12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401 |
- //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Rewrite call/invoke instructions so as to make potential relocations
- // performed by the garbage collector explicit in the IR.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/DomTreeUpdater.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Statepoint.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/PromoteMemToReg.h"
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <iterator>
- #include <optional>
- #include <set>
- #include <string>
- #include <utility>
- #include <vector>
- #define DEBUG_TYPE "rewrite-statepoints-for-gc"
- using namespace llvm;
- // Print the liveset found at the insert location
- static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
- cl::init(false));
- static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
- cl::init(false));
- // Print out the base pointers for debugging
- static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
- cl::init(false));
- // Cost threshold measuring when it is profitable to rematerialize value instead
- // of relocating it
- static cl::opt<unsigned>
- RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
- cl::init(6));
- #ifdef EXPENSIVE_CHECKS
- static bool ClobberNonLive = true;
- #else
- static bool ClobberNonLive = false;
- #endif
- static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
- cl::location(ClobberNonLive),
- cl::Hidden);
- static cl::opt<bool>
- AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
- cl::Hidden, cl::init(true));
- static cl::opt<bool> RematDerivedAtUses("rs4gc-remat-derived-at-uses",
- cl::Hidden, cl::init(true));
- /// The IR fed into RewriteStatepointsForGC may have had attributes and
- /// metadata implying dereferenceability that are no longer valid/correct after
- /// RewriteStatepointsForGC has run. This is because semantically, after
- /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
- /// heap. stripNonValidData (conservatively) restores
- /// correctness by erasing all attributes in the module that externally imply
- /// dereferenceability. Similar reasoning also applies to the noalias
- /// attributes and metadata. gc.statepoint can touch the entire heap including
- /// noalias objects.
- /// Apart from attributes and metadata, we also remove instructions that imply
- /// constant physical memory: llvm.invariant.start.
- static void stripNonValidData(Module &M);
- static bool shouldRewriteStatepointsIn(Function &F);
- PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
- ModuleAnalysisManager &AM) {
- bool Changed = false;
- auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
- for (Function &F : M) {
- // Nothing to do for declarations.
- if (F.isDeclaration() || F.empty())
- continue;
- // Policy choice says not to rewrite - the most common reason is that we're
- // compiling code without a GCStrategy.
- if (!shouldRewriteStatepointsIn(F))
- continue;
- auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
- auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
- auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
- Changed |= runOnFunction(F, DT, TTI, TLI);
- }
- if (!Changed)
- return PreservedAnalyses::all();
- // stripNonValidData asserts that shouldRewriteStatepointsIn
- // returns true for at least one function in the module. Since at least
- // one function changed, we know that the precondition is satisfied.
- stripNonValidData(M);
- PreservedAnalyses PA;
- PA.preserve<TargetIRAnalysis>();
- PA.preserve<TargetLibraryAnalysis>();
- return PA;
- }
- namespace {
- class RewriteStatepointsForGCLegacyPass : public ModulePass {
- RewriteStatepointsForGC Impl;
- public:
- static char ID; // Pass identification, replacement for typeid
- RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
- initializeRewriteStatepointsForGCLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
- bool runOnModule(Module &M) override {
- bool Changed = false;
- for (Function &F : M) {
- // Nothing to do for declarations.
- if (F.isDeclaration() || F.empty())
- continue;
- // Policy choice says not to rewrite - the most common reason is that
- // we're compiling code without a GCStrategy.
- if (!shouldRewriteStatepointsIn(F))
- continue;
- TargetTransformInfo &TTI =
- getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- const TargetLibraryInfo &TLI =
- getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
- auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
- Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
- }
- if (!Changed)
- return false;
- // stripNonValidData asserts that shouldRewriteStatepointsIn
- // returns true for at least one function in the module. Since at least
- // one function changed, we know that the precondition is satisfied.
- stripNonValidData(M);
- return true;
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- // We add and rewrite a bunch of instructions, but don't really do much
- // else. We could in theory preserve a lot more analyses here.
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- }
- };
- } // end anonymous namespace
- char RewriteStatepointsForGCLegacyPass::ID = 0;
- ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
- return new RewriteStatepointsForGCLegacyPass();
- }
- INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
- "rewrite-statepoints-for-gc",
- "Make relocations explicit at statepoints", false, false)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
- "rewrite-statepoints-for-gc",
- "Make relocations explicit at statepoints", false, false)
- namespace {
- struct GCPtrLivenessData {
- /// Values defined in this block.
- MapVector<BasicBlock *, SetVector<Value *>> KillSet;
- /// Values used in this block (and thus live); does not included values
- /// killed within this block.
- MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
- /// Values live into this basic block (i.e. used by any
- /// instruction in this basic block or ones reachable from here)
- MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
- /// Values live out of this basic block (i.e. live into
- /// any successor block)
- MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
- };
- // The type of the internal cache used inside the findBasePointers family
- // of functions. From the callers perspective, this is an opaque type and
- // should not be inspected.
- //
- // In the actual implementation this caches two relations:
- // - The base relation itself (i.e. this pointer is based on that one)
- // - The base defining value relation (i.e. before base_phi insertion)
- // Generally, after the execution of a full findBasePointer call, only the
- // base relation will remain. Internally, we add a mixture of the two
- // types, then update all the second type to the first type
- using DefiningValueMapTy = MapVector<Value *, Value *>;
- using IsKnownBaseMapTy = MapVector<Value *, bool>;
- using PointerToBaseTy = MapVector<Value *, Value *>;
- using StatepointLiveSetTy = SetVector<Value *>;
- using RematerializedValueMapTy =
- MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
- struct PartiallyConstructedSafepointRecord {
- /// The set of values known to be live across this safepoint
- StatepointLiveSetTy LiveSet;
- /// The *new* gc.statepoint instruction itself. This produces the token
- /// that normal path gc.relocates and the gc.result are tied to.
- GCStatepointInst *StatepointToken;
- /// Instruction to which exceptional gc relocates are attached
- /// Makes it easier to iterate through them during relocationViaAlloca.
- Instruction *UnwindToken;
- /// Record live values we are rematerialized instead of relocating.
- /// They are not included into 'LiveSet' field.
- /// Maps rematerialized copy to it's original value.
- RematerializedValueMapTy RematerializedValues;
- };
- struct RematerizlizationCandidateRecord {
- // Chain from derived pointer to base.
- SmallVector<Instruction *, 3> ChainToBase;
- // Original base.
- Value *RootOfChain;
- // Cost of chain.
- InstructionCost Cost;
- };
- using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>;
- } // end anonymous namespace
- static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
- std::optional<OperandBundleUse> DeoptBundle =
- Call->getOperandBundle(LLVMContext::OB_deopt);
- if (!DeoptBundle) {
- assert(AllowStatepointWithNoDeoptInfo &&
- "Found non-leaf call without deopt info!");
- return std::nullopt;
- }
- return DeoptBundle->Inputs;
- }
- /// Compute the live-in set for every basic block in the function
- static void computeLiveInValues(DominatorTree &DT, Function &F,
- GCPtrLivenessData &Data);
- /// Given results from the dataflow liveness computation, find the set of live
- /// Values at a particular instruction.
- static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
- StatepointLiveSetTy &out);
- // TODO: Once we can get to the GCStrategy, this becomes
- // std::optional<bool> isGCManagedPointer(const Type *Ty) const override {
- static bool isGCPointerType(Type *T) {
- if (auto *PT = dyn_cast<PointerType>(T))
- // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
- // GC managed heap. We know that a pointer into this heap needs to be
- // updated and that no other pointer does.
- return PT->getAddressSpace() == 1;
- return false;
- }
- // Return true if this type is one which a) is a gc pointer or contains a GC
- // pointer and b) is of a type this code expects to encounter as a live value.
- // (The insertion code will assert that a type which matches (a) and not (b)
- // is not encountered.)
- static bool isHandledGCPointerType(Type *T) {
- // We fully support gc pointers
- if (isGCPointerType(T))
- return true;
- // We partially support vectors of gc pointers. The code will assert if it
- // can't handle something.
- if (auto VT = dyn_cast<VectorType>(T))
- if (isGCPointerType(VT->getElementType()))
- return true;
- return false;
- }
- #ifndef NDEBUG
- /// Returns true if this type contains a gc pointer whether we know how to
- /// handle that type or not.
- static bool containsGCPtrType(Type *Ty) {
- if (isGCPointerType(Ty))
- return true;
- if (VectorType *VT = dyn_cast<VectorType>(Ty))
- return isGCPointerType(VT->getScalarType());
- if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
- return containsGCPtrType(AT->getElementType());
- if (StructType *ST = dyn_cast<StructType>(Ty))
- return llvm::any_of(ST->elements(), containsGCPtrType);
- return false;
- }
- // Returns true if this is a type which a) is a gc pointer or contains a GC
- // pointer and b) is of a type which the code doesn't expect (i.e. first class
- // aggregates). Used to trip assertions.
- static bool isUnhandledGCPointerType(Type *Ty) {
- return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
- }
- #endif
- // Return the name of the value suffixed with the provided value, or if the
- // value didn't have a name, the default value specified.
- static std::string suffixed_name_or(Value *V, StringRef Suffix,
- StringRef DefaultName) {
- return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
- }
- // Conservatively identifies any definitions which might be live at the
- // given instruction. The analysis is performed immediately before the
- // given instruction. Values defined by that instruction are not considered
- // live. Values used by that instruction are considered live.
- static void analyzeParsePointLiveness(
- DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
- PartiallyConstructedSafepointRecord &Result) {
- StatepointLiveSetTy LiveSet;
- findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
- if (PrintLiveSet) {
- dbgs() << "Live Variables:\n";
- for (Value *V : LiveSet)
- dbgs() << " " << V->getName() << " " << *V << "\n";
- }
- if (PrintLiveSetSize) {
- dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
- dbgs() << "Number live values: " << LiveSet.size() << "\n";
- }
- Result.LiveSet = LiveSet;
- }
- /// Returns true if V is a known base.
- static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases);
- /// Caches the IsKnownBase flag for a value and asserts that it wasn't present
- /// in the cache before.
- static void setKnownBase(Value *V, bool IsKnownBase,
- IsKnownBaseMapTy &KnownBases);
- static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache,
- IsKnownBaseMapTy &KnownBases);
- /// Return a base defining value for the 'Index' element of the given vector
- /// instruction 'I'. If Index is null, returns a BDV for the entire vector
- /// 'I'. As an optimization, this method will try to determine when the
- /// element is known to already be a base pointer. If this can be established,
- /// the second value in the returned pair will be true. Note that either a
- /// vector or a pointer typed value can be returned. For the former, the
- /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
- /// If the later, the return pointer is a BDV (or possibly a base) for the
- /// particular element in 'I'.
- static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache,
- IsKnownBaseMapTy &KnownBases) {
- // Each case parallels findBaseDefiningValue below, see that code for
- // detailed motivation.
- auto Cached = Cache.find(I);
- if (Cached != Cache.end())
- return Cached->second;
- if (isa<Argument>(I)) {
- // An incoming argument to the function is a base pointer
- Cache[I] = I;
- setKnownBase(I, /* IsKnownBase */true, KnownBases);
- return I;
- }
- if (isa<Constant>(I)) {
- // Base of constant vector consists only of constant null pointers.
- // For reasoning see similar case inside 'findBaseDefiningValue' function.
- auto *CAZ = ConstantAggregateZero::get(I->getType());
- Cache[I] = CAZ;
- setKnownBase(CAZ, /* IsKnownBase */true, KnownBases);
- return CAZ;
- }
- if (isa<LoadInst>(I)) {
- Cache[I] = I;
- setKnownBase(I, /* IsKnownBase */true, KnownBases);
- return I;
- }
- if (isa<InsertElementInst>(I)) {
- // We don't know whether this vector contains entirely base pointers or
- // not. To be conservatively correct, we treat it as a BDV and will
- // duplicate code as needed to construct a parallel vector of bases.
- Cache[I] = I;
- setKnownBase(I, /* IsKnownBase */false, KnownBases);
- return I;
- }
- if (isa<ShuffleVectorInst>(I)) {
- // We don't know whether this vector contains entirely base pointers or
- // not. To be conservatively correct, we treat it as a BDV and will
- // duplicate code as needed to construct a parallel vector of bases.
- // TODO: There a number of local optimizations which could be applied here
- // for particular sufflevector patterns.
- Cache[I] = I;
- setKnownBase(I, /* IsKnownBase */false, KnownBases);
- return I;
- }
- // The behavior of getelementptr instructions is the same for vector and
- // non-vector data types.
- if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
- auto *BDV =
- findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases);
- Cache[GEP] = BDV;
- return BDV;
- }
- // The behavior of freeze instructions is the same for vector and
- // non-vector data types.
- if (auto *Freeze = dyn_cast<FreezeInst>(I)) {
- auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases);
- Cache[Freeze] = BDV;
- return BDV;
- }
- // If the pointer comes through a bitcast of a vector of pointers to
- // a vector of another type of pointer, then look through the bitcast
- if (auto *BC = dyn_cast<BitCastInst>(I)) {
- auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases);
- Cache[BC] = BDV;
- return BDV;
- }
- // We assume that functions in the source language only return base
- // pointers. This should probably be generalized via attributes to support
- // both source language and internal functions.
- if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
- Cache[I] = I;
- setKnownBase(I, /* IsKnownBase */true, KnownBases);
- return I;
- }
- // A PHI or Select is a base defining value. The outer findBasePointer
- // algorithm is responsible for constructing a base value for this BDV.
- assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
- "unknown vector instruction - no base found for vector element");
- Cache[I] = I;
- setKnownBase(I, /* IsKnownBase */false, KnownBases);
- return I;
- }
- /// Helper function for findBasePointer - Will return a value which either a)
- /// defines the base pointer for the input, b) blocks the simple search
- /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
- /// from pointer to vector type or back.
