldr w12,[sp,#32]
- and w13,w13,w14
- ror w15,w15,#2
- add w7,w7,w3
- eor w13,w13,w5
- st1 {v4.4s},[x17], #16
- ext v4.16b,v2.16b,v3.16b,#4
- add w10,w10,w12
- add w3,w3,w15
- and w12,w8,w7
- bic w15,w9,w7
- ext v7.16b,v0.16b,v1.16b,#4
- eor w11,w7,w7,ror#5
- add w3,w3,w13
- mov d19,v1.d[1]
- orr w12,w12,w15
- eor w11,w11,w7,ror#19
- ushr v6.4s,v4.4s,#7
- eor w15,w3,w3,ror#11
- ushr v5.4s,v4.4s,#3
- add w10,w10,w12
- add v2.4s,v2.4s,v7.4s
- ror w11,w11,#6
- sli v6.4s,v4.4s,#25
- eor w13,w3,w4
- eor w15,w15,w3,ror#20
- ushr v7.4s,v4.4s,#18
- add w10,w10,w11
- ldr w12,[sp,#36]
- and w14,w14,w13
- eor v5.16b,v5.16b,v6.16b
- ror w15,w15,#2
- add w6,w6,w10
- sli v7.4s,v4.4s,#14
- eor w14,w14,w4
- ushr v16.4s,v19.4s,#17
- add w9,w9,w12
- add w10,w10,w15
- and w12,w7,w6
- eor v5.16b,v5.16b,v7.16b
- bic w15,w8,w6
- eor w11,w6,w6,ror#5
- sli v16.4s,v19.4s,#15
- add w10,w10,w14
- orr w12,w12,w15
- ushr v17.4s,v19.4s,#10
- eor w11,w11,w6,ror#19
- eor w15,w10,w10,ror#11
- ushr v7.4s,v19.4s,#19
- add w9,w9,w12
- ror w11,w11,#6
- add v2.4s,v2.4s,v5.4s
- eor w14,w10,w3
- eor w15,w15,w10,ror#20
- sli v7.4s,v19.4s,#13
- add w9,w9,w11
- ldr w12,[sp,#40]
- and w13,w13,w14
- eor v17.16b,v17.16b,v16.16b
- ror w15,w15,#2
- add w5,w5,w9
- eor w13,w13,w3
- eor v17.16b,v17.16b,v7.16b
- add w8,w8,w12
- add w9,w9,w15
- and w12,w6,w5
- add v2.4s,v2.4s,v17.4s
- bic w15,w7,w5
- eor w11,w5,w5,ror#5
- add w9,w9,w13
- ushr v18.4s,v2.4s,#17
- orr w12,w12,w15
- ushr v19.4s,v2.4s,#10
- eor w11,w11,w5,ror#19
- eor w15,w9,w9,ror#11
- sli v18.4s,v2.4s,#15
- add w8,w8,w12
- ushr v17.4s,v2.4s,#19
- ror w11,w11,#6
- eor w13,w9,w10
- eor v19.16b,v19.16b,v18.16b
- eor w15,w15,w9,ror#20
- add w8,w8,w11
- sli v17.4s,v2.4s,#13
- ldr w12,[sp,#44]
- and w14,w14,w13
- ror w15,w15,#2
- ld1 {v4.4s},[x16], #16
- add w4,w4,w8
- eor v19.16b,v19.16b,v17.16b
- eor w14,w14,w10
- eor v17.16b,v17.16b,v17.16b
- add w7,w7,w12
- add w8,w8,w15
- and w12,w5,w4
- mov v17.d[1],v19.d[0]
- bic w15,w6,w4
- eor w11,w4,w4,ror#5
- add w8,w8,w14
- add v2.4s,v2.4s,v17.4s
- orr w12,w12,w15
- eor w11,w11,w4,ror#19
- eor w15,w8,w8,ror#11
- add v4.4s,v4.4s,v2.4s
- add w7,w7,w12
- ror w11,w11,#6
- eor w14,w8,w9
- eor w15,w15,w8,ror#20
- add w7,w7,w11
- ldr w12,[sp,#48]
- and w13,w13,w14
