123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908 |
- //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements some loop unrolling utilities. It does not define any
- // actual pass or policy, but provides a single function to perform loop
- // unrolling.
- //
- // The process of unrolling can produce extraneous basic blocks linked with
- // unconditional branches. This will be corrected in the future.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/ADT/ilist_iterator.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/DomTreeUpdater.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/IR/ValueMap.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/GenericDomTree.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/LoopSimplify.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/SimplifyIndVar.h"
- #include "llvm/Transforms/Utils/UnrollLoop.h"
- #include "llvm/Transforms/Utils/ValueMapper.h"
- #include <algorithm>
- #include <assert.h>
- #include <numeric>
- #include <type_traits>
- #include <vector>
- namespace llvm {
- class DataLayout;
- class Value;
- } // namespace llvm
- using namespace llvm;
- #define DEBUG_TYPE "loop-unroll"
- // TODO: Should these be here or in LoopUnroll?
- STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
- STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
- STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
- "latch (completely or otherwise)");
- static cl::opt<bool>
- UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
- cl::desc("Allow runtime unrolled loops to be unrolled "
- "with epilog instead of prolog."));
- static cl::opt<bool>
- UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
- cl::desc("Verify domtree after unrolling"),
- #ifdef EXPENSIVE_CHECKS
- cl::init(true)
- #else
- cl::init(false)
- #endif
- );
- static cl::opt<bool>
- UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden,
- cl::desc("Verify loopinfo after unrolling"),
- #ifdef EXPENSIVE_CHECKS
- cl::init(true)
- #else
- cl::init(false)
- #endif
- );
- /// Check if unrolling created a situation where we need to insert phi nodes to
- /// preserve LCSSA form.
- /// \param Blocks is a vector of basic blocks representing unrolled loop.
- /// \param L is the outer loop.
- /// It's possible that some of the blocks are in L, and some are not. In this
- /// case, if there is a use is outside L, and definition is inside L, we need to
- /// insert a phi-node, otherwise LCSSA will be broken.
- /// The function is just a helper function for llvm::UnrollLoop that returns
- /// true if this situation occurs, indicating that LCSSA needs to be fixed.
- static bool needToInsertPhisForLCSSA(Loop *L,
- const std::vector<BasicBlock *> &Blocks,
- LoopInfo *LI) {
- for (BasicBlock *BB : Blocks) {
- if (LI->getLoopFor(BB) == L)
- continue;
- for (Instruction &I : *BB) {
- for (Use &U : I.operands()) {
- if (const auto *Def = dyn_cast<Instruction>(U)) {
- Loop *DefLoop = LI->getLoopFor(Def->getParent());
- if (!DefLoop)
- continue;
- if (DefLoop->contains(L))
- return true;
- }
- }
- }
- }
- return false;
- }
- /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
- /// and adds a mapping from the original loop to the new loop to NewLoops.
- /// Returns nullptr if no new loop was created and a pointer to the
- /// original loop OriginalBB was part of otherwise.
- const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
- BasicBlock *ClonedBB, LoopInfo *LI,
- NewLoopsMap &NewLoops) {
- // Figure out which loop New is in.
- const Loop *OldLoop = LI->getLoopFor(OriginalBB);
- assert(OldLoop && "Should (at least) be in the loop being unrolled!");
- Loop *&NewLoop = NewLoops[OldLoop];
- if (!NewLoop) {
- // Found a new sub-loop.
- assert(OriginalBB == OldLoop->getHeader() &&
- "Header should be first in RPO");
- NewLoop = LI->AllocateLoop();
- Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
- if (NewLoopParent)
- NewLoopParent->addChildLoop(NewLoop);
- else
- LI->addTopLevelLoop(NewLoop);
- NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
- return OldLoop;
- } else {
- NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
- return nullptr;
- }
- }
- /// The function chooses which type of unroll (epilog or prolog) is more
- /// profitabale.
- /// Epilog unroll is more profitable when there is PHI that starts from
- /// constant. In this case epilog will leave PHI start from constant,
- /// but prolog will convert it to non-constant.
- ///
- /// loop:
- /// PN = PHI [I, Latch], [CI, PreHeader]
- /// I = foo(PN)
- /// ...
- ///
- /// Epilog unroll case.
- /// loop:
- /// PN = PHI [I2, Latch], [CI, PreHeader]
- /// I1 = foo(PN)
- /// I2 = foo(I1)
- /// ...
- /// Prolog unroll case.
- /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
- /// loop:
- /// PN = PHI [I2, Latch], [NewPN, PreHeader]
- /// I1 = foo(PN)
- /// I2 = foo(I1)
- /// ...
- ///
- static bool isEpilogProfitable(Loop *L) {
- BasicBlock *PreHeader = L->getLoopPreheader();
- BasicBlock *Header = L->getHeader();
- assert(PreHeader && Header);
- for (const PHINode &PN : Header->phis()) {
- if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
- return true;
- }
- return false;
- }
- /// Perform some cleanup and simplifications on loops after unrolling. It is
- /// useful to simplify the IV's in the new loop, as well as do a quick
- /// simplify/dce pass of the instructions.
- void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
- ScalarEvolution *SE, DominatorTree *DT,
- AssumptionCache *AC,
- const TargetTransformInfo *TTI) {
- // Simplify any new induction variables in the partially unrolled loop.
- if (SE && SimplifyIVs) {
- SmallVector<WeakTrackingVH, 16> DeadInsts;
- simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
- // Aggressively clean up dead instructions that simplifyLoopIVs already
- // identified. Any remaining should be cleaned up below.
- while (!DeadInsts.empty()) {
- Value *V = DeadInsts.pop_back_val();
- if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
- RecursivelyDeleteTriviallyDeadInstructions(Inst);
- }
- }
- // At this point, the code is well formed. Perform constprop, instsimplify,
- // and dce.
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
- SmallVector<WeakTrackingVH, 16> DeadInsts;
- for (BasicBlock *BB : L->getBlocks()) {
- for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
- if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
- if (LI->replacementPreservesLCSSAForm(&Inst, V))
- Inst.replaceAllUsesWith(V);
- if (isInstructionTriviallyDead(&Inst))
- DeadInsts.emplace_back(&Inst);
- }
- // We can't do recursive deletion until we're done iterating, as we might
- // have a phi which (potentially indirectly) uses instructions later in
- // the block we're iterating through.
- RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
- }
- }
- /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling
- /// can only fail when the loop's latch block is not terminated by a conditional
- /// branch instruction. However, if the trip count (and multiple) are not known,
- /// loop unrolling will mostly produce more code that is no faster.
- ///
- /// If Runtime is true then UnrollLoop will try to insert a prologue or
- /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
- /// will not runtime-unroll the loop if computing the run-time trip count will
- /// be expensive and AllowExpensiveTripCount is false.
- ///
- /// The LoopInfo Analysis that is passed will be kept consistent.
- ///
- /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
- /// DominatorTree if they are non-null.
- ///
- /// If RemainderLoop is non-null, it will receive the remainder loop (if
- /// required and not fully unrolled).
- LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
- ScalarEvolution *SE, DominatorTree *DT,
- AssumptionCache *AC,
- const TargetTransformInfo *TTI,
- OptimizationRemarkEmitter *ORE,
- bool PreserveLCSSA, Loop **RemainderLoop) {
- assert(DT && "DomTree is required");
- if (!L->getLoopPreheader()) {
- LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
- return LoopUnrollResult::Unmodified;
- }
- if (!L->getLoopLatch()) {
- LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
- return LoopUnrollResult::Unmodified;
- }
- // Loops with indirectbr cannot be cloned.
- if (!L->isSafeToClone()) {
- LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
- return LoopUnrollResult::Unmodified;
- }
- if (L->getHeader()->hasAddressTaken()) {
- // The loop-rotate pass can be helpful to avoid this in many cases.
- LLVM_DEBUG(
- dbgs() << " Won't unroll loop: address of header block is taken.\n");
- return LoopUnrollResult::Unmodified;
- }
- assert(ULO.Count > 0);
- // All these values should be taken only after peeling because they might have
- // changed.
- BasicBlock *Preheader = L->getLoopPreheader();
- BasicBlock *Header = L->getHeader();
- BasicBlock *LatchBlock = L->getLoopLatch();
- SmallVector<BasicBlock *, 4> ExitBlocks;
- L->getExitBlocks(ExitBlocks);
- std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
- const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
- const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
- // Effectively "DCE" unrolled iterations that are beyond the max tripcount
- // and will never be executed.
- if (MaxTripCount && ULO.Count > MaxTripCount)
- ULO.Count = MaxTripCount;
- struct ExitInfo {
- unsigned TripCount;
- unsigned TripMultiple;
- unsigned BreakoutTrip;
- bool ExitOnTrue;
- BasicBlock *FirstExitingBlock = nullptr;
- SmallVector<BasicBlock *> ExitingBlocks;
- };
- DenseMap<BasicBlock *, ExitInfo> ExitInfos;
- SmallVector<BasicBlock *, 4> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- for (auto *ExitingBlock : ExitingBlocks) {
- // The folding code is not prepared to deal with non-branch instructions
- // right now.
- auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
- if (!BI)
- continue;
- ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
- Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
- Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
- if (Info.TripCount != 0) {
- Info.BreakoutTrip = Info.TripCount % ULO.Count;
- Info.TripMultiple = 0;
- } else {
- Info.BreakoutTrip = Info.TripMultiple =
- (unsigned)std::gcd(ULO.Count, Info.TripMultiple);
- }
- Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
- Info.ExitingBlocks.push_back(ExitingBlock);
- LLVM_DEBUG(dbgs() << " Exiting block %" << ExitingBlock->getName()
- << ": TripCount=" << Info.TripCount
- << ", TripMultiple=" << Info.TripMultiple
- << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
- }
- // Are we eliminating the loop control altogether? Note that we can know
- // we're eliminating the backedge without knowing exactly which iteration
- // of the unrolled body exits.
- const bool CompletelyUnroll = ULO.Count == MaxTripCount;
- const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
- // There's no point in performing runtime unrolling if this unroll count
- // results in a full unroll.
- if (CompletelyUnroll)
- ULO.Runtime = false;
- // Go through all exits of L and see if there are any phi-nodes there. We just
- // conservatively assume that they're inserted to preserve LCSSA form, which
- // means that complete unrolling might break this form. We need to either fix
- // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
- // now we just recompute LCSSA for the outer loop, but it should be possible
- // to fix it in-place.
- bool NeedToFixLCSSA =
- PreserveLCSSA && CompletelyUnroll &&
- any_of(ExitBlocks,
- [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
- // The current loop unroll pass can unroll loops that have
- // (1) single latch; and
- // (2a) latch is unconditional; or
- // (2b) latch is conditional and is an exiting block
- // FIXME: The implementation can be extended to work with more complicated
- // cases, e.g. loops with multiple latches.
- BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
- // A conditional branch which exits the loop, which can be optimized to an
- // unconditional branch in the unrolled loop in some cases.
- bool LatchIsExiting = L->isLoopExiting(LatchBlock);
- if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
- LLVM_DEBUG(
- dbgs() << "Can't unroll; a conditional latch must exit the loop");
- return LoopUnrollResult::Unmodified;
- }
- // Loops containing convergent instructions cannot use runtime unrolling,
- // as the prologue/epilogue may add additional control-dependencies to
- // convergent operations.
- LLVM_DEBUG(
- {
- bool HasConvergent = false;
- for (auto &BB : L->blocks())
- for (auto &I : *BB)
- if (auto *CB = dyn_cast<CallBase>(&I))
- HasConvergent |= CB->isConvergent();
- assert((!HasConvergent || !ULO.Runtime) &&
- "Can't runtime unroll if loop contains a convergent operation.");
- });
- bool EpilogProfitability =
- UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
- : isEpilogProfitable(L);
- if (ULO.Runtime &&
- !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
- EpilogProfitability, ULO.UnrollRemainder,
- ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
- PreserveLCSSA, RemainderLoop)) {
- if (ULO.Force)
- ULO.Runtime = false;
- else {
- LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
- "generated when assuming runtime trip count\n");
- return LoopUnrollResult::Unmodified;
- }
- }
- using namespace ore;
- // Report the unrolling decision.
- if (CompletelyUnroll) {
- LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
- << " with trip count " << ULO.Count << "!\n");
- if (ORE)
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
- L->getHeader())
- << "completely unrolled loop with "
- << NV("UnrollCount", ULO.Count) << " iterations";
- });
- } else {
- LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
- << ULO.Count);
- if (ULO.Runtime)
- LLVM_DEBUG(dbgs() << " with run-time trip count");
- LLVM_DEBUG(dbgs() << "!\n");
- if (ORE)
- ORE->emit([&]() {
- OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
- L->getHeader());
- Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
- if (ULO.Runtime)
- Diag << " with run-time trip count";
- return Diag;
- });
- }
- // We are going to make changes to this loop. SCEV may be keeping cached info
- // about it, in particular about backedge taken count. The changes we make
- // are guaranteed to invalidate this information for our loop. It is tempting
- // to only invalidate the loop being unrolled, but it is incorrect as long as
- // all exiting branches from all inner loops have impact on the outer loops,
- // and if something changes inside them then any of outer loops may also
- // change. When we forget outermost loop, we also forget all contained loops
- // and this is what we need here.
- if (SE) {
- if (ULO.ForgetAllSCEV)
- SE->forgetAllLoops();
- else {
- SE->forgetTopmostLoop(L);
- SE->forgetBlockAndLoopDispositions();
- }
- }
- if (!LatchIsExiting)
- ++NumUnrolledNotLatch;
- // For the first iteration of the loop, we should use the precloned values for
- // PHI nodes. Insert associations now.
- ValueToValueMapTy LastValueMap;
- std::vector<PHINode*> OrigPHINode;
- for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
- OrigPHINode.push_back(cast<PHINode>(I));
- }
- std::vector<BasicBlock *> Headers;
- std::vector<BasicBlock *> Latches;
- Headers.push_back(Header);
- Latches.push_back(LatchBlock);
- // The current on-the-fly SSA update requires blocks to be processed in
- // reverse postorder so that LastValueMap contains the correct value at each
- // exit.
- LoopBlocksDFS DFS(L);
- DFS.perform(LI);
- // Stash the DFS iterators before adding blocks to the loop.
- LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
- LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
- std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
- // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
- // might break loop-simplified form for these loops (as they, e.g., would
- // share the same exit blocks). We'll keep track of loops for which we can
- // break this so that later we can re-simplify them.
- SmallSetVector<Loop *, 4> LoopsToSimplify;
- for (Loop *SubLoop : *L)
- LoopsToSimplify.insert(SubLoop);
- // When a FSDiscriminator is enabled, we don't need to add the multiply
- // factors to the discriminators.
- if (Header->getParent()->shouldEmitDebugInfoForProfiling() &&
- !EnableFSDiscriminator)
- for (BasicBlock *BB : L->getBlocks())
- for (Instruction &I : *BB)
- if (!isa<DbgInfoIntrinsic>(&I))
- if (const DILocation *DIL = I.getDebugLoc()) {
- auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
- if (NewDIL)
- I.setDebugLoc(*NewDIL);
- else
- LLVM_DEBUG(dbgs()
- << "Failed to create new discriminator: "
- << DIL->getFilename() << " Line: " << DIL->getLine());
- }
- // Identify what noalias metadata is inside the loop: if it is inside the
- // loop, the associated metadata must be cloned for each iteration.
- SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
- identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
- // We place the unrolled iterations immediately after the original loop
- // latch. This is a reasonable default placement if we don't have block
- // frequencies, and if we do, well the layout will be adjusted later.
- auto BlockInsertPt = std::next(LatchBlock->getIterator());
- for (unsigned It = 1; It != ULO.Count; ++It) {
- SmallVector<BasicBlock *, 8> NewBlocks;
- SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
- NewLoops[L] = L;
- for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
- ValueToValueMapTy VMap;
- BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
- Header->getParent()->insert(BlockInsertPt, New);
- assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
- "Header should not be in a sub-loop");
- // Tell LI about New.
- const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
- if (OldLoop)
- LoopsToSimplify.insert(NewLoops[OldLoop]);
- if (*BB == Header)
- // Loop over all of the PHI nodes in the block, changing them to use
- // the incoming values from the previous block.
- for (PHINode *OrigPHI : OrigPHINode) {
- PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
- Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
- if (Instruction *InValI = dyn_cast<Instruction>(InVal))
- if (It > 1 && L->contains(InValI))
- InVal = LastValueMap[InValI];
- VMap[OrigPHI] = InVal;
- NewPHI->eraseFromParent();
- }
- // Update our running map of newest clones
- LastValueMap[*BB] = New;
- for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
- VI != VE; ++VI)
- LastValueMap[VI->first] = VI->second;
- // Add phi entries for newly created values to all exit blocks.
- for (BasicBlock *Succ : successors(*BB)) {
- if (L->contains(Succ))
- continue;
- for (PHINode &PHI : Succ->phis()) {
- Value *Incoming = PHI.getIncomingValueForBlock(*BB);
- ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
- if (It != LastValueMap.end())
- Incoming = It->second;
- PHI.addIncoming(Incoming, New);
- SE->forgetValue(&PHI);
- }
- }
- // Keep track of new headers and latches as we create them, so that
- // we can insert the proper branches later.
- if (*BB == Header)
- Headers.push_back(New);
- if (*BB == LatchBlock)
- Latches.push_back(New);
- // Keep track of the exiting block and its successor block contained in
- // the loop for the current iteration.
- auto ExitInfoIt = ExitInfos.find(*BB);
- if (ExitInfoIt != ExitInfos.end())
- ExitInfoIt->second.ExitingBlocks.push_back(New);
- NewBlocks.push_back(New);
- UnrolledLoopBlocks.push_back(New);
- // Update DomTree: since we just copy the loop body, and each copy has a
- // dedicated entry block (copy of the header block), this header's copy
- // dominates all copied blocks. That means, dominance relations in the
- // copied body are the same as in the original body.
- if (*BB == Header)
- DT->addNewBlock(New, Latches[It - 1]);
- else {
- auto BBDomNode = DT->getNode(*BB);
- auto BBIDom = BBDomNode->getIDom();
- BasicBlock *OriginalBBIDom = BBIDom->getBlock();
- DT->addNewBlock(
- New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
- }
- }
- // Remap all instructions in the most recent iteration
- remapInstructionsInBlocks(NewBlocks, LastValueMap);
- for (BasicBlock *NewBlock : NewBlocks)
- for (Instruction &I : *NewBlock)
- if (auto *II = dyn_cast<AssumeInst>(&I))
- AC->registerAssumption(II);
- {
- // Identify what other metadata depends on the cloned version. After
- // cloning, replace the metadata with the corrected version for both
- // memory instructions and noalias intrinsics.
- std::string ext = (Twine("It") + Twine(It)).str();
- cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
- Header->getContext(), ext);
- }
- }
- // Loop over the PHI nodes in the original block, setting incoming values.
- for (PHINode *PN : OrigPHINode) {
- if (CompletelyUnroll) {
- PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
- PN->eraseFromParent();
- } else if (ULO.Count > 1) {
- Value *InVal = PN->removeIncomingValue(LatchBlock, false);
- // If this value was defined in the loop, take the value defined by the
- // last iteration of the loop.
- if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
- if (L->contains(InValI))
- InVal = LastValueMap[InVal];
- }
- assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
- PN->addIncoming(InVal, Latches.back());
- }
- }
- // Connect latches of the unrolled iterations to the headers of the next
- // iteration. Currently they point to the header of the same iteration.
- for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
- unsigned j = (i + 1) % e;
- Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
- }
- // Update dominators of blocks we might reach through exits.
- // Immediate dominator of such block might change, because we add more
- // routes which can lead to the exit: we can now reach it from the copied
- // iterations too.
- if (ULO.Count > 1) {
- for (auto *BB : OriginalLoopBlocks) {
- auto *BBDomNode = DT->getNode(BB);
- SmallVector<BasicBlock *, 16> ChildrenToUpdate;
- for (auto *ChildDomNode : BBDomNode->children()) {
- auto *ChildBB = ChildDomNode->getBlock();
- if (!L->contains(ChildBB))
- ChildrenToUpdate.push_back(ChildBB);
- }
- // The new idom of the block will be the nearest common dominator
- // of all copies of the previous idom. This is equivalent to the
- // nearest common dominator of the previous idom and the first latch,
- // which dominates all copies of the previous idom.
- BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
- for (auto *ChildBB : ChildrenToUpdate)
- DT->changeImmediateDominator(ChildBB, NewIDom);
- }
- }
- assert(!UnrollVerifyDomtree ||
- DT->verify(DominatorTree::VerificationLevel::Fast));
- SmallVector<DominatorTree::UpdateType> DTUpdates;
- auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
- auto *Term = cast<BranchInst>(Src->getTerminator());
- const unsigned Idx = ExitOnTrue ^ WillExit;
- BasicBlock *Dest = Term->getSuccessor(Idx);
- BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
- // Remove predecessors from all non-Dest successors.
- DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
- // Replace the conditional branch with an unconditional one.
- BranchInst::Create(Dest, Term);
- Term->eraseFromParent();
- DTUpdates.emplace_back(DominatorTree::Delete, Src, DeadSucc);
- };
- auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
- bool IsLatch) -> std::optional<bool> {
- if (CompletelyUnroll) {
- if (PreserveOnlyFirst) {
- if (i == 0)
- return std::nullopt;
- return j == 0;
- }
- // Complete (but possibly inexact) unrolling
- if (j == 0)
- return true;
- if (Info.TripCount && j != Info.TripCount)
- return false;
- return std::nullopt;
- }
- if (ULO.Runtime) {
- // If runtime unrolling inserts a prologue, information about non-latch
- // exits may be stale.
- if (IsLatch && j != 0)
- return false;
- return std::nullopt;
- }
- if (j != Info.BreakoutTrip &&
- (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
- // If we know the trip count or a multiple of it, we can safely use an
- // unconditional branch for some iterations.
- return false;
- }
- return std::nullopt;
- };
- // Fold branches for iterations where we know that they will exit or not
- // exit.
- for (auto &Pair : ExitInfos) {
- ExitInfo &Info = Pair.second;
- for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
- // The branch destination.
- unsigned j = (i + 1) % e;
- bool IsLatch = Pair.first == LatchBlock;
- std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
- if (!KnownWillExit) {
- if (!Info.FirstExitingBlock)
- Info.FirstExitingBlock = Info.ExitingBlocks[i];
- continue;
- }
- // We don't fold known-exiting branches for non-latch exits here,
- // because this ensures that both all loop blocks and all exit blocks
- // remain reachable in the CFG.
- // TODO: We could fold these branches, but it would require much more
- // sophisticated updates to LoopInfo.
- if (*KnownWillExit && !IsLatch) {
- if (!Info.FirstExitingBlock)
- Info.FirstExitingBlock = Info.ExitingBlocks[i];
- continue;
- }
- SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
- }
- }
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
- DomTreeUpdater *DTUToUse = &DTU;
- if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) {
- // Manually update the DT if there's a single exiting node. In that case
- // there's a single exit node and it is sufficient to update the nodes
- // immediately dominated by the original exiting block. They will become
- // dominated by the first exiting block that leaves the loop after
- // unrolling. Note that the CFG inside the loop does not change, so there's
- // no need to update the DT inside the unrolled loop.
- DTUToUse = nullptr;
- auto &[OriginalExit, Info] = *ExitInfos.begin();
- if (!Info.FirstExitingBlock)
- Info.FirstExitingBlock = Info.ExitingBlocks.back();
- for (auto *C : to_vector(DT->getNode(OriginalExit)->children())) {
- if (L->contains(C->getBlock()))
- continue;
- C->setIDom(DT->getNode(Info.FirstExitingBlock));
- }
- } else {
- DTU.applyUpdates(DTUpdates);
- }
- // When completely unrolling, the last latch becomes unreachable.
- if (!LatchIsExiting && CompletelyUnroll) {
- // There is no need to update the DT here, because there must be a unique
- // latch. Hence if the latch is not exiting it must directly branch back to
- // the original loop header and does not dominate any nodes.
- assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?");
- changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA);
- }
- // Merge adjacent basic blocks, if possible.
- for (BasicBlock *Latch : Latches) {
- BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
- assert((Term ||
- (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
- "Need a branch as terminator, except when fully unrolling with "
- "unconditional latch");
- if (Term && Term->isUnconditional()) {
- BasicBlock *Dest = Term->getSuccessor(0);
- BasicBlock *Fold = Dest->getUniquePredecessor();
- if (MergeBlockIntoPredecessor(Dest, /*DTU=*/DTUToUse, LI,
- /*MSSAU=*/nullptr, /*MemDep=*/nullptr,
- /*PredecessorWithTwoSuccessors=*/false,
- DTUToUse ? nullptr : DT)) {
- // Dest has been folded into Fold. Update our worklists accordingly.
- std::replace(Latches.begin(), Latches.end(), Dest, Fold);
- llvm::erase_value(UnrolledLoopBlocks, Dest);
- }
- }
- }
- if (DTUToUse) {
- // Apply updates to the DomTree.
- DT = &DTU.getDomTree();
- }
- assert(!UnrollVerifyDomtree ||
- DT->verify(DominatorTree::VerificationLevel::Fast));
- // At this point, the code is well formed. We now simplify the unrolled loop,
- // doing constant propagation and dead code elimination as we go.
- simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
- TTI);
- NumCompletelyUnrolled += CompletelyUnroll;
- ++NumUnrolled;
- Loop *OuterL = L->getParentLoop();
- // Update LoopInfo if the loop is completely removed.
- if (CompletelyUnroll)
- LI->erase(L);
- // LoopInfo should not be valid, confirm that.
- if (UnrollVerifyLoopInfo)
- LI->verify(*DT);
- // After complete unrolling most of the blocks should be contained in OuterL.
- // However, some of them might happen to be out of OuterL (e.g. if they
- // precede a loop exit). In this case we might need to insert PHI nodes in
- // order to preserve LCSSA form.
- // We don't need to check this if we already know that we need to fix LCSSA
- // form.
- // TODO: For now we just recompute LCSSA for the outer loop in this case, but
- // it should be possible to fix it in-place.
- if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
- NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
- // Make sure that loop-simplify form is preserved. We want to simplify
- // at least one layer outside of the loop that was unrolled so that any
- // changes to the parent loop exposed by the unrolling are considered.
- if (OuterL) {
- // OuterL includes all loops for which we can break loop-simplify, so
- // it's sufficient to simplify only it (it'll recursively simplify inner
- // loops too).
- if (NeedToFixLCSSA) {
- // LCSSA must be performed on the outermost affected loop. The unrolled
- // loop's last loop latch is guaranteed to be in the outermost loop
- // after LoopInfo's been updated by LoopInfo::erase.
- Loop *LatchLoop = LI->getLoopFor(Latches.back());
- Loop *FixLCSSALoop = OuterL;
- if (!FixLCSSALoop->contains(LatchLoop))
- while (FixLCSSALoop->getParentLoop() != LatchLoop)
- FixLCSSALoop = FixLCSSALoop->getParentLoop();
- formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
- } else if (PreserveLCSSA) {
- assert(OuterL->isLCSSAForm(*DT) &&
- "Loops should be in LCSSA form after loop-unroll.");
- }
- // TODO: That potentially might be compile-time expensive. We should try
- // to fix the loop-simplified form incrementally.
- simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
- } else {
- // Simplify loops for which we might've broken loop-simplify form.
- for (Loop *SubLoop : LoopsToSimplify)
- simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
- }
- return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
- : LoopUnrollResult::PartiallyUnrolled;
- }
- /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
- /// node with the given name (for example, "llvm.loop.unroll.count"). If no
- /// such metadata node exists, then nullptr is returned.
- MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
- // First operand should refer to the loop id itself.
- assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
- for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
- MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (!MD)
- continue;
- MDString *S = dyn_cast<MDString>(MD->getOperand(0));
- if (!S)
- continue;
- if (Name.equals(S->getString()))
- return MD;
- }
- return nullptr;
- }
|