- static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache,
- IsKnownBaseMapTy &KnownBases) {
- assert(I->getType()->isPtrOrPtrVectorTy() &&
- "Illegal to ask for the base pointer of a non-pointer type");
- auto Cached = Cache.find(I);
- if (Cached != Cache.end())
- return Cached->second;
- if (I->getType()->isVectorTy())
- return findBaseDefiningValueOfVector(I, Cache, KnownBases);
- if (isa<Argument>(I)) {
- // An incoming argument to the function is a base pointer
- // We should have never reached here if this argument isn't an gc value
- Cache[I] = I;
- setKnownBase(I, /* IsKnownBase */true, KnownBases);
- return I;
- }
- if (isa<Constant>(I)) {
- // We assume that objects with a constant base (e.g. a global) can't move
- // and don't need to be reported to the collector because they are always
- // live. Besides global references, all kinds of constants (e.g. undef,
- // constant expressions, null pointers) can be introduced by the inliner or
- // the optimizer, especially on dynamically dead paths.
- // Here we treat all of them as having single null base. By doing this we
- // trying to avoid problems reporting various conflicts in a form of
- // "phi (const1, const2)" or "phi (const, regular gc ptr)".
- // See constant.ll file for relevant test cases.
- auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType()));
- Cache[I] = CPN;
- setKnownBase(CPN, /* IsKnownBase */true, KnownBases);
- return CPN;
- }
- // inttoptrs in an integral address space are currently ill-defined. We
- // treat them as defining base pointers here for consistency with the
- // constant rule above and because we don't really have a better semantic
- // to give them. Note that the optimizer is always free to insert undefined
- // behavior on dynamically dead paths as well.
- if (isa<IntToPtrInst>(I)) {
- Cache[I] = I;
- setKnownBase(I, /* IsKnownBase */true, KnownBases);
- return I;
- }
- if (CastInst *CI = dyn_cast<CastInst>(I)) {
- Value *Def = CI->stripPointerCasts();
- // If stripping pointer casts changes the address space there is an
- // addrspacecast in between.
- assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
- cast<PointerType>(CI->getType())->getAddressSpace() &&
- "unsupported addrspacecast");
- // If we find a cast instruction here, it means we've found a cast which is
- // not simply a pointer cast (i.e. an inttoptr). We don't know how to
- // handle int->ptr conversion.
- assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
- auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases);
- Cache[CI] = BDV;
- return BDV;
- }
- if (isa<LoadInst>(I)) {
- // The value loaded is an gc base itself
- Cache[I] = I;
- setKnownBase(I, /* IsKnownBase */true, KnownBases);
- return I;
- }
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
- // The base of this GEP is the base
- auto *BDV =
- findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases);
- Cache[GEP] = BDV;
- return BDV;
- }
- if (auto *Freeze = dyn_cast<FreezeInst>(I)) {
- auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases);
- Cache[Freeze] = BDV;
- return BDV;
- }
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default:
- // fall through to general call handling
- break;
- case Intrinsic::experimental_gc_statepoint:
- llvm_unreachable("statepoints don't produce pointers");
- case Intrinsic::experimental_gc_relocate:
- // Rerunning safepoint insertion after safepoints are already
- // inserted is not supported. It could probably be made to work,
- // but why are you doing this? There's no good reason.
- llvm_unreachable("repeat safepoint insertion is not supported");
- case Intrinsic::gcroot:
- // Currently, this mechanism hasn't been extended to work with gcroot.
- // There's no reason it couldn't be, but I haven't thought about the
- // implications much.
- llvm_unreachable(
- "interaction with the gcroot mechanism is not supported");
- case Intrinsic::experimental_gc_get_pointer_base:
- auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases);
- Cache[II] = BDV;
- return BDV;
- }
- }
- // We assume that functions in the source language only return base
- // pointers. This should probably be generalized via attributes to support
- // both source language and internal functions.
- if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
- Cache[I] = I;
- setKnownBase(I, /* IsKnownBase */true, KnownBases);
- return I;
- }
- // TODO: I have absolutely no idea how to implement this part yet. It's not
- // necessarily hard, I just haven't really looked at it yet.
- assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
- if (isa<AtomicCmpXchgInst>(I)) {
- // A CAS is effectively a atomic store and load combined under a
- // predicate. From the perspective of base pointers, we just treat it
- // like a load.
- Cache[I] = I;
- setKnownBase(I, /* IsKnownBase */true, KnownBases);
- return I;
- }
- assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
- "binary ops which don't apply to pointers");
- // The aggregate ops. Aggregates can either be in the heap or on the
- // stack, but in either case, this is simply a field load. As a result,
- // this is a defining definition of the base just like a load is.
- if (isa<ExtractValueInst>(I)) {
- Cache[I] = I;
- setKnownBase(I, /* IsKnownBase */true, KnownBases);
- return I;
- }
- // We should never see an insert vector since that would require we be
- // tracing back a struct value not a pointer value.
- assert(!isa<InsertValueInst>(I) &&
- "Base pointer for a struct is meaningless");
- // This value might have been generated by findBasePointer() called when
- // substituting gc.get.pointer.base() intrinsic.
- bool IsKnownBase =
- isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value");
- setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases);
- Cache[I] = I;
- // An extractelement produces a base result exactly when it's input does.
- // We may need to insert a parallel instruction to extract the appropriate
- // element out of the base vector corresponding to the input. Given this,
- // it's analogous to the phi and select case even though it's not a merge.
- if (isa<ExtractElementInst>(I))
- // Note: There a lot of obvious peephole cases here. This are deliberately
- // handled after the main base pointer inference algorithm to make writing
- // test cases to exercise that code easier.
- return I;
- // The last two cases here don't return a base pointer. Instead, they
- // return a value which dynamically selects from among several base
- // derived pointers (each with it's own base potentially). It's the job of
- // the caller to resolve these.
- assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
- "missing instruction case in findBaseDefiningValue");
- return I;
- }
- /// Returns the base defining value for this value.
- static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache,
- IsKnownBaseMapTy &KnownBases) {
- if (Cache.find(I) == Cache.end()) {
- auto *BDV = findBaseDefiningValue(I, Cache, KnownBases);
- Cache[I] = BDV;
- LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
- << Cache[I]->getName() << ", is known base = "
- << KnownBases[I] << "\n");
- }
- assert(Cache[I] != nullptr);
- assert(KnownBases.find(Cache[I]) != KnownBases.end() &&
- "Cached value must be present in known bases map");
- return Cache[I];
- }
- /// Return a base pointer for this value if known. Otherwise, return it's
- /// base defining value.
- static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache,
- IsKnownBaseMapTy &KnownBases) {
- Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases);
- auto Found = Cache.find(Def);
- if (Found != Cache.end()) {
- // Either a base-of relation, or a self reference. Caller must check.
- return Found->second;
- }
- // Only a BDV available
- return Def;
- }
- #ifndef NDEBUG
- /// This value is a base pointer that is not generated by RS4GC, i.e. it already
- /// exists in the code.
- static bool isOriginalBaseResult(Value *V) {
- // no recursion possible
- return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
- !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
- !isa<ShuffleVectorInst>(V);
- }
- #endif
- static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) {
- auto It = KnownBases.find(V);
- assert(It != KnownBases.end() && "Value not present in the map");
- return It->second;
- }
- static void setKnownBase(Value *V, bool IsKnownBase,
- IsKnownBaseMapTy &KnownBases) {
- #ifndef NDEBUG
- auto It = KnownBases.find(V);
- if (It != KnownBases.end())
- assert(It->second == IsKnownBase && "Changing already present value");
- #endif
- KnownBases[V] = IsKnownBase;
- }
- // Returns true if First and Second values are both scalar or both vector.
- static bool areBothVectorOrScalar(Value *First, Value *Second) {
- return isa<VectorType>(First->getType()) ==
- isa<VectorType>(Second->getType());
- }
- namespace {
- /// Models the state of a single base defining value in the findBasePointer
- /// algorithm for determining where a new instruction is needed to propagate
- /// the base of this BDV.
- class BDVState {
- public:
- enum StatusTy {
- // Starting state of lattice
- Unknown,
- // Some specific base value -- does *not* mean that instruction
- // propagates the base of the object
- // ex: gep %arg, 16 -> %arg is the base value
- Base,
- // Need to insert a node to represent a merge.
- Conflict
- };
- BDVState() {
- llvm_unreachable("missing state in map");
- }
- explicit BDVState(Value *OriginalValue)
- : OriginalValue(OriginalValue) {}
- explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
- : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
- assert(Status != Base || BaseValue);
- }
- StatusTy getStatus() const { return Status; }
- Value *getOriginalValue() const { return OriginalValue; }
- Value *getBaseValue() const { return BaseValue; }
- bool isBase() const { return getStatus() == Base; }
- bool isUnknown() const { return getStatus() == Unknown; }
- bool isConflict() const { return getStatus() == Conflict; }
- // Values of type BDVState form a lattice, and this function implements the
- // meet
- // operation.
- void meet(const BDVState &Other) {
- auto markConflict = [&]() {
- Status = BDVState::Conflict;
- BaseValue = nullptr;
- };
- // Conflict is a final state.
- if (isConflict())
- return;
- // if we are not known - just take other state.
- if (isUnknown()) {
- Status = Other.getStatus();
- BaseValue = Other.getBaseValue();
- return;
- }
- // We are base.
- assert(isBase() && "Unknown state");
- // If other is unknown - just keep our state.
- if (Other.isUnknown())
- return;
- // If other is conflict - it is a final state.
- if (Other.isConflict())
- return markConflict();
- // Other is base as well.
- assert(Other.isBase() && "Unknown state");
- // If bases are different - Conflict.
- if (getBaseValue() != Other.getBaseValue())
- return markConflict();
- // We are identical, do nothing.
- }
- bool operator==(const BDVState &Other) const {
- return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue &&
- Status == Other.Status;
- }
- bool operator!=(const BDVState &other) const { return !(*this == other); }
- LLVM_DUMP_METHOD
- void dump() const {
- print(dbgs());
- dbgs() << '\n';
- }
- void print(raw_ostream &OS) const {
- switch (getStatus()) {
- case Unknown:
- OS << "U";
- break;
- case Base:
- OS << "B";
- break;
- case Conflict:
- OS << "C";
- break;
- }
- OS << " (base " << getBaseValue() << " - "
- << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
- << " for " << OriginalValue->getName() << ":";
- }
- private:
- AssertingVH<Value> OriginalValue; // instruction this state corresponds to
- StatusTy Status = Unknown;
- AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
- };
- } // end anonymous namespace
- #ifndef NDEBUG
- static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
- State.print(OS);
- return OS;
- }
- #endif
- /// For a given value or instruction, figure out what base ptr its derived from.
- /// For gc objects, this is simply itself. On success, returns a value which is
- /// the base pointer. (This is reliable and can be used for relocation.) On
- /// failure, returns nullptr.
- static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache,
- IsKnownBaseMapTy &KnownBases) {
- Value *Def = findBaseOrBDV(I, Cache, KnownBases);
- if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I))
- return Def;
- // Here's the rough algorithm:
- // - For every SSA value, construct a mapping to either an actual base
- // pointer or a PHI which obscures the base pointer.
- // - Construct a mapping from PHI to unknown TOP state. Use an
- // optimistic algorithm to propagate base pointer information. Lattice
- // looks like:
- // UNKNOWN
- // b1 b2 b3 b4
- // CONFLICT
- // When algorithm terminates, all PHIs will either have a single concrete
- // base or be in a conflict state.
- // - For every conflict, insert a dummy PHI node without arguments. Add
- // these to the base[Instruction] = BasePtr mapping. For every
- // non-conflict, add the actual base.
- // - For every conflict, add arguments for the base[a] of each input
- // arguments.
- //
- // Note: A simpler form of this would be to add the conflict form of all
- // PHIs without running the optimistic algorithm. This would be
- // analogous to pessimistic data flow and would likely lead to an
- // overall worse solution.
- #ifndef NDEBUG
- auto isExpectedBDVType = [](Value *BDV) {
- return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
- isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
- isa<ShuffleVectorInst>(BDV);
- };
- #endif
- // Once populated, will contain a mapping from each potentially non-base BDV
- // to a lattice value (described above) which corresponds to that BDV.
- // We use the order of insertion (DFS over the def/use graph) to provide a
- // stable deterministic ordering for visiting DenseMaps (which are unordered)
- // below. This is important for deterministic compilation.
- MapVector<Value *, BDVState> States;
- #ifndef NDEBUG
- auto VerifyStates = [&]() {
- for (auto &Entry : States) {
- assert(Entry.first == Entry.second.getOriginalValue());
- }
- };
- #endif
- auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
- if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
- for (Value *InVal : PN->incoming_values())
- F(InVal);
- } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
- F(SI->getTrueValue());
- F(SI->getFalseValue());
- } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
- F(EE->getVectorOperand());
- } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
- F(IE->getOperand(0));
- F(IE->getOperand(1));
- } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
- // For a canonical broadcast, ignore the undef argument
- // (without this, we insert a parallel base shuffle for every broadcast)
- F(SV->getOperand(0));
- if (!SV->isZeroEltSplat())
- F(SV->getOperand(1));
- } else {
- llvm_unreachable("unexpected BDV type");
- }
- };
- // Recursively fill in all base defining values reachable from the initial
- // one for which we don't already know a definite base value for
- /* scope */ {
- SmallVector<Value*, 16> Worklist;
- Worklist.push_back(Def);
- States.insert({Def, BDVState(Def)});
- while (!Worklist.empty()) {
- Value *Current = Worklist.pop_back_val();
- assert(!isOriginalBaseResult(Current) && "why did it get added?");
- auto visitIncomingValue = [&](Value *InVal) {
- Value *Base = findBaseOrBDV(InVal, Cache, KnownBases);
- if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal))
- // Known bases won't need new instructions introduced and can be
- // ignored safely. However, this can only be done when InVal and Base
- // are both scalar or both vector. Otherwise, we need to find a
- // correct BDV for InVal, by creating an entry in the lattice
- // (States).