- ror w15,w15,#2
- add w3,w3,w7
- eor w13,w13,w9
- st1 {v4.4s},[x17], #16
- ext v4.16b,v3.16b,v0.16b,#4
- add w6,w6,w12
- add w7,w7,w15
- and w12,w4,w3
- bic w15,w5,w3
- ext v7.16b,v1.16b,v2.16b,#4
- eor w11,w3,w3,ror#5
- add w7,w7,w13
- mov d19,v2.d[1]
- orr w12,w12,w15
- eor w11,w11,w3,ror#19
- ushr v6.4s,v4.4s,#7
- eor w15,w7,w7,ror#11
- ushr v5.4s,v4.4s,#3
- add w6,w6,w12
- add v3.4s,v3.4s,v7.4s
- ror w11,w11,#6
- sli v6.4s,v4.4s,#25
- eor w13,w7,w8
- eor w15,w15,w7,ror#20
- ushr v7.4s,v4.4s,#18
- add w6,w6,w11
- ldr w12,[sp,#52]
- and w14,w14,w13
- eor v5.16b,v5.16b,v6.16b
- ror w15,w15,#2
- add w10,w10,w6
- sli v7.4s,v4.4s,#14
- eor w14,w14,w8
- ushr v16.4s,v19.4s,#17
- add w5,w5,w12
- add w6,w6,w15
- and w12,w3,w10
- eor v5.16b,v5.16b,v7.16b
- bic w15,w4,w10
- eor w11,w10,w10,ror#5
- sli v16.4s,v19.4s,#15
- add w6,w6,w14
- orr w12,w12,w15
- ushr v17.4s,v19.4s,#10
- eor w11,w11,w10,ror#19
- eor w15,w6,w6,ror#11
- ushr v7.4s,v19.4s,#19
- add w5,w5,w12
- ror w11,w11,#6
- add v3.4s,v3.4s,v5.4s
- eor w14,w6,w7
- eor w15,w15,w6,ror#20
- sli v7.4s,v19.4s,#13
- add w5,w5,w11
- ldr w12,[sp,#56]
- and w13,w13,w14
- eor v17.16b,v17.16b,v16.16b
- ror w15,w15,#2
- add w9,w9,w5
- eor w13,w13,w7
- eor v17.16b,v17.16b,v7.16b
- add w4,w4,w12
- add w5,w5,w15
- and w12,w10,w9
- add v3.4s,v3.4s,v17.4s
- bic w15,w3,w9
- eor w11,w9,w9,ror#5
- add w5,w5,w13
- ushr v18.4s,v3.4s,#17
- orr w12,w12,w15
- ushr v19.4s,v3.4s,#10
- eor w11,w11,w9,ror#19
- eor w15,w5,w5,ror#11
- sli v18.4s,v3.4s,#15
- add w4,w4,w12
- ushr v17.4s,v3.4s,#19
- ror w11,w11,#6
- eor w13,w5,w6
- eor v19.16b,v19.16b,v18.16b
- eor w15,w15,w5,ror#20
- add w4,w4,w11
- sli v17.4s,v3.4s,#13
- ldr w12,[sp,#60]
- and w14,w14,w13
- ror w15,w15,#2
- ld1 {v4.4s},[x16], #16
- add w8,w8,w4
- eor v19.16b,v19.16b,v17.16b
- eor w14,w14,w6
- eor v17.16b,v17.16b,v17.16b
- add w3,w3,w12
- add w4,w4,w15
- and w12,w9,w8
- mov v17.d[1],v19.d[0]
- bic w15,w10,w8
- eor w11,w8,w8,ror#5
- add w4,w4,w14
- add v3.4s,v3.4s,v17.4s
- orr w12,w12,w15
- eor w11,w11,w8,ror#19
- eor w15,w4,w4,ror#11
- add v4.4s,v4.4s,v3.4s
- add w3,w3,w12
- ror w11,w11,#6
- eor w14,w4,w5
- eor w15,w15,w4,ror#20
- add w3,w3,w11
- ldr w12,[x16]
- and w13,w13,w14
- ror w15,w15,#2
- add w7,w7,w3
- eor w13,w13,w5
- st1 {v4.4s},[x17], #16
- cmp w12,#0 // check for K256 terminator
- ldr w12,[sp,#0]
- sub x17,x17,#64
- bne L_00_48
- sub x16,x16,#256 // rewind x16
- cmp x1,x2
- mov x17, #64
- csel x17, x17, xzr, eq
- sub x1,x1,x17 // avoid SEGV
- mov x17,sp
- add w10,w10,w12
- add w3,w3,w15
- and w12,w8,w7
- ld1 {v0.16b},[x1],#16
- bic w15,w9,w7
- eor w11,w7,w7,ror#5
- ld1 {v4.4s},[x16],#16
- add w3,w3,w13
- orr w12,w12,w15
- eor w11,w11,w7,ror#19
- eor w15,w3,w3,ror#11
- rev32 v0.16b,v0.16b
- add w10,w10,w12
- ror w11,w11,#6
- eor w13,w3,w4
- eor w15,w15,w3,ror#20
- add v4.4s,v4.4s,v0.4s
- add w10,w10,w11
- ldr w12,[sp,#4]
- and w14,w14,w13
- ror w15,w15,#2
- add w6,w6,w10
- eor w14,w14,w4
- add w9,w9,w12
- add w10,w10,w15
- and w12,w7,w6
- bic w15,w8,w6
- eor w11,w6,w6,ror#5
- add w10,w10,w14
- orr w12,w12,w15
- eor w11,w11,w6,ror#19
- eor w15,w10,w10,ror#11
- add w9,w9,w12
- ror w11,w11,#6
- eor w14,w10,w3
- eor w15,w15,w10,ror#20
- add w9,w9,w11
- ldr w12,[sp,#8]
- and w13,w13,w14
- ror w15,w15,#2
- add w5,w5,w9
- eor w13,w13,w3
- add w8,w8,w12
- add w9,w9,w15
- and w12,w6,w5
- bic w15,w7,w5
- eor w11,w5,w5,ror#5
- add w9,w9,w13
- orr w12,w12,w15
- eor w11,w11,w5,ror#19
- eor w15,w9,w9,ror#11
- add w8,w8,w12
- ror w11,w11,#6
- eor w13,w9,w10
- eor w15,w15,w9,ror#20
- add w8,w8,w11
- ldr w12,[sp,#12]
- and w14,w14,w13
- ror w15,w15,#2
- add w4,w4,w8
- eor w14,w14,w10
- add w7,w7,w12
- add w8,w8,w15
- and w12,w5,w4
- bic w15,w6,w4
- eor w11,w4,w4,ror#5
- add w8,w8,w14
- orr w12,w12,w15
- eor w11,w11,w4,ror#19
- eor w15,w8,w8,ror#11
- add w7,w7,w12
- ror w11,w11,#6
- eor w14,w8,w9
- eor w15,w15,w8,ror#20
- add w7,w7,w11
- ldr w12,[sp,#16]
- and w13,w13,w14
- ror w15,w15,#2
- add w3,w3,w7
- eor w13,w13,w9
- st1 {v4.4s},[x17], #16
- add w6,w6,w12
- add w7,w7,w15
- and w12,w4,w3
- ld1 {v1.16b},[x1],#16
- bic w15,w5,w3
- eor w11,w3,w3,ror#5
- ld1 {v4.4s},[x16],#16
- add w7,w7,w13
- orr w12,w12,w15
- eor w11,w11,w3,ror#19
- eor w15,w7,w7,ror#11
- rev32 v1.16b,v1.16b
- add w6,w6,w12
- ror w11,w11,#6
- eor w13,w7,w8
- eor w15,w15,w7,ror#20
- add v4.4s,v4.4s,v1.4s
- add w6,w6,w11
- ldr w12,[sp,#20]
- and w14,w14,w13
- ror w15,w15,#2
- add w10,w10,w6
- eor w14,w14,w8
- add w5,w5,w12
- add w6,w6,w15
- and w12,w3,w10
- bic w15,w4,w10
- eor w11,w10,w10,ror#5
- add w6,w6,w14
- orr w12,w12,w15
- eor w11,w11,w10,ror#19
- eor w15,w6,w6,ror#11
- add w5,w5,w12
- ror w11,w11,#6
- eor w14,w6,w7
- eor w15,w15,w6,ror#20
- add w5,w5,w11
- ldr w12,[sp,#24]
- and w13,w13,w14
- ror w15,w15,#2
- add w9,w9,w5
- eor w13,w13,w7
- add w4,w4,w12
- add w5,w5,w15
- and w12,w10,w9
- bic w15,w3,w9
- eor w11,w9,w9,ror#5
- add w5,w5,w13
- orr w12,w12,w15
- eor w11,w11,w9,ror#19
- eor w15,w5,w5,ror#11
- add w4,w4,w12
- ror w11,w11,#6
- eor w13,w5,w6
- eor w15,w15,w5,ror#20
- add w4,w4,w11
- ldr w12,[sp,#28]
- and w14,w14,w13
- ror w15,w15,#2
- add w8,w8,w4
- eor w14,w14,w6
- add w3,w3,w12
- add w4,w4,w15
- and w12,w9,w8
- bic w15,w10,w8
- eor w11,w8,w8,ror#5
- add w4,w4,w14
- orr w12,w12,w15
- eor w11,w11,w8,ror#19
- eor w15,w4,w4,ror#11
- add w3,w3,w12
- ror w11,w11,#6
- eor w14,w4,w5
- eor w15,w15,w4,ror#20
- add w3,w3,w11
- ldr w12,[sp,#32]
- and w13,w13,w14
- ror w15,w15,#2
- add w7,w7,w3
- eor w13,w13,w5
- st1 {v4.4s},[x17], #16
- add w10,w10,w12
- add w3,w3,w15
- and w12,w8,w7
- ld1 {v2.16b},[x1],#16
- bic w15,w9,w7
- eor w11,w7,w7,ror#5
- ld1 {v4.4s},[x16],#16
- add w3,w3,w13
- orr w12,w12,w15
- eor w11,w11,w7,ror#19
- eor w15,w3,w3,ror#11
- rev32 v2.16b,v2.16b
- add w10,w10,w12
- ror w11,w11,#6
- eor w13,w3,w4
- eor w15,w15,w3,ror#20
- add v4.4s,v4.4s,v2.4s
- add w10,w10,w11
- ldr w12,[sp,#36]
- and w14,w14,w13
- ror w15,w15,#2
- add w6,w6,w10
- eor w14,w14,w4
- add w9,w9,w12
- add w10,w10,w15
- and w12,w7,w6
- bic w15,w8,w6
- eor w11,w6,w6,ror#5
- add w10,w10,w14
- orr w12,w12,w15
- eor w11,w11,w6,ror#19
- eor w15,w10,w10,ror#11
- add w9,w9,w12
- ror w11,w11,#6
- eor w14,w10,w3
- eor w15,w15,w10,ror#20
- add w9,w9,w11
- ldr w12,[sp,#40]
- and w13,w13,w14
- ror w15,w15,#2
- add w5,w5,w9
- eor w13,w13,w3
- add w8,w8,w12
- add w9,w9,w15
- and w12,w6,w5
- bic w15,w7,w5
- eor w11,w5,w5,ror#5
- add w9,w9,w13
- orr w12,w12,w15
- eor w11,w11,w5,ror#19
- eor w15,w9,w9,ror#11
- add w8,w8,w12
- ror w11,w11,#6
- eor w13,w9,w10
- eor w15,w15,w9,ror#20
- add w8,w8,w11
- ldr w12,[sp,#44]
- and w14,w14,w13
- ror w15,w15,#2
- add w4,w4,w8
- eor w14,w14,w10
- add w7,w7,w12
- add w8,w8,w15
- and w12,w5,w4
- bic w15,w6,w4
- eor w11,w4,w4,ror#5
- add w8,w8,w14
- orr w12,w12,w15
- eor w11,w11,w4,ror#19
- eor w15,w8,w8,ror#11
- add w7,w7,w12
- ror w11,w11,#6
- eor w14,w8,w9
- eor w15,w15,w8,ror#20
- add w7,w7,w11
- ldr w12,[sp,#48]
- and w13,w13,w14
- ror w15,w15,#2
- add w3,w3,w7
- eor w13,w13,w9
- st1 {v4.4s},[x17], #16
- add w6,w6,w12
- add w7,w7,w15
- and w12,w4,w3
- ld1 {v3.16b},[x1],#16
- bic w15,w5,w3
- eor w11,w3,w3,ror#5
- ld1 {v4.4s},[x16],#16
- add w7,w7,w13
- orr w12,w12,w15
- eor w11,w11,w3,ror#19
- eor w15,w7,w7,ror#11
- rev32 v3.16b,v3.16b
- add w6,w6,w12
- ror w11,w11,#6
- eor w13,w7,w8
- eor w15,w15,w7,ror#20
- add v4.4s,v4.4s,v3.4s
- add w6,w6,w11
- ldr w12,[sp,#52]
- and w14,w14,w13
- ror w15,w15,#2
- add w10,w10,w6
- eor w14,w14,w8
- add w5,w5,w12
- add w6,w6,w15
- and w12,w3,w10
- bic w15,w4,w10
- eor w11,w10,w10,ror#5
- add w6,w6,w14
- orr w12,w12,w15
- eor w11,w11,w10,ror#19
- eor w15,w6,w6,ror#11
- add w5,w5,w12
- ror w11,w11,#6
- eor w14,w6,w7
- eor w15,w15,w6,ror#20
- add w5,w5,w11
- ldr w12,[sp,#56]
- and w13,w13,w14
- ror w15,w15,#2
- add w9,w9,w5
- eor w13,w13,w7
- add w4,w4,w12
- add w5,w5,w15
- and w12,w10,w9
- bic w15,w3,w9
- eor w11,w9,w9,ror#5
- add w5,w5,w13
- orr w12,w12,w15
- eor w11,w11,w9,ror#19
- eor w15,w5,w5,ror#11
- add w4,w4,w12
- ror w11,w11,#6
- eor w13,w5,w6
- eor w15,w15,w5,ror#20
- add w4,w4,w11
- ldr w12,[sp,#60]
- and w14,w14,w13
- ror w15,w15,#2
- add w8,w8,w4
- eor w14,w14,w6
- add w3,w3,w12
- add w4,w4,w15
- and w12,w9,w8
- bic w15,w10,w8
- eor w11,w8,w8,ror#5
- add w4,w4,w14
- orr w12,w12,w15
- eor w11,w11,w8,ror#19
- eor w15,w4,w4,ror#11
- add w3,w3,w12
- ror w11,w11,#6
- eor w14,w4,w5
- eor w15,w15,w4,ror#20
- add w3,w3,w11
- and w13,w13,w14
- ror w15,w15,#2
- add w7,w7,w3
- eor w13,w13,w5
- st1 {v4.4s},[x17], #16
- add w3,w3,w15 // h+=Sigma0(a) from the past
- ldp w11,w12,[x0,#0]
- add w3,w3,w13 // h+=Maj(a,b,c) from the past
- ldp w13,w14,[x0,#8]
- add w3,w3,w11 // accumulate
- add w4,w4,w12
- ldp w11,w12,[x0,#16]
- add w5,w5,w13
- add w6,w6,w14
- ldp w13,w14,[x0,#24]
- add w7,w7,w11
- add w8,w8,w12
- ldr w12,[sp,#0]
- stp w3,w4,[x0,#0]
- add w9,w9,w13
- mov w13,wzr
- stp w5,w6,[x0,#8]
- add w10,w10,w14
- stp w7,w8,[x0,#16]
- eor w14,w4,w5
- stp w9,w10,[x0,#24]
- mov w15,wzr
- mov x17,sp
- b.ne L_00_48
- ldr x29,[x29]
- add sp,sp,#16*4+16
- ret
|