12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040 |
- //===- LoopPeel.cpp -------------------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Loop Peeling Utilities.
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/LoopPeel.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/ProfDataUtils.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/LoopSimplify.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/ValueMapper.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <optional>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "loop-peel"
- STATISTIC(NumPeeled, "Number of loops peeled");
- static cl::opt<unsigned> UnrollPeelCount(
- "unroll-peel-count", cl::Hidden,
- cl::desc("Set the unroll peeling count, for testing purposes"));
- static cl::opt<bool>
- UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
- cl::desc("Allows loops to be peeled when the dynamic "
- "trip count is known to be low."));
- static cl::opt<bool>
- UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
- cl::init(false), cl::Hidden,
- cl::desc("Allows loop nests to be peeled."));
- static cl::opt<unsigned> UnrollPeelMaxCount(
- "unroll-peel-max-count", cl::init(7), cl::Hidden,
- cl::desc("Max average trip count which will cause loop peeling."));
- static cl::opt<unsigned> UnrollForcePeelCount(
- "unroll-force-peel-count", cl::init(0), cl::Hidden,
- cl::desc("Force a peel count regardless of profiling information."));
- static cl::opt<bool> DisableAdvancedPeeling(
- "disable-advanced-peeling", cl::init(false), cl::Hidden,
- cl::desc(
- "Disable advance peeling. Issues for convergent targets (D134803)."));
- static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
- // Check whether we are capable of peeling this loop.
- bool llvm::canPeel(const Loop *L) {
- // Make sure the loop is in simplified form
- if (!L->isLoopSimplifyForm())
- return false;
- if (!DisableAdvancedPeeling)
- return true;
- SmallVector<BasicBlock *, 4> Exits;
- L->getUniqueNonLatchExitBlocks(Exits);
- // The latch must either be the only exiting block or all non-latch exit
- // blocks have either a deopt or unreachable terminator or compose a chain of
- // blocks where the last one is either deopt or unreachable terminated. Both
- // deopt and unreachable terminators are a strong indication they are not
- // taken. Note that this is a profitability check, not a legality check. Also
- // note that LoopPeeling currently can only update the branch weights of latch
- // blocks and branch weights to blocks with deopt or unreachable do not need
- // updating.
- return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable);
- }
- namespace {
- // As a loop is peeled, it may be the case that Phi nodes become
- // loop-invariant (ie, known because there is only one choice).
- // For example, consider the following function:
- // void g(int);
- // void binary() {
- // int x = 0;
- // int y = 0;
- // int a = 0;
- // for(int i = 0; i <100000; ++i) {
- // g(x);
- // x = y;
- // g(a);
- // y = a + 1;
- // a = 5;
- // }
- // }
- // Peeling 3 iterations is beneficial because the values for x, y and a
- // become known. The IR for this loop looks something like the following:
- //
- // %i = phi i32 [ 0, %entry ], [ %inc, %if.end ]
- // %a = phi i32 [ 0, %entry ], [ 5, %if.end ]
- // %y = phi i32 [ 0, %entry ], [ %add, %if.end ]
- // %x = phi i32 [ 0, %entry ], [ %y, %if.end ]
- // ...
- // tail call void @_Z1gi(i32 signext %x)
- // tail call void @_Z1gi(i32 signext %a)
- // %add = add nuw nsw i32 %a, 1
- // %inc = add nuw nsw i32 %i, 1
- // %exitcond = icmp eq i32 %inc, 100000
- // br i1 %exitcond, label %for.cond.cleanup, label %for.body
- //
- // The arguments for the calls to g will become known after 3 iterations
- // of the loop, because the phi nodes values become known after 3 iterations
- // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations).
- // The first iteration has g(0), g(0); the second has g(0), g(5); the
- // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5).
- // Now consider the phi nodes:
- // %a is a phi with constants so it is determined after iteration 1.
- // %y is a phi based on a constant and %a so it is determined on
- // the iteration after %a is determined, so iteration 2.
- // %x is a phi based on a constant and %y so it is determined on
- // the iteration after %y, so iteration 3.
- // %i is based on itself (and is an induction variable) so it is
- // never determined.