- return;
- assert(isExpectedBDVType(Base) && "the only non-base values "
- "we see should be base defining values");
- if (States.insert(std::make_pair(Base, BDVState(Base))).second)
- Worklist.push_back(Base);
- };
- visitBDVOperands(Current, visitIncomingValue);
- }
- }
- #ifndef NDEBUG
- VerifyStates();
- LLVM_DEBUG(dbgs() << "States after initialization:\n");
- for (const auto &Pair : States) {
- LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
- }
- #endif
- // Iterate forward through the value graph pruning any node from the state
- // list where all of the inputs are base pointers. The purpose of this is to
- // reuse existing values when the derived pointer we were asked to materialize
- // a base pointer for happens to be a base pointer itself. (Or a sub-graph
- // feeding it does.)
- SmallVector<Value *> ToRemove;
- do {
- ToRemove.clear();
- for (auto Pair : States) {
- Value *BDV = Pair.first;
- auto canPruneInput = [&](Value *V) {
- // If the input of the BDV is the BDV itself we can prune it. This is
- // only possible if the BDV is a PHI node.
- if (V->stripPointerCasts() == BDV)
- return true;
- Value *VBDV = findBaseOrBDV(V, Cache, KnownBases);
- if (V->stripPointerCasts() != VBDV)
- return false;
- // The assumption is that anything not in the state list is
- // propagates a base pointer.
- return States.count(VBDV) == 0;
- };
- bool CanPrune = true;
- visitBDVOperands(BDV, [&](Value *Op) {
- CanPrune = CanPrune && canPruneInput(Op);
- });
- if (CanPrune)
- ToRemove.push_back(BDV);
- }
- for (Value *V : ToRemove) {
- States.erase(V);
- // Cache the fact V is it's own base for later usage.
- Cache[V] = V;
- }
- } while (!ToRemove.empty());
- // Did we manage to prove that Def itself must be a base pointer?
- if (!States.count(Def))
- return Def;
- // Return a phi state for a base defining value. We'll generate a new
- // base state for known bases and expect to find a cached state otherwise.
- auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
- auto I = States.find(BaseValue);
- if (I != States.end())
- return I->second;
- assert(areBothVectorOrScalar(BaseValue, Input));
- return BDVState(BaseValue, BDVState::Base, BaseValue);
- };
- bool Progress = true;
- while (Progress) {
- #ifndef NDEBUG
- const size_t OldSize = States.size();
- #endif
- Progress = false;
- // We're only changing values in this loop, thus safe to keep iterators.
- // Since this is computing a fixed point, the order of visit does not
- // effect the result. TODO: We could use a worklist here and make this run
- // much faster.
- for (auto Pair : States) {
- Value *BDV = Pair.first;
- // Only values that do not have known bases or those that have differing
- // type (scalar versus vector) from a possible known base should be in the
- // lattice.
- assert((!isKnownBase(BDV, KnownBases) ||
- !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
- "why did it get added?");
- BDVState NewState(BDV);
- visitBDVOperands(BDV, [&](Value *Op) {
- Value *BDV = findBaseOrBDV(Op, Cache, KnownBases);
- auto OpState = GetStateForBDV(BDV, Op);
- NewState.meet(OpState);
- });
- BDVState OldState = States[BDV];
- if (OldState != NewState) {
- Progress = true;
- States[BDV] = NewState;
- }
- }
- assert(OldSize == States.size() &&
- "fixed point shouldn't be adding any new nodes to state");
- }
- #ifndef NDEBUG
- VerifyStates();
- LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
- for (const auto &Pair : States) {
- LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
- }
- #endif
- // Handle all instructions that have a vector BDV, but the instruction itself
- // is of scalar type.
- for (auto Pair : States) {
- Instruction *I = cast<Instruction>(Pair.first);
- BDVState State = Pair.second;
- auto *BaseValue = State.getBaseValue();
- // Only values that do not have known bases or those that have differing
- // type (scalar versus vector) from a possible known base should be in the
- // lattice.
- assert(
- (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) &&
- "why did it get added?");
- assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
- if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
- continue;
- // extractelement instructions are a bit special in that we may need to
- // insert an extract even when we know an exact base for the instruction.
- // The problem is that we need to convert from a vector base to a scalar
- // base for the particular indice we're interested in.
- if (isa<ExtractElementInst>(I)) {
- auto *EE = cast<ExtractElementInst>(I);
- // TODO: In many cases, the new instruction is just EE itself. We should
- // exploit this, but can't do it here since it would break the invariant
- // about the BDV not being known to be a base.
- auto *BaseInst = ExtractElementInst::Create(
- State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
- BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
- States[I] = BDVState(I, BDVState::Base, BaseInst);
- setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases);
- } else if (!isa<VectorType>(I->getType())) {
- // We need to handle cases that have a vector base but the instruction is
- // a scalar type (these could be phis or selects or any instruction that
- // are of scalar type, but the base can be a vector type). We
- // conservatively set this as conflict. Setting the base value for these
- // conflicts is handled in the next loop which traverses States.
- States[I] = BDVState(I, BDVState::Conflict);
- }
- }
- #ifndef NDEBUG
- VerifyStates();
- #endif
- // Insert Phis for all conflicts
- // TODO: adjust naming patterns to avoid this order of iteration dependency
- for (auto Pair : States) {
- Instruction *I = cast<Instruction>(Pair.first);
- BDVState State = Pair.second;
- // Only values that do not have known bases or those that have differing
- // type (scalar versus vector) from a possible known base should be in the
- // lattice.
- assert((!isKnownBase(I, KnownBases) ||
- !areBothVectorOrScalar(I, State.getBaseValue())) &&
- "why did it get added?");
- assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
- // Since we're joining a vector and scalar base, they can never be the
- // same. As a result, we should always see insert element having reached
- // the conflict state.
- assert(!isa<InsertElementInst>(I) || State.isConflict());
- if (!State.isConflict())
- continue;
- auto getMangledName = [](Instruction *I) -> std::string {
- if (isa<PHINode>(I)) {
- return suffixed_name_or(I, ".base", "base_phi");
- } else if (isa<SelectInst>(I)) {
- return suffixed_name_or(I, ".base", "base_select");
- } else if (isa<ExtractElementInst>(I)) {
- return suffixed_name_or(I, ".base", "base_ee");
- } else if (isa<InsertElementInst>(I)) {
- return suffixed_name_or(I, ".base", "base_ie");
- } else {
- return suffixed_name_or(I, ".base", "base_sv");
- }
- };
- Instruction *BaseInst = I->clone();
- BaseInst->insertBefore(I);
- BaseInst->setName(getMangledName(I));
- // Add metadata marking this as a base value
- BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
- States[I] = BDVState(I, BDVState::Conflict, BaseInst);
- setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases);
- }
- #ifndef NDEBUG
- VerifyStates();
- #endif
- // Returns a instruction which produces the base pointer for a given
- // instruction. The instruction is assumed to be an input to one of the BDVs
- // seen in the inference algorithm above. As such, we must either already
- // know it's base defining value is a base, or have inserted a new
- // instruction to propagate the base of it's BDV and have entered that newly
- // introduced instruction into the state table. In either case, we are
- // assured to be able to determine an instruction which produces it's base
- // pointer.
- auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
- Value *BDV = findBaseOrBDV(Input, Cache, KnownBases);
- Value *Base = nullptr;
- if (!States.count(BDV)) {
- assert(areBothVectorOrScalar(BDV, Input));
- Base = BDV;
- } else {
- // Either conflict or base.
- assert(States.count(BDV));
- Base = States[BDV].getBaseValue();
- }
- assert(Base && "Can't be null");
- // The cast is needed since base traversal may strip away bitcasts
- if (Base->getType() != Input->getType() && InsertPt)
- Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
- return Base;
- };
- // Fixup all the inputs of the new PHIs. Visit order needs to be
- // deterministic and predictable because we're naming newly created
- // instructions.
- for (auto Pair : States) {
- Instruction *BDV = cast<Instruction>(Pair.first);
- BDVState State = Pair.second;
- // Only values that do not have known bases or those that have differing
- // type (scalar versus vector) from a possible known base should be in the
- // lattice.
- assert((!isKnownBase(BDV, KnownBases) ||
- !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
- "why did it get added?");
- assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
- if (!State.isConflict())
- continue;
- if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
- PHINode *PN = cast<PHINode>(BDV);
- const unsigned NumPHIValues = PN->getNumIncomingValues();
- // The IR verifier requires phi nodes with multiple entries from the
- // same basic block to have the same incoming value for each of those
- // entries. Since we're inserting bitcasts in the loop, make sure we
- // do so at least once per incoming block.
- DenseMap<BasicBlock *, Value*> BlockToValue;
- for (unsigned i = 0; i < NumPHIValues; i++) {
- Value *InVal = PN->getIncomingValue(i);
- BasicBlock *InBB = PN->getIncomingBlock(i);
- if (!BlockToValue.count(InBB))
- BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator());
- else {
- #ifndef NDEBUG
- Value *OldBase = BlockToValue[InBB];
- Value *Base = getBaseForInput(InVal, nullptr);
- // We can't use `stripPointerCasts` instead of this function because
- // `stripPointerCasts` doesn't handle vectors of pointers.
- auto StripBitCasts = [](Value *V) -> Value * {
- while (auto *BC = dyn_cast<BitCastInst>(V))
- V = BC->getOperand(0);
- return V;
- };
- // In essence this assert states: the only way two values
- // incoming from the same basic block may be different is by
- // being different bitcasts of the same value. A cleanup
- // that remains TODO is changing findBaseOrBDV to return an
- // llvm::Value of the correct type (and still remain pure).
- // This will remove the need to add bitcasts.
- assert(StripBitCasts(Base) == StripBitCasts(OldBase) &&
- "findBaseOrBDV should be pure!");
- #endif
- }
- Value *Base = BlockToValue[InBB];
- BasePHI->setIncomingValue(i, Base);
- }
- } else if (SelectInst *BaseSI =
- dyn_cast<SelectInst>(State.getBaseValue())) {
- SelectInst *SI = cast<SelectInst>(BDV);
- // Find the instruction which produces the base for each input.
- // We may need to insert a bitcast.
- BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
- BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
- } else if (auto *BaseEE =
- dyn_cast<ExtractElementInst>(State.getBaseValue())) {
- Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
- // Find the instruction which produces the base for each input. We may
- // need to insert a bitcast.
- BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
- } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
- auto *BdvIE = cast<InsertElementInst>(BDV);
- auto UpdateOperand = [&](int OperandIdx) {
- Value *InVal = BdvIE->getOperand(OperandIdx);
- Value *Base = getBaseForInput(InVal, BaseIE);
- BaseIE->setOperand(OperandIdx, Base);
- };
- UpdateOperand(0); // vector operand
- UpdateOperand(1); // scalar operand
- } else {
- auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
- auto *BdvSV = cast<ShuffleVectorInst>(BDV);
- auto UpdateOperand = [&](int OperandIdx) {
- Value *InVal = BdvSV->getOperand(OperandIdx);
- Value *Base = getBaseForInput(InVal, BaseSV);
- BaseSV->setOperand(OperandIdx, Base);
- };
- UpdateOperand(0); // vector operand
- if (!BdvSV->isZeroEltSplat())
- UpdateOperand(1); // vector operand
- else {
- // Never read, so just use undef
- Value *InVal = BdvSV->getOperand(1);
- BaseSV->setOperand(1, UndefValue::get(InVal->getType()));
- }
- }
- }
- #ifndef NDEBUG
- VerifyStates();
- #endif
- // Cache all of our results so we can cheaply reuse them
- // NOTE: This is actually two caches: one of the base defining value
- // relation and one of the base pointer relation! FIXME
- for (auto Pair : States) {
- auto *BDV = Pair.first;
- Value *Base = Pair.second.getBaseValue();
- assert(BDV && Base);
- // Only values that do not have known bases or those that have differing
- // type (scalar versus vector) from a possible known base should be in the
- // lattice.
- assert(
- (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) &&
- "why did it get added?");
- LLVM_DEBUG(
- dbgs() << "Updating base value cache"
- << " for: " << BDV->getName() << " from: "
- << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
- << " to: " << Base->getName() << "\n");
- Cache[BDV] = Base;
- }
- assert(Cache.count(Def));
- return Cache[Def];
- }
- // For a set of live pointers (base and/or derived), identify the base
- // pointer of the object which they are derived from. This routine will
- // mutate the IR graph as needed to make the 'base' pointer live at the
- // definition site of 'derived'. This ensures that any use of 'derived' can
- // also use 'base'. This may involve the insertion of a number of
- // additional PHI nodes.
- //
- // preconditions: live is a set of pointer type Values
- //
- // side effects: may insert PHI nodes into the existing CFG, will preserve
- // CFG, will not remove or mutate any existing nodes
- //
- // post condition: PointerToBase contains one (derived, base) pair for every
- // pointer in live. Note that derived can be equal to base if the original
- // pointer was a base pointer.
- static void findBasePointers(const StatepointLiveSetTy &live,
- PointerToBaseTy &PointerToBase, DominatorTree *DT,
- DefiningValueMapTy &DVCache,
- IsKnownBaseMapTy &KnownBases) {
- for (Value *ptr : live) {
- Value *base = findBasePointer(ptr, DVCache, KnownBases);
- assert(base && "failed to find base pointer");
- PointerToBase[ptr] = base;
- assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
- DT->dominates(cast<Instruction>(base)->getParent(),
- cast<Instruction>(ptr)->getParent())) &&
- "The base we found better dominate the derived pointer");
- }
- }
- /// Find the required based pointers (and adjust the live set) for the given
- /// parse point.
- static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
- CallBase *Call,
- PartiallyConstructedSafepointRecord &result,
- PointerToBaseTy &PointerToBase,
- IsKnownBaseMapTy &KnownBases) {
- StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
- // We assume that all pointers passed to deopt are base pointers; as an
- // optimization, we can use this to avoid seperately materializing the base
- // pointer graph. This is only relevant since we're very conservative about
- // generating new conflict nodes during base pointer insertion. If we were
- // smarter there, this would be irrelevant.
- if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
- for (Value *V : Opt->Inputs) {
- if (!PotentiallyDerivedPointers.count(V))
- continue;
- PotentiallyDerivedPointers.remove(V);
- PointerToBase[V] = V;
- }
- findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache,
- KnownBases);
- }
- /// Given an updated version of the dataflow liveness results, update the
- /// liveset and base pointer maps for the call site CS.
- static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
- CallBase *Call,
- PartiallyConstructedSafepointRecord &result,
- PointerToBaseTy &PointerToBase);
- static void recomputeLiveInValues(
- Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
- MutableArrayRef<struct PartiallyConstructedSafepointRecord> records,
- PointerToBaseTy &PointerToBase) {
- // TODO-PERF: reuse the original liveness, then simply run the dataflow
- // again. The old values are still live and will help it stabilize quickly.
- GCPtrLivenessData RevisedLivenessData;
- computeLiveInValues(DT, F, RevisedLivenessData);
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info,
- PointerToBase);
- }
- }
- // Utility function which clones all instructions from "ChainToBase"
- // and inserts them before "InsertBefore". Returns rematerialized value
- // which should be used after statepoint.
- static Instruction *rematerializeChain(ArrayRef<Instruction *> ChainToBase,
- Instruction *InsertBefore,
- Value *RootOfChain,
- Value *AlternateLiveBase) {
- Instruction *LastClonedValue = nullptr;
- Instruction *LastValue = nullptr;
- // Walk backwards to visit top-most instructions first.
- for (Instruction *Instr :
- make_range(ChainToBase.rbegin(), ChainToBase.rend())) {
- // Only GEP's and casts are supported as we need to be careful to not
- // introduce any new uses of pointers not in the liveset.
- // Note that it's fine to introduce new uses of pointers which were
- // otherwise not used after this statepoint.
- assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
- Instruction *ClonedValue = Instr->clone();
- ClonedValue->insertBefore(InsertBefore);
- ClonedValue->setName(Instr->getName() + ".remat");
- // If it is not first instruction in the chain then it uses previously
- // cloned value. We should update it to use cloned value.
- if (LastClonedValue) {
- assert(LastValue);
- ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
- #ifndef NDEBUG
- for (auto *OpValue : ClonedValue->operand_values()) {
- // Assert that cloned instruction does not use any instructions from
- // this chain other than LastClonedValue
- assert(!is_contained(ChainToBase, OpValue) &&
- "incorrect use in rematerialization chain");
- // Assert that the cloned instruction does not use the RootOfChain
- // or the AlternateLiveBase.
- assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
- }
- #endif
- } else {
- // For the first instruction, replace the use of unrelocated base i.e.
- // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
- // live set. They have been proved to be the same PHI nodes. Note
- // that the *only* use of the RootOfChain in the ChainToBase list is
- // the first Value in the list.
- if (RootOfChain != AlternateLiveBase)
- ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
- }
- LastClonedValue = ClonedValue;
- LastValue = Instr;
- }
- assert(LastClonedValue);
- return LastClonedValue;
- }
- // When inserting gc.relocate and gc.result calls, we need to ensure there are
- // no uses of the original value / return value between the gc.statepoint and
- // the gc.relocate / gc.result call. One case which can arise is a phi node
- // starting one of the successor blocks. We also need to be able to insert the
- // gc.relocates only on the path which goes through the statepoint. We might
- // need to split an edge to make this possible.
- static BasicBlock *
- normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
- DominatorTree &DT) {
- BasicBlock *Ret = BB;
- if (!BB->getUniquePredecessor())
- Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
- // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
- // from it
- FoldSingleEntryPHINodes(Ret);
- assert(!isa<PHINode>(Ret->begin()) &&
- "All PHI nodes should have been removed!");
- // At this point, we can safely insert a gc.relocate or gc.result as the first
- // instruction in Ret if needed.
- return Ret;
- }
- // List of all function attributes which must be stripped when lowering from
- // abstract machine model to physical machine model. Essentially, these are
- // all the effects a safepoint might have which we ignored in the abstract
- // machine model for purposes of optimization. We have to strip these on
- // both function declarations and call sites.
- static constexpr Attribute::AttrKind FnAttrsToStrip[] =
- {Attribute::Memory, Attribute::NoSync, Attribute::NoFree};
- // Create new attribute set containing only attributes which can be transferred
- // from original call to the safepoint.
- static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
- AttributeList OrigAL,
- AttributeList StatepointAL) {
- if (OrigAL.isEmpty())
- return StatepointAL;
- // Remove the readonly, readnone, and statepoint function attributes.
- AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs());
- for (auto Attr : FnAttrsToStrip)
- FnAttrs.removeAttribute(Attr);
- for (Attribute A : OrigAL.getFnAttrs()) {
- if (isStatepointDirectiveAttr(A))
- FnAttrs.removeAttribute(A);
- }
- // Just skip parameter and return attributes for now
- return StatepointAL.addFnAttributes(Ctx, FnAttrs);
- }
- /// Helper function to place all gc relocates necessary for the given
- /// statepoint.
- /// Inputs:
- /// liveVariables - list of variables to be relocated.
- /// basePtrs - base pointers.
- /// statepointToken - statepoint instruction to which relocates should be
- /// bound.
- /// Builder - Llvm IR builder to be used to construct new calls.
- static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
- ArrayRef<Value *> BasePtrs,
- Instruction *StatepointToken,
- IRBuilder<> &Builder) {
- if (LiveVariables.empty())
- return;
- auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
- auto ValIt = llvm::find(LiveVec, Val);
- assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
- size_t Index = std::distance(LiveVec.begin(), ValIt);
- assert(Index < LiveVec.size() && "Bug in std::find?");
- return Index;
- };
- Module *M = StatepointToken->getModule();
- // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
- // element type is i8 addrspace(1)*). We originally generated unique
- // declarations for each pointer type, but this proved problematic because
- // the intrinsic mangling code is incomplete and fragile. Since we're moving
- // towards a single unified pointer type anyways, we can just cast everything
- // to an i8* of the right address space. A bitcast is added later to convert
- // gc_relocate to the actual value's type.
- auto getGCRelocateDecl = [&] (Type *Ty) {
- assert(isHandledGCPointerType(Ty));
- auto AS = Ty->getScalarType()->getPointerAddressSpace();
- Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
- if (auto *VT = dyn_cast<VectorType>(Ty))
- NewTy = FixedVectorType::get(NewTy,
- cast<FixedVectorType>(VT)->getNumElements());
- return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
- {NewTy});
- };
- // Lazily populated map from input types to the canonicalized form mentioned
- // in the comment above. This should probably be cached somewhere more
- // broadly.
- DenseMap<Type *, Function *> TypeToDeclMap;
- for (unsigned i = 0; i < LiveVariables.size(); i++) {
- // Generate the gc.relocate call and save the result
- Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
- Value *LiveIdx = Builder.getInt32(i);
- Type *Ty = LiveVariables[i]->getType();
- if (!TypeToDeclMap.count(Ty))
- TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
- Function *GCRelocateDecl = TypeToDeclMap[Ty];
- // only specify a debug name if we can give a useful one
- CallInst *Reloc = Builder.CreateCall(
- GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
- suffixed_name_or(LiveVariables[i], ".relocated", ""));
- // Trick CodeGen into thinking there are lots of free registers at this
- // fake call.
- Reloc->setCallingConv(CallingConv::Cold);
- }
- }
- namespace {
- /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
- /// avoids having to worry about keeping around dangling pointers to Values.
- class DeferredReplacement {
- AssertingVH<Instruction> Old;
- AssertingVH<Instruction> New;
- bool IsDeoptimize = false;
- DeferredReplacement() = default;
- public:
- static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
- assert(Old != New && Old && New &&
- "Cannot RAUW equal values or to / from null!");
- DeferredReplacement D;
- D.Old = Old;
- D.New = New;
- return D;
- }
- static DeferredReplacement createDelete(Instruction *ToErase) {
- DeferredReplacement D;
- D.Old = ToErase;
- return D;
- }
- static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
- #ifndef NDEBUG
- auto *F = cast<CallInst>(Old)->getCalledFunction();
- assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
- "Only way to construct a deoptimize deferred replacement");
- #endif
- DeferredReplacement D;
- D.Old = Old;
- D.IsDeoptimize = true;
- return D;
- }
- /// Does the task represented by this instance.
- void doReplacement() {
- Instruction *OldI = Old;
- Instruction *NewI = New;
- assert(OldI != NewI && "Disallowed at construction?!");
- assert((!IsDeoptimize || !New) &&
- "Deoptimize intrinsics are not replaced!");
- Old = nullptr;
- New = nullptr;
- if (NewI)
- OldI->replaceAllUsesWith(NewI);
- if (IsDeoptimize) {
- // Note: we've inserted instructions, so the call to llvm.deoptimize may
- // not necessarily be followed by the matching return.
- auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
- new UnreachableInst(RI->getContext(), RI);
- RI->eraseFromParent();
- }
- OldI->eraseFromParent();
- }
- };
- } // end anonymous namespace
- static StringRef getDeoptLowering(CallBase *Call) {
- const char *DeoptLowering = "deopt-lowering";
- if (Call->hasFnAttr(DeoptLowering)) {
- // FIXME: Calls have a *really* confusing interface around attributes
- // with values.
- const AttributeList &CSAS = Call->getAttributes();
- if (CSAS.hasFnAttr(DeoptLowering))
- return CSAS.getFnAttr(DeoptLowering).getValueAsString();
- Function *F = Call->getCalledFunction();
- assert(F && F->hasFnAttribute(DeoptLowering));
- return F->getFnAttribute(DeoptLowering).getValueAsString();
- }
- return "live-through";
- }
- static void
- makeStatepointExplicitImpl(CallBase *Call, /* to replace */
- const SmallVectorImpl<Value *> &BasePtrs,
- const SmallVectorImpl<Value *> &LiveVariables,
- PartiallyConstructedSafepointRecord &Result,
- std::vector<DeferredReplacement> &Replacements,
- const PointerToBaseTy &PointerToBase) {
- assert(BasePtrs.size() == LiveVariables.size());
- // Then go ahead and use the builder do actually do the inserts. We insert
- // immediately before the previous instruction under the assumption that all
- // arguments will be available here. We can't insert afterwards since we may
- // be replacing a terminator.
- IRBuilder<> Builder(Call);
- ArrayRef<Value *> GCArgs(LiveVariables);
- uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
- uint32_t NumPatchBytes = 0;
- uint32_t Flags = uint32_t(StatepointFlags::None);
- SmallVector<Value *, 8> CallArgs(Call->args());
- std::optional<ArrayRef<Use>> DeoptArgs;
- if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
- DeoptArgs = Bundle->Inputs;
- std::optional<ArrayRef<Use>> TransitionArgs;
- if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
- TransitionArgs = Bundle->Inputs;
- // TODO: This flag no longer serves a purpose and can be removed later
- Flags |= uint32_t(StatepointFlags::GCTransition);
- }
- // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
- // with a return value, we lower then as never returning calls to
- // __llvm_deoptimize that are followed by unreachable to get better codegen.
- bool IsDeoptimize = false;
- StatepointDirectives SD =
- parseStatepointDirectivesFromAttrs(Call->getAttributes());
- if (SD.NumPatchBytes)
- NumPatchBytes = *SD.NumPatchBytes;
- if (SD.StatepointID)
- StatepointID = *SD.StatepointID;
- // Pass through the requested lowering if any. The default is live-through.
- StringRef DeoptLowering = getDeoptLowering(Call);
- if (DeoptLowering.equals("live-in"))
- Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
- else {
- assert(DeoptLowering.equals("live-through") && "Unsupported value!");
- }
- FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand());
- if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) {
- auto IID = F->getIntrinsicID();
- if (IID == Intrinsic::experimental_deoptimize) {
- // Calls to llvm.experimental.deoptimize are lowered to calls to the
- // __llvm_deoptimize symbol. We want to resolve this now, since the
- // verifier does not allow taking the address of an intrinsic function.
- SmallVector<Type *, 8> DomainTy;
- for (Value *Arg : CallArgs)
- DomainTy.push_back(Arg->getType());
- auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
- /* isVarArg = */ false);
- // Note: CallTarget can be a bitcast instruction of a symbol if there are
- // calls to @llvm.experimental.deoptimize with different argument types in
- // the same module. This is fine -- we assume the frontend knew what it
- // was doing when generating this kind of IR.
- CallTarget = F->getParent()
- ->getOrInsertFunction("__llvm_deoptimize", FTy);
- IsDeoptimize = true;
- } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
- IID == Intrinsic::memmove_element_unordered_atomic) {
- // Unordered atomic memcpy and memmove intrinsics which are not explicitly
- // marked as "gc-leaf-function" should be lowered in a GC parseable way.
- // Specifically, these calls should be lowered to the
- // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
- // Similarly to __llvm_deoptimize we want to resolve this now, since the
- // verifier does not allow taking the address of an intrinsic function.
- //
- // Moreover we need to shuffle the arguments for the call in order to
- // accommodate GC. The underlying source and destination objects might be
- // relocated during copy operation should the GC occur. To relocate the
- // derived source and destination pointers the implementation of the
- // intrinsic should know the corresponding base pointers.
- //
- // To make the base pointers available pass them explicitly as arguments:
- // memcpy(dest_derived, source_derived, ...) =>
- // memcpy(dest_base, dest_offset, source_base, source_offset, ...)
- auto &Context = Call->getContext();
- auto &DL = Call->getModule()->getDataLayout();
- auto GetBaseAndOffset = [&](Value *Derived) {
- Value *Base = nullptr;
- // Optimizations in unreachable code might substitute the real pointer
- // with undef, poison or null-derived constant. Return null base for
- // them to be consistent with the handling in the main algorithm in
- // findBaseDefiningValue.
- if (isa<Constant>(Derived))
- Base =
- ConstantPointerNull::get(cast<PointerType>(Derived->getType()));
- else {
- assert(PointerToBase.count(Derived));
- Base = PointerToBase.find(Derived)->second;
- }
- unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
- unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
- Value *Base_int = Builder.CreatePtrToInt(
- Base, Type::getIntNTy(Context, IntPtrSize));
- Value *Derived_int = Builder.CreatePtrToInt(
- Derived, Type::getIntNTy(Context, IntPtrSize));
- return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
- };
- auto *Dest = CallArgs[0];
- Value *DestBase, *DestOffset;
- std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
- auto *Source = CallArgs[1];
- Value *SourceBase, *SourceOffset;
- std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
- auto *LengthInBytes = CallArgs[2];
- auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
- CallArgs.clear();
- CallArgs.push_back(DestBase);
- CallArgs.push_back(DestOffset);
- CallArgs.push_back(SourceBase);
- CallArgs.push_back(SourceOffset);
- CallArgs.push_back(LengthInBytes);
- SmallVector<Type *, 8> DomainTy;
- for (Value *Arg : CallArgs)
- DomainTy.push_back(Arg->getType());
- auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
- /* isVarArg = */ false);
- auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
- uint64_t ElementSize = ElementSizeCI->getZExtValue();
- if (IID == Intrinsic::memcpy_element_unordered_atomic) {
- switch (ElementSize) {
- case 1:
- return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
- case 2:
- return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
- case 4:
- return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
- case 8:
- return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
- case 16:
- return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
- default:
- llvm_unreachable("unexpected element size!");
- }
- }
- assert(IID == Intrinsic::memmove_element_unordered_atomic);
- switch (ElementSize) {
- case 1:
- return "__llvm_memmove_element_unordered_atomic_safepoint_1";
- case 2:
- return "__llvm_memmove_element_unordered_atomic_safepoint_2";
- case 4:
- return "__llvm_memmove_element_unordered_atomic_safepoint_4";
- case 8:
- return "__llvm_memmove_element_unordered_atomic_safepoint_8";
- case 16:
- return "__llvm_memmove_element_unordered_atomic_safepoint_16";
- default:
- llvm_unreachable("unexpected element size!");
- }
- };
- CallTarget =
- F->getParent()
- ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy);
- }
- }
- // Create the statepoint given all the arguments
- GCStatepointInst *Token = nullptr;
- if (auto *CI = dyn_cast<CallInst>(Call)) {
- CallInst *SPCall = Builder.CreateGCStatepointCall(
- StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
- TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
- SPCall->setTailCallKind(CI->getTailCallKind());
- SPCall->setCallingConv(CI->getCallingConv());
- // Currently we will fail on parameter attributes and on certain
- // function attributes. In case if we can handle this set of attributes -
- // set up function attrs directly on statepoint and return attrs later for
- // gc_result intrinsic.
- SPCall->setAttributes(legalizeCallAttributes(
- CI->getContext(), CI->getAttributes(), SPCall->getAttributes()));
- Token = cast<GCStatepointInst>(SPCall);
- // Put the following gc_result and gc_relocate calls immediately after the
- // the old call (which we're about to delete)
- assert(CI->getNextNode() && "Not a terminator, must have next!");
- Builder.SetInsertPoint(CI->getNextNode());
- Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
- } else {
- auto *II = cast<InvokeInst>(Call);
- // Insert the new invoke into the old block. We'll remove the old one in a
- // moment at which point this will become the new terminator for the
- // original block.
- InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
- StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
- II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
- "statepoint_token");
- SPInvoke->setCallingConv(II->getCallingConv());
- // Currently we will fail on parameter attributes and on certain
- // function attributes. In case if we can handle this set of attributes -
- // set up function attrs directly on statepoint and return attrs later for
- // gc_result intrinsic.
- SPInvoke->setAttributes(legalizeCallAttributes(
- II->getContext(), II->getAttributes(), SPInvoke->getAttributes()));
- Token = cast<GCStatepointInst>(SPInvoke);
- // Generate gc relocates in exceptional path
- BasicBlock *UnwindBlock = II->getUnwindDest();
- assert(!isa<PHINode>(UnwindBlock->begin()) &&
- UnwindBlock->getUniquePredecessor() &&
- "can't safely insert in this block!");
- Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
- Builder.SetCurrentDebugLocation(II->getDebugLoc());
- // Attach exceptional gc relocates to the landingpad.
- Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
- Result.UnwindToken = ExceptionalToken;
- CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
- // Generate gc relocates and returns for normal block
- BasicBlock *NormalDest = II->getNormalDest();
- assert(!isa<PHINode>(NormalDest->begin()) &&
- NormalDest->getUniquePredecessor() &&
- "can't safely insert in this block!");
- Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
- // gc relocates will be generated later as if it were regular call
- // statepoint
- }
- assert(Token && "Should be set in one of the above branches!");
- if (IsDeoptimize) {
- // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
- // transform the tail-call like structure to a call to a void function
- // followed by unreachable to get better codegen.
- Replacements.push_back(
- DeferredReplacement::createDeoptimizeReplacement(Call));
- } else {
- Token->setName("statepoint_token");
- if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
- StringRef Name = Call->hasName() ? Call->getName() : "";
- CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
- GCResult->setAttributes(
- AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
- Call->getAttributes().getRetAttrs()));
- // We cannot RAUW or delete CS.getInstruction() because it could be in the
- // live set of some other safepoint, in which case that safepoint's
- // PartiallyConstructedSafepointRecord will hold a raw pointer to this
- // llvm::Instruction. Instead, we defer the replacement and deletion to
- // after the live sets have been made explicit in the IR, and we no longer
- // have raw pointers to worry about.
- Replacements.emplace_back(
- DeferredReplacement::createRAUW(Call, GCResult));
- } else {
- Replacements.emplace_back(DeferredReplacement::createDelete(Call));
- }
- }
- Result.StatepointToken = Token;
- // Second, create a gc.relocate for every live variable
- CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
- }
- // Replace an existing gc.statepoint with a new one and a set of gc.relocates
- // which make the relocations happening at this safepoint explicit.
- //
- // WARNING: Does not do any fixup to adjust users of the original live
- // values. That's the callers responsibility.
- static void
- makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
- PartiallyConstructedSafepointRecord &Result,
- std::vector<DeferredReplacement> &Replacements,
- const PointerToBaseTy &PointerToBase) {
- const auto &LiveSet = Result.LiveSet;
- // Convert to vector for efficient cross referencing.
- SmallVector<Value *, 64> BaseVec, LiveVec;
- LiveVec.reserve(LiveSet.size());
- BaseVec.reserve(LiveSet.size());
- for (Value *L : LiveSet) {
- LiveVec.push_back(L);
- assert(PointerToBase.count(L));
- Value *Base = PointerToBase.find(L)->second;
- BaseVec.push_back(Base);
- }
- assert(LiveVec.size() == BaseVec.size());
- // Do the actual rewriting and delete the old statepoint
- makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements,
- PointerToBase);
- }
- // Helper function for the relocationViaAlloca.
- //
- // It receives iterator to the statepoint gc relocates and emits a store to the
- // assigned location (via allocaMap) for the each one of them. It adds the
- // visited values into the visitedLiveValues set, which we will later use them
- // for validation checking.
- static void
- insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
- DenseMap<Value *, AllocaInst *> &AllocaMap,
- DenseSet<Value *> &VisitedLiveValues) {
- for (User *U : GCRelocs) {
- GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
- if (!Relocate)
- continue;
- Value *OriginalValue = Relocate->getDerivedPtr();
- assert(AllocaMap.count(OriginalValue));
- Value *Alloca = AllocaMap[OriginalValue];
- // Emit store into the related alloca
- // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
- // the correct type according to alloca.
- assert(Relocate->getNextNode() &&
- "Should always have one since it's not a terminator");
- IRBuilder<> Builder(Relocate->getNextNode());
- Value *CastedRelocatedValue =
- Builder.CreateBitCast(Relocate,
- cast<AllocaInst>(Alloca)->getAllocatedType(),
- suffixed_name_or(Relocate, ".casted", ""));
- new StoreInst(CastedRelocatedValue, Alloca,
- cast<Instruction>(CastedRelocatedValue)->getNextNode());
- #ifndef NDEBUG
- VisitedLiveValues.insert(OriginalValue);
- #endif
- }
- }
- // Helper function for the "relocationViaAlloca". Similar to the
- // "insertRelocationStores" but works for rematerialized values.
- static void insertRematerializationStores(
- const RematerializedValueMapTy &RematerializedValues,
- DenseMap<Value *, AllocaInst *> &AllocaMap,
- DenseSet<Value *> &VisitedLiveValues) {
- for (auto RematerializedValuePair: RematerializedValues) {
- Instruction *RematerializedValue = RematerializedValuePair.first;
- Value *OriginalValue = RematerializedValuePair.second;
- assert(AllocaMap.count(OriginalValue) &&
- "Can not find alloca for rematerialized value");
- Value *Alloca = AllocaMap[OriginalValue];
- new StoreInst(RematerializedValue, Alloca,
- RematerializedValue->getNextNode());
- #ifndef NDEBUG
- VisitedLiveValues.insert(OriginalValue);
- #endif
- }
- }
- /// Do all the relocation update via allocas and mem2reg
- static void relocationViaAlloca(
- Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
- ArrayRef<PartiallyConstructedSafepointRecord> Records) {
- #ifndef NDEBUG
- // record initial number of (static) allocas; we'll check we have the same
- // number when we get done.
- int InitialAllocaNum = 0;
- for (Instruction &I : F.getEntryBlock())
- if (isa<AllocaInst>(I))
- InitialAllocaNum++;
- #endif
- // TODO-PERF: change data structures, reserve
- DenseMap<Value *, AllocaInst *> AllocaMap;
- SmallVector<AllocaInst *, 200> PromotableAllocas;
- // Used later to chack that we have enough allocas to store all values
- std::size_t NumRematerializedValues = 0;
- PromotableAllocas.reserve(Live.size());
- // Emit alloca for "LiveValue" and record it in "allocaMap" and
- // "PromotableAllocas"
- const DataLayout &DL = F.getParent()->getDataLayout();
- auto emitAllocaFor = [&](Value *LiveValue) {
- AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
- DL.getAllocaAddrSpace(), "",
- F.getEntryBlock().getFirstNonPHI());
- AllocaMap[LiveValue] = Alloca;
- PromotableAllocas.push_back(Alloca);
- };
- // Emit alloca for each live gc pointer
- for (Value *V : Live)
- emitAllocaFor(V);
- // Emit allocas for rematerialized values
- for (const auto &Info : Records)
- for (auto RematerializedValuePair : Info.RematerializedValues) {
- Value *OriginalValue = RematerializedValuePair.second;
- if (AllocaMap.count(OriginalValue) != 0)
- continue;
- emitAllocaFor(OriginalValue);
- ++NumRematerializedValues;
- }
- // The next two loops are part of the same conceptual operation. We need to
- // insert a store to the alloca after the original def and at each
- // redefinition. We need to insert a load before each use. These are split
- // into distinct loops for performance reasons.
- // Update gc pointer after each statepoint: either store a relocated value or
- // null (if no relocated value was found for this gc pointer and it is not a
- // gc_result). This must happen before we update the statepoint with load of
- // alloca otherwise we lose the link between statepoint and old def.
- for (const auto &Info : Records) {
- Value *Statepoint = Info.StatepointToken;
- // This will be used for consistency check
- DenseSet<Value *> VisitedLiveValues;
- // Insert stores for normal statepoint gc relocates
- insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
- // In case if it was invoke statepoint
- // we will insert stores for exceptional path gc relocates.
- if (isa<InvokeInst>(Statepoint)) {
- insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
- VisitedLiveValues);
- }
- // Do similar thing with rematerialized values
- insertRematerializationStores(Info.RematerializedValues, AllocaMap,
- VisitedLiveValues);
- if (ClobberNonLive) {
- // As a debugging aid, pretend that an unrelocated pointer becomes null at
- // the gc.statepoint. This will turn some subtle GC problems into
- // slightly easier to debug SEGVs. Note that on large IR files with
- // lots of gc.statepoints this is extremely costly both memory and time
- // wise.
- SmallVector<AllocaInst *, 64> ToClobber;
- for (auto Pair : AllocaMap) {
- Value *Def = Pair.first;
- AllocaInst *Alloca = Pair.second;
- // This value was relocated
- if (VisitedLiveValues.count(Def)) {
- continue;
- }
- ToClobber.push_back(Alloca);
- }
- auto InsertClobbersAt = [&](Instruction *IP) {
- for (auto *AI : ToClobber) {
- auto AT = AI->getAllocatedType();
- Constant *CPN;
- if (AT->isVectorTy())
- CPN = ConstantAggregateZero::get(AT);
- else
- CPN = ConstantPointerNull::get(cast<PointerType>(AT));
- new StoreInst(CPN, AI, IP);
- }
- };
- // Insert the clobbering stores. These may get intermixed with the
- // gc.results and gc.relocates, but that's fine.
- if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
- InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
- InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
- } else {
- InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
- }
- }
- }
- // Update use with load allocas and add store for gc_relocated.
- for (auto Pair : AllocaMap) {
- Value *Def = Pair.first;
- AllocaInst *Alloca = Pair.second;
- // We pre-record the uses of allocas so that we dont have to worry about
- // later update that changes the user information..
- SmallVector<Instruction *, 20> Uses;
- // PERF: trade a linear scan for repeated reallocation
- Uses.reserve(Def->getNumUses());
- for (User *U : Def->users()) {
- if (!isa<ConstantExpr>(U)) {
- // If the def has a ConstantExpr use, then the def is either a
- // ConstantExpr use itself or null. In either case
- // (recursively in the first, directly in the second), the oop
- // it is ultimately dependent on is null and this particular
- // use does not need to be fixed up.
- Uses.push_back(cast<Instruction>(U));
- }
- }
- llvm::sort(Uses);
- auto Last = std::unique(Uses.begin(), Uses.end());
- Uses.erase(Last, Uses.end());
- for (Instruction *Use : Uses) {
- if (isa<PHINode>(Use)) {
- PHINode *Phi = cast<PHINode>(Use);
- for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
- if (Def == Phi->getIncomingValue(i)) {
- LoadInst *Load =
- new LoadInst(Alloca->getAllocatedType(), Alloca, "",
- Phi->getIncomingBlock(i)->getTerminator());
- Phi->setIncomingValue(i, Load);
- }
- }
- } else {
- LoadInst *Load =
- new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
- Use->replaceUsesOfWith(Def, Load);
- }
- }
- // Emit store for the initial gc value. Store must be inserted after load,
- // otherwise store will be in alloca's use list and an extra load will be
- // inserted before it.
- StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
- DL.getABITypeAlign(Def->getType()));
- if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
- if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
- // InvokeInst is a terminator so the store need to be inserted into its
- // normal destination block.
- BasicBlock *NormalDest = Invoke->getNormalDest();
- Store->insertBefore(NormalDest->getFirstNonPHI());
- } else {
- assert(!Inst->isTerminator() &&
- "The only terminator that can produce a value is "
- "InvokeInst which is handled above.");
- Store->insertAfter(Inst);
- }
- } else {
- assert(isa<Argument>(Def));
- Store->insertAfter(cast<Instruction>(Alloca));
- }
- }
- assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
- "we must have the same allocas with lives");
- (void) NumRematerializedValues;
- if (!PromotableAllocas.empty()) {
- // Apply mem2reg to promote alloca to SSA
- PromoteMemToReg(PromotableAllocas, DT);
- }
- #ifndef NDEBUG
- for (auto &I : F.getEntryBlock())
- if (isa<AllocaInst>(I))
- InitialAllocaNum--;
- assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
- #endif
- }
- /// Implement a unique function which doesn't require we sort the input
- /// vector. Doing so has the effect of changing the output of a couple of
- /// tests in ways which make them less useful in testing fused safepoints.
- template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
- SmallSet<T, 8> Seen;
- erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
- }
- /// Insert holders so that each Value is obviously live through the entire
- /// lifetime of the call.
- static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
- SmallVectorImpl<CallInst *> &Holders) {
- if (Values.empty())
- // No values to hold live, might as well not insert the empty holder
- return;
- Module *M = Call->getModule();
- // Use a dummy vararg function to actually hold the values live
- FunctionCallee Func = M->getOrInsertFunction(
- "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
- if (isa<CallInst>(Call)) {
- // For call safepoints insert dummy calls right after safepoint
- Holders.push_back(
- CallInst::Create(Func, Values, "", &*++Call->getIterator()));
- return;
- }
- // For invoke safepooints insert dummy calls both in normal and
- // exceptional destination blocks
- auto *II = cast<InvokeInst>(Call);
- Holders.push_back(CallInst::Create(
- Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
- Holders.push_back(CallInst::Create(
- Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
- }
- static void findLiveReferences(
- Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
- MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
- GCPtrLivenessData OriginalLivenessData;
- computeLiveInValues(DT, F, OriginalLivenessData);
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
- }
- }
- // Helper function for the "rematerializeLiveValues". It walks use chain
- // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
- // the base or a value it cannot process. Only "simple" values are processed
- // (currently it is GEP's and casts). The returned root is examined by the
- // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array
- // with all visited values.
- static Value* findRematerializableChainToBasePointer(
- SmallVectorImpl<Instruction*> &ChainToBase,
- Value *CurrentValue) {
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
- ChainToBase.push_back(GEP);
- return findRematerializableChainToBasePointer(ChainToBase,
- GEP->getPointerOperand());
- }
- if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
- if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
- return CI;
- ChainToBase.push_back(CI);
- return findRematerializableChainToBasePointer(ChainToBase,
- CI->getOperand(0));
- }
- // We have reached the root of the chain, which is either equal to the base or
- // is the first unsupported value along the use chain.
- return CurrentValue;
- }
- // Helper function for the "rematerializeLiveValues". Compute cost of the use
- // chain we are going to rematerialize.
- static InstructionCost
- chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
- TargetTransformInfo &TTI) {
- InstructionCost Cost = 0;
- for (Instruction *Instr : Chain) {
- if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
- assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
- "non noop cast is found during rematerialization");
- Type *SrcTy = CI->getOperand(0)->getType();
- Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
- TTI::getCastContextHint(CI),
- TargetTransformInfo::TCK_SizeAndLatency, CI);
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
- // Cost of the address calculation
- Type *ValTy = GEP->getSourceElementType();
- Cost += TTI.getAddressComputationCost(ValTy);
- // And cost of the GEP itself
- // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
- // allowed for the external usage)
- if (!GEP->hasAllConstantIndices())
- Cost += 2;
- } else {
- llvm_unreachable("unsupported instruction type during rematerialization");
- }
- }
- return Cost;
- }
- static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
- unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
- if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
- OrigRootPhi.getParent() != AlternateRootPhi.getParent())
- return false;
- // Map of incoming values and their corresponding basic blocks of
- // OrigRootPhi.
- SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
- for (unsigned i = 0; i < PhiNum; i++)
- CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
- OrigRootPhi.getIncomingBlock(i);
- // Both current and base PHIs should have same incoming values and
- // the same basic blocks corresponding to the incoming values.
- for (unsigned i = 0; i < PhiNum; i++) {
- auto CIVI =
- CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
- if (CIVI == CurrentIncomingValues.end())
- return false;
- BasicBlock *CurrentIncomingBB = CIVI->second;
- if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
- return false;
- }
- return true;
- }
- // Find derived pointers that can be recomputed cheap enough and fill
- // RematerizationCandidates with such candidates.
- static void
- findRematerializationCandidates(PointerToBaseTy PointerToBase,
- RematCandTy &RematerizationCandidates,
- TargetTransformInfo &TTI) {
- const unsigned int ChainLengthThreshold = 10;
- for (auto P2B : PointerToBase) {
- auto *Derived = P2B.first;
- auto *Base = P2B.second;
- // Consider only derived pointers.
- if (Derived == Base)
- continue;
- // For each live pointer find its defining chain.
- SmallVector<Instruction *, 3> ChainToBase;
- Value *RootOfChain =
- findRematerializableChainToBasePointer(ChainToBase, Derived);
- // Nothing to do, or chain is too long
- if ( ChainToBase.size() == 0 ||
- ChainToBase.size() > ChainLengthThreshold)
- continue;
- // Handle the scenario where the RootOfChain is not equal to the
- // Base Value, but they are essentially the same phi values.
- if (RootOfChain != PointerToBase[Derived]) {
- PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
- PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]);
- if (!OrigRootPhi || !AlternateRootPhi)
- continue;
- // PHI nodes that have the same incoming values, and belonging to the same
- // basic blocks are essentially the same SSA value. When the original phi
- // has incoming values with different base pointers, the original phi is
- // marked as conflict, and an additional `AlternateRootPhi` with the same
- // incoming values get generated by the findBasePointer function. We need
- // to identify the newly generated AlternateRootPhi (.base version of phi)
- // and RootOfChain (the original phi node itself) are the same, so that we
- // can rematerialize the gep and casts. This is a workaround for the
- // deficiency in the findBasePointer algorithm.
- if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
- continue;
- }
- // Compute cost of this chain.
- InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
- // TODO: We can also account for cases when we will be able to remove some
- // of the rematerialized values by later optimization passes. I.e if
- // we rematerialized several intersecting chains. Or if original values
- // don't have any uses besides this statepoint.
- // Ok, there is a candidate.
- RematerizlizationCandidateRecord Record;
- Record.ChainToBase = ChainToBase;
- Record.RootOfChain = RootOfChain;
- Record.Cost = Cost;
- RematerizationCandidates.insert({ Derived, Record });
- }
- }
- // Try to rematerialize derived pointers immediately before their uses
- // (instead of rematerializing after every statepoint it is live through).
- // This can be beneficial when derived pointer is live across many
- // statepoints, but uses are rare.
- static void rematerializeLiveValuesAtUses(
- RematCandTy &RematerizationCandidates,
- MutableArrayRef<PartiallyConstructedSafepointRecord> Records,
- PointerToBaseTy &PointerToBase) {
- if (!RematDerivedAtUses)
- return;
- SmallVector<Instruction *, 32> LiveValuesToBeDeleted;
- LLVM_DEBUG(dbgs() << "Rematerialize derived pointers at uses, "
- << "Num statepoints: " << Records.size() << '\n');
- for (auto &It : RematerizationCandidates) {
- Instruction *Cand = cast<Instruction>(It.first);
- auto &Record = It.second;
- if (Record.Cost >= RematerializationThreshold)
- continue;
- if (Cand->user_empty())
- continue;
- if (Cand->hasOneUse())
- if (auto *U = dyn_cast<Instruction>(Cand->getUniqueUndroppableUser()))
- if (U->getParent() == Cand->getParent())
- continue;
- // Rematerialization before PHI nodes is not implemented.
- if (llvm::any_of(Cand->users(),
- [](const auto *U) { return isa<PHINode>(U); }))
- continue;
- LLVM_DEBUG(dbgs() << "Trying cand " << *Cand << " ... ");
- // Count of rematerialization instructions we introduce is equal to number
- // of candidate uses.
- // Count of rematerialization instructions we eliminate is equal to number
- // of statepoints it is live through.
- // Consider transformation profitable if latter is greater than former
- // (in other words, we create less than eliminate).
- unsigned NumLiveStatepoints = llvm::count_if(
- Records, [Cand](const auto &R) { return R.LiveSet.contains(Cand); });
- unsigned NumUses = Cand->getNumUses();
- LLVM_DEBUG(dbgs() << "Num uses: " << NumUses << " Num live statepoints: "
- << NumLiveStatepoints << " ");
- if (NumLiveStatepoints < NumUses) {
- LLVM_DEBUG(dbgs() << "not profitable\n");
- continue;
- }
- // If rematerialization is 'free', then favor rematerialization at
- // uses as it generally shortens live ranges.
- // TODO: Short (size ==1) chains only?
- if (NumLiveStatepoints == NumUses && Record.Cost > 0) {
- LLVM_DEBUG(dbgs() << "not profitable\n");
- continue;
- }
- LLVM_DEBUG(dbgs() << "looks profitable\n");
- // ChainToBase may contain another remat candidate (as a sub chain) which
- // has been rewritten by now. Need to recollect chain to have up to date
- // value.
- // TODO: sort records in findRematerializationCandidates() in
- // decreasing chain size order?
- if (Record.ChainToBase.size() > 1) {
- Record.ChainToBase.clear();
- findRematerializableChainToBasePointer(Record.ChainToBase, Cand);
- }
- // Current rematerialization algorithm is very simple: we rematerialize
- // immediately before EVERY use, even if there are several uses in same
- // block or if use is local to Cand Def. The reason is that this allows
- // us to avoid recomputing liveness without complicated analysis:
- // - If we did not eliminate all uses of original Candidate, we do not
- // know exaclty in what BBs it is still live.
- // - If we rematerialize once per BB, we need to find proper insertion
- // place (first use in block, but after Def) and analyze if there is
- // statepoint between uses in the block.
- while (!Cand->user_empty()) {
- Instruction *UserI = cast<Instruction>(*Cand->user_begin());
- Instruction *RematChain = rematerializeChain(
- Record.ChainToBase, UserI, Record.RootOfChain, PointerToBase[Cand]);
- UserI->replaceUsesOfWith(Cand, RematChain);
- PointerToBase[RematChain] = PointerToBase[Cand];
- }
- LiveValuesToBeDeleted.push_back(Cand);
- }
- LLVM_DEBUG(dbgs() << "Rematerialized " << LiveValuesToBeDeleted.size()
- << " derived pointers\n");
- for (auto *Cand : LiveValuesToBeDeleted) {
- assert(Cand->use_empty() && "Unexpected user remain");
- RematerizationCandidates.erase(Cand);
- for (auto &R : Records) {
- assert(!R.LiveSet.contains(Cand) ||
- R.LiveSet.contains(PointerToBase[Cand]));
- R.LiveSet.remove(Cand);
- }
- }
- // Recollect not rematerialized chains - we might have rewritten
- // their sub-chains.
- if (!LiveValuesToBeDeleted.empty()) {
- for (auto &P : RematerizationCandidates) {
- auto &R = P.second;
- if (R.ChainToBase.size() > 1) {
- R.ChainToBase.clear();
- findRematerializableChainToBasePointer(R.ChainToBase, P.first);
- }
- }
- }
- }
- // From the statepoint live set pick values that are cheaper to recompute then
- // to relocate. Remove this values from the live set, rematerialize them after
- // statepoint and record them in "Info" structure. Note that similar to
- // relocated values we don't do any user adjustments here.
- static void rematerializeLiveValues(CallBase *Call,
- PartiallyConstructedSafepointRecord &Info,
- PointerToBaseTy &PointerToBase,
- RematCandTy &RematerizationCandidates,
- TargetTransformInfo &TTI) {
- // Record values we are going to delete from this statepoint live set.
- // We can not di this in following loop due to iterator invalidation.
- SmallVector<Value *, 32> LiveValuesToBeDeleted;
- for (Value *LiveValue : Info.LiveSet) {
- auto It = RematerizationCandidates.find(LiveValue);
- if (It == RematerizationCandidates.end())
- continue;
- RematerizlizationCandidateRecord &Record = It->second;
- InstructionCost Cost = Record.Cost;
- // For invokes we need to rematerialize each chain twice - for normal and
- // for unwind basic blocks. Model this by multiplying cost by two.
- if (isa<InvokeInst>(Call))
- Cost *= 2;
- // If it's too expensive - skip it.
- if (Cost >= RematerializationThreshold)
- continue;
- // Remove value from the live set
- LiveValuesToBeDeleted.push_back(LiveValue);
- // Clone instructions and record them inside "Info" structure.
- // Different cases for calls and invokes. For invokes we need to clone
- // instructions both on normal and unwind path.
- if (isa<CallInst>(Call)) {
- Instruction *InsertBefore = Call->getNextNode();
- assert(InsertBefore);
- Instruction *RematerializedValue =
- rematerializeChain(Record.ChainToBase, InsertBefore,
- Record.RootOfChain, PointerToBase[LiveValue]);
- Info.RematerializedValues[RematerializedValue] = LiveValue;
- } else {
- auto *Invoke = cast<InvokeInst>(Call);
- Instruction *NormalInsertBefore =
- &*Invoke->getNormalDest()->getFirstInsertionPt();
- Instruction *UnwindInsertBefore =
- &*Invoke->getUnwindDest()->getFirstInsertionPt();
- Instruction *NormalRematerializedValue =
- rematerializeChain(Record.ChainToBase, NormalInsertBefore,
- Record.RootOfChain, PointerToBase[LiveValue]);
- Instruction *UnwindRematerializedValue =
- rematerializeChain(Record.ChainToBase, UnwindInsertBefore,
- Record.RootOfChain, PointerToBase[LiveValue]);
- Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
- Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
- }
- }
- // Remove rematerialized values from the live set.
- for (auto *LiveValue: LiveValuesToBeDeleted) {
- Info.LiveSet.remove(LiveValue);
- }
- }
- static bool inlineGetBaseAndOffset(Function &F,
- SmallVectorImpl<CallInst *> &Intrinsics,
- DefiningValueMapTy &DVCache,
- IsKnownBaseMapTy &KnownBases) {
- auto &Context = F.getContext();
- auto &DL = F.getParent()->getDataLayout();
- bool Changed = false;
- for (auto *Callsite : Intrinsics)
- switch (Callsite->getIntrinsicID()) {
- case Intrinsic::experimental_gc_get_pointer_base: {
- Changed = true;
- Value *Base =
- findBasePointer(Callsite->getOperand(0), DVCache, KnownBases);
- assert(!DVCache.count(Callsite));
- auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast(
- Base, Callsite->getType(), suffixed_name_or(Base, ".cast", ""));
- if (BaseBC != Base)
- DVCache[BaseBC] = Base;
- Callsite->replaceAllUsesWith(BaseBC);
- if (!BaseBC->hasName())
- BaseBC->takeName(Callsite);
- Callsite->eraseFromParent();
- break;
- }
- case Intrinsic::experimental_gc_get_pointer_offset: {
- Changed = true;
- Value *Derived = Callsite->getOperand(0);
- Value *Base = findBasePointer(Derived, DVCache, KnownBases);
- assert(!DVCache.count(Callsite));
- unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
- unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
- IRBuilder<> Builder(Callsite);
- Value *BaseInt =
- Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize),
- suffixed_name_or(Base, ".int", ""));
- Value *DerivedInt =
- Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize),
- suffixed_name_or(Derived, ".int", ""));
- Value *Offset = Builder.CreateSub(DerivedInt, BaseInt);
- Callsite->replaceAllUsesWith(Offset);
- Offset->takeName(Callsite);
- Callsite->eraseFromParent();
- break;
- }
- default:
- llvm_unreachable("Unknown intrinsic");
- }
- return Changed;
- }
- static bool insertParsePoints(Function &F, DominatorTree &DT,
- TargetTransformInfo &TTI,
- SmallVectorImpl<CallBase *> &ToUpdate,
- DefiningValueMapTy &DVCache,
- IsKnownBaseMapTy &KnownBases) {
- #ifndef NDEBUG
- // Validate the input
- std::set<CallBase *> Uniqued;
- Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
- assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
- for (CallBase *Call : ToUpdate)
- assert(Call->getFunction() == &F);
- #endif
- // When inserting gc.relocates for invokes, we need to be able to insert at
- // the top of the successor blocks. See the comment on
- // normalForInvokeSafepoint on exactly what is needed. Note that this step
- // may restructure the CFG.
- for (CallBase *Call : ToUpdate) {
- auto *II = dyn_cast<InvokeInst>(Call);
- if (!II)
- continue;
- normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
- normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
- }
- // A list of dummy calls added to the IR to keep various values obviously
- // live in the IR. We'll remove all of these when done.
- SmallVector<CallInst *, 64> Holders;
- // Insert a dummy call with all of the deopt operands we'll need for the
- // actual safepoint insertion as arguments. This ensures reference operands
- // in the deopt argument list are considered live through the safepoint (and
- // thus makes sure they get relocated.)
- for (CallBase *Call : ToUpdate) {
- SmallVector<Value *, 64> DeoptValues;
- for (Value *Arg : GetDeoptBundleOperands(Call)) {
- assert(!isUnhandledGCPointerType(Arg->getType()) &&
- "support for FCA unimplemented");
- if (isHandledGCPointerType(Arg->getType()))
- DeoptValues.push_back(Arg);
- }
- insertUseHolderAfter(Call, DeoptValues, Holders);
- }
- SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
- // A) Identify all gc pointers which are statically live at the given call
- // site.
- findLiveReferences(F, DT, ToUpdate, Records);
- /// Global mapping from live pointers to a base-defining-value.
- PointerToBaseTy PointerToBase;
- // B) Find the base pointers for each live pointer
- for (size_t i = 0; i < Records.size(); i++) {
- PartiallyConstructedSafepointRecord &info = Records[i];
- findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases);
- }
- if (PrintBasePointers) {
- errs() << "Base Pairs (w/o Relocation):\n";
- for (auto &Pair : PointerToBase) {
- errs() << " derived ";
- Pair.first->printAsOperand(errs(), false);
- errs() << " base ";
- Pair.second->printAsOperand(errs(), false);
- errs() << "\n";
- ;
- }
- }
- // The base phi insertion logic (for any safepoint) may have inserted new
- // instructions which are now live at some safepoint. The simplest such
- // example is:
- // loop:
- // phi a <-- will be a new base_phi here
- // safepoint 1 <-- that needs to be live here
- // gep a + 1
- // safepoint 2
- // br loop
- // We insert some dummy calls after each safepoint to definitely hold live
- // the base pointers which were identified for that safepoint. We'll then
- // ask liveness for _every_ base inserted to see what is now live. Then we
- // remove the dummy calls.
- Holders.reserve(Holders.size() + Records.size());
- for (size_t i = 0; i < Records.size(); i++) {
- PartiallyConstructedSafepointRecord &Info = Records[i];
- SmallVector<Value *, 128> Bases;
- for (auto *Derived : Info.LiveSet) {
- assert(PointerToBase.count(Derived) && "Missed base for derived pointer");
- Bases.push_back(PointerToBase[Derived]);
- }
- insertUseHolderAfter(ToUpdate[i], Bases, Holders);
- }
- // By selecting base pointers, we've effectively inserted new uses. Thus, we
- // need to rerun liveness. We may *also* have inserted new defs, but that's
- // not the key issue.
- recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase);
- if (PrintBasePointers) {
- errs() << "Base Pairs: (w/Relocation)\n";
- for (auto Pair : PointerToBase) {
- errs() << " derived ";
- Pair.first->printAsOperand(errs(), false);
- errs() << " base ";
- Pair.second->printAsOperand(errs(), false);
- errs() << "\n";
- }
- }
- // It is possible that non-constant live variables have a constant base. For
- // example, a GEP with a variable offset from a global. In this case we can
- // remove it from the liveset. We already don't add constants to the liveset
- // because we assume they won't move at runtime and the GC doesn't need to be
- // informed about them. The same reasoning applies if the base is constant.
- // Note that the relocation placement code relies on this filtering for
- // correctness as it expects the base to be in the liveset, which isn't true
- // if the base is constant.
- for (auto &Info : Records) {
- Info.LiveSet.remove_if([&](Value *LiveV) {
- assert(PointerToBase.count(LiveV) && "Missed base for derived pointer");
- return isa<Constant>(PointerToBase[LiveV]);
- });
- }
- for (CallInst *CI : Holders)
- CI->eraseFromParent();
- Holders.clear();
- // Compute the cost of possible re-materialization of derived pointers.
- RematCandTy RematerizationCandidates;
- findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI);
- // In order to reduce live set of statepoint we might choose to rematerialize
- // some values instead of relocating them. This is purely an optimization and
- // does not influence correctness.
- // First try rematerialization at uses, then after statepoints.
- rematerializeLiveValuesAtUses(RematerizationCandidates, Records,
- PointerToBase);
- for (size_t i = 0; i < Records.size(); i++)
- rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase,
- RematerizationCandidates, TTI);
- // We need this to safely RAUW and delete call or invoke return values that
- // may themselves be live over a statepoint. For details, please see usage in
- // makeStatepointExplicitImpl.
- std::vector<DeferredReplacement> Replacements;
- // Now run through and replace the existing statepoints with new ones with
- // the live variables listed. We do not yet update uses of the values being
- // relocated. We have references to live variables that need to
- // survive to the last iteration of this loop. (By construction, the
- // previous statepoint can not be a live variable, thus we can and remove
- // the old statepoint calls as we go.)
- for (size_t i = 0; i < Records.size(); i++)
- makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements,
- PointerToBase);
- ToUpdate.clear(); // prevent accident use of invalid calls.
- for (auto &PR : Replacements)
- PR.doReplacement();
- Replacements.clear();
- for (auto &Info : Records) {
- // These live sets may contain state Value pointers, since we replaced calls
- // with operand bundles with calls wrapped in gc.statepoint, and some of
- // those calls may have been def'ing live gc pointers. Clear these out to
- // avoid accidentally using them.
- //
- // TODO: We should create a separate data structure that does not contain
- // these live sets, and migrate to using that data structure from this point
- // onward.
- Info.LiveSet.clear();
- }
- PointerToBase.clear();
- // Do all the fixups of the original live variables to their relocated selves
- SmallVector<Value *, 128> Live;
- for (size_t i = 0; i < Records.size(); i++) {
- PartiallyConstructedSafepointRecord &Info = Records[i];
- // We can't simply save the live set from the original insertion. One of
- // the live values might be the result of a call which needs a safepoint.
- // That Value* no longer exists and we need to use the new gc_result.
- // Thankfully, the live set is embedded in the statepoint (and updated), so
- // we just grab that.
- llvm::append_range(Live, Info.StatepointToken->gc_args());
- #ifndef NDEBUG
- // Do some basic validation checking on our liveness results before
- // performing relocation. Relocation can and will turn mistakes in liveness
- // results into non-sensical code which is must harder to debug.
- // TODO: It would be nice to test consistency as well
- assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
- "statepoint must be reachable or liveness is meaningless");
- for (Value *V : Info.StatepointToken->gc_args()) {
- if (!isa<Instruction>(V))
- // Non-instruction values trivial dominate all possible uses
- continue;
- auto *LiveInst = cast<Instruction>(V);
- assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
- "unreachable values should never be live");
- assert(DT.dominates(LiveInst, Info.StatepointToken) &&
- "basic SSA liveness expectation violated by liveness analysis");
- }
- #endif
- }
- unique_unsorted(Live);
- #ifndef NDEBUG
- // Validation check
- for (auto *Ptr : Live)
- assert(isHandledGCPointerType(Ptr->getType()) &&
- "must be a gc pointer type");
- #endif
- relocationViaAlloca(F, DT, Live, Records);
- return !Records.empty();
- }
- // List of all parameter and return attributes which must be stripped when
- // lowering from the abstract machine model. Note that we list attributes
- // here which aren't valid as return attributes, that is okay.
- static AttributeMask getParamAndReturnAttributesToRemove() {
- AttributeMask R;
- R.addAttribute(Attribute::Dereferenceable);
- R.addAttribute(Attribute::DereferenceableOrNull);
- R.addAttribute(Attribute::ReadNone);
- R.addAttribute(Attribute::ReadOnly);
- R.addAttribute(Attribute::WriteOnly);
- R.addAttribute(Attribute::NoAlias);
- R.addAttribute(Attribute::NoFree);
- return R;
- }
- static void stripNonValidAttributesFromPrototype(Function &F) {
- LLVMContext &Ctx = F.getContext();
- // Intrinsics are very delicate. Lowering sometimes depends the presence
- // of certain attributes for correctness, but we may have also inferred
- // additional ones in the abstract machine model which need stripped. This
- // assumes that the attributes defined in Intrinsic.td are conservatively
- // correct for both physical and abstract model.
- if (Intrinsic::ID id = F.getIntrinsicID()) {
- F.setAttributes(Intrinsic::getAttributes(Ctx, id));
- return;
- }
- AttributeMask R = getParamAndReturnAttributesToRemove();
- for (Argument &A : F.args())
- if (isa<PointerType>(A.getType()))
- F.removeParamAttrs(A.getArgNo(), R);
- if (isa<PointerType>(F.getReturnType()))
- F.removeRetAttrs(R);
- for (auto Attr : FnAttrsToStrip)
- F.removeFnAttr(Attr);
- }
- /// Certain metadata on instructions are invalid after running RS4GC.
- /// Optimizations that run after RS4GC can incorrectly use this metadata to
- /// optimize functions. We drop such metadata on the instruction.
- static void stripInvalidMetadataFromInstruction(Instruction &I) {
- if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
- return;
- // These are the attributes that are still valid on loads and stores after
- // RS4GC.
- // The metadata implying dereferenceability and noalias are (conservatively)
- // dropped. This is because semantically, after RewriteStatepointsForGC runs,
- // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
- // touch the entire heap including noalias objects. Note: The reasoning is
- // same as stripping the dereferenceability and noalias attributes that are
- // analogous to the metadata counterparts.
- // We also drop the invariant.load metadata on the load because that metadata
- // implies the address operand to the load points to memory that is never
- // changed once it became dereferenceable. This is no longer true after RS4GC.
- // Similar reasoning applies to invariant.group metadata, which applies to
- // loads within a group.
- unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
- LLVMContext::MD_range,
- LLVMContext::MD_alias_scope,
- LLVMContext::MD_nontemporal,
- LLVMContext::MD_nonnull,
- LLVMContext::MD_align,
- LLVMContext::MD_type};
- // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
- I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
- }
- static void stripNonValidDataFromBody(Function &F) {
- if (F.empty())
- return;
- LLVMContext &Ctx = F.getContext();
- MDBuilder Builder(Ctx);
- // Set of invariantstart instructions that we need to remove.
- // Use this to avoid invalidating the instruction iterator.
- SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
- for (Instruction &I : instructions(F)) {
- // invariant.start on memory location implies that the referenced memory
- // location is constant and unchanging. This is no longer true after
- // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
- // which frees the entire heap and the presence of invariant.start allows
- // the optimizer to sink the load of a memory location past a statepoint,
- // which is incorrect.
- if (auto *II = dyn_cast<IntrinsicInst>(&I))
- if (II->getIntrinsicID() == Intrinsic::invariant_start) {
- InvariantStartInstructions.push_back(II);
- continue;
- }
- if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
- MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
- I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
- }
- stripInvalidMetadataFromInstruction(I);
- AttributeMask R = getParamAndReturnAttributesToRemove();
- if (auto *Call = dyn_cast<CallBase>(&I)) {
- for (int i = 0, e = Call->arg_size(); i != e; i++)
- if (isa<PointerType>(Call->getArgOperand(i)->getType()))
- Call->removeParamAttrs(i, R);
- if (isa<PointerType>(Call->getType()))
- Call->removeRetAttrs(R);
- }
- }
- // Delete the invariant.start instructions and RAUW undef.
- for (auto *II : InvariantStartInstructions) {
- II->replaceAllUsesWith(UndefValue::get(II->getType()));
- II->eraseFromParent();
- }
- }
- /// Returns true if this function should be rewritten by this pass. The main
- /// point of this function is as an extension point for custom logic.
- static bool shouldRewriteStatepointsIn(Function &F) {
- // TODO: This should check the GCStrategy
- if (F.hasGC()) {
- const auto &FunctionGCName = F.getGC();
- const StringRef StatepointExampleName("statepoint-example");
- const StringRef CoreCLRName("coreclr");
- return (StatepointExampleName == FunctionGCName) ||
- (CoreCLRName == FunctionGCName);
- } else
- return false;
- }
- static void stripNonValidData(Module &M) {
- #ifndef NDEBUG
- assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
- #endif
- for (Function &F : M)
- stripNonValidAttributesFromPrototype(F);
- for (Function &F : M)
- stripNonValidDataFromBody(F);
- }
- bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
- TargetTransformInfo &TTI,
- const TargetLibraryInfo &TLI) {
- assert(!F.isDeclaration() && !F.empty() &&
- "need function body to rewrite statepoints in");
- assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
- auto NeedsRewrite = [&TLI](Instruction &I) {
- if (const auto *Call = dyn_cast<CallBase>(&I)) {
- if (isa<GCStatepointInst>(Call))
- return false;
- if (callsGCLeafFunction(Call, TLI))
- return false;
- // Normally it's up to the frontend to make sure that non-leaf calls also
- // have proper deopt state if it is required. We make an exception for
- // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
- // these are non-leaf by default. They might be generated by the optimizer
- // which doesn't know how to produce a proper deopt state. So if we see a
- // non-leaf memcpy/memmove without deopt state just treat it as a leaf
- // copy and don't produce a statepoint.
- if (!AllowStatepointWithNoDeoptInfo &&
- !Call->getOperandBundle(LLVMContext::OB_deopt)) {
- assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
- "Don't expect any other calls here!");
- return false;
- }
- return true;
- }
- return false;
- };
- // Delete any unreachable statepoints so that we don't have unrewritten
- // statepoints surviving this pass. This makes testing easier and the
- // resulting IR less confusing to human readers.
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
- bool MadeChange = removeUnreachableBlocks(F, &DTU);
- // Flush the Dominator Tree.
- DTU.getDomTree();
- // Gather all the statepoints which need rewritten. Be careful to only
- // consider those in reachable code since we need to ask dominance queries
- // when rewriting. We'll delete the unreachable ones in a moment.
- SmallVector<CallBase *, 64> ParsePointNeeded;
- SmallVector<CallInst *, 64> Intrinsics;
- for (Instruction &I : instructions(F)) {
- // TODO: only the ones with the flag set!
- if (NeedsRewrite(I)) {
- // NOTE removeUnreachableBlocks() is stronger than
- // DominatorTree::isReachableFromEntry(). In other words
- // removeUnreachableBlocks can remove some blocks for which
- // isReachableFromEntry() returns true.
- assert(DT.isReachableFromEntry(I.getParent()) &&
- "no unreachable blocks expected");
- ParsePointNeeded.push_back(cast<CallBase>(&I));
- }
- if (auto *CI = dyn_cast<CallInst>(&I))
- if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base ||
- CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset)
- Intrinsics.emplace_back(CI);
- }
- // Return early if no work to do.
- if (ParsePointNeeded.empty() && Intrinsics.empty())
- return MadeChange;
- // As a prepass, go ahead and aggressively destroy single entry phi nodes.
- // These are created by LCSSA. They have the effect of increasing the size
- // of liveness sets for no good reason. It may be harder to do this post
- // insertion since relocations and base phis can confuse things.
- for (BasicBlock &BB : F)
- if (BB.getUniquePredecessor())
- MadeChange |= FoldSingleEntryPHINodes(&BB);
- // Before we start introducing relocations, we want to tweak the IR a bit to
- // avoid unfortunate code generation effects. The main example is that we
- // want to try to make sure the comparison feeding a branch is after any
- // safepoints. Otherwise, we end up with a comparison of pre-relocation
- // values feeding a branch after relocation. This is semantically correct,
- // but results in extra register pressure since both the pre-relocation and
- // post-relocation copies must be available in registers. For code without
- // relocations this is handled elsewhere, but teaching the scheduler to
- // reverse the transform we're about to do would be slightly complex.
- // Note: This may extend the live range of the inputs to the icmp and thus
- // increase the liveset of any statepoint we move over. This is profitable
- // as long as all statepoints are in rare blocks. If we had in-register
- // lowering for live values this would be a much safer transform.
- auto getConditionInst = [](Instruction *TI) -> Instruction * {
- if (auto *BI = dyn_cast<BranchInst>(TI))
- if (BI->isConditional())
- return dyn_cast<Instruction>(BI->getCondition());
- // TODO: Extend this to handle switches
- return nullptr;
- };
- for (BasicBlock &BB : F) {
- Instruction *TI = BB.getTerminator();
- if (auto *Cond = getConditionInst(TI))
- // TODO: Handle more than just ICmps here. We should be able to move
- // most instructions without side effects or memory access.
- if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
- MadeChange = true;
- Cond->moveBefore(TI);
- }
- }
- // Nasty workaround - The base computation code in the main algorithm doesn't
- // consider the fact that a GEP can be used to convert a scalar to a vector.
- // The right fix for this is to integrate GEPs into the base rewriting
- // algorithm properly, this is just a short term workaround to prevent
- // crashes by canonicalizing such GEPs into fully vector GEPs.
- for (Instruction &I : instructions(F)) {
- if (!isa<GetElementPtrInst>(I))
- continue;
- unsigned VF = 0;
- for (unsigned i = 0; i < I.getNumOperands(); i++)
- if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
- assert(VF == 0 ||
- VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
- VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
- }
- // It's the vector to scalar traversal through the pointer operand which
- // confuses base pointer rewriting, so limit ourselves to that case.
- if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
- IRBuilder<> B(&I);
- auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
- I.setOperand(0, Splat);
- MadeChange = true;
- }
- }
- // Cache the 'defining value' relation used in the computation and
- // insertion of base phis and selects. This ensures that we don't insert
- // large numbers of duplicate base_phis. Use one cache for both
- // inlineGetBaseAndOffset() and insertParsePoints().
- DefiningValueMapTy DVCache;
- // Mapping between a base values and a flag indicating whether it's a known
- // base or not.
- IsKnownBaseMapTy KnownBases;
- if (!Intrinsics.empty())
- // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding
- // live references.
- MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases);
- if (!ParsePointNeeded.empty())
- MadeChange |=
- insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases);
- return MadeChange;
- }
- // liveness computation via standard dataflow
- // -------------------------------------------------------------------
- // TODO: Consider using bitvectors for liveness, the set of potentially
- // interesting values should be small and easy to pre-compute.
- /// Compute the live-in set for the location rbegin starting from
- /// the live-out set of the basic block
- static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
- BasicBlock::reverse_iterator End,
- SetVector<Value *> &LiveTmp) {
- for (auto &I : make_range(Begin, End)) {
- // KILL/Def - Remove this definition from LiveIn
- LiveTmp.remove(&I);
- // Don't consider *uses* in PHI nodes, we handle their contribution to
- // predecessor blocks when we seed the LiveOut sets
- if (isa<PHINode>(I))
- continue;
- // USE - Add to the LiveIn set for this instruction
- for (Value *V : I.operands()) {
- assert(!isUnhandledGCPointerType(V->getType()) &&
- "support for FCA unimplemented");
- if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
- // The choice to exclude all things constant here is slightly subtle.
- // There are two independent reasons:
- // - We assume that things which are constant (from LLVM's definition)
- // do not move at runtime. For example, the address of a global
- // variable is fixed, even though it's contents may not be.
- // - Second, we can't disallow arbitrary inttoptr constants even
- // if the language frontend does. Optimization passes are free to
- // locally exploit facts without respect to global reachability. This
- // can create sections of code which are dynamically unreachable and
- // contain just about anything. (see constants.ll in tests)
- LiveTmp.insert(V);
- }
- }
- }
- }
- static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
- for (BasicBlock *Succ : successors(BB)) {
- for (auto &I : *Succ) {
- PHINode *PN = dyn_cast<PHINode>(&I);
- if (!PN)
- break;
- Value *V = PN->getIncomingValueForBlock(BB);
- assert(!isUnhandledGCPointerType(V->getType()) &&
- "support for FCA unimplemented");
- if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
- LiveTmp.insert(V);
- }
- }
- }
- static SetVector<Value *> computeKillSet(BasicBlock *BB) {
- SetVector<Value *> KillSet;
- for (Instruction &I : *BB)
- if (isHandledGCPointerType(I.getType()))
- KillSet.insert(&I);
- return KillSet;
- }
- #ifndef NDEBUG
- /// Check that the items in 'Live' dominate 'TI'. This is used as a basic
- /// validation check for the liveness computation.
- static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
- Instruction *TI, bool TermOkay = false) {
- for (Value *V : Live) {
- if (auto *I = dyn_cast<Instruction>(V)) {
- // The terminator can be a member of the LiveOut set. LLVM's definition
- // of instruction dominance states that V does not dominate itself. As
- // such, we need to special case this to allow it.
- if (TermOkay && TI == I)
- continue;
- assert(DT.dominates(I, TI) &&
- "basic SSA liveness expectation violated by liveness analysis");
- }
- }
- }
- /// Check that all the liveness sets used during the computation of liveness
- /// obey basic SSA properties. This is useful for finding cases where we miss
- /// a def.
- static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
- BasicBlock &BB) {
- checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
- checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
- checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
- }
- #endif
- static void computeLiveInValues(DominatorTree &DT, Function &F,
- GCPtrLivenessData &Data) {
- SmallSetVector<BasicBlock *, 32> Worklist;
- // Seed the liveness for each individual block
- for (BasicBlock &BB : F) {
- Data.KillSet[&BB] = computeKillSet(&BB);
- Data.LiveSet[&BB].clear();
- computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
- #ifndef NDEBUG
- for (Value *Kill : Data.KillSet[&BB])
- assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
- #endif
- Data.LiveOut[&BB] = SetVector<Value *>();
- computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
- Data.LiveIn[&BB] = Data.LiveSet[&BB];
- Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
- Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
- if (!Data.LiveIn[&BB].empty())
- Worklist.insert(pred_begin(&BB), pred_end(&BB));
- }
- // Propagate that liveness until stable
- while (!Worklist.empty()) {
- BasicBlock *BB = Worklist.pop_back_val();
- // Compute our new liveout set, then exit early if it hasn't changed despite
- // the contribution of our successor.
- SetVector<Value *> LiveOut = Data.LiveOut[BB];
- const auto OldLiveOutSize = LiveOut.size();
- for (BasicBlock *Succ : successors(BB)) {
- assert(Data.LiveIn.count(Succ));
- LiveOut.set_union(Data.LiveIn[Succ]);
- }
- // assert OutLiveOut is a subset of LiveOut
- if (OldLiveOutSize == LiveOut.size()) {
- // If the sets are the same size, then we didn't actually add anything
- // when unioning our successors LiveIn. Thus, the LiveIn of this block
- // hasn't changed.
- continue;
- }
- Data.LiveOut[BB] = LiveOut;
- // Apply the effects of this basic block
- SetVector<Value *> LiveTmp = LiveOut;
- LiveTmp.set_union(Data.LiveSet[BB]);
- LiveTmp.set_subtract(Data.KillSet[BB]);
- assert(Data.LiveIn.count(BB));
- const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
- // assert: OldLiveIn is a subset of LiveTmp
- if (OldLiveIn.size() != LiveTmp.size()) {
- Data.LiveIn[BB] = LiveTmp;
- Worklist.insert(pred_begin(BB), pred_end(BB));
- }
- } // while (!Worklist.empty())
- #ifndef NDEBUG
- // Verify our output against SSA properties. This helps catch any
- // missing kills during the above iteration.
- for (BasicBlock &BB : F)
- checkBasicSSA(DT, Data, BB);
- #endif
- }
- static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
- StatepointLiveSetTy &Out) {
- BasicBlock *BB = Inst->getParent();
- // Note: The copy is intentional and required
- assert(Data.LiveOut.count(BB));
- SetVector<Value *> LiveOut = Data.LiveOut[BB];
- // We want to handle the statepoint itself oddly. It's
- // call result is not live (normal), nor are it's arguments
- // (unless they're used again later). This adjustment is
- // specifically what we need to relocate
- computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
- LiveOut);
- LiveOut.remove(Inst);
- Out.insert(LiveOut.begin(), LiveOut.end());
- }
- static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
- CallBase *Call,
- PartiallyConstructedSafepointRecord &Info,
- PointerToBaseTy &PointerToBase) {
- StatepointLiveSetTy Updated;
- findLiveSetAtInst(Call, RevisedLivenessData, Updated);
- // We may have base pointers which are now live that weren't before. We need
- // to update the PointerToBase structure to reflect this.
- for (auto *V : Updated)
- PointerToBase.insert({ V, V });
- Info.LiveSet = Updated;
- }
|