- // This means that peeling off 3 iterations will result in being able to
- // remove the phi nodes for %a, %y, and %x. The arguments for the
- // corresponding calls to g are determined and the code for computing
- // x, y, and a can be removed.
- //
- // The PhiAnalyzer class calculates how many times a loop should be
- // peeled based on the above analysis of the phi nodes in the loop while
- // respecting the maximum specified.
- class PhiAnalyzer {
- public:
- PhiAnalyzer(const Loop &L, unsigned MaxIterations);
- // Calculate the sufficient minimum number of iterations of the loop to peel
- // such that phi instructions become determined (subject to allowable limits)
- std::optional<unsigned> calculateIterationsToPeel();
- protected:
- using PeelCounter = std::optional<unsigned>;
- const PeelCounter Unknown = std::nullopt;
- // Add 1 respecting Unknown and return Unknown if result over MaxIterations
- PeelCounter addOne(PeelCounter PC) const {
- if (PC == Unknown)
- return Unknown;
- return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown;
- }
- // Calculate the number of iterations after which the given value
- // becomes an invariant.
- PeelCounter calculate(const Value &);
- const Loop &L;
- const unsigned MaxIterations;
- // Map of Values to number of iterations to invariance
- SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance;
- };
- PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations)
- : L(L), MaxIterations(MaxIterations) {
- assert(canPeel(&L) && "loop is not suitable for peeling");
- assert(MaxIterations > 0 && "no peeling is allowed?");
- }
- // This function calculates the number of iterations after which the value
- // becomes an invariant. The pre-calculated values are memorized in a map.
- // N.B. This number will be Unknown or <= MaxIterations.
- // The function is calculated according to the following definition:
- // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
- // F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown)
- // G(%y) = 0 if %y is a loop invariant
- // G(%y) = G(%BackEdgeValue) if %y is a phi in the header block
- // G(%y) = TODO: if %y is an expression based on phis and loop invariants
- // The example looks like:
- // %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration.
- // %y = phi(0, 5)
- // %a = %y + 1
- // G(%y) = Unknown otherwise (including phi not in header block)
- PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) {
- // If we already know the answer, take it from the map.
- auto I = IterationsToInvariance.find(&V);
- if (I != IterationsToInvariance.end())
- return I->second;
- // Place Unknown to map to avoid infinite recursion. Such
- // cycles can never stop on an invariant.
- IterationsToInvariance[&V] = Unknown;
- if (L.isLoopInvariant(&V))
- // Loop invariant so known at start.
- return (IterationsToInvariance[&V] = 0);
- if (const PHINode *Phi = dyn_cast<PHINode>(&V)) {
- if (Phi->getParent() != L.getHeader()) {
- // Phi is not in header block so Unknown.
- assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
- return Unknown;
- }
- // We need to analyze the input from the back edge and add 1.
- Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch());
- PeelCounter Iterations = calculate(*Input);
- assert(IterationsToInvariance[Input] == Iterations &&
- "unexpected value saved");
- return (IterationsToInvariance[Phi] = addOne(Iterations));
- }
- if (const Instruction *I = dyn_cast<Instruction>(&V)) {
- if (isa<CmpInst>(I) || I->isBinaryOp()) {
- // Binary instructions get the max of the operands.
- PeelCounter LHS = calculate(*I->getOperand(0));
- if (LHS == Unknown)
- return Unknown;
- PeelCounter RHS = calculate(*I->getOperand(1));
- if (RHS == Unknown)
- return Unknown;
- return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)});
- }
- if (I->isCast())
- // Cast instructions get the value of the operand.
- return (IterationsToInvariance[I] = calculate(*I->getOperand(0)));
- }
- // TODO: handle more expressions
- // Everything else is Unknown.
- assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
- return Unknown;
- }
- std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() {
- unsigned Iterations = 0;
- for (auto &PHI : L.getHeader()->phis()) {
- PeelCounter ToInvariance = calculate(PHI);
- if (ToInvariance != Unknown) {
- assert(*ToInvariance <= MaxIterations && "bad result in phi analysis");
- Iterations = std::max(Iterations, *ToInvariance);
- if (Iterations == MaxIterations)
- break;
- }
- }
- assert((Iterations <= MaxIterations) && "bad result in phi analysis");
- return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt;
- }
- } // unnamed namespace
- // Try to find any invariant memory reads that will become dereferenceable in
- // the remainder loop after peeling. The load must also be used (transitively)
- // by an exit condition. Returns the number of iterations to peel off (at the
- // moment either 0 or 1).
- static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
- DominatorTree &DT,
- AssumptionCache *AC) {
- // Skip loops with a single exiting block, because there should be no benefit
- // for the heuristic below.
- if (L.getExitingBlock())
- return 0;
- // All non-latch exit blocks must have an UnreachableInst terminator.
- // Otherwise the heuristic below may not be profitable.
- SmallVector<BasicBlock *, 4> Exits;
- L.getUniqueNonLatchExitBlocks(Exits);
- if (any_of(Exits, [](const BasicBlock *BB) {
- return !isa<UnreachableInst>(BB->getTerminator());
- }))
- return 0;
- // Now look for invariant loads that dominate the latch and are not known to
- // be dereferenceable. If there are such loads and no writes, they will become
- // dereferenceable in the loop if the first iteration is peeled off. Also
- // collect the set of instructions controlled by such loads. Only peel if an
- // exit condition uses (transitively) such a load.
- BasicBlock *Header = L.getHeader();
- BasicBlock *Latch = L.getLoopLatch();
- SmallPtrSet<Value *, 8> LoadUsers;
- const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
- for (BasicBlock *BB : L.blocks()) {
- for (Instruction &I : *BB) {
- if (I.mayWriteToMemory())
- return 0;
- auto Iter = LoadUsers.find(&I);
- if (Iter != LoadUsers.end()) {
- for (Value *U : I.users())
- LoadUsers.insert(U);
- }
- // Do not look for reads in the header; they can already be hoisted
- // without peeling.
- if (BB == Header)
- continue;
- if (auto *LI = dyn_cast<LoadInst>(&I)) {
- Value *Ptr = LI->getPointerOperand();
- if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
- !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT))
- for (Value *U : I.users())
- LoadUsers.insert(U);
- }
- }
- }
- SmallVector<BasicBlock *> ExitingBlocks;
- L.getExitingBlocks(ExitingBlocks);
- if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
- return LoadUsers.contains(Exiting->getTerminator());
- }))
- return 1;
- return 0;
- }
- // Return the number of iterations to peel off that make conditions in the
- // body true/false. For example, if we peel 2 iterations off the loop below,
- // the condition i < 2 can be evaluated at compile time.
- // for (i = 0; i < n; i++)
- // if (i < 2)
- // ..
- // else
- // ..
- // }
- static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
- ScalarEvolution &SE) {
- assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
- unsigned DesiredPeelCount = 0;
- for (auto *BB : L.blocks()) {
- auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
- if (!BI || BI->isUnconditional())
- continue;
- // Ignore loop exit condition.
- if (L.getLoopLatch() == BB)
- continue;
- Value *Condition = BI->getCondition();
- Value *LeftVal, *RightVal;
- CmpInst::Predicate Pred;
- if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
- continue;
- const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
- const SCEV *RightSCEV = SE.getSCEV(RightVal);
- // Do not consider predicates that are known to be true or false
- // independently of the loop iteration.
- if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
- continue;
- // Check if we have a condition with one AddRec and one non AddRec
- // expression. Normalize LeftSCEV to be the AddRec.
- if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
- if (isa<SCEVAddRecExpr>(RightSCEV)) {
- std::swap(LeftSCEV, RightSCEV);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- } else
- continue;
- }
- const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
- // Avoid huge SCEV computations in the loop below, make sure we only
- // consider AddRecs of the loop we are trying to peel.
- if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
- continue;
- if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
- !SE.getMonotonicPredicateType(LeftAR, Pred))
- continue;
- // Check if extending the current DesiredPeelCount lets us evaluate Pred
- // or !Pred in the loop body statically.
- unsigned NewPeelCount = DesiredPeelCount;
- const SCEV *IterVal = LeftAR->evaluateAtIteration(
- SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
- // If the original condition is not known, get the negated predicate
- // (which holds on the else branch) and check if it is known. This allows
- // us to peel of iterations that make the original condition false.
- if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
- Pred = ICmpInst::getInversePredicate(Pred);
- const SCEV *Step = LeftAR->getStepRecurrence(SE);
- const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
- auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
- &NewPeelCount]() {
- IterVal = NextIterVal;
- NextIterVal = SE.getAddExpr(IterVal, Step);
- NewPeelCount++;
- };
- auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
- return NewPeelCount < MaxPeelCount;
- };
- while (CanPeelOneMoreIteration() &&
- SE.isKnownPredicate(Pred, IterVal, RightSCEV))
- PeelOneMoreIteration();
- // With *that* peel count, does the predicate !Pred become known in the
- // first iteration of the loop body after peeling?
- if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
- RightSCEV))
- continue; // If not, give up.
- // However, for equality comparisons, that isn't always sufficient to
- // eliminate the comparsion in loop body, we may need to peel one more
- // iteration. See if that makes !Pred become unknown again.
- if (ICmpInst::isEquality(Pred) &&
- !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
- RightSCEV) &&
- !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
- SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
- if (!CanPeelOneMoreIteration())
- continue; // Need to peel one more iteration, but can't. Give up.
- PeelOneMoreIteration(); // Great!
- }
- DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
- }
- return DesiredPeelCount;
- }
- /// This "heuristic" exactly matches implicit behavior which used to exist
- /// inside getLoopEstimatedTripCount. It was added here to keep an
- /// improvement inside that API from causing peeling to become more aggressive.
- /// This should probably be removed.
- static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
- BasicBlock *Latch = L->getLoopLatch();
- if (!Latch)
- return true;
- BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
- if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
- return true;
- assert((LatchBR->getSuccessor(0) == L->getHeader() ||
- LatchBR->getSuccessor(1) == L->getHeader()) &&
- "At least one edge out of the latch must go to the header");
- SmallVector<BasicBlock *, 4> ExitBlocks;
- L->getUniqueNonLatchExitBlocks(ExitBlocks);
- return any_of(ExitBlocks, [](const BasicBlock *EB) {
- return !EB->getTerminatingDeoptimizeCall();
- });
- }
- // Return the number of iterations we want to peel off.
- void llvm::computePeelCount(Loop *L, unsigned LoopSize,
- TargetTransformInfo::PeelingPreferences &PP,
- unsigned TripCount, DominatorTree &DT,
- ScalarEvolution &SE, AssumptionCache *AC,
- unsigned Threshold) {
- assert(LoopSize > 0 && "Zero loop size is not allowed!");
- // Save the PP.PeelCount value set by the target in
- // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
- unsigned TargetPeelCount = PP.PeelCount;
- PP.PeelCount = 0;
- if (!canPeel(L))
- return;
- // Only try to peel innermost loops by default.
- // The constraint can be relaxed by the target in TTI.getPeelingPreferences
- // or by the flag -unroll-allow-loop-nests-peeling.
- if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
- return;
- // If the user provided a peel count, use that.
- bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
- if (UserPeelCount) {
- LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
- << " iterations.\n");
- PP.PeelCount = UnrollForcePeelCount;
- PP.PeelProfiledIterations = true;
- return;
- }
- // Skip peeling if it's disabled.
- if (!PP.AllowPeeling)
- return;
- // Check that we can peel at least one iteration.
- if (2 * LoopSize > Threshold)
- return;
- unsigned AlreadyPeeled = 0;
- if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
- AlreadyPeeled = *Peeled;
- // Stop if we already peeled off the maximum number of iterations.
- if (AlreadyPeeled >= UnrollPeelMaxCount)
- return;
- // Pay respect to limitations implied by loop size and the max peel count.
- unsigned MaxPeelCount = UnrollPeelMaxCount;
- MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
- // Start the max computation with the PP.PeelCount value set by the target
- // in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
- unsigned DesiredPeelCount = TargetPeelCount;
- // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
- // iterations of the loop. For this we compute the number for iterations after
- // which every Phi is guaranteed to become an invariant, and try to peel the
- // maximum number of iterations among these values, thus turning all those
- // Phis into invariants.
- if (MaxPeelCount > DesiredPeelCount) {
- // Check how many iterations are useful for resolving Phis
- auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel();
- if (NumPeels)
- DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels);
- }
- DesiredPeelCount = std::max(DesiredPeelCount,
- countToEliminateCompares(*L, MaxPeelCount, SE));
- if (DesiredPeelCount == 0)
- DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC);
- if (DesiredPeelCount > 0) {
- DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
- // Consider max peel count limitation.
- assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
- if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
- LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
- << " iteration(s) to turn"
- << " some Phis into invariants.\n");
- PP.PeelCount = DesiredPeelCount;
- PP.PeelProfiledIterations = false;
- return;
- }
- }
- // Bail if we know the statically calculated trip count.
- // In this case we rather prefer partial unrolling.
- if (TripCount)
- return;
- // Do not apply profile base peeling if it is disabled.
- if (!PP.PeelProfiledIterations)
- return;
- // If we don't know the trip count, but have reason to believe the average
- // trip count is low, peeling should be beneficial, since we will usually
- // hit the peeled section.
- // We only do this in the presence of profile information, since otherwise
- // our estimates of the trip count are not reliable enough.
- if (L->getHeader()->getParent()->hasProfileData()) {
- if (violatesLegacyMultiExitLoopCheck(L))
- return;
- std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L);
- if (!EstimatedTripCount)
- return;
- LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
- << *EstimatedTripCount << "\n");
- if (*EstimatedTripCount) {
- if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) {
- unsigned PeelCount = *EstimatedTripCount;
- LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n");
- PP.PeelCount = PeelCount;
- return;
- }
- LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
- LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
- LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n");
- LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
- LLVM_DEBUG(dbgs() << "Max peel count by cost: "
- << (Threshold / LoopSize - 1) << "\n");
- }
- }
- }
- struct WeightInfo {
- // Weights for current iteration.
- SmallVector<uint32_t> Weights;
- // Weights to subtract after each iteration.
- const SmallVector<uint32_t> SubWeights;
- };
- /// Update the branch weights of an exiting block of a peeled-off loop
- /// iteration.
- /// Let F is a weight of the edge to continue (fallthrough) into the loop.
- /// Let E is a weight of the edge to an exit.
- /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
- /// go to exit.
- /// Then, Estimated ExitCount = F / E.
- /// For I-th (counting from 0) peeled off iteration we set the the weights for
- /// the peeled exit as (EC - I, 1). It gives us reasonable distribution,
- /// The probability to go to exit 1/(EC-I) increases. At the same time
- /// the estimated exit count in the remainder loop reduces by I.
- /// To avoid dealing with division rounding we can just multiple both part
- /// of weights to E and use weight as (F - I * E, E).
- static void updateBranchWeights(Instruction *Term, WeightInfo &Info) {
- MDBuilder MDB(Term->getContext());
- Term->setMetadata(LLVMContext::MD_prof,
- MDB.createBranchWeights(Info.Weights));
- for (auto [Idx, SubWeight] : enumerate(Info.SubWeights))
- if (SubWeight != 0)
- Info.Weights[Idx] = Info.Weights[Idx] > SubWeight
- ? Info.Weights[Idx] - SubWeight
- : 1;
- }
- /// Initialize the weights for all exiting blocks.
- static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos,
- Loop *L) {
- SmallVector<BasicBlock *> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- for (BasicBlock *ExitingBlock : ExitingBlocks) {
- Instruction *Term = ExitingBlock->getTerminator();
- SmallVector<uint32_t> Weights;
- if (!extractBranchWeights(*Term, Weights))
- continue;
- // See the comment on updateBranchWeights() for an explanation of what we
- // do here.
- uint32_t FallThroughWeights = 0;
- uint32_t ExitWeights = 0;
- for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
- if (L->contains(Succ))
- FallThroughWeights += Weight;
- else
- ExitWeights += Weight;
- }
- // Don't try to update weights for degenerate case.
- if (FallThroughWeights == 0)
- continue;
- SmallVector<uint32_t> SubWeights;
- for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
- if (!L->contains(Succ)) {
- // Exit weights stay the same.
- SubWeights.push_back(0);
- continue;
- }
- // Subtract exit weights on each iteration, distributed across all
- // fallthrough edges.
- double W = (double)Weight / (double)FallThroughWeights;
- SubWeights.push_back((uint32_t)(ExitWeights * W));
- }
- WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}});
- }
- }
- /// Update the weights of original exiting block after peeling off all
- /// iterations.
- static void fixupBranchWeights(Instruction *Term, const WeightInfo &Info) {
- MDBuilder MDB(Term->getContext());
- Term->setMetadata(LLVMContext::MD_prof,
- MDB.createBranchWeights(Info.Weights));
- }
- /// Clones the body of the loop L, putting it between \p InsertTop and \p
- /// InsertBot.
- /// \param IterNumber The serial number of the iteration currently being
- /// peeled off.
- /// \param ExitEdges The exit edges of the original loop.
- /// \param[out] NewBlocks A list of the blocks in the newly created clone
- /// \param[out] VMap The value map between the loop and the new clone.
- /// \param LoopBlocks A helper for DFS-traversal of the loop.
- /// \param LVMap A value-map that maps instructions from the original loop to
- /// instructions in the last peeled-off iteration.
- static void cloneLoopBlocks(
- Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
- SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
- SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
- ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
- LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes,
- ScalarEvolution &SE) {
- BasicBlock *Header = L->getHeader();
- BasicBlock *Latch = L->getLoopLatch();
- BasicBlock *PreHeader = L->getLoopPreheader();
- Function *F = Header->getParent();
- LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
- LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
- Loop *ParentLoop = L->getParentLoop();
- // For each block in the original loop, create a new copy,
- // and update the value map with the newly created values.
- for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
- BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
- NewBlocks.push_back(NewBB);
- // If an original block is an immediate child of the loop L, its copy
- // is a child of a ParentLoop after peeling. If a block is a child of
- // a nested loop, it is handled in the cloneLoop() call below.
- if (ParentLoop && LI->getLoopFor(*BB) == L)
- ParentLoop->addBasicBlockToLoop(NewBB, *LI);
- VMap[*BB] = NewBB;
- // If dominator tree is available, insert nodes to represent cloned blocks.
- if (DT) {
- if (Header == *BB)
- DT->addNewBlock(NewBB, InsertTop);
- else {
- DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
- // VMap must contain entry for IDom, as the iteration order is RPO.
- DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
- }
- }
- }
- {
- // Identify what other metadata depends on the cloned version. After
- // cloning, replace the metadata with the corrected version for both
- // memory instructions and noalias intrinsics.
- std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
- cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
- Header->getContext(), Ext);
- }
- // Recursively create the new Loop objects for nested loops, if any,
- // to preserve LoopInfo.
- for (Loop *ChildLoop : *L) {
- cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
- }
- // Hook-up the control flow for the newly inserted blocks.
- // The new header is hooked up directly to the "top", which is either
- // the original loop preheader (for the first iteration) or the previous
- // iteration's exiting block (for every other iteration)
- InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
- // Similarly, for the latch:
- // The original exiting edge is still hooked up to the loop exit.
- // The backedge now goes to the "bottom", which is either the loop's real
- // header (for the last peeled iteration) or the copied header of the next
- // iteration (for every other iteration)
- BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
- auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator());
- for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx)
- if (LatchTerm->getSuccessor(idx) == Header) {
- LatchTerm->setSuccessor(idx, InsertBot);
- break;
- }
- if (DT)
- DT->changeImmediateDominator(InsertBot, NewLatch);
- // The new copy of the loop body starts with a bunch of PHI nodes
- // that pick an incoming value from either the preheader, or the previous
- // loop iteration. Since this copy is no longer part of the loop, we
- // resolve this statically:
- // For the first iteration, we use the value from the preheader directly.
- // For any other iteration, we replace the phi with the value generated by
- // the immediately preceding clone of the loop body (which represents
- // the previous iteration).
- for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
- PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
- if (IterNumber == 0) {
- VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
- } else {
- Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
- Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
- if (LatchInst && L->contains(LatchInst))
- VMap[&*I] = LVMap[LatchInst];
- else
- VMap[&*I] = LatchVal;
- }
- NewPHI->eraseFromParent();
- }
- // Fix up the outgoing values - we need to add a value for the iteration
- // we've just created. Note that this must happen *after* the incoming
- // values are adjusted, since the value going out of the latch may also be
- // a value coming into the header.
- for (auto Edge : ExitEdges)
- for (PHINode &PHI : Edge.second->phis()) {
- Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
- Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
- if (LatchInst && L->contains(LatchInst))
- LatchVal = VMap[LatchVal];
- PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
- SE.forgetValue(&PHI);
- }
- // LastValueMap is updated with the values for the current loop
- // which are used the next time this function is called.
- for (auto KV : VMap)
- LVMap[KV.first] = KV.second;
- }
- TargetTransformInfo::PeelingPreferences
- llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE,
- const TargetTransformInfo &TTI,
- std::optional<bool> UserAllowPeeling,
- std::optional<bool> UserAllowProfileBasedPeeling,
- bool UnrollingSpecficValues) {
- TargetTransformInfo::PeelingPreferences PP;
- // Set the default values.
- PP.PeelCount = 0;
- PP.AllowPeeling = true;
- PP.AllowLoopNestsPeeling = false;
- PP.PeelProfiledIterations = true;
- // Get the target specifc values.
- TTI.getPeelingPreferences(L, SE, PP);
- // User specified values using cl::opt.
- if (UnrollingSpecficValues) {
- if (UnrollPeelCount.getNumOccurrences() > 0)
- PP.PeelCount = UnrollPeelCount;
- if (UnrollAllowPeeling.getNumOccurrences() > 0)
- PP.AllowPeeling = UnrollAllowPeeling;
- if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
- PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
- }
- // User specifed values provided by argument.
- if (UserAllowPeeling)
- PP.AllowPeeling = *UserAllowPeeling;
- if (UserAllowProfileBasedPeeling)
- PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
- return PP;
- }
- /// Peel off the first \p PeelCount iterations of loop \p L.
- ///
- /// Note that this does not peel them off as a single straight-line block.
- /// Rather, each iteration is peeled off separately, and needs to check the
- /// exit condition.
- /// For loops that dynamically execute \p PeelCount iterations or less
- /// this provides a benefit, since the peeled off iterations, which account
- /// for the bulk of dynamic execution, can be further simplified by scalar
- /// optimizations.
- bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
- ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
- bool PreserveLCSSA, ValueToValueMapTy &LVMap) {
- assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
- assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
- LoopBlocksDFS LoopBlocks(L);
- LoopBlocks.perform(LI);
- BasicBlock *Header = L->getHeader();
- BasicBlock *PreHeader = L->getLoopPreheader();
- BasicBlock *Latch = L->getLoopLatch();
- SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
- L->getExitEdges(ExitEdges);
- // Remember dominators of blocks we might reach through exits to change them
- // later. Immediate dominator of such block might change, because we add more
- // routes which can lead to the exit: we can reach it from the peeled
- // iterations too.
- DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
- for (auto *BB : L->blocks()) {
- auto *BBDomNode = DT.getNode(BB);
- SmallVector<BasicBlock *, 16> ChildrenToUpdate;
- for (auto *ChildDomNode : BBDomNode->children()) {
- auto *ChildBB = ChildDomNode->getBlock();
- if (!L->contains(ChildBB))
- ChildrenToUpdate.push_back(ChildBB);
- }
- // The new idom of the block will be the nearest common dominator
- // of all copies of the previous idom. This is equivalent to the
- // nearest common dominator of the previous idom and the first latch,
- // which dominates all copies of the previous idom.
- BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch);
- for (auto *ChildBB : ChildrenToUpdate)
- NonLoopBlocksIDom[ChildBB] = NewIDom;
- }
- Function *F = Header->getParent();
- // Set up all the necessary basic blocks. It is convenient to split the
- // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
- // body, and a new preheader for the "real" loop.
- // Peeling the first iteration transforms.
- //
- // PreHeader:
- // ...
- // Header:
- // LoopBody
- // If (cond) goto Header
- // Exit:
- //
- // into
- //
- // InsertTop:
- // LoopBody
- // If (!cond) goto Exit
- // InsertBot:
- // NewPreHeader:
- // ...
- // Header:
- // LoopBody
- // If (cond) goto Header
- // Exit:
- //
- // Each following iteration will split the current bottom anchor in two,
- // and put the new copy of the loop body between these two blocks. That is,
- // after peeling another iteration from the example above, we'll split
- // InsertBot, and get:
- //
- // InsertTop:
- // LoopBody
- // If (!cond) goto Exit
- // InsertBot:
- // LoopBody
- // If (!cond) goto Exit
- // InsertBot.next:
- // NewPreHeader:
- // ...
- // Header:
- // LoopBody
- // If (cond) goto Header
- // Exit:
- BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI);
- BasicBlock *InsertBot =
- SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI);
- BasicBlock *NewPreHeader =
- SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
- InsertTop->setName(Header->getName() + ".peel.begin");
- InsertBot->setName(Header->getName() + ".peel.next");
- NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
- Instruction *LatchTerm =
- cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator());
- // If we have branch weight information, we'll want to update it for the
- // newly created branches.
- DenseMap<Instruction *, WeightInfo> Weights;
- initBranchWeights(Weights, L);
- // Identify what noalias metadata is inside the loop: if it is inside the
- // loop, the associated metadata must be cloned for each iteration.
- SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
- identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
- // For each peeled-off iteration, make a copy of the loop.
- for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
- SmallVector<BasicBlock *, 8> NewBlocks;
- ValueToValueMapTy VMap;
- cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
- LoopBlocks, VMap, LVMap, &DT, LI,
- LoopLocalNoAliasDeclScopes, *SE);
- // Remap to use values from the current iteration instead of the
- // previous one.
- remapInstructionsInBlocks(NewBlocks, VMap);
- // Update IDoms of the blocks reachable through exits.
- if (Iter == 0)
- for (auto BBIDom : NonLoopBlocksIDom)
- DT.changeImmediateDominator(BBIDom.first,
- cast<BasicBlock>(LVMap[BBIDom.second]));
- #ifdef EXPENSIVE_CHECKS
- assert(DT.verify(DominatorTree::VerificationLevel::Fast));
- #endif
- for (auto &[Term, Info] : Weights) {
- auto *TermCopy = cast<Instruction>(VMap[Term]);
- updateBranchWeights(TermCopy, Info);
- }
- // Remove Loop metadata from the latch branch instruction
- // because it is not the Loop's latch branch anymore.
- auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]);
- LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr);
- InsertTop = InsertBot;
- InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
- InsertBot->setName(Header->getName() + ".peel.next");
- F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(),
- F->end());
- }
- // Now adjust the phi nodes in the loop header to get their initial values
- // from the last peeled-off iteration instead of the preheader.
- for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
- PHINode *PHI = cast<PHINode>(I);
- Value *NewVal = PHI->getIncomingValueForBlock(Latch);
- Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
- if (LatchInst && L->contains(LatchInst))
- NewVal = LVMap[LatchInst];
- PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
- }
- for (const auto &[Term, Info] : Weights)
- fixupBranchWeights(Term, Info);
- // Update Metadata for count of peeled off iterations.
- unsigned AlreadyPeeled = 0;
- if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
- AlreadyPeeled = *Peeled;
- addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
- if (Loop *ParentLoop = L->getParentLoop())
- L = ParentLoop;
- // We modified the loop, update SE.
- SE->forgetTopmostLoop(L);
- #ifdef EXPENSIVE_CHECKS
- // Finally DomtTree must be correct.
- assert(DT.verify(DominatorTree::VerificationLevel::Fast));
- #endif
- // FIXME: Incrementally update loop-simplify
- simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA);
- NumPeeled++;
- return true;
- }